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I. THE METHOD OF MOMENTS IN 1 QUANTUM MECHANICS 

Francis R. Halpern 

Radiation Laboratory 
University of California 

. Berkeley, California 

March 18, 195·7 

ABSTRACT 

The classical moment techniques of Tchebycheff, Markov. and' 

Stieltjes have been applied to the problem of diagonalizing the Hamil

tonian operator. These techniques lead in a ·natural way to an extension 

of the Rayleigh-Ritz principle and a series solution for the time-depend

ent Schrodinger equation. The application of these procedures to sev

eral simple problems· is considered. 
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I. THE METHOD OF MOMENTS IN QUANTUM MECHANICS 

Francis R. Halpern 

Radiation Laboratory 
University of California 

Berkeley, California 

March 18, 1957 

INTRODUCTION 

The standard problem in quantum mechanics is the diagonali

zation of a Hermitian operator, the Hamiltonian. Usually the Hamil

tonian consists of two parts; one can be diagonalized easily and the 

other cannot be diagonalized. Perturbation methods make use of the 

expansion of an eigenfunction of the total Hamiltonian in terms of the 

eigenfunctions of the diagonal portion of the Hamiltonian. The coeffi

cients in this expansion are themselves power series in some parameter 

that characterizes the magnitude of the nondiagonal portion. Other 

techniques are also based on the possibility of expanding an eigenfunction 

of the total Hamiltonian iti terms of eigenfunctions of the diagonal part. 

By considering the inverse problem one is led to a class of meth

ods for diagonalizing the Hamiltonian that may be called the method of 

moments. In principle it is always possible to expand the eigenfunc

tions o(the noninteracting (diagonalizable) portion of the Hamiltonian 

in terms of the eigenfunctions of the total Hamiltonian. The coefficients 

and eigenfunctions in this expansion are of course unknown. The prob,.. 

lem is now to remove all but one of the terms in the expansion by oper

ating on the known eigenfunction of the diagonalizable portion. What 

remains is then an eigenfunction of the total Hamiltonian. A very sim

ple example of this method is used to diagonalize finite matrices. If 

A is a finite malrix and <1> is any vector, then we have 

lim 

n __,. oo 

(<j> J A 2n + l I <j>) 

(<I> I A Zn I <I>) 
= a max 

( l) 
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The vector <j> is assumed to have an expansion of the form 

<j> = L:a.lj;(a.), 
1 1 

where the lj; (a.) are the normalized eigenfunctions of A and belong to 
1 

the eigenvalues a.. The largest eigenvalue in the expansion is a . 
1 . · max 

The quotient in Eq. ( 1) can be easily evaluated by use of the above ex-

pansion: 

(<j> j A 2n + 11 <j>) 

(<j> I A 2n I <j>) 

As n tends to infinity, it is clear that the above expression tends to 

a . max 
The quantities (<j> IAn J <j>) will be denoted by An and are called 

the moments of the operator A, whether A is a finite matrix or not, 

It will be shown that they are also the moments of a probability distri

bution function F <j>(a). The method of moments consists of using the 

moments in as efficient a way as possible to find approximate eigen

values and eigenfunctions and to solve the time -dependent Schrodinger 

equation. The precision of any calculation will of course depend on 

the number of moments employed. The principal advantage of the meth

od of moments is that no separation is made of the Hamiltonian into 

perturbed'and unperturbed portions, and the application of moment 

techniques does not depend on.the size of the interactions (coupling con

stants) involved. It is necessary, however, to find initial-state vectors 

such that all the moments of the Hamiltonian under consideration are 

finite. This makes difficult the immediate application of these methods 

to problems having nonanalytic potentials and to problems in field theo

ry that do not have a cutoff. The infinities encountered in field theory . 

are no different from those found in perturbation theory, and are pro

bably removable by appropriate renormalizations. 
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NOTATION 

The operator under consideration is the Hamiltonian H. An 

initial state <j> is assumed such that all the moments (<j> [Hn I <j>), of the 

Hamiltonian in the:state <j> are finite. The eigenfunctions of H are 

ljJ (E.; a.). and they satisfy the equations 
1 J 

H ljJ (E., d.) = E., a.), 
1 J 1 J 

/ 

/ 

Alj;(E .• a.) -· a. ljJ (E .• a.), 
1 J J 1 J 

and 

~. A] = 0. 

The A's are .one or more auxiliary variables that commute with the 

Hamiltonian and are necessary for the complete specification of the 

states of the system. I~ general it is possible to choose the initial 

state <j> to be an eigenfunction of the auxiliary variables A, and they 

are then numbers during the course of a calculation. The s'ystem is 

also assumed to be contained in a box, so that the eigenvalues are dis

crete and the eigenfunctions are normalizable to unity. 

The expansion of the state <j> in terms of the eigenfunctions 

ljJ (E., a.) is 
1 J 

<j> = ~-a.. lj;(E.) . 
1 1 1 

Since <j>. is assumed to be an eigenfunction of the auxiliary variables 

A, only one eigenfunction of the Hamiltonian appears for each eigen

value of the. Hamiltonian, namely the one that belongs to the same set 

of values ~f the auxiliary variables as <j>. Further reference to the 

auxiliary variables is suppressed. The moments of the Hamiltonian 

in the state <j> can now be expressed in terms of the a's, 

H 
n = (<j>l Hnl <j>) =~(a. lj;(E.) IHnla.ljJ (E.))= 

. i, j 1 1 J J 
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It is convenient to introduce a function F <!>(E), the energy-distri

bution function of the system in the state <j>. This function is defined 

by 

(2) 

In terms of F <!>(E) the moments are 

The futiction F <!>(E) has three important properties. F <!>(E) is a nonde

creasing function of its argument E; it is a function of bounded varia

tion, i.e.~ F <I> ( +oo) - F <I>(- oo) < oo; and F <!>(E) is zero for all values 

of E less then a certain minimum value. E . . The first two properties 
· m1n 

characterize F <!>(E) as a probability-distribution function and are a 

consequence of the previously defined relationship (2) between the func

tion F <!>(E) and the operator H and the· state vector <j>. The monotonic 

property follows, since F <!>(E) changes only at the points Ei' and there 

by the amounts I ai 1
2

, which are positive numbers. Since <j> was as

sumed to be normalized, F <!>(E) is of bounded variation for 

The third property, finally~ is of purely physical origin and is not 

shared by arbitrary Hermitian operators, The eigenvalues of H are 

the allowable energy levels of a physical system and they must have 

a lower ,limit E .. 
mln 

The enclosure of the system in a box serves to insure the sec-

ond property rather than to produce a discontinuous function_· F <!>(E). 

All the results of this paper hold if the operator H has a continuous 

spectrum, provided the vectors <j> that are chosen are normalizable 

to unity. If the vector chosen has a delta-function normalization, then 

this infinity must be suitably treated. 
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If <1> had been an eigenfunction of H, F <I>(E) would have had a 

single point of increase at the eigenvalue to which <1> belonged. The 

aim· of any approximation technique is to produce an energy-distribution 

function that approximates as closely as possible a single step. A suit

able measure of the degree of approximation is the standard deviation 

a (<j>), where a (<j>) is the positive square root of a 2(q,). where 

Since a 2 (q,) .can be written as the norm of the vector 

it is a nonnegative number. It is zero only for an eigenfunction. In 

any state <j>, the mean value of the energy distribution in that state. 

E(<j>). will be used a,s an estimate of an eigenvalue. The expression for 

· E(<j>) is 

E(<j>) 

The amount to which eigenfunctions remote in energy from E(<j>) enter 

into the distribution can be estimated from the Tchebycheff-Bienaym~ 
. l' 1 1nequa 1ty, 

:EI ail 2 

IE-EJ;~k(J 

1 

kz 

Similar inequalities can be worked out for the higher even mo-

ments. For example, defining p(<j>) by 

1 ... 
Harald Cramer. Mathematical Methods of Statistics (Princeton 

University Press, 1946) p. 182. 
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we find that the corre spending inequality is 

1 
'4 

k 

TIME -INDEPENDENT METHODS 

The foregoing remarks suggest that the determination of F <j>(E) 

would be desirable. Actually this amounts to an almost complete solu

tion of the problem of finding the eigenvalues of H. F <j>(E)t has the 

eigenvalues of H as discontinuities, and hence they could be read off 

if F <j>(E) were known. However, there are two serious drawbacks to 

this approach. First, an approximation technique yields a sequence 

of approximating functions F(n) <j>(E), and even provided these converge 

to F <j>(E) it may be very difficult to determine from the approximating 

sequence the points of discontinuity of F <j>(E). Secondly, if the only 

data available are the moments of the operator H in the state <j> then it 

is possible that there may exist several distinct distribution functions 

with the same moment sequence. 2 In this event it is impossible for an 

approximating sequence of funct.ions based OIJ-lY on the moments to con

verge to all the possible different distribution functions that could have 

given rise to the moments. Methods for constructing an approximating 

sequence of functions from the moments have been given by Tchebycheff, 

Markov, and Stieltjes. 
3 

The decision whether a moment sequence u

niquely determines a distribution function or not is quite technical and 

is not given here, but is related to the rat~ of increase of the moments. 

