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ABSTRACT 

Some properties of the dispersion relations for potential 

scattering are examined. It is shown that even for a potential of 
•. 

finite extent, the dispersion and unitarity relations do not define 

a unique scattering amplitude, so that they do not contain all the 

information that is derivable from the Schroedinger equation. 
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INTRODUCTION 

Dispersion relations connecting the real and imaginary parts 

of scattering amplitudes have been deduced from the assumptions of 

Lorentz invariance, microscopic causality, and certain symmetry 

properties quite independent~y of any particular Hamiltonian.
1 

The 

1 
M. L. Goldberger, Phys. Rev. 99, 979 (195$) .. For further references 

see, e.g., Capps and Takeda, Phys. Rev. 103, 1877 (1956). 

connection with a model is made in the assignment of the mass spectrum, 

the postulated threshold behavior of the amplitudes, and in the assumed 

behavior of the amnlitudes for infinite momenta. It has been conjectured 

that a quantum field theory might be completely defined by such dispersion 

relations together with the unitarity condition.
2 

·In such an approach it 

2 
!-1. Gell-Mann, Proceedings of the Sixth Annual Rochester Conference 

on High Energy Nuclear Physics, Rochester, 1956. 

is assumed that the dispersion relations, together with the unitarity 

condition, contain all the relevant information contained tn the 

Hamiltonian, and that they yield a unique solution if the Hamiltonian 

does. One would then have a formulation of a field theory essentially 

in terms of observables, which would require none of the renormalization. 

prescriptions of the canonical Hamiltonian theories. 
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However, this happy situation is not realized for certain simple 

·models for which all soiutions of the dispersion ~elations can be· 

exhibited. Thus the dispersion-type equations that describe the "one-meson 

approximation" to a static-source meson theory have been solved by 

3 
Castilleja, Dalitz, and Dyson, who find that these equations have an 

infinite number of solutions~ It is not known whether this ambiguity 

3 
Castilleja, Dalitz, and Dyson, Phys. Rev. 101, 453. (1956). 

remains if the static-source modei is treated without the "one-meson 

approximation." This leads to an infinite ntimber of coupled dispersion 

relations for which no solution has yet been exhibited. Similar~ .the 

two dispersion relations obtained for the Lee model
4 

do not possess a 

4 
.T. D. Lee, Phrs. Rev. 95, 1329 (1954). See also K. w. Ford, Phys. Rev. 

105, .320 (1957). 

unique solution, although the Hamiltonian formulation of this model does. 

Again, however, as in·the 11 one-meson" model, the theory is a mutilation 

of a canonical field theory, so that the significance of the nonuniqueness 

is obscure. 

It is therefore of interest to investigate the uniqueness of the 

solution to the exact dispersion relations which describe a reasonable, 
. . 

complete, and causal model, ~ely the scattering of a particle by a 

static scalar local potential of finite range.. The Schroedinger 

'· 

(or Klein-Gordon) equations can be solved to give the ~cattering amplitude. 
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Conversely the scattering amplitude determines the potential
5 

and so 

5 Jost and Kohn, Kgl. Danske Videnskab. Selskab. Mat.-fys. M.edd. 27, 

No. 9 (1953). 

contains all the information that is in the Hamiltonian •. This scattering 

amplitude is a function of two variables, the momentum and the momentum 

transfer, and therefore is described by a much more complicated dispersion 

relation than that of the Lee model or the "one-meson approximation." 

Indeed, if the scattering amplitude is expandable into a convergent series 

of partial l-raves, this dispersion relation (plus the unita.rity condition) 
• 

decomposes into ani'"il!inite number of coupled nonlinee.r integral equations·. 

