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-3-

VACUUM ELECTRODYNAMICS ON A MERRY-GO-ROUND* 

John.'Ise and Jack L. Uretsky 

Radiation Laboratory 
University of California 

Berkeley, California 

May 8, 1957 

UCRL-3780 

It has previously been recognized1 that a rotating co-ordinate 

system is a simple yet nontrivial example of a reference frame that is 
• 

curvilinear in space-time. The study of the geometry of such a co-ordinate 

system provides (\a cortvenient pedagogical device for illustrating the 

physical concepts that underlie many of the formal manipulations in the 

exposition of the theory of general relativity. Simultaneously, one may 

utilize the framework of the general theory in order to study a problem 

that has a certain intrinsic interest--the formulation of the equations of 

electrodynamics in a rotating frame of reference. 

The basis of the discussion lies in the choice of a co-ordinate 

system in the rotating system. Following the procedure of Reference 1, we 

first choose a set of cylindrical co-ordinates, R, e, Z, T in an inertial 

system, I 0 , whose origin coincides with the axis of rotation of the 

rotating system I. In I we have the corresponding set r, ¢, z, t 

defined by 

r = R, ¢=8-wT, z = Z, t = T , 

where ~ is the angular velocity of I. 

* 

(1) 

This work was performed under the auspices of the U.S. Atomic Energy 

Commission. 

1 
C. Mpller, The Thea~ of Relativity (Oxford, 1955). 



UCRL-3780 

-4-

It should be recognized that the choice of a c~-ordi~ate system 

for the rotating frame is quite arbitrary. In fact the only limitations 

imposed by the general theory of relativity are those of continuity and 
2 

differentiability. Consequently the particular form of the transformation 

equations (l) is chosen for its mathematical and conceptual simplicity. 

On the other hand, the transformation equations have in themselves no 

information concerning the rate of a clock or the length of a meter stick 

at some arbitrary point of the rotating system. Such quantities as these 

must be determined from the principle of covariance. On the basis of this 

principle one finds just the foreshortening and time dilation effects that 

would follow from the naive application of the special theory. 3 

We now proceed to construct the equation for the invariant space-

time interval in I and to inspect .the formal geometry of this reference 

frame. We denote the co-ordinates in the two frames, I 0 and I, respectively, 

by 

xfA- = R, e, Z, T and = r, ¢, z, t, 

which are related by4 

2 

dXft- = AJJ' 
'y dxJ 

~ 

= A 4 
4 = l ' 

2 
A· 
4 

_iw 
c 

(2a) 

Peter Bergmann, Introduction to the Theory of Relativity (Prentice7Hall, 

1942, p. 158 ff. 

3 M¢ller, op. cit., p. 240 ff. 

4 Weure sumati.on convention for a repeated index that occurs once covariantly 

and once contravariantly. Greek indice~ rhn from l to 4, Latin indices 

from l to 3. 
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The inverse transformation has nonvanishing elements, 

v2 v3 u4 
- A - A3 - A

4 
- 1 - 2 - -

Then 

ds 
2 

: gf'.; dXJA dXJ 

: dR
2 
+ R

2 
de

2 + dZ
2 

- c 
2 

dT
2 
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= + iw 
c 

(2b) 

(3) 

2 2 2 2 2 2.2 ' 2 2 = dr + r d¢ +- dz - c (1 - !!:!...J- )dt + 2 r cw d¢ c dt , 
c 

from which it follows that the metric tensor in I has nonvanishing 

components, 

2 
g. /r 22 

2 
iWr 

c 

(J.} 2 
g44 - (1 - _r_ ) 

c2 

The determinant is found to be -

g = det gf'l,) 
2 

= r 

j ~~ 
from which it follows that the inverse matrix, g , is 

11 33 44 22 2 2 
g = g = g = 1 g -' (l/r

2
)(1 -~ 

c 

24 42 . w/ g - g = - 1 ,, c 

(4a) 

(4b) 

) 

(4c) 
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For the sake of completeness we give the values of the Christoffel 

symbols. The nonvanishing elements are 

r;_,22 - ~,21 G.,44 - r:,41 
2 2 = = -r = = rw /c 

; 

(5a) 

rl,24 
-

- ~,41 -
- fZ,21 

- i rGtJ/c - - -

1 
r:41 

2 2 1 

~2 = -r . - rw /c 
' r;4 = i rw/c -

(5b) 
2 r2 ~1 1/r = -iw/rc 41 

plus those obtainable from the above by the symmetry of the last two 

covariant indices. 