For the reasons outlined above, the function F <j>(E) is utilized only to. 

assist in· the discussion rather than as a point of departure for practi

cal methods. 

2 
For an example of ~his see D. V. Widder, The Laplace Transform 

(Princeton University Press, 1946) p. 142. 
3 

References to these earlier works will be found in the bibliography 

of Reference 5. 
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A more modest goal is this: given a state cj> with distribution 

function F cj>(E), to manipuiate cj> in such. a fashion that the modified, 

distribution functi0n that is generated resembles the distribution of an 

eigenfunction more closely than, did ~he original F cj>(E). Two methods 

in this category are developed. The chief difficulty underlying both of 

them is; the possibility that the distribution is not determined by its 

moments. The choice of initial state is crucial inSall these consider

ations, and given a state such that its r:noments determine the distribu

tion, both methods are feasible-. It is possible that even if the distri

bution is not uniquely determined by the moments these methods may 
( 

produce a state whose standard deviation is small compared with any 

of the characteristic energies in the problem 9 . and that this state is 

then a satisfactory approximation to an eigenfunction. 

The problem of determining F cj>(E) and the related problem of 

convergence will be ignored for the present. With _these reservations 

methods will be described that will alter any vector and produce one 

with a smaller standard deviation .. Only a single -state vector cj> is 

assumed given, and the only way to modify it is to operate on it with 
' the Hamiltonian or the Hamiltonian plus a constant. Thus one is led 

to consider the new state vector cj>' = (H - c)cj> and to inquire under 

what circumstances its standard deviation is smaller than that of cj>. 

The ·expansion of cj> in terms of the eigenstates of H was 

ljJ (E.) 
1 

and 

. (3) 

The effect of operating on cj> with (H - c) may be ca.lculated: 

ljJ(E.), 
1 

where we have 

. a.' = (E. - c) a. 
1 1 1 

( 
/ 
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1 

for F cj>; (E) 
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replaced by 

E.< E 
• 1 

a.' 
1 

one obtains the expression 

E.<E 
1 

Thus the vector cj>i has in its expansion the .same component eigenfunctions 

ljJ (Ei)' as the vector cj> ~ut they occur with different weights unless c e

quals one of the E., in which case this component is completely re-
. 1 

moved. 

The standard deviation of this new vector cj> 1 can be computed, 

of the original vector 

As r c I approaches infinity (J ,z approaches 

- Ho - Ho 
. . 2 

or just a . 

H2 (Hl)~ 
If I c I is very l~rge all the components of cj> are influ,-

enced equally. 
r:, ;12 . 

The derivative of ~' (c~ with respect to c may be computed 

and is 

d(a')
2

_ 
de 

_._ 

+ &1H 2H 3 + 2H0H 3 
2 ~ H 0H 2H 4 ~ 2H 1

2
H4 - 3H2J c 

+ I HJHZH4 +Hz zH3 ZHJH3 ~ } . 
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The quantity (H2 - 2H 
1 

c + H
0

c
2

) is always positive and its minimum 

value, which occurs at c = H 1/H
0

, is equal to a 2H
0

. If it were zero 

there would be no problem, cj> would have been an eigenfunction of H. 

,, Thus the sign of d(a •
2
)/dc is determined by the t'erm inside the braces. 

Since the leading term is an even power of c, the derivative has the 

same sign at both plus and minus infinity. Since a '(±oo) =a, the deri

vative cannot always have the same sign. As it has the same sign at 

plus and minus infinity it must have the oppo~ite sign for some finite 

values of c. Thus there are at least two real roots to the equation 

d(a')
2 = 

de 
0 

One of them is the abscissa of a maximum and the other· is the abscissa 

of a minimum. 

If d(a •
2
)/dc is positive at infinity, then a '(c) monotonically in

creases from a'(- oo) =:a to the relative maximum, and from the min

imum it increases monotonically to a'(+ oo) =a. If the derivative is 

negative at infinity then the reverse situation holds. In either event 

the minimum value of a' is smaller than a, and choosing c to he this 

optimum value produces a better vector cj>'. If the equation has four 

real roots the situation is unchanged. 

The procedure can now. be repeated. Starting with cj> ', a c' can 

be found such that (H - c') cj>' has a smaller standard deviation than cj>'. 

The procedure can thus be iterated and vectors of the type 

= (H - c } (H - c l) ... (H - c 0 } cj> 
n n-

( 4) 

are to have their standard deviations minimized with respect to c 1, c 2 , 

. ... , en. There are a variety of ways in which the sequence of 

constants c 1, c
2

, .... , en can be chosen. The process outlined 

above essentially consists of choosing them one at a time on the basis 

of the previous choices. A more efficient way 0f choosing them consists 

in finding a as a function of the c' s and then choosing all the c' s si-
n 

multa.neously. This leads .to considerably more complicated equations 
\ 

for the c's, but reduces the standard deviation more rapidly. 
( 
I 
i 
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Since all the factors in Eq. (4) commute it is clear that a is 
n 

also a function of the elementary symmetric functions in the c 1 s, and 

in fact <j> can be written in terms of the n symmetric functions 
n . . 

where the S 1 s are the elementary symmetric functions, 

The c 1 s are then the roots of the equation 
n-t t 

~ (- l) Stc = 0, and 

using the S 1 s rather than the c 1 s avoids solving this equation. 

The derivatives of a 
2 

2 
with respect to the symmetric functions 

s 1 and S2_ are 

2 
d(<J 2 ) 

dS
1 

2 
= 



/ 

-14-

2 
= 
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Since t~e algebra is quite- complicated, as evidenced by the pre

ceding two formulas, it is desirable to find f.n alternative mode of ap

proach. The opportunity is provided by the third condition imposed on 

F tf>(E), namely that it be cons~ant for E <' Emin' and the utility is ,indi

cated by the observation that in most physical problems it is the low

lying eigenstates that are of greatest interest.. Th~s can be taken ad

vantage of by constructing from tf> states with minimum energy rather 

than minimum standard deviation. This process can lead to more than 

one state, since a minimum-energy state exists for each combination 

of the auxiliary variables. 

The estimate of the energy E in the state is just the mean value 

of the distribution F tf>(E), 

) 

E (tf>) 

The first improvement on this is found ·by considering the function 

tf>' = (H - c) tf>. This function has energy E' (c), which may be ex

pressed in terms of the moments of tf>: 

E'(c) = 
H 3 - 2cH . 2 

Again this expression may be differentiated to determine the minimum 

value. 
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2 
- H ) 2 -

(5) 

The sa:rrie arguments used in discussing the standard deviation apply 

again. That is, E' (±oo) = E and d~~(c) (± oo) > 0. Hence the deriva

tive must be negative for some finite values of c, and there are two 

real roots corresponding to a maximum and a minimum of the expres

sion for E '(c). The only difference is that the coefficient of c
2 

in the 

derivative, (H 2H
0 

- H 1
2

), is positive, so that the. E'(c) is increasing 

at both ± oo and the minimum is given by the larger root. Again the 

conclusion is that there exists a c that reduces the energy. 

The formulas for the iter.ated results cah be developed, and are 

somewhat less complicated than those for the s'tandard deviation. 

There is, however, an easier way to get at the results. If an estimate 

is going to be made using n c' s then the moments H 0 , H 1, . . . . 

H 2n+l will have to be used. It is possible to find a unique distribution 

function F; (E) having n + 1 points of increase, which will have the 

same first (2n + 2) moments as F <I> (E). Then as long as no more than 

the (2n + 2) moments H 0 , . . . . HZn+l are under consideration, 

F(;)(E) and F <I> (E) are indistinguishable. Since there are n constants 

c available it is clear that the way to minimize the final en~rgy is to 

choose the constants c at the n largest points of increase of f(E). 

Then the modification o( J:(E) has a single point of increase, and this 

smallest point of increase is an estimate of the eigenvalue, and the 

corresponding approximate eigenfunction can be found. 
. 4 

It can be shown that the n + 1 points of increase of f{E) are the 

n + 1 solutions, E of the equation 

4 The proofs of this and the following statements are essentially con

tained in J. V. Uspensky, Introduction to Mathem~tical Probability, 

First Edition (McGraw-Hill, New York, 19 37) Appendix II. He 'treats 

the case in which the highe'st moment is even, i.e., H 2n. The odd 

case is slightly simpler and almost identical proofs apply. 
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l E Ez. En+l 

:Ho H l Hz. H 
n+l 

Hl Hz H3. H = 0 . 
n+Z 

H H n+l H 
n+Z HZn+l n 

This equation has (n + l) real distinct roots and they lie between 

the smallest and largest eigenvalues represented in the distribution 

function F ci>(E). The appropriate c's are the n largest roots of this 

equation, and the estimate of the. energy is the smallest solution. In 

this aspect the formula constitutes a generalization of the Rayleigh-Ritz 

principle, which states that the solution E of the linear equation 

1 E 
= 0 

lies between the least and grea,test eigenvalues, 

Hl 
E . .(E=-H~E m1n 

0 
max 

A simple interpretation of this statement is that the mean value of a 

distribution is in its interior. 