In addition to their multiplicity, these integral equations differ in an 

important way from those previously studied: the inhomogeneous term need 

no longer be a rational function of its argument, but may- have an essential 

singUlarity at infinity. Those mathematical procedures Which produce the 

spectrum of solutions for the Lee model and the "one-meson approximation" 

• 1 

a.re ~ot then applicable. Nevertheless it is possible to show by specific 

examples that even for a square-well potential the solutions of t~e dispersion 

relation are not unique. Although these extra solutions cannot correspond 

to the scattering from any 11 reasonable11 potential, they do demonstrate 

that the dispersion relations and the unitarity condition do not exhaust 

the content of the Hamiltonian theory. 
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THE-DISPERSION RELATIONS 

The assumed dispersion and unitarity relations for the scattering 

of a particle b,y a spherically symmetric static potential (with no bound 

states) are 

Irn f (k'.~ tl) 
..o:--ll--r-r.::".=·-:-='-=~-

. (1) . 
R1-R·-lE 

where 

Im t (P._, ~ )= 4·~rnSd 3~ 1 a(L{\2.J3·~')f*(R, 1~·- ~'l)ffk, Ll')) (2) 

( R t-eal) 

and 

R t-eal. (3) 

'· 
The ,scattering amplitude f(k, /.::). ) is a function of the momentum k of · 

the incident particle, and of its momentum transfer .4 • ·The inhOmogeneous 
' ,._._ 

term of Eq. (l), V( tJ. ) , i:s the Born approx:L11ation for the SC<l.ttering with 

· momentum transfer ~ , and of course depends only upon £1 for a static 

local potential. The unitarity relation (2) and the ~aetr,y condition (3) 

follol': directly from the reality of the potential, but the dispersion 

relation (l) holds only for certain classes of potentials. It is· a 

consequence of Cauchy's .theorem provided that 

(a) f(k, £:1 ) is a regular function of k for fixed LJ , D. real 

and Im k ) 0, 

(b) f(k, LJ ) - V( b. ) --) 0 as /k}-4oa,, !mk~ 8' / 0, 

(c) k-l f(k," 6 ) is bounded on the real axis. 

. ' 



UCRL-3727 

-6-

Klein and Zemach have_shown that for a potential of finite extent a; 

f(k, .::1 ·) exp(2ia .6 ) 
. . 6 

is a regular bounded function of k. A similar 

result has been obtained by Wong for each term in the perturbation expansion 

of the scattering amplitude. 7 Klein and Zemach write the scattering amplitude 

6 
Klein and Zemach, Dispersion Relations for Scattering by Nonrelativistic 

Particles (to be published). 

7 D. Y. Wong, Physics Dept. Tech. Renort No. 62, University of Maryland, 

Jan. 1957. 

(4) 

and shol<I tha.t 

< - (5) 

whenever 

co 

f v~(r) r:t d r < oO 
0 

) 
oO (A) 

The condition (5) and assumption (c) above insure the vanishing of 

~ dk' [f(k', a ) - V( b. )J /(k' - k) over the semicircle from + c;10 to 

- coc. in the upper half plane. Moreover, for potentials of finite extent, 

the integrations in Eq. U~) are over a finite region and the r.h.s. defines 

a regular function or· k if 1m k /, 0 and H has no negative eigenvalues 
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(bound states). If the integr~l in Eq. (4) is uniformly convergent, 

then f(k, ~ ) will be a regular. function of k even if the potential 

is not of finite extent. 8 In any region . Im k ~ 8 > 0 the uniform 

8 
This result does not contradict the fact that for a large class of 

potentials which are not of finite extent there can appear redundant 

poles in the upper half plane in the s-wave scattering amplitude. 

(S.ee for example V. Bargmann, Revs. Modern Phys. 21, 488 (1949)). The 

_redundant poles appear 1~ the individual partial-wave amplitudes, but 

cancel when these are combined to give the .total scattering amplitude. 

