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ABSTRACT 

~ 

UCRL-3721 Rev, 

An approximation technique for quantum mechanical problems based 

on the expectation values of the powers of the Hamiltonian is developed. 

The mathematical foundations on which this approach is based are the 

method of moments employed in probability theory, and the theory of 
. . . 

orthogonal polynomials. In practice this method constitutes an extension 

of the Rayleigh-Ritz principle and gives a systematic method of improving 

the trial function. 
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{HI
Francis R. Halpern 

Radiation Laboratory 
University of California 

Berkeley, California 

April 10, 1957 

I. INTRODUCTION 

The general problem in quantum mechanics is the diagonalization 

of the Hamiltonian operator. In the method of moments the procedure is to 

assume that an arbitrari~ chosen state vector is expanded in the complete 

set, the members of which are the eigenfunctions of the Hamiltonian. The 

problem is then to determine the unknown eigenfunctions occurring in this 

expansion, their eigenvalues, and the associated expansion coefficients. 

To achieve this end a step-b7-step method is prescribed that will remove 

all but one term in the expansion. 

It is not necessary in the course of this calculation to assume 

any separation of the Hamiltonian into perturbed and unperturbed portions. 

It will frequently be convenient, however, from the computational point 

of view, to take the initial vector to be an eigenfunction of a portion of 

the Hamiltonian. The basic numerical quantities that enter into a 

calculation are the matrix elements of the powers of the Hamiltonian in 

the chosen initial state. ·Because these quantities are simple to calculate 

it is feasible to carry the calculations to quite high orders. 

* Based on a dissertation submitted in partial fulfillment of the 

requirements for the Ph.D. degree at the University of California. 

This work was performed under ·~~e auspices of the U.S. Atomic Energy ,, 
Commission. . ~: 
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II. DESCRIPTION OF THE METHOD 

The system to be treated is described by a Hamiltonian H. The 

system is assumed to' be enclosed in a box in order to assure that the 

state vectors oc·curring are normalizable to unity. The normalized 

eigenfunctions of the Hamiltonian are -~(Ei' aj). The a's are the 

eigenvalues of additional operators A that commute with the Hamiltonian 

and that are necessary to completely describe the states. The ~a 

satisf.r the eq~tions 

H 1r(E1, aj) = Ei ~(Ei, aj) , 

A 'f1Ei, aj) : aj y<Ei' aj) • 

The ~'e and the Ei'e are of course.unknown, although the aj's 

will in genoral be known. .To proceed it is necessary to choose a trial 

function ¢. It is most convenient if ¢ is an eigenfunction of the 

auxiliary variables A. In this event the expansion of ¢ in the set of 

t's is 

(l) 

The dependence of the l{f' s on the a 1 s has been dropped, as ¢ is an 

eigenfunction of the A's and only one set of a's can appear for each E. 

It is convenient to introduce the function 

(2) 

associated with this expansion. . ' . . . . :Fne(E) is a nondecreasing function of 
r p . 

fo·r sufficiently small E. The first property bounded variation that vanishes 
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holds because F¢(E) changes orily by amounts 
2 · \at i~ at the po~nts Ei. 

The second property is a result of taking ¢ to be nonnalizable. The 

eigenvalues Ei .of H describe the allowable energy levels of a physical 

· system, therefore there must be a smallest one and hence a .smallest point 

of increase for F¢(E). 

The .function F¢(E) contains essentially all the information about 

the physical system. The eigenvalues are immediately evident as points of 

discontinuity of F and the eigenfunction that belongs to ~· is given 

by the formula 

The matrix element of any function of H in the state ¢ is given by the 

expression 

(¢ j G(H) I ¢) = .f G(E) dF ¢(E) (J) 

Thus the quantum mechanical problem is equivalent to determining the 

functipn F. · 

The tunction F is a probability distribution function, and there:are 

proc·edures for the determination of such a. function. The method to be 

employed is called the method of moments, and consists in developing an 
(n) 

approximating sequence of functions F ¢(E) that it is hoped will 

converge to F¢(E) •. The quantities employed to compute fD¢(E) are the 

moments Hn of the distribution F¢'E). These are defined by 

H0 : (¢ / H
0
{,:j ¢) : 5 E0 

dF lE) (4) 
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There is a difficulty in principle that should be noted at this point. 

The moments rr~y not ·~niquely determine the distribution. A very simple 

way in which this may occur is if some of them are infinite. 

The requirement on the app~oxi.mating function F(n) iE) is that 

it be a step function with n points of increase such that its first 2n. ·. 

moments agree with those of F¢(E). The nth approximating function depends 
(n) ( n) (n) 

on 2n numbers; the 
(n) . 

at which F ¢(E) 
(n) (n) 

bl ' b2 . , 

n values of the argument E
1 

, , . . E , . . . E , 
2 n 

is discontinuous and the 
(n) 

n real poeitive·numbers 

b 
n 

, which are the magnitudes of the discontintitfes. 

These numbers must satisfy the 2n relatione 

r k . (n) . 
j E dF¢ (E) - · ' E (n)k (n) 

L. 1 bi 

(k = o, 1, ~~ •••. 2~-1) 

It has been shown that the following prescription gives the unique function 

satisfying these requirements. 
1 

The polynomial 

1, E, E2, 

Ho, Hl' H2' 

Hl, H2, H3, ... 

p (E) 
n 

En 

.H 
n 

Hn-t-1 

H 
2n-l 

defined by 

is constructed. The polynomial P (E) has n real distinct roots. n . 