The discussion of convergence is most advantageously carried 

on from the point of view of orthogonal polynomials. Given the distri

bution F ci>(E) with moments Hn' then the polynomials 

p (E) = n 

l 

Ho 

Hl . 

H n-1 

E E2" 

Hl Hz. 

Hz H3. 

.En 

H 
n 

Hn+l 

H Zn-1 
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are known to be the orthogonal polynomials associated with the distri-
' . 5 

b'ution F <!>(E). That is, they satisfy the relation 

00 f P n (E) I'> n, (E) d F ~(E) = ·'C · nn' 0 
nn' 

-oo 

where onn, is the Kronecker delta, and .Cnn' is a normalization con

stant. The determinental form is essentially the result of the Schmidt 

orthogonalization procedure applied to the functions 1, E, E 2 , 
\ 

with the weight function d F<P(E). 

· The problem of convergence can now be stated as a problem on 

the roots of the orthogonal polynomials P n (E) as so cia ted with the dis

tribution function F <I>( E). The polynomial Pn(E) has n real distinct 

roots, E 1, E 2~ .... , E . The sequence of smallest roots is n n nn 
known to be a decreasing sequence, that is, 

Since this sequence is bounded from bel,ow by the smallest eigenvalues 

it is convergent. It can either converge to the ~smallest eigenvalue or 

to some other value larger than the smallest eigenvalue. For ortho

gonal polynomials in a finite interval it is known that the sequence of 

smallest roots converges to the smallest point of increase of the func

tion F cj>(E). L e., to the smallest eigenvalue. 
6 

In the infinite interval 

the result is that if the sequence of largest roots E has the property 
nn 

lin:t 

n -+oo 

E 
--!!!1.. ..... 0 

2 
n 

tllen the smallest roots approach the smallest eigenvalue. 7 This is of 

5 
G. Szego, Orthogonal Polynomials, Am. Math. Soc. Colloquium 

Publications 23, 26 (1939). 
6 -

G. Szego, Jbiq, p. 107. 
7 '· ., 

lb1d p. 108. See footnote 29. 
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little practical-value for solving the physical problem. It does indicate 

that the difficulties may arise because the distribution function F cj>(E) 

does not become constant at infinity with sufficient rapidity. 

Another more intuitive way to get at the same idea is to notice 

that the effect ofoperating on cj> with (H - c
1

) (H - c
2

) .... (H - en) 

is to muitiply F cj>(E) by (E - c 1)
2 

(E - c 2 )
2 

. _. (E - cn)
2

. Any point 

of F near a c is- deemphasized~ those remote from all c 1 s are empha

sized. The intent of the process is to increase the magnitude ofF cj>(E) 

for very smail values of. E. The c 1 s are chosen in the intermediate 

range of values; this emphasizes the very small and the very large 

values in F cj>(E). If F cj>(E) is sufficiently constant for large value~ of 

E this accentuation of the high-E portions is unimportant. On the 

other hand, if F cj>(E) varies too rapidly for large E, then it will be 

n~ ce ssary for the c 1 s to be a, more quickly increasing sequence in 

order that the high E values of F cj>(E) are not too greatly emphasized. 

However, as c becomes infinite the change in the energy becomes 

smaller, as pointed out earlier. This is because all points close to the 

origin are treated equivalently. The result is that the minimum energy 

estimate has a lower bound greater than the actual energy minimum. 

Thus not only must all the moments be finite, but they must not be too 

rapidly increasing for the method to be successful. 

There probably is a minimum rate at which F cj>(E) must approach 

F <I>( oo) as E approaches infinity and this in turn causes a maximum 

rat~ of increase of the moments. Either of these conditions is prob

ably sufficient to cause the moment sequence and distribution to be in 

a unique relationship. 
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SOME APPLICATIONS OF THE METHOD OF MOMENTS 

In this section three problems are treated by the method of mo

ments. The first two are not particularly interesting, but they do have 

the virtue of being soluble. The third problem is difficult and has not 

yet been solved by any technique. 

The first example is the case in which the initial state cj> is a 

linear combination of two eigenfunctions of the Hamiltonian 

So far as cj> is concerned H is the two-by-two matrix, 

The function F cj>(E) has steps,of magnitude [a [
2 

at E 1 and 

E 2 . The moments are given by 

The lowest-order approximation (Rayleigh- Ritz) would estimate 

an eigenvalue by the solution of the linear equation 

1 E 

I al2 + I f312 falz El +ff312E2 = 0 

The root is 

E 
[ al

2 
E 1 + I f31

2 
E2 

= 
fa[~+ [f312 

The second-order approximation requires a solution of the equa-

.· tion. 
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1 E E2 

Ia 12 + 11312 lai
2
El + 1131~E2 lai2El2 + I1312E22 

= 0. 

[a 12 E 1 + 11312 E 2 [a[2El2 + 1131·2E2 
2 I ai2E / + 113l2E2 3 

This reduces to 

This is the characteristic equation of the two-by-two matrix provided 

a., 13 f 0, and E 1 t E 2 . If either of these two conditions had been vio

lated then <1> itself would have been an eigenfunction, and this in turn 

would have been indicated by the identical vanishing of the above deter

minan~. The roots of the equation are E 1 and E
2

. Thus the first 

modification of <1> is <I>' = (H-E2 ) cp. 

<I>' = 

As expected, <!>' is an eigenfunction and the problem is sol~ed. 

As a second example consider the one -dimensional wave packet 

<I> (x) e -ikxJk/m. e- {ak)2 
I 

The Hamiltonian of the system will be taken tq be just the kinetic ener

gy p 2 /2m. The moments. of the Hamiltonian in this state are easily 

written 
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00 00 00 

= -Jz m ~2/dxf dk eikxv k/m e -(ak)
2 fdk'.(~~r r -fk'\lk' /me -(ak')

2 

-oo o . o . . 

00 · I . 2 (k2 ')n = 2a.2 dk e -Z(a.k) k ~ 

0 

k2 
The integral is now simplified by the substitution E = Zm . With this 

change it becorrte s 

H 
n 

This can easily be converted into an integral with respect to a distri

bution, 

With the moments in this form F <!>(E) is obviously given by 

E < 0 

o.:;;; E 

This is a continuous distribution but, as ~has been indicated previously, 

the method of moments as developed is applicable since H
0 

·is finite . 

Since every nonnegt'tive value of E is a point of increase of F<j>(E), 

the Hamiltonian ~ has all the numbers from 0 to oo as eigenvalues. 

The calculation can also be carried out in the more routine fash
t 

ion. The integral above can be done giving the moments 

H 
n 

= (. 1 2~. ntl n! 

\zma} 
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/ 

It should b7 noted at this point that the moment sequence above 

and the sequence n! are equivalent. In general, a constant or a con

stant to the nth power times the nth moment makes no difference in 

the orthogonal polynomials calculated from the moments. The inde

pendence of the method from factors of this form is the justification 

for the statement that the method of moments is independent of the size 

of coupling constants. 

In the above problem it is sufficient to take the moments as n! . 

To borrow from prior knowledge, the orthogonal polynomials associ-2 . 
-2ma E ated with the distribution function dF cp(E) = e dE are the Laguerre 

polynomials. Since the smallest root of the nth Laguerre polynomial 

is of the order of l/n and. the lovyest energy level is 0, the method is 

convergent. The first several Laguerre polynomials, with their zeros, 

are 

L
0 

(E) = l 

L 1 (E) = l E ,-- l 

L
2 

(E) = 2 4E + E 2 
0.58578643, 3.41421356 

L
3 

(E) = .24 - 60E + 24E
2 

- 2E
3 

0.41577455, 2.29428036, 6.28994508 

These have been computed directly from the determinental form and 

are not normalized. The largest roots are used as the c' s and this 

leads to the modified distribution functions. The first two modified 

distributions based on L
2 

and L
3 

are 

6 2 -E 
dFcp 1 (E) = (1.7071 --E + .14 4E )e dE, 

cj>' = (H- 3,4142)cp, 

dF cp" (E) = (2.650 1 - 3.1527E + L3049E
2 

- .2185E
3 + .0 l273E

4
) e -EdE, 

cp" = (H - 6.2899) (H - 2.2943) cp . 