This is sL~ilar to the result thateven though the partial-wave scattering 

amplitudes have essential singularities at infinity, the total amplitude 

approaches the constant V( Ll, ) • 

convergence will follow if for any E there exists an· R , such that 

for any R ~ R , the following conditions hold: 

00 

I s s in 2 .6 t" vi. ( t") r- d r < E 
~ R 

[a] 
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UNIQUENESS 

Clearly one solution of the disoersion and unitarity relations is 

that solution which results from solving the Schroedinger equation ~lith 

the potential that appears in Eq. (1). If there is another solution of 

Eqs. (1) - (3), then it cannot correspond to the scattering by another 

potential ":lJich satisfies conditions (A) and (B), for if it did, then it 

would satisfy Eq. (1) with a different inhomogeneous term, which is 

irnpos_sible. Nevertheless alternate· solutions. can be constructed. Let 

',I 

. us consider that solution .of Eqs. (1) - (3) which is also the scattering 

amplitude calculated from the Schroedinger equation: f
0
(k, £:. ) • We .shall 

show that even for a square-well potential there. exist an infinite number 

of other solutions identical to f0(k,~) in all phase shifts except 

one, which we shall take to be the s wave. 

If the s-wave part of .f
0

(k, /j.) has a phase shift -.S 
0

(k), then 

,.. 

is unitary and a solution of Eq. (1) if 

function of k, which approaches zero as . [cj 

lk ~ ~ oo for Im k > o. 

i'le note first that if V :: 0 then exp(2i g 
0

(k)) : S
0

(k) = 1, and 

Irn 0<, > o (7) 

• . . • 1'' .. ,}~ 
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satisfies condition (C), so that there-exist an infinite number of solutions 

in addition to f 0 (k, D ) :: 0. 
I 

There is a class of potentials discussed by Bargmann9 for which S(k) 

9 
V. Bargmann, Revs. Modern Phys. 21, 488 (1949). 

is a rational function of k, which approaches unity as k ~ oo (for 

-1\r -.\r-2 ) example_ V(r) : -V0 e (1 + ~ e ) ) • Here S0 (k has a finite 

number of poles- in the upper half plane. In this case again · 

(B) 

is a satisfactory alternate solution, provided the ai are chosen so that 

s(k) : 1 at the poles. This is the kind of situa~ion which occurs in the 

"one-meson a.pproximationi• and in the Lee model, _for which an infinite 

number of solutions could be exhibited in the form of Eq. (8). _ 

In general, however, the situation is a great deal more complicated 
- 10 

by the fact that S0 (k) may have an essential singularity at infinity. 

10 cO 

If V(r) satisfies S rn I V(r)l dr < oo (n = 1,2), then if S0 (k) 
0 

has no redundant poles (poles which do not corres?Qnd to bound states), 

it must have an essential singularity at· infinity. The conditions on 

V(r) imply a theorem of N. Levinson (Kgl. Danske Videnskab Salskab, 
oO 

l.fat.-fys. Hedd. ~'No.9 (1949)) that Sdk S 1 (1Q/S(k) :·O if there 
. -- . . 

are no bound states. If S(k) : 1 + 0(1/k) at infinity in the upper 

half plane, then the absence of poles for S(k) in the upper half plane 

implies an absence of zeros. But as wa have S(k) S(-k) = 1, this implies 

S(k) : 1. If, however, S(k) is not identically equal to unity, and 

' J 
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there are no redundant poles, then S(k) does not approach unity 

at infinity. Moreover, since we have S(k) S(-k) = 1, its behavior 

at infinity depends upon the direction of approach. 

For example, for a potential of finite extent a, we have, quite generally, 

where 

e)l.p (- 2 C: R a) 
I + L ~ R.o ( ~:t) 
I- L ~ R .. ( k~t) 

(9) 

. . . 11 
is a Higner R function, and we cannot generate another 

11 
E. P. Wigner, Annals of Math. 2l, 36 (1950). 

solution of the type s(k) S0 (k) since k-1(s(k) - 1) S0 (k) is still 

singular at infinity. In the case of the square-well potential, for whiCh 

, (10) 

where K : and is the depth of the potential, 

' we can exhibit several representative examples of alternate solutions, which 

satisfy condition (C) and thus establish non-uniqueness, even though they 

have some obvious.nonphysical properties. 

