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- ABSTRACT

Some properties of the dispersion relations fof potentiél
scattering are examined. It is shown ﬁhat even for a potential of
finité extent, the dispersion and unitarity relations do not‘define
a unique'scattering amplitude, so thét they do not contain all the

infonnétion that is derivable from the Schroedinger equation,
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INTRODUCTION
Dispefsion relations connecting the‘real and imaginary parts
of scatteriﬁg amplitudgs have'Seen deduced from thé assumptions of
Lorentz iﬁvariance;<microscopic causality, and certain symmetry

: - L 1
- properties. quite independently of any particular Hamiltonian.  The

M. L. Goldberger, Phys. Rev. 99, 979 (1955). For further references

see, e.g., Capps and Takeda, Phys. Rev. 103, 1877 (1956).

connection with a model is made in the'assignment of the mass spectrum,
the postulated ﬁhreshold behavior of the amplitudes, énd in the assumed
Sehavior of tﬁe-amolitudes for infinité momenta. It’has been conjectured
that a quantum field theory might be completgly defined by such d;spefSion

- ' 2
relations together with the unitarity condition. - In such an approach it

{. Gell-Mann, Proceedings of the Sixth Annual Rochester Conference

on High Energy Nuclear Physics, Rochester, 1956.

is assumed that the dispersion relations, togethér with the unitariiy
condition, contain all the'relevant information contained iﬁ the
Hamiltonian,.and that tﬁey yvield a unique solution if the_Hamiltohian
does. One would then have a formulation of & field.theory essentially

in terms of observables, which would require nohe of the renormalization~.

prescriptions of the canonical Hamiltonian theories.
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However, this happy situation.is nbt realized for certain simple
"models for which all solutions of the diépersion relations can be
ekhibited. Thus tﬁe dispersion-tymne equétions thét'describe the "one-meson
approximation" to a static-séufce meson theory have been solved by
Castillejo, Dalitz, and Dyson,3 whq find that these equations have an

infinite number of solutions. It is not known whether this ambiguity

Castillejo, Dalitz, and Dyson, Phys. Rev. 101, 453 (1956).

remains if the static-source model is treated without the tone-meson
approximation.” This leads to an infinite nﬁmber of coupled dispersion
relations for which no solution has yet been exhibitéd. Similarly the

two dispersion relations obtained for thé Lee modelb do not possess a

T.D. Lee, Phys. Rev. 95, 1329 (1954). See also K. W. Ford, Phys. Rev.

105, 320 (1957).

unigque solution, although the Hamiltonian formulation of this médel does. ’

} Again, however, as in-the "one-meson"-médel,4the theory is.a muﬁilation

of a canénical field theory, so that the significance of the nonuhiqueness

is ob#cure. 4
It is therefore of interest to investigate the unigueness of theh

solgtion to @he exact dispersion relations which describe a reasonable,

' complete, and causal model, namely the}scattering of a ﬁarticle by a

static'séalar local potential of finite range. The Schroedinger

(or Klein-Gordon) equations can be 'solved to give the scattering amplitude.
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Conversely the scattering amvlitude determines the potentials and so

Jost and Kohn, Kgl. Danske Videnskab. Selskab, Mat,-fys. Medd. 27,

No. 9 (1953).

contains all the information that is in the Hamiltonian. . This scatieringv
amplitude is‘a'function of two vafiables, the momentum and the momenﬁum
_tranéfer, and tﬁerefor; is’described'by_a_much more complicated dispersion
‘relation than that of the Lee model or the “one-meéon approximaﬁion."
Indeed if the scattering amplitude is expandable into a convergent series
of partial waves, this disnersion relation (plus the unitarity condition)

' decomposes into aninfinite number of coupled nonlinear integral equations.
‘jIn addition to_their multipiicity, these integral equations differ in an

| imnortan£ way from those previousl& studied: the inhomogeneous term need'