These functions have been normalized. To indicate the rapidity of con

vergence, Table I lists the smallest roots of.the fourth through fifteenth 

Laguerre polynomials. 
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Table .I 

Smalle s.t roots of Laguerre polynomials 

n Smallest root 

4-~-----------------0.32254769 

5-------------------0.26356032 

6---~---------------0.22284660 

7-------------------0.19304368 

8-------------------0.17027963 

9-------------------0.15232222 

10------------------0.13779347 

11-~-------------~--0.12579644 

12-----~----~-------0.11572212 

13------------------0.10714239 

14------------------0.09974750 

15------------------0.09330781 

/ 

The third example is an application of the method of moments to 

the phonon-polaron problem. The motion of slow electrons in polar 

crystals has been described by the motion of a polaron, a bare electron 

surrounded by polarization waves (phonons). 8 The Hamiltonian for this 

system may be reduced to 9 

8 
H. Frohlich, Advances in Physics 2• 325, (1954). 

9 Le~; Low, and Pines, Phys. Rev. 9o. 297 (l953). 
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and 

. w 41Ta · 1 2 t ~1/2 
= - 1 V 2mw "1/ , I k I . 

The usual co~mutation rules Fk~ ak-] = ok. k' apply, and p
2 

is the 

operator -\1 .. The first two terms ~cribe the noninteracting sys

tems, free electrons, and polarization waves. The second part de

scribes the ability of the electron to absorb or emit phonons accom

panied by recoil. The problem is to find the minimum energy of the 

system. 

The state <j> treated consists of one electron with momentum p' 

and no phonons; 2 ,2 

ak <I> = 0 ~ fro <I> = ~m <I> = Eo <I> • 

The first four moments of the Hamiltonian H in this state are 

Ho 

H1 

Hz 

= 1, 

= Eo, 
2 

Eo 
2 + w .2a. K = .. ·Y2mw 1T • 

= E 3 + L 2a. 
0 V2mw 1T 

2 
K {2 EO + E 0 + w + 1/3 £ ) ,2m 

Equation (5) is employed to find the value of c. After some 

simplification it becomes 

The solutions of this equation are 

( + 1 K
2 

)2 + 4w
2 

.2a K 
w 32m·. 

V2mw 1T 

The larger. root is the c to be used in computing <j>', and the smaller 

the estimate of the energy. For small a the estimate o.f the energy is 
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E = E - aw(2 ~ ) 0 1T K2 
l+--

6mw 

For large a. the estimate becomes 

G
2 '2 2 21 w Za w 2o. . · l K .· · l k 

---K-l/2-.--K{w+--)+(w+--). 'c---2 1T rr::--2 1T 3 2m · · 3 2m 
'IIZmw "t:mw 

These results should be compared with several earlier calcula

tions. The perturbation theory treatment
8 

gives 

E = E - Ol.W 0 

for small 0!.. This is very similar to the result attained above for small 

a.. There are two differences~ the constant multiplying a is l in per'

turbation theory compared with a number less than 1 from the moment 

technique, and secondly the perturbation result ,is valid only when 0!. 

is small, while .the moment-technique answer is valid for all values of 

a. Intermediate coupling theory 9 h<;ls also been applied to this, problem 

and yields the same answer as perturbation theory. However, the range 

of validity is extended up to a = 6 or 7, The same comparisons apply 

to intermediate coupling as to perturbation theory .. The amount of work 

involved in the perturbation-theory treatment is about equal to the mo

ment technique, while the intermediate -coupling -theory meth,od is an or

der of magnitude more difficult. The strongest results so far achieved 

have been obtained by considering path integrals . 10 In this method terms 

have been produced proportional to the higher powe!'s of a. The first 

two terms above are reproduced. The only drawback of this method is 

its apparent inability to construct the state vectors corresponding to 

the energy estimate. The effort involved is again quite moderate in the 

path-integral method. 

10 
R. P. Feynman, Phys. Rev. 97, 660 {1955). 
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In higher orders of the moment method based on the.initial state 

considered above, neither the linear dependence on a. for small a nor 

the one-half-power dependence on a for large a is changed. This is 

easily seen because each successive even moment is one power of a 

higher than the preceding even one, whereas each of the odd moments 

is of the same order in a as the preceding even moment. By entering 

in the determinant either the highest or lowest power of a occurring 

in the moment the dependence of the successive orthogonal polynomials 

on. a for large and small a; can be determined. As stronger results .. 

ar~ available, it would appear that the state chosen is not an appropri

ate one. 

TIME-DEPENDENT METHODS 

There is. a series solution for the time-dependent Schrodinger 

·Equation which is related to the preceding discussion of time -independ-

ent methods in thaf the approximation to the ·actual temporal develop-

ment is the temporal development of a finite op~rator having its first 

n moments equal to the Hamiltonian in question. A state vector cj> (t
0

) 

is specified at an initial time t 
0

, and it is desired to know cj> at a later 

time t; the vector cj> develops according to the time -dependent Schrodinger 

equation, 

Hcj> . (6) 

In accordance with previous work, Hcj>(t) is written as c cj>(t) + cj>' (t). 

The equation can then be solved for cj>(t) in terms of cj> 1 (t), an unknown 

state. It turns out that cj>'(t) again satisfies a Schrodinger equation and 

therefore the process m~y be iterated.~ 

It is convenient to add certain factors to the notation suggested 

above. Thus cj>n (t) will be defined 

cj> ( t ) 
n 

H- c 
= n-1 cj> (t)ei (cn-1 -cn_z)t 

c -c n-1 
n n-1 

(7) 
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and cl>o (t) = cp (t). With these definitions each cp satisfies the time-de

pendent Schrodinger equation 

i (8) 
at 

This may be proved by ah induction on n. For n = 0, since c _
1
=.0, this 

is the Schrodinger Eq. (6), which was assumed. Assume the result is 

true for n-1: 

. a <l>n-1 (t) 
1 = (H - cn-2) cl>n-1 (t) 

at 

The unknown vector cp (t) ·is now introduced on the right-hand side: n . . 

. a'cpn-1 (0 
1 ---- = (H - c l + c l - c 2 ) cp l ( t) , a.t n- n- n- n-

= ( c 1 - c 2) ..1. .1 ('.t) +. ( c . - ) ..1. '(t) - i ( c 1 - c 2) t n- n- '~'n- n cn-1 '~'n .. · e n- n-. ' 

where use has been made of Eq. (7)o This equation may now be integra-

ted cpn-l (t) 

t 

-cn-21$n (tn) d t n· (9) 

to 
H.- cn-1 

If 
en - cn-1 

is now applied to both $ides this reduces to Eqo. (8 ), and 

the induction is proved. 

- Equation (9) may be used as the b'asis f~>r a series expansion of 

cl>o (t). Repeated application yields 

n=N n 
cp(t) = L: (-i)n 1T (c. -

n=O j=l J 

-irct-(c-c )t~ ftft

1 

cj_ 1)e t:.o n n-1 QJcj>n(t0 ) dt 1 dt2 

0 0 

, 
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t . 
n-1 t 

f tn exp {-i~ 
. J=l 

to 

( ) 
} 

+ (.
_

1
.)N+l c.-c. 

1 
t. 

J J- . J 

N+l . f · -ic t 
Tr (c.-c._ 1)e 0 . dt 1 . 1 J J 

J= 

to 

exp {-i .~ (c.-c._ 1)t. ~N+l(tN+l)} 
J=l J J J . 

Again the proof follows easily by induction. 

The integration over time can be carried out except for the un-: 

known function ~N+l (tN+l) The resulting series is 

<j> (t) 

X 

N n n . -ilc'
0
t-(c -c 1)t01 

= ~ (·-i) Tr (c.-c. 1) e L n n- _]J <j> (tO) 
J J- n . 

n=O j=l 

n 

~ 

k=O 

e -i ~n-k- cO) t +(en- cn-k+l)~ . N+l N+l -ic t 

( 
· ·) :· ·.+(-1) ~(c.-c. 1)e 0 

Tr c k-c. . . '-1 J J-n- 1 J-
i,#n-k 

-iEN-k -co)t +. (cN-cN-k+l) tN~ · 

e . Tr (cN-k -ci) <j> (tN+l) d tN+l . ( 1 0) 

N -kf.i 

n 
The magnitude of the term Tr (c.-c. 1) <j> (t 0 ) can be found 

j=l J J- n 

readily in terms of the moments. The magnitude of q,n (t 0) is 

This may be expanded by use of the recursion relation for the <j>'s, 
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I. 2 2 21 
(cl>o (to) (H-cn-1) (H-cn-2) · · · · (H-co) cl>o (to)) 

= 2 2 2 
(c -c 

1
) (c 

1
-c 

2
) ... (c

1
-c

0
) 

n n- n- n-

n 
sothatthemagnitude of 1T (c.-c. 1)cp (t

0
) becomes 

. J J- n 
J= 1 

n 
1T (c.-c. 

1
)cp (t

0
) 

. J J- n 
J=l 

which is a polynomial in the moments. Since all the cpis satisfy the 

Schrodinger equation, their magnitudes are time-independent. On the 

basis of these results the magnitude of the remainder RN after N 

terms is 

. 21 N 1 
. (H-co) cl>o) (t-to) ~. I - .I· 

k=O 1T eN -k ci 
n-k=i 

R . 
N 

It is possible to minimize the entire expression involving c's, but to 

do so again leads to complicated expressions. Minimizing just the mag

nitude of (cp 0 I (H-c 0)
2 

(H-cn)
2

1 cp 0 ) is probably almost as good, and 

the problem can then be solved explicitly. Again it is easier to deal 

with the symmetric functions in the c's rather than with the c's them

.selves. 