The geometry of the system is cparacterized by the values of the 

curvature tensor, Rf- ')) ACJ' which vanishes. This result implies the 

existence of a Cartesian co-ordinate system by which the rotating frame 

may be described. One finds that the transformation to Cartesian co-ordinates 

merely carries us from I back into I 0 • 

The discussion of electrodynamics has its origin in the covariant 

' form of Maxwell 1 s equations. We first introduce·· the two antisymmetric 
JAY 5,6 

tensors. H and ~J, which satisfy the equations 

5 The comma denotes the ordina~partial derivative. It is interesting to 
note that the covariant Maxwell equations are "suprametric" in the sense 
that the metric tensor does not occur in them explicitly. To see this ·in 
tQe ~~se of Eq.A(6a) one must write it in terms of the tensor densities 
g;_ Hr and g2 j'v • 

6 -' Mpller, op. cit., p~ 302. 
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= (6a) 

0 • (6b) 

In order to identify the components of these tensors with the 
~ ~ ....., ~ 

field quantities E, H, D, B, we impose the requirement that the 

noncovariant Maxwell equations (i.e., 
. ~ 

\7•D = (' , etc.) retain their 

usual form in the rotating system, I. This requirement will be satisfied 

if we have 

21 
Hz/r 

13 32 
Hr/r H = H = H¢ ' 

H -- (7a) 

x4 
i c(Dr, D¢/r Dz) H - ' 

(7b) 

j,) 
= 

o u~ 
~ . 

(7c) 

where is the four-velocity of a small, charged region whose density 

of charge, measured in a local rest system of inertia, is 

components are 

uf-t- = dxfl /d c: = 1 rt ~ i c r( ' 
...., 

d1/dt u = 

= . 1 - v /c t 2 2 f -! 

In the above expression for r , -: (as distinguished from p, the 

"local" velocity) is the total velocity of the.charge including the 

rotational velocity r ~; Upon defining the charge density in I, 

(7d) 
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one easily verifies thai;- Eq. (6a) takes the form of'the two Maxwell equations - .....,. that relate the fields D and H · to the charge and current densities, 

The components of the tensor ~Y are now chosen to be 

F21 = rB
2 ~ F13 -- B¢ ~ F32 = r Br (Sa) 

Fl( = + (i/c) [Er ' r, E¢ , Ez J . 
4 

(8b) 

Substitution into Eq. (6b)then gives the remaining two Maxwell equations 

in their usual forms. 

The constitutive equations are obtained from the relation 

-.- = 

which is valid in I
0 

, and, as a tensor equation~ must·also be valid in I. 

Putting this relation in terms of the components gives 

= fo [If + (~ x ;) x D ] (9a) 

-'!. ,.. . 2 - , .. €
0
E : D + (1/c )(w x r) x l- _,H + ( c::3 X ~) X D J 0 (9b) 

Equation (9b) may be put into the esthetically more pleasing form 

(9c) 

It is well to remark at this point that the physical signific~nce 

of the field quantities is not al all obvious. There was a certain 

arbitrariness in the way we related their components to the tensor components 

~v and· Hpy in the system I. The only constraint that one need consider 
~ -·.....,. -7 

is that the definitions of E, H, J D, and B reduce to the usual ones in 
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the limit of vanishing ~ • In order to understand the significance of 

these fields we must consider the equations of motion for a test particle 

viewed from the moving frame. 