» no longer be a rational function of its argument, but may have an essential
51ngularity at infinity. Thosa mathematlcal procedures which produce the
spectrﬁm of solutions for the Lee modelvand the "one-meson approximation®
‘are not then applicable. Nevertheless it is possiﬁle to show by specific
examples ﬁhat even for & square-well potential the solutions,of the dispersion
relation are not unique. Although'these extra solutions cannot COr;eSDOnd
to the scaﬁtering-from any "reasonable" potential, they do demonstraté
that the disper51on relations and the unitarity condition do not exhaust

the content of the Hamiltonlan theony.
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THE. DISPERSION RELATICNS
Thé assumed dispersion and unitarity reletions for the scattering
of a particle by a spherically symmetric static potential (with no bound

states) are

Hk,A)z.\/(A)% L (dk! f(k ) | (1)
. : ~"e0 k’ -R-1E
&here .
s;(h s ) fa A S (8% 2k-4") " (k la- 2" Dk, &), (2)
| {R renl)
and
ik, 8)= f(-k, ), & real. (3)

The,sbattering amplitude  f(k, A) 4is a function of the momentum k of
th; incident particle, and of its momentum transfer 4 . The inhomogeneous
_term of Eg. (1), V(4 ), is the Born approximation for the scattering with
- momentum tranafer L, and of course depends only upon A for a}static

local potential. The unitarity relation (2) and the symmetry condition (3)
- follow directly from'the'reality of the potential, but the dispersion
relation (1) holds only for certain classes of potentials. It is a
' consequence of Cauchy's,theoreﬁ provided that |
(a) f(k, &) is a regular function of k for fixed & , A real

and Imk > O, |

) £, 0)-VWA)—>0 a5 |kj—oe , Ink2 S > 0,

(¢) T f(k;LS )} is bounded on the resal axis.



UCRL-3727
b

Klein and Zemach have shown that for a potential of finite extent a,
f(k, & ') exp(2ia A ) is a regular bounded function of 'k.6 A similar
fesulﬁ has been obtained by Wong for each term in thé perturbation expansion

of the scattering amplitude.7 Klein and Zemach write the scattering amplitude

6 | . -
Klein and Zemach, Dispersion Relations for Scattering by Nonrelativistic

Particles (to be published).
7'_D. Y. Wong, Physics Dept. Tech, Renort No. 62, University of Maryland,

Jan. 1957.

¥ -L ° -tk .oA'
F(h,A):V(A).;__fdsrc\ Q"e (r k)\/’(r)
' (&)

e (rf (H-Rame e ) [y V) R0

and shbw thet

[Fea)- v € Mk )
whenever

(<)

f\/’(r)r‘d'r < o0 jfs;n-zm Vi) rdr < oo (a)

The donditioh (5) and assumption (c) above insure the vanishing of =

§ dk!' [f(k',A ) - V(& )] /(k' = k) over the semicircle from +oo to
~ o in the upﬁer haif'plane. Moreover, for pétentiﬁls of firiite extent,
the integrations in Ik (4) are over a finite region and the r.h.s. defines

a regular function of " k if Imk > O and H has no negative eigenvalues
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(bound states). If the integral in Eq. (L) is uniformly convergent,
then f(k, s ) will be a regular function of k even if the p’otent.ial‘

is not of finite ext,ent..8 In any region. Imk > 8 > O the uniform

This result does not contradict the fact that for a large class of

potent‘ials which are not of finite extent there can appear redundant
poles in the upper half plane in the s-wave scattering amplitude..