To minimize the magnitude of cpn' the symmetric functions in the 

c 1 s are chos~n to satisfy the following linear equations: 

n-1 
"" (- 1 )r.+s H S + 1 
£..J 2 1 +1 = ( - 1 ) s H 

r __ 0 ' n- ~ r-s r . 
2 n-s 

(s=l, 2, ... n) . 

Th . 1 h . h' d · ll A · 1s system a ways as a nonvan1s 1ng eterm1nant. ga1n an 

approximation is made to the actual Hamiltonian by the finite matrix 

having the identical first 2n moments, and all the comment~ of 1the pre

ceding sections apply. Again the c's have to be the zeros of the asso-

ll Widder, loc. cit. p. 136. The same determinant, modified by the 

transformation E goes to -E so that all the odd moments change sign, 

is shown to be positive. 
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cia ted orthogonal polynomials. Canceling the n points of increase -of 

. the function F~n) (E) associated with the finite matrix having the same' 

first 2n moments as H makes F~n) (E) identically 0. The equation 

for the c's in terms of the S's 

n n-1 soc - s 1 c + . . . . h . 0 + ( -1) s c = 0 • 
n 

must be the characteristic equation of the finite matrix having the same 

first 2n moments, since .the eigenvalues of this matrix are the points 

~f increase of" F~n) {E). Thus the time-dependent theory has led to the 

same equations as the time-independent one. It should be noted that 
/ 

the J:lighest moment that appears in the magnitude of cj>n, H 2n disappears 

in the minimization criteria, emphasizing the analogy with energy minimi

zation. 

If the other terms are considered in the minimization then more 

complicated equations are obtained, resembling the standard deviation 

equation. They are slightly stronger results; there is no reason to be

lieve this method will converge if the simpler methods faiL This follows 

since convergence is intimately assoq:iated with whether or not the dis

tribution with a· finite humber of points of increase will approach the ·one 

representing the physical problem. 

The transition from time -dependent pack to time ,.independent 

formalism can be made by observing that a solution cj> (t) of the time

dependent equation may be expanded in a series of eigenfunctions, 

This is an expansion in almost periodic functions, and if it is 

multiplied by eiEt and averaged over time, a nonzero result occurs 

only if E is an eigenvalue and the re'sult extracted is just the eigen

function. For example: 

lim 
T-oo 

T 

if(t)eiEt dt = 

0 

T 

ii~ 00 ~ (~(Ei) I <j>)~(Ei if i(E-Ei) t dt 

0 

., 
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= L: (l\J (Ei) I cj>) ljJ (Ei) 0 E~. 
1 

A more conventional averaging is 

E +·Ei 

lji{Ei) .' E = Ei 

00 

lim! iEt ~et 
0 e e e-+ cj>(t)dt 

.o 

the result is the same. Formally applying an averaging process to the 

seriesEq. (10) for cj>(t) yields the result 

~f (t)eiEt dt 

0 E l c. 
1 

lim 
T-+oo = 00 n 1 

L: 1T (c.-c. 1) ( )cj> (0) E = c. 

n=i 
. J J- tr c.-c. n 
J= 1 d=j 1 J 

The series on the right is formally an eigenfunction. The series con

verges moderately well, but after it }}as been operated on with H it 

seems to always diverge and hence is of no value unless it can be ex-
, ' 

plicitly summed. 

1 
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II. THE 1r-MESIG DISINTEGRATION OF THE DEUTERON 

Francis R. Halpern 

Radiation Laboratory 
University of California 
Berkeley~ California 

March 18, 1957 

ABSTRACT 

An investigation of the higher-order corrections to the mesic 

disintegration of deuterons is considered. It is found that the correc

tions are small, quite independently pf the description employed. 

/ 



. ' 

-35-

II. THE 1r-MESIQ: DISINTEGRATION Olf THE DEUTERON 

Francis R. Halpern 

Radiation Laboratory 
University of California 

Berkeley, California 

March 18, 1957 

INTRODUCTION 

Among the earliest experiments carried ·out with 1T mesons were 

the slowing down and absorption of negative 1T mesons tn hydrogen and 

deuterium. 1 These experiments had originally been sJggested as a. 
. I 

means of determining the spin and parity of the 'me son and the nature 

of its nuclear interaction. 2 . Calculations had been c~rr,ied out which 

indicated that the moderation time for negative 1T mesoins was small 

compared with the 1T-J.L decay time, thus permitting an appreciable frac

tion of the mesons to reach the inn·er atomic orbits. 3 Many survey cal

culations of a semi-empirical nature were carried out to determine the 

spin and parity of the meson4 from the experimental results. These 

1 Panofsky, Aamodt, and York, 'Phys. Rev. 78, 825 ( 1950); 

Panofsky, Aamodt, Hadley, and Phillips, Phys .. Rev. 80, 94 ( 1950); 

Aamodt, Hadley, and Panofsky, Phys. Rev. 80, 282 ( 1950), 

Panofsky, Aamodt, and Hadley, Phys .. Rev. 81, 565 (1951). 
2 

B .. Ferretti, . Report of a Conference on Fundamental Particles and 

Low Temperatures, p. 75 The Physical Soc., London (1947). 
3 A. Wightman, Phys. Rev. 77, 521 (1950). 
4 R. Marshak and A. Wightman, Phys~ Rev.· 7!!_, 114 (1949); 

C. Marty and J. Prentki,J~P,hys. et radium X 156 (1949); 

R. Marshak and A .. Wightman, Phys. Rev. 7_1, 220 (1950); 

S. Tamor, Phys. Rev. 79, 221 (1950); 

S. Tamor and R. Marshak, Phys. Rev. 80, 766 (1950);. 

Marshak, Tamor and Wightman, Phys. Rev. 80, 765 (1950); 

Brueck;ner, Serber and Watson, Phys. Rev. 81, 575 (1951); 

S. Tamor, Phys. Rev. 82, 38 (1951); 

R. Marshak, Revs. Modern Phys. ~· 137 (1951). 
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experiments and calculations all tended to indicate that the meson is 

captured from the K shell, and that the 1T meson is a pseudoscalar 

with either pseudoscalar or pseudovector coupling to the nucleon. Later 

experiments were conducted on the absorption of low-energy positive 

mesons by deuterium. 5 By use of detailed baiancing arguments and the 

cross sections for the inverse processes, the spin of the 1T+ meson 

was found to be zero. 

The experimental work over the ensuing years tended to indicate 

that the dominant interaction of the moderate-energy 1r meson with 

nucleons was in the p state. 6 Since, to the lowest order in the ·coupling 

_constant, the nonrelativistic limits of both pseudoscalar and pseudovec

tor coupling are identical and describe p-wave mesons, 7 this common 

limit was extensively investigated and has been found to give reasonable 

agreement with 'the scattering, 8 photoproduction: 9 , and other simple 

properties 
10 

of the meson-nucleon system up to several hundred Mev. 

On the other hand there exist S-wave effects that are not negli
n gible. As the relativistic meson-nucleon theory has never been sat-

isfactorily treated, and as S-wave effects are absent fr.om the nonrela

tivistic limits, the significance of the S-wave interaction has remained 

obscure. Several attempts have been made to remedy this defect. In 

the .conventional reduction of the r:elativistic theory the nucleon- recoil 

terms are usually dropped. The inclusion of these terms is necessary. 

to make the interaction a Galilean invariant, and does contribute S~wave 

effects. For scattering, these effects tend to make the agreement be-

5nurbin, ·Lear, and Steinberger, Phys. Rev. 83, 646 (1951); 

Clark, Roberts, andWilson, Phys. Rev.~· 649 (1951); 

. Durbin, Loar, and' Steinberger, Phys. Rev. 84, 581 (1951). 
6 Anderson, Fermi, Martin, and Nagle, Phy;.- Rev. 91, 167 (1953). 
7 F. J. Dyson, Phys. Rev. 73, 929 (1948). -
8 

G. Chew and F. Low, Phy~ Rev. 101, 1570 (1956); 

G. Chew, Phys. Rev. 95, 1669 (1954). 
9 ' - . ' 

G. Chew and F. Low, Phys. Rev. 101, 1579 (1956). 
10

H. Miyazawa, Phys.Rev. 101, 1564 (1956). 
11 --

H. Bethe .and F. De Hoffman, Mesons and Fields, Vol. II Mesons 

(Row Peterson, Evanston 1956). 
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tween theory and experiment worse. 12 These terms were also used i~ 
some of the earlier phenomenological calculations of the 1T +-deuteron 

. t t' 13 • 14 d f d b d . f 1 1n erac 1on, an were oun to e om1nant or very ow mes·on 

energies. 
14 

Another aspect of the me son-nucleon absorption interaction wab 

the early recognition that some of the mesic interactions could give in

formation about nuclear structure. Thus- the gamma rays emitted in 
\ 

the reaction 1T + d -+ n + n. + y give information on the existence -of a 

d . t 15 1neu ron. 