Example 1: · Consi~er 

exp ( 21 6 (k)) (11) 

and choose 

2 -1 R(k ) = K tan b K (12) 

•. J 



UCRL-3727 

-ll-

This. solution satisfies condition (C), provided b ) a , and it is thus 

an acceptable alternate solution. It has the physical~ undesirable feature 

that the phase shift for (real) infinite momenta oscillates instead of 

vanishing, but this 11 unreiasonable't behaVior cannot be ruled out w1 thout 

imp9sing an additional condition to supplement Eqs. (1).- (3). Equation (12) 

can be immediately generalized to 

2 -1 ~ I,.,.. 
R ( k ) : K ~-- f i tan bi K T f' i (12 1 ) 

Example 2: Let us write 

-i = -K qot a K (13) 

in Eq. (ll). Condition (c) can again be shown to be satisfied, This 

solution has the property that for real infinite mo~enta exp ( 2i S (k)) ~ -1, 

L e., the phaSE! shift approaches 1r /2 for infinite momenta. 

Exa~ple 3: Consider the form (11) with 

2 -1 b 
R(k ) = K . tan(a + 

2 
)K 

k 
(14) 

This satisfies condition (C), provided b < 0. As we approach the real , . 

2 axis at ·k = 0 from above, R(k ) does not become real, but this does 

not violate unitarity because it is kR(k
2
), which vanishes as k approaches 

the origin, that enters into exp ( 2i S(k)) e.nd so this is an acceptable 
12 

solution. It is clearly unphysical because the s-wave scattering cross 

12 
It is the unitarity condition which rules out the otherwise acceptable 

2 -1 ~ 2 2 2 . 
solution R(k ) = K tan( a + n oe n /( ~ n - K ) )K . Such a solution 

is . not unitary along the discrete set of points K : ± ~ n . 
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section·oscillates violently near k = 0; the "pathological" region may be 

made arbitrarily small by choosing b small enough o A variety of other 

types of solutions have been found but they also have the property that 

$ ( oO ) - ~ ( 0) I" m TT (m an integer) • 

~e difference between the "Bargmann potentials" and the square 

well may be restated by ~~iting the-dispersion relation for the s-wave 

scattering amplitude F(k) (= F* (-k) for real k), 

F(k) = G(k2) + 1 s· _. ___;dk=-'--
rr k' k - iE 

k' 

-cO 

which may be derived from Eqso (1) - (J) by separating the scattering 

amplitude 

f<k, L::l ) - F(k) + ¢(k, 6 ) ' -

2k 

....L 5£) ¢(k, b )d-6 . - 0 , 
2k

2 -
0 

and noting that 

F(k) - .1.. f 
1T'_oo 

dk' Im F(k') = V( .!\) - ¢(k,~) 
k' - k - i£ 

(15) 

(16) 

+ 1... f rr . 
dk' . Im ¢(k' ,4 ) 

k' - k - i£. 
-oil 

.. 
because the left-hand side is independent of Ll and even in k 0 (The 

. 2 
unitarity condition yields the relation Im F(k) = k I F(k) \ .) For the 
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cases of no potential and the "Bargmann potential 11 , G(k2) is zero and 

2 a rational function of k respect·ively, and the equation may be solved by 

the method used by Castilleja, Dalitz, and Dyson. On the other hand, for 

the. square well G(k
2) has an essential singularity at infinity, and 

non-uniqueness of the solutions of Eq. (15) cannot be established by this 

means. / 

If bound states are present, the inhomo~neous term of Eq. (1) 

must be appropriately altered to exhibit the polesof the scattering 

amplitude, but the conclusions of this paper are unchanged. 
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