These are the correct va~ues for the. ::e (n) 1 s. It is now possible to 
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solve the n linear equa~ions 

n 

~ (k = 0, 1, 2, ••• , n-1) 
i:l 

for the b(n),s. 
(n) 

The approximating function F¢ (E~ is now completely determined. 

It has the following useful properties. All the 
(n) 

fi lie between the 
(n) 

Ei greatest and least points of increase of F¢(E), or the smallest 

is an upper bound for the lowest eigenvalue of H and the largest 
E: (n) 

i 

is a lower bound for the largest eigenvalue. Between any two poi. nt s of-
n . . .. 

increase of F ¢ (E) there is at lea-st one point of in~rease of F ¢(E), and 
n 

at each point of increase fi the inequality 

F (n)(t. ) 
¢ 1-

F (n) (E:.. + ) 
¢ i 

. holds. Thus there is an eigenvalue of H between any successive ~ 1 s. 

These remarks also apply if F¢(E) is replaced by F¢(N~(E) for n ' N. 

Th 1 t d i i 1 by F~(l)(E). i ~ e owes -or er approx mation s g ven P T.h s LUnction 

has a single point of increase given by the root of the equation 
' 

1 E 

P
1

(E) = - 0 -
Ho H . 

·1 

This solution·is 

.•: (1) Hl 
~ -- Ho 

, 
·;~. 
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and is just H
0

• 

The inequality stated above is to this order the Rayleigh~Ritz 

principle. That is, the smallest eigenvalue of H, Emfn satisfies the 

inequality 

A slightly different approach is also possible. From the set of 
2 

functions 1, E, . E , ••• , it is possible by the usual Schmidt 

orthogonalization procedure to·construct a set of po~omials pn(E) ~th 

the properties 

&nn1 

Except for a normalization constant we have p - P , and the determinental · n- n 

form is just a convenient method of writing the Schmidt process. Most of 

the raqults quoted above then follow from the properties of the roots of 
2 

sets of orthogonal polynomials and their associated distribution. 

If all that is desired is an estimate of the eigenvalu~s and their 

spacing, it is sufficient to calculate the roots of the determinants. · If 

wave functions are desired, then appropriate polynomials in the Hamiltonian . 
(n) 

of the form ~(H - Ei ) are used to operate on the initial vector. 

Th'e 

It is possible to construct. n vectors 

~(n) I . are given by 

··~71 
·.::itk 

·1 
~-
:: 

fn) · 
(H - <: ·. )¢ 

i 

}V(n) · in this form. 
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,,).n) 
The vectors r are orthogonal, 

(n) (n) 

<fk ' 'tk• ) = 
8 (n) l.l;k(n)) 

kk' C'fk ' T! 

This result may be proved by expressing the matrix element iri terms of the 

original vector ~~ 

. . 

The properties of the energy-:-distribution function F ¢(E) are employed 

to wri~e this expression as an integral, 

( ~7f (E- E/n)) 7T (E. ~ t (n) )dF (E) -
(n) . (n) . 1 t k,k' 

i . ¢. -
!· 

~tk ; ·r. . ) - l . . . . kf k' 'k'. -

( l 77' 
(~2 

dF¢'E) /0 . . . (E- Ei. . 
.if k' 

k:k' 

"were the usual properties of orthogonal functions have been used •. 

A a·imilar argument is used to 'compute the expectation value ·o!. 
. (n) , 

H in the state y; k : 

( ~t.fk, H lfk) - ~ ]11 (H- E~ll))H 7.·f1 (H - ~1 (n)) I ~) -
i;k i:k 

= s~ (H- €j_4 2
(H- Ek -+ tk) dF¢(E:) 

: 

0 
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(n) . 
To test the adequacy of the state fk · as approximations to the 

eigenfunctions of H, the qua.nt1t:r cr- defined b:y 

(n) 
(.)k 

(n) 
. is introduced. Here. cr- is a.lwa:ys nonnegative. and vanishes only for 

k 
an eigenfunction. 

·,. 
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III. AN EXA.V.PLE AND CONCLUSIONS 

A simple example of this technique is the following application 

to the problem of neutral scalar mesons interacting with static nucleons. 
. 3 

The notation is. the same as that by Wentzel. A cutoff K is employed, 

since the moments are divergent. The first four moments of H in the 

Ho = 1 
' 

Hl = 0 
' 

H2 [ g2 /( 21() 2 ] -- [~-
2 . 

. 
' 

j!-2 

2 
eT UJK)] log . . r 

In the linear Rayleigh-Ritz approximation there is no change from 

the noninteracting system. The quadratic approximation is determined by 

solving the equation 

1 E 

1 0 

0 

2 
E 

2 v· . 2 K-fWl 'Bi t K uJK - JJ- log ·. KJ· 
<2m2 ' r , . 

2 
g 

(ZJ()2, 

= 0 
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The solution of this equation is 

E : 

. For large K, where the logarithmic terms and the difference between K and 

u)K can be neglected, this becomes 

E : 
K [1 ± ,: r, + i ,/ )i 

;tv- ' 8 (210 2 

3 

The negative root diverges linearly to - ()tO just as the 
i 

constant 1- (1 -t- -8
9 

g. 
2 

2 ) 
. ' (21() 

correct value of 

the self-energy does. The is smaller than 

the correct value. 

The advantages of this method are that it is independent of the 

magnitude of the interactions~ and the basic quantities are relatively 

.. simple to comnute. The chief shortcoming is the requirement that a 

sufficiently good initial .state ¢ '.be chosen so that all the moments are 

finite. A detailed calculation of the phonon-polaron problem is being 

carried out and will be published shortly. 
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