More recently 1r-mesic atoms have been made and their X-r?-y 

spectra have been measured: The nonelectromagnetic corrections to 

the 1 S level have been determined. 
16 

These offer additional informa= 

tion on the s·-wave interaction of the meson-nucleon system. The first 

interpretation of the nonelectromagnetic level shift related these to vir

tual scattering of the meson and thus to the S-wave meson-nucleon 

scattering lengths. 
17 

This interpretati'on has been criticizeq because 

it takes into. account only elastic processes, whereas virtual inelastic 

processes are also possible. 
18 

That this must be so is evident from 

the fact that real absorption takes place; the spectral lines have a finite 

width and the atoms a finite lifetime. The contribution of the inelastic 

events to the level shift has been calculated in a phenomenological way, 
18 

and does, according to this calculation, make a substantial contribution 

to the level shift. 

The basic inelastic process is the absorption of a negative meson 

by a nucleon pair, and thus it appears valuable to investigate this event 

more carefully. However, as in the earlier investigation of the deu-

- 15 h · ·· h t d b t A '11 b h teron, t e s1tuat1on seems to ave urne a ou . s w1 e s own, 

the significant parameter in the ability of a nucleon pair to absorb a 

12 . 
E.Henleyand M.Ruderman, Phys. Rev. 90, 719 (1953). 

13 w. B. Cheston, Phys. Rev. 83, 1118 (1951). 
14 Chew, Steinberger, Goldberger, and Yang, Phys. Rev. 84, 581 (1951). 
15 K. Watson and R. Stuart, Phys .. Rev. 82, 738 (1951); 

Aamodt, Hadley, and Panofsky, Phys. Rev. 83, 1057 (1951). 
16 

Stearns, De Benedetti, and Leipuner, Phys. Rev. 96, 804 (1954). 
17 . - 6 ) Deser, Goldberger, Baumann, and Thiring, Phys. Rev. 9 , 774 ( 1954_ . 

. 18 
K. Brueckner, Phys. Rev. 98, 769 (1955). 
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meson is the magnitude of the momentum component in its wave function 

. corresponding to the rest mass of the meson. As this number is poorly 

known for complex nuclei and the deuteron, the experiment may be used 

as a momentum spectrometer within the limits of validity of the impulse 
I 

approximation. 

In the lowest order of perturbation theory the relative momentum 
\ 

component corresponding to the meson rest mass is the only feature of 

the nuclei ,which enters into the calculation'. The purpose of this investi

gation is to see to what extent this dependence is modified in higher-or

der processes. 

The mesic disintegration of deuterium is quite closely related to 

the photodisintegration of deuterium which has been more extensively 

investigated. 19• 
20 

In a recent calculation- the corrections introduced 

by virtual meson processes to the deuteron photodisintegration have 
' . 20 

been calculated by use of symmetric pseudoscalar meson theory with 

cutoff pseudovector interactions. The calculation in this paper is, to a 

large extent. patterned after the former in its treatment of the inter

mediate states. As indicated earlier 9 

8 • 9 • ~O the pseudovector form of 

meson theory appears to explain moderately accurately the low-energy 

meson-nucleon effects. The use of an S-wave coupling to accomplish 

the absorption and then the neglect of virtual S-wave mesons in the in

termediate state is rather artificial. It may be partly justified by the 

conventional observation that the p-w.ave effects are larger. 

The principal conClusion of the calculation is that the absorption 

of the me so·n at rest is quite insensitive to the effects of virtual mesons 

in the intermediate states. :rhis is to be expected because the large 

p-wave effects generally occur at energies that are about a .meson mass 

above threshold. 

19 
, J. Marshall and E. Guth, Phys. Rev. 78, 738 (1950); 

L. Schiff, Phys. Rev. 78, 733 (1950). 
20 --

F. Zachariasen, Phys .. Rev. 101. 371 (1956). 
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THE ABSORPTION MATRIX ELEMENT 

The existence in. the nonrelativistic limit of a meson-nucleon 
13 14 

coupling involving the nucleon velocity was noted in early work. 9 

It was also pointed out that the strength of this term relative to the p

wave term is determined by the requirement that the interaction be a 

Galilean invariant. 
12 

Thus the form of the interaction is 

The difference in the gradients is the meson-nucleon relative velocity 

and thus a Galilean invariant. The coupling constant is taken as 
2 

f = 0.08, where !J. is the meson mass and m the nucleon mass. For 

processes involving virtual mesons, the meson field is expanded in 

plane waves, while for the absorption the meson field is expanded in 

hydrogenic wave functions divided by ~. The meson field is then 

given by its value at the origin. This is 

for the 1 s orbit from which the meson is absorbed. The symbol a is 

used for the fine -structure constant to avoid confusion with the para

meter a of the Hulthen wave function. The first portion of the inter

action is the p-wave interaction that will be used to describe all virtual 

mesons. The second portion is an S~wave coupling and will be used to 

describe only the absorption of the external meson. The justification 

for this is the observed predominance of p-wave phenomena at low 

energy. 

Since the theory is divergent a cutoff will be used where neces

sary. The value chosen is the nucleon mass, since this value is about 

that indicated by scattering theory. The result is quite insensitive to 

cutoff, because the first two orders of perturbation theory are inde

pendent of the c utof£. 

Now that the form of the interaction to be used has been chosen, 

it is necessary to decide which terms in the perturbation expansion 

are to be included. There are three considerations that govern this 
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choice. First, in the spirit of the impulse approximation, the number 

of virtual mesons exchanged between the nucleons is held to the minimum 

necessary to achieve any process. That is~ each process is considered 

only with the least possible number of exchanged me sons. Secondly, 

from prior experience with. low-energy meson theory, only the angular 

momentum 3/2 isotopic spin 3/2 state is considered in higher -order 

processes. Finally, in any possible sequence of processes, the exter

nal vertex is always chosen as near the start of the process as possible, 

since this produces as many vanishing energy denominators as possible. 

This means that absorption is always the second process. 

The exact expression for the transition operator desired can now 

be reduced by formal arguments similar to those giveh for the photo

disintegration. 
20 

The result is that all possible me son exchanges be

tween two nucleons, such that there is always at least one meson in .the 

field, should be considered. The external vertex should be joined to 

these diagrams in all possible ways, and the matrix element taken be

tween an'initial deuteron state and a final scattering state. Figure 1 

lists that subset of these diagrams selected according to the three rules 

stated above which are to be calculated. The heavy dot on the nucleon 

line indicate,s a virtual (3/2, 3/2} scattering of the meson. These dia

grams will initially be calculated between plane-wave nucleon states 

and then averaged over the deuteron and scattering states. The deuteron 

will be represented by a Hulthen wave function, 

.Pn ( ) 

1/2 
_ 2 a @(a+@) ( ·ar -l3r) 
- 2. 2 e -e • 

a +13 

21 
where the constants a and 13 have the values 

a= 0.32738, 

13 = 1. 9 18 44. 

m units of the reciprocal meson Compton wa~elength. The final state 

is taken as an lindistorted expanding spherical wave. 

21 . ' 
Maso Sugawara, Handbuch der Physik 3,9 (to be published). 
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Fig. 1. Interaction diagrams representing the nuclear absorption 

of the negative 1T meson. 
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The general form of the interaction Hamiltonian has already been 

given. The expansion of the usual pseudovector portion in plane waves 

is 

·H 1 (4
-)1/2 .i_ · (1) -+ . - ikr( l) 1 

= .. :E Ti ak"i a ( 1 L• 1 k e ..J2w. + complex 
1-L k. i K conjugate. 

~he indices ( 1) refer to the coordinates or operators of nucleon ( 1 ). 

H 2 is identical except for the replacement of the (I)'s by (2)'s. The 

* ak, i (ak: i ) are the absorption (emission) operators for mesons of - ' momentum k and isotopic spin i. This portion of the Hamiltonian is 

used to describe the virtual mesons. The absorp~ion of the real IS 

meson is described by the single term in the expansion of H
1 

into hy

drogenic wave functions, 

H abs 

The isotopic spin operator has been replaced by the U, since only 

negative mesons are absorbed. Nucleon ( 1) will always be taken as the 

nucleon that absorbs the meson, and consequently H b has no (2) por-,a s 
tion. The only momentum that the ls meson .can have is the transla-

tional momentum of the center of gravity of the deuteron P /2 that has 

been subtrac~ed from the gradient of the nucleon wave function to main

tain the Galilean invariance of the interaction. 