(See for example V. Bargmana, Revs., Modern Phys. 21, 488 (19h9)). The
.fedundant poles apnear ir; the individﬁal partial~wave ampiitudeé,, but
cance}. when .these are combined to give the total scattering‘ amplituds.
This is similar to the result- thateven though the partial-wave scattering
amplitudes have essential singulari'c'ies at infinity, the total amplitude

approaches the constant V(& ).

convergence will follow if for any € there exists an' R , such that

for any R > R , the following conditions hold:

_ fa\/z(r)r‘dr -<. € Z;T ERSl'h 2ar V(MY rdr <¢ TB]
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Clearly ons solution of the disoersion and unitarity relétibns is

that solution which resulﬁs from sélving the Schroedinger equation with
the pbtential that appears in Eq. (1). If there is another solution of
Egs. (1) -~ (3), then it cannot correspond to the scattering by another
potential which satisfies conditions (Aj'and (B), for if it did, then it
would satisfy Eq.'(l) with a different inhomogeneous term, which is
impoSsiblé.‘ Ne#ertheless alternabe-solutions,can’be constructed. Det
ius‘consider:that solution of Eqs. (1) - (3) which is algo the scéttering
amplitude calculated from the Schroedinger equétioh: 'fo(k,AA ). We‘éhall
show that even for a square-well potential there,exist an infinife number
| of other solutions identical to fo(k;xﬁ ) in all phase shifts éxceptv
one, which we shall také to be the s wave. |

8f the s-wave part of f.(k, A') has a phase shift .& (k), then

folk,a) - (20R)" [exp(zf&(kﬂ—c] n (2ch)"[éxqo(,'zc8(hb)—‘l] - (8)

is unitary and a solution of Eq. (1) if

k! {exr(u 5;(h))~exy(2c8(k))] is a regular

function of k, which_approaches zero as ' | {e]

k) —> oo for Imk > O. |
We note first that if V = O then exp(2i8 (k)) = S,(k) = 1, and
(k-a)(kR+ar)

N , ‘ )
exp(h’&(h)’ = 1__:[' (k+a;)(h_a:)- = /SQW\ sy Im ag > o (7)
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satisfies condition (C), so that there exist an infinite number of solutions
. / ‘
in addition to f,(k,0 ) = O.

There is a class of potentials discussed by Bargmanng,for whiech S(k)

V. Bargmann, Revs.'Moderh‘Phys. 21, 488 (1949).

is a rational function of k, which approaches unity as k -— oo (for
- - -2
example V(r) = -V, e %r(l +Be )\r) ). Here S,(k) has a finite

number of poles in the upper half plane. ‘In this case again’
axp (20 8 (k) = s(k) S,(k) o (8)

iéva.satisfactory alternate solution, provided the a3 are chosen so that
s(k) =1 at thé poles. This is the kind of situation which ocecurs in the
"one-meson approximation" and in the Lee model,'fof which aﬁ infinite.

- number of.solutions could be exhibited in the form of Eq. (8).

In general, however, the éituation i1s a great deal more complicated

: : ‘ : 10
by the fact that So(k) may have an essential singularity at infinity.

10 e r o '
CIf V(r) setisfies §r° | Vmldr <eo (n= 1,2), then if S4(k)

has no redundant polés (poles which do not corresvond to bound states),
it must have an essential singularity at infinity. The coﬁditidns on
V(r) imply>a theorem of N, Levinson (Kgl. Danske Videnskab Salskab,
Mat,-fys. Medd. 25, No. 9 (1949)) that '_iodle'(Ws_(k) = 0 1if there
are no bouﬁd states. If S(k) = 1+ 0(1/k) at infinity in the upper
half plane, then the absence of poles for S(k) in the ubper half plane

implies an absence of zeros. But as we have S(k) S(~k) = 1, this implies
S(k) = 1. If, however, S(k) is not identically equal to unity, and
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there are no redundant poles, then 5(k) does not approach unity
at infinity. Moréover, since we have S(k) S(fk) = 1, its behavior

at infinity depends upon the direction of approach.