In order to do this we consider the electromagnetic four-fource 

which leads to the usual form 

(lOa) 

The fourth component of the force is 

$ = 4 (lOb) 

-'!> ~ 

One sees that the E and B fields retain their status as electric and 

magnetic field intensities. It is only the relationships of these fields 

to the charge and current distributions by which they are produced that 

have undergone change. 

This last point is readily illustrated by a simple example. Consider 

a circular cylinder of infinite length with surface charge density 
( 

and axis coincident with the axis of rotation. If the cylinder appears to 

be at rest with respect to the moving frame we may apply Gauss's law and 

Ampere's rule, both of which hold by virtue of the invariance of the 

noncovariant equations. Introducing the unit vectors , ai , we find 

.....,. 
D ::: 

~ 

a 
r 

outside the cylinder, and 

~ 

H 
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-+ 
D = 0 ' 

ori the inside. Consideration of Eq. (9) and the boundary condition that 
... ~ 

· the B and E fields must tend to zer,o for large r then leads to 
) 

~ 

B - 0 

on the outside and 

.... 
B :: 

on the inside. 

E :::: ~ 

..... 
E -

211' E. r 
0 

.... ~ 

( W X' r) X 
..... 
B 

(Al) 

(A2) . 

To proceed with the dis.cussion of .pa_rticle dynamics we must resort 

8 
to the covariant form of Newton's law~ 

I 

~? d/d ?" - 1 
y p;t - p 

- 2 gf'.~ ~ ')) u . - ~ 
(11) 

The four-momentum is defined by 

I 

with m0 , the rest mass of a charged particle. After appropriate algebraic 

manipulations Eq. (11) results in 

d 
dt 

v /c . 2 21 (12a) 

(12b) 
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.....,. 
The quantity a is defined by 

_.. 
a ._ [, ¢' 2] -=ta¢ [ r¢•' 0 ¢' )ll + ~az 'z' = ar . r - r( W + ) + t" 2r( <-t.J +- ~ 

(12c) 

Combining Eqs. (10) and (12) gives the final result~ 

'-+ 

a = r 4 .... 2} (f-oE) v/c (13) 

We now use Eq. (13) to obtain the equation of motion in terms of 

the fields measured in the rest system9 I
0 

o Given a charge and current 
... , 

density (j , in the rest system, together with their D1 

fields, we may use the transformation coefficients (2b) to obtain 

and 

Then in 

'or 

..... :v .... ... i 
j - J (w·x.r)f 0 - ' . \ = p' 

/ 

~ ~ - -;) _,. 
H = H' (w X X D 

' 

consequence of Eqs o (9) the field intensities become 

..., 
~~ 

B' B = (o H = 

-· n' \ +- /2 -E-oE :::: (1 c )( w X 

E :: E I + ( Z0 X "7) ~, 

X B 

r) .....,, 
X H 9 

~, 

and H 

(14) 

(15) 

(16a) 

. (16b) 

(16c) 

/ 
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Of course Eq. (16) could instead have been obtained by a direct transformation. 

The motion of a charge as measured in the rotating system is now 

given by substituting Eq. (16) into the force law Eq. (13a), which gives 

-a = r -1 f 1 _, __, (e/m0 ) E + v x B1 

(17) 

It seems worth while to emphasize that the simple form of the 

result, Eq. (17), is an immediate consequence of the simple form of the 

transformation equations (1). In fact, the equations derived in this 

paper might even be thought of as being nonphysical in the sense that they 

do not give, directly, the results of measurements carried out with local 

yardsticks and clocks. On the other hand, the equations do provide a 

convenient mathematical framework for solving problems in a rotating frame. 

Comparison with experiment may then be achieved by transforming theoretical 

and experimental results into a common reference system. 

We wish to express our appreciation to Dr, Joseph Lepore, 

Dr. Maurice Neuman, and Dr. William Newcomb for their critical reading 

of our manuscript. We are also grateful to Dr. Henry Stapp for several 

very helpful discussions and to Dr. C. M. Van Atta for encouragement and 

interest. 