The lowest~order contribution to the absorption is the matrix 

element of H b between the initial and final states. Because of the a s 
simplicity of the operator the matrix element could be directly evalu-

ated between the exact nucleon states, but to be consistent with the 

treatment of the higher-order processes" it will first be evaluated be

tween the plane -wave nucleon states, 

.... 
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_1_ ei (p 1
1 r 1 + p .1 r.) n 1 m 1 

cJ>f = (21T)3 .2 2 X1j2(2)xl/2 (1) . 

The xv2 ( 1) and X Ij2 (2) are two component spinor s for nu

cleons (1) and (2) respectively. 

The matrix eleme_nt between the plane -wave states is 

-+ 
n 1 m 1 I -+ . -+ P ,. n m 

x(xl/2(2)xl/2 (1) al·i(pl -T xl/2(2)xl/2(1)) 

The transformations to the center~of-mass coordinates of the two nu

cleons is convenient, and are contained in the formulas 

-+ -+ -+ 

P = P 1 + P2 • 

-+ -+ -+ 
PI = P 11 + P2 I 

With these substitutions the matrix element becomes 

s::. (-++ P -+1 ;-~) s::. (P . -+ p1 + -+1 ) ( 4 )1/2 ...L \[bb(O) up --p _;,:_u--p~- p 1T .~ 
2 · 2 2 2 m m\1 21.1 

n
1 

m
1 ~- -+I n m i (X 1/2 (2) X 1/2 ( 1) CJ 1 • p X 1/2 (2) X 1/2 ( 1) ) . 
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The exact initial and final states are 

ljJI = 
1 

1 __. __. Ji ~__. -, iK'R 3 .S·r ·. m' 
e P: ( r) - --· X F 81r . r 1 

__. __. 
The vectors K and K' are the initial and final momenta of the 

center of mass of the system. The matrix S = l/2(a 
1 
+a 2). The ex-

. /3 5;; m . . 3 22 
presswn ~"'8'; ---;:-- x 1 represents a normahzed. P

1 
state. The 

deuteron is taken as a 
3s

1 
state. 'Jhe D-state admixture is neglected. 

Since it absorbs a pseudoscalar particle having zero orbital angular mo

mentum its final state must be 
3

P 
1

. The choice of constants requires 

both radial functions to be normalized to one, 

~~ $1 (r)f
2 

dr = ~~~ $F(r)l
2 

dr = I. 

0 

The matrix element MIF (
1

) between the deuteron and scattering states 

can be expressed as 

A similar ~quation holds, of course. for any of the other matrix ele

ments. The transformation functions (ljJFI cj>f) and (cj>i,ljJI) can be cal

culated, and are 

( 1) 

__. __. ni' ~ n 1 m' 2 >:< 

I 
_._I . f -o ( K' - p I ) (X 1 i p I X l/ 2 ( 2) X 1/2 ( 1 ) ) d r I r I f F ( r I! j 1 ( p I r I ) • 

22 w. Rarita and J. Schwinger, .Phys. Rev. 59, 556 (1941). 
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With the help of these, MFI(l) becomes 

The integrals over the delta functions and the sum over the spins 

can be easily carried out. After these operations have been performed, 

the matrix element becomes 

-+ 
The integrals over the angles of p can also be carried out without 

specifying the radial functions cp
1 

and cj>F. This gives for the matrix 

element 

M . = -(41f) 1/Zl._ ~cj>(O) 1 (T 0 (K-K') 
FI m 2fJ. ~41f \{8; 

~1f ( x7' I ~ + 1/3 (a 1. aJx7) 

;fdpdrdr' p
3

rz.r•
2 j 0 (pr)~1 (r)~F*(r')j 1 (pr') 
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This can be simplified further, since (x~ 'I (al· a2)1 x~) = 0 I 
; 1 1 mm 

The final form for MFI before specifying the radial functions is 

--. --. o (K-K') 

2! 3 2 2 o - dpdrdr' p r r' mm' 1T 

= M1T dpdrdr' p r r' Jo(pr) ! 1 (r')l:F (r' 2! 3 2 2 . >!< ) j l (pr) . 

The constant M is used for 

(2) 

which is also common to all the higher-order matrix elements. 

It is now necessary to make a choice of the functions } 1 and IF· 

If ~F is chosen to be an expanding spherical wave 

then it is not necessary to determine ir but only the Fourier transform 

for one value of the momentum: With the above choice of fF the r' 

integral becomes 

If fr' r'Z <I>F (~) j 1 (pr) C ;f r' r'Z j 1 (pr ') j 1 (pr') = 
-o(p-p) 

2 
p 

and with the aid of the delta function all but one of the remaining inte ~ 

grals can be done: 

f 2 3 = M dpdrr p o (p ~]?) . ( ) r ( 
2 Jo pr .!1:1 r) 

p 
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The remaining integral is just the expression for the momentum 

component of the deuteron at the momentum p. The value of p is, of 

course, determined by the energy-conservation condition 

_2 
p = mf.! 

The absorption rate to first order, R
1

, is given by the usual for-

mula, 

Two factors of 'a (K,-K') occur in the square of the matrix element. 

The first of these gives unity when an integral is taken over an interval 

of final states. The other factor 6 (K-K') is to be interpreted as the 

volume of the region in_which the reaction occurs. The ,quantity com

puted without this factor of the volume is the transition rate per unit 

volume~ Since the wave function for the center of mass of the deuteron 

has been normalized to one deuteron per unit volume, this transition 
( 

rate is actually the desired transition rate per deuteron. The density 

of states is 

p (E) 

the transition rate becomes 

R 1 = 2~ 4w~ )2 I ~~o)l2 ; !lfd;: r2 io (pr) l"r (r) 12 (:n~)3/2 m ~ . 

413 I I After tJ. 'II' is substituted for <j>(O) 
2

, _this becomes 

For the Hulthen wave function the integral is easily done, and gives 

, , 1 } V 2a§ (a +Jl) 

13 2 +p2 · (13- a) 
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After the numerical values for the various constants are substituted, 

R 1 becomes, in units in which the meson mass is unity, 

-8 = 0.098 X 10 , 

or in conventional units 

The higher-order corrections can easily be included in the tran

sition rate by multiplying R 
1 

by the square of the ratio of the R matrix 

to the already computed matrix element of the interac,tion. The faCtors 

M and the normalization constant for the Hulthen wave function are com

mon to both and are dropped. If these factors are neglected the matrix 

element of the interaction is 

p 
2 +_2 a. p 

-1 I. This factor has the value 1.3049 x 10 /fl. 

p 
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RADIATIVE CORRECTIONS 

The second-order processes are those for which there is one 

meson exchanged between the nucleons while the absorption takes place. 

For Mfi (
2

). the exchanged meson must clearly be a neutral one. After 

the absorption of the. external negati:ve meson, the absorbing nucleon 

is a neutron, and must undergo an .even number of changes of charge 

to remain a neutron .at the end of the process. It is clear that the nu

cleon that did not directly enter the absorption process must have been 

a neutron. Thus the exchanged neutral meson is both emitted and ab

sorbed by neutrons. -The isotopic spin contribution to the matrix ele-

mentis therefore one. Between the plane-wave states the matrix ele

ment Mfi (
2

) is 

M _(2)" =f d3k d3r d3r { 1 
fl . (2'1T)3 1 2 (2'1T)3 

-+-+ 
-ikr 

e 2 

here· Ek is the nucleon recoil energy and is equal to !-L/2. The integrals 

over r 1 and r 
2 

are easily carried out and give 

With the help of the o functions the final integral is performed and 9 

after the transformation t~ center-of-mass coordinates is madep Mfi{
2

) 

becomes 



-50-

1 
w--+" -, + l-!2 p-p 

As for the first-order contribution, this plane-wave matrix element 

must now be averaged over the actual initial and final states. The 
I 

transformation f~nctions are the sam~ as used before Eq. (1). 

After the &-function integrals have been performed the matrix 

element is 

(2) 
MFI 

(3) 

_,.. _.. ...... _... ...... 
The substitution p-p'=l is now introduced and the variables 1 and p' 

retained. The Jacobian of the transformation is +1. The angular 

portion of the matrix element in the new coordinate system is now ex-

tracted. It is 

,J 

d S"lp; (x~' I (S·P.H<il· ij (0'1. P·+ l'j (&' z• ij I X~) io ( IP·+~ r) 

-+ -+ 
The direction of 1 is chosen as the polar axis in p' space. The azi-

muthal integral can be done 9 and gives 
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The summation convention is implied where repeated indices occur. 

After some simplification and inversion of the order of integration, 

this becomes 
1T 

(x7''/ Jsin eP;dePfdf'J {z(S·!l(a 2·I)Ip' [• ~~;p• 2E~~Ejj 
.. 0 

~i (;; !" 1) ali (;; z: 1) - (5-ll (;; z• ~} j 0 ( I P' + rj r) I X 7' ) . 
-+ ' 

The integration over the angles of 1 can now be.carried out~ and yields 

41T2jl ni 'I -- -- 3 ~-:: p' n - 3- dx ( x 1 2 ( S · a 2 ) 1 p' L +y x _j 
~1 

+ p'
2

I
2 ~x~' ~i (a 1• a 2 ) ali - (S.•a J I x 7') io (~p• 2 + Zp' Ix +I

2
r) 

after the substitution COS 8 = X. 