For example,,for a potential of finite extent a, we have, quite generally,

]*‘LhRo(ki) ) ‘ 7 (9)
1-CR R (RY)

S, (R) = exp (-2tka)

where Ro(kz) is a Wigner R funétion,ll and we cannot generate another

E. P. Wigner, Annals of Math. 53, 36 (1950).

solution of the type s(k) So(k) since Kk (s(k) - 1)-So(k) 4s still

singular at infinity. In the case of the square-well potential, for which

Ro(k®) - K& tanak |, - (10)

3

where K = k(1 + Ar/kz) ‘and  A/2m is the depth of the potential,
we can exhibit éeQeral representative examﬁles of'altérnate solutions, whicﬁ
.sat;sfy condition (C) and thus.establishinon-uniqueness, even tﬁough they
ﬁave ;cmé-obvioué.nonphysicai propertiés;

Examﬁle 1l: Consider

T . - . 2 .
exp (21 8 (k)) = exp(-2ika) LEZKR(K) (11)
- 1 - ik R(k?) ~

and choose

RKD = K tan bk . | o (12)
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This solution satisfies condition (c), pi‘ovided b > a, and it is thus

an ac-cepta.b_le alternate solution. It has the physically undesirable feature
that the phase shift for (reél) infinite momenta oscillates instead of
vanishing, but this "unreasonable" behavior cannot be mled- out without

) imposin_g an additional condition to supplement Eqé. (1) - (3). 'Eiquation (12)

can be immediately generalized to

i 1 < -
R(K®) = K Z‘Fi tan by K/%Fi H bi

> > a . (12Y)
Example 2: Let us write
R(kz) - —K-l cot a K ' . (13)

in Eq. (11). Condition (c) can again be shown to be satisfied. This
solution has the property that for real infinite momenta exp (21 S(R)) - -1,

i.e., the phase shift aonroaches T /2 for infinite momenta.
} Example 3: Consider the form {11) with

R(kY) - K~ tan(a + B )K . (14)
o k2 |

This satisfies condition (C), provided b < O, A's‘ ;ué approach the- real ..

‘axis at ‘k = 0 from above, R(kz.). dloee not become real, but this does

not violate unitarity because it is kR(kz_), which vanishes as k approaches

the origin, that enters into exp (21 8(!{)) e_.nd so this is an acceptable

: 12
solution. It is clearly unphysical because the s-wave scattering cross

It is the unitarity condition which rules cm’c;é the otherwise acceptable
2 - 2 2 : _
solutiod R(k ) = K 1 tan(a + % Xn/(Pp -K))K . Such a solution

is not unitary along the discrste set of points K = Bn -
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section oscillates violehtly ﬁear k :‘O; the "paihologiéal" region may be

méde arSitrarily small by cﬁoosing b "small enough., A varieﬁy of.othér

types of‘solutions have been found but they also have the property that
3(°°)~ S(O);l-mﬂ(m an integer) -

' The difference bstween the "Bargmann potentials" and the square

well may be restated by writing the dispersion relatlon :Qr the s-wave

scattering amplitude F(k) (= F° (-k) for real k),

Flk) = G(kD+ L f; _ae R ® s)
T 2 k' ~k-1i€ ‘ o

which may be derived from Eqs. (1) - (3) by separating the scattering

amplitude

f, ) = RO+ B, a)

oK __ (16)
SAW%AMA :0,
0
: andlnoting that
F(k) - L In F(k') = V(&) - g(k,a)
L l; k' -k - i€ g .
ob
i gk, In #(k',a)

™) k' -k~ itE
puy. "3 .

G

becaﬁse the left-hand side is independent of 4 and even in k., (The

o . . : 2
unitarity condition yields the relation Im F(k) = k [Fx)| ©.) FPor the
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cases of no potential and the "Bargmann potential, G(kz) is zero and

a rational function of k2 respectively, and phe'equation may be solved by
the mgﬁhod.usedlby Castillejo,'Daliﬁz, aﬁd Dyson. On the other hand, for
the square well G(k2) has an essential singularity at infihity, and
non-uniqueness of the solutions of Eq. (15) cannot be established by this
‘means. | g ' :
Iflbound states are present, the inhomoQeneous term of Eq. (lj
_must'be appropriately altered to exhibit the poles of the écattering
amplitude, but the conclusions of this paper are unchanged.
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