The commutation rules for the a's can be employed to simplify 

the term multiplied· by 1 ~x2 , and it becomes 

It is clear from symmetry considerations that this vanishes. The ex

pression thus reduces to 

1 

I
2

p• 
8
{ /dx (Ix + p' x

2
) j 0 (~p2 

-1 

Finally 

xr;l = 

·2 m'l-+-+ I m +2p'lx+l r) (xl S·a2 xl). 

1/2 ( 3 + 1') 0 ' . mm 
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The results are substituted into the earlier Eq. (3), and it becomes. 

~ 2 21r J+f 4 2 f I 2 1 1 - -- -- 1 dlp 1 dp' dx(lx+p'x )--. 2 
fl. (Z. )3 1r 2w1 . 2 fl. 1r , w1 --

~1 4 

It is now necessary to substitute in the initial and final radial-wave 

functions. With these substitutions. and if we make use of the 5 func

tion re s'ul ting from the r' integral, the matrix element b'ecome s 

M (2) 
FI 

{ a2 I 
+ p'

2 
t 2p'lx + 1

2 

1 !:' 
1 

2 2 2 dx(lx + p 'x ) 
w -...1:!:.... 1 4 . 

-1 

1 } 2 2 2 f3 +p' +.2p'lx+l 

The normalization constant has been dropped in accordance with pre

vious comments. The x integration can be easily performed. and 

yields 

M (2) 
FI 

a2+(1+p)2 _ J x log 
2 ( -)2 a + 1-p 

·~2+-2 12 a p -
41p 

-~}·(4) 
This is as far as it is possible to go analytically. The remaining inte

gral has been carried out numerically. 

Identical methods suffice for the reduction of MFI ( 
3

) to the form 
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The final result for the one meson in the field contribution is the sum 

of Eqs. (4) and (5), and is 

or 

a.2+ (l+p)j}-
2 (1 -·)2 a. + -p 

M ( 2) M ( 3) = M f2 
FI + FI p 21r 10 · . 

The integral r
0 

is dimensionless and has been evaluated numerically 

(using Simpson's rule) with an asymptotic estimate of the remainder 

for 1 > 100 1-L· In terms of the matrix element, 

M (1). 
IF ' 

M (2) 
IF + 

M (2) d M (3) 
IF ' an IF 

M (3) 
IF = 0.134 

The transition rate. R to the same order is then 

are 

- R = L286 
14 

R 0 = 2.67 x 10 /sec. 
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'The higher-order processes involve the virtual scattering of 

me sons, As has been pointed out earlier, experience indicates that 

the state in which both the angular momentum and the isotopic spin ·are 

equal to 3/2 is the· dominant state for low-energy scattering. This 

then is the only state considered in the scattering processes .. If a me~ 

son is created on a nucleon it will be necessary for it .to scatter off the 

other nucleon in order to scatter in the resonant state. If a nucleon 

emits a meson. the nucleon-meson pair must be in 9- (lL/2, l/2)state, 

because the initial nucleon was. The absorption of the external pion 

can not change this to (3/2, 3/2), since' the external meson has zero 

angular momentum. Similarly if a meson is scattered i~ a (3/2, 3/2) 

state by a nucleon it must be absorbed by the nucleon by which it was 

originally created. Thus only those ·scattering diagrams enter in which 

the meson crosses twice between the nucleons. Of these only the two 

illustrated in Fig. lL are compatible with the last of the conditions, that 

is, that the absorption is the second process in the sequence. 

To treat the scattering as realistically as possible, .it is necessary 

to use the transition operator rather than the Born approximation for 

the scatterings. Since these scatterings are off the energy shell, there 

is no direct way to compare them with experiment. However, a simple 

integral has been suggested that agrees well with the· scattering on the 

energy shell. 23 This form for the virtual scattering has also been used 

with good re suits in the study of deuteron photodisintegration. 
20 

The 

suggested form is 

1 

X 1 t (6) 

23 J. L. Gammel, Phys. Rev. 95. 209 (1954). 
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where PI!' is the projection operator for the isotopic spin (3;2) state. 

The recoil energy of the nucleons has been neglected in this ex

pression since no very reasonable method of including it is available. 

The effect of including any nucleon recoil energy would be to dec:r:ease 

the results. The present results are an upper limit for th~ matrix ele

ment. That the nucleon recoil effects are small has been verified by 

computing the second-order processes with and without recoil included 

in the energy denominators. 

The expression (6) for the transition operator can be consider-
' 

ably simplified .. First1 the denominator of the term in brackets is in-

dependent Of the k IS and can be calculated UUme rically, ItS value iS 

1 - 0.692 = 0.371. The numerator is a funCtion of the variables w and 

w1
• By changing the variable of integration to wL = ~ IJ. 2 + L 2 and 

separating the denominator into partial fractions one can bring it into 

the form 

The dependence on the variables. w and w• inside the integ:r:al has been 

separated. The function of a single variable 

is easily evaluated as a function of w by numerical integration in the 

range of interest 1.1 < w < m. It is graphed in Fig. 2. This curve 

can be fitted exceedingly well by the parabola, 

2 
0.311 w - 4.70 w + 28.99' 

which is also graphed in Fig. 2. The parabola is then used for f(w) 

and Eq. (6) reduces to 
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Fig. 2. A comparison of the function f(w) and the approximating 

parabola. 
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2 
1 

R3/2 3/2 (kl' k) 
p 81Tf . = 

II I 3 J.12 ' ~ ww I (tJ.-w-w 1
) 

~k'·k (0". k')(O". ~ { [ + w+w1 -1:!: ( .430 - .0285 w+w'} (7) - J.1 ) . 
fJ. 

~ 

This is the form finally taken for the off.,;the-energy-shell-scattering 

amplitude. 

With this form for the scattering .amplitude, techniques similar 

to those employed in the previous computation reduce the matrix ele

ments to double integrals. The. chief difference is that, as might be 
. ( ' . . 

expected with gradient coupling. the integrals are divergent. A cutoff 

of the virtual pion momenta at the nucleon mass is introduced. The 

final results are 

M. (4) + 
IF . 

The transition. R is then 

M (5) = 
IF .053 M . 

. 14/ -:-R = 1.408 R0 = .2.9 x 10 sec. 

' I 
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CONCLUSIONS 

The order -of-magnitude agreement between the calculated value 

Reale 2~9 x 10
14 

and the measured value Rexp 7.0 x 10
14

/sec appear 

to be -due not so much to the model as to the circumstances that largely 

divorce the numerical results from the underlying model. The failure 

to get closer agreement is undoubtedly due to the failure of the Hulthen 

wave fut\ction to describe the high-momentum components of the deu

teron. The details of the 1=11odel might be expected to be most strongly 

exhibited in the higher corder processes, but to the accuracy available 

.. in both the theory and the experiment these make negligible contribu

tions. Since the cutoff is used only in the highest-order term, th~ cal-· 

culation is largely independent of _the cutoff. Again, because the scat

tering of the virtual meson is remote from the scattering resonance, 
; 

the contributions from this sourc':e are small. This would be true wheth-

er the present form of the scattering operator or some other one were 
( ' 

used. The deuteron wave function appears principally through one num-

ber, the value of its momentum component at the rest mass of the me-

son. 

The calculation becomes in effect a test of only two numbers, 

the coupling constant and the indicated deuteron-momentum component. 

As the coupling constant is rather weU-determip.ed from scattering 

, experiments, the results should be interpreted as a failure of the Hulthen 

function to descrH~e the high-momentum ~pectra of the d~uteron. The 

absorption of mesons by larger nuclei probably is accomplished by high

energy pairs, and it seems reasonable that this calculation may be ex

tended, .and the absorption rate of mesons by a nucleus taken as a mea

sure of its higho.momentum components. 

Because the re_sult is so independent of the details it is also 

reasonably free of the errors inherent in the approximations used. 

For example, there might be serious doubts on the validity of using an 

impulse-approximation treatment, but in view of the small size of,the 

contributions of the higher-order processes the use of this approxima

tion would appear justified. The same remark applies to the form of 

the scattering operator employed for the virtual mesons. 

The lowest-order calculation has also been carried out for a 
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variety of other momentum distributions. In all these distributions it 

is of course necessary to specify a parameter, the mean momentum. 

For equivalent choices of this parameter the lowest-order contribution 

to the matrix element is not particularly altered. As has been indicated 

earlierp the absorption process may be a step in a higher-order calcu

lation leading to a level shift in a me sic atom. The level shift does dis

tinguish more adequately between the various wave functions, as the 

entire funct~on rather than just a single Fourier component enters.· 

Since it i~ not clear .experimentally what portion of the level shifts in 

me sic atoms is to be attributed to virtual absorptions no definite choice 

of wave fun·ction can be made. 
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