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POLARIZATION AND ANGULA.R CORRELATION 
?. 

IN THE PRODUCTION AND DECAY OF PAH.TICLES OF SPIN i A!ID SPIN ~ 

* Richard Spitzer and Henry P. Stapp 

Radiation Laboratory, Unive~sity of California 
Berkeley, California 

June 5, 1957 

ABSTRACT 

A general formalism describing the angular correlation and 

polarization effects in the nroduction and subsequent deca._v of particles 

of arbitrary spins has been developed. It has been snecialized to the 

cases of production and decay of particles of spin ~ and ~· Expressions 

for the angular distribution and polarization of the decay products have 

been reduced to tractable forms involving the physical vectors of the 

problem and a winimal number of parameters describing the production and 

decay int;· Is.ctioras. "" ' 

·.:-·,..-

'the results are discussed for two particular 
',,.-

producti;qn; processes in order to deten:1ine what· infol'I!lr'ltion on the sr;in 

of the··hyperon and the production and decay mechanisms may be· obtained 

from the analysis of the decay products. 

* This work was performed under the auspices of the U.S. Atomic Energy 

Comrnission. 
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Section I. Introduction 

The angular distribution of the products of decay of a hyperon provides 

information regarding the hyperon spin. If this spin is one-half, then the 

probability that the direction. of the final nucleon will lie in one of the 

two polar cones ( I cos ® . / > · ~ , where ® is the cente.r-of-mass 

angle between the hyperon velocity and the final nucleon velocity) must be 
-

exactly one-half. On the basis of recent measurements of the angular 

distribution of .E. -<lecay products the probabili~y that the spin of the 
1 

~ is ~ is 5%. In view of this indication that the spin of the 

~ may be gr-eater than i, it is of interest to determine the detailed 

consequences of largervalues for the hyperon spin. The purpose of this 

paper is to examine the correlation between the direction of the nucleon 

emitted in the decay of the hyperon on the one hand and the directions 

defined by the production ·process on the other himd. The oolarization of 

the final nucleon is also treated. Some general formulas are auoted in 
• I 

this section and are a-pplied to the case of spin-i particlesin the 

following sections. Some analogous results for the spin-~ ca~e are given 

for comparison. \'le use. an apparently nonrelativistic formulation, but the 

results may be applied to the relativisticcase if appropriate interpretations 

and .corrections are made. These are discussed in Section III. 
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In the analysis of polarization phenomena statistical mixtures of 

- . 2 
states must.be considered, and a density matrix formulation is convenient. 

The· spin-space density matrix U (a¢) · is defined by the relation 

< ~-) e¢ = Tr A 'U,( a¢) (1.1) 

where < A> a~ . is the expectation value of a spin operator A if the 

meas~rement is made on·a particle in the beam moving in the direction e¢. 

'l'h'e matrices· A and U (9¢) · are square matrices of dimension (25 t-1), 

where S is the spin quantum number. . It is convenient to· introduce a 

complete orthonormal set of matrices in this space. We use the matrices 

Q 
T~ defined as follows: 

3 

. ~ 

(
2Qt-1) 
25 1 + 1 

S" Q s• 

of-" )&, f . 

. k 

( 
2Q +- 1) c (S I J,J..'' ,.u-" ,t;') ' 
2S I + l S"Q I I 

Where the si.x~index symbols on the right are the usual Clebsch-Gordan 

(1.2) 

- 4 . Q . 
coefficients. . The matrices T~ are real and their hermitian conjugates 

~ . . 

T]t., are their respective transposes. By use of their completeness property 

the lL (a¢) may be expand~ in the form 

L.l(9~) = o(i<e¢> T~ = o(:.<6)3> T~. . (1.3) 

The coefficients ~~Q(e¢) and or :(e¢) defined by the above equations 

are complex conjugates owing to the hermiticity of the density matrix. In 
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·virtue of the orthonormality condition 

Q -Ql 
Tr T T 

~ ~I 

the ~ Q(e¢). and ~.-t:; Q(e¢) may be expressed as 
k. 
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(1.4) 

(1. 5) 

We shall be interested in processes in which the initial states 
. I I I I 

are Qescribed ~ the spin-orbit variables (S , ~· , 9 , ¢ ) and the final 

. states by the spin-orbit variabl~s (S,fL ,e, ~). The. spin-space characteristim 

of the initial system.will be described by the coefficients cy~;(e'¢ 1 ) 

and. the final system 1rdll be similarily described by the coefficients 

~~(e¢). If the initial system is a plane wave moving in the direction 

e' ¢' with a spin. quantum number s I, than the parameters 0( ~(S, e¢), 

which describe the spin-space characteristics of the reaction products 
.. 

that emerge in the direction e¢ and in the state tdth spin S, are given 
. Q1 I I I 

in terms of the parameters o( k.' (S , 9 ¢ ) , which describe the spin-space 
' 5 

characteristics of the initial plane wave, qy the equation 

J' Jl * 2. _: R SL;S'L' 
JJI 

RSL" ;S 1L'.t' 

[ Jk 
(2J + l)(2J' t- 1) (2L "t 1)(211 -+- 1)(2111 -t- 1)(21

111 + 1) "' 

L L" 1\ 
ce'¢') c 

0 0 0 

L-t-L 1 +1'1 
(-1) 

(Eq. (1.6) cont.) 
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i ~ . ~ j\ZQ 
a'¢')(2Q' + 1) L-::. (2Z t-1) c). ~ '/0. 

z ~ 

x X(L11 L 1\, J 1 j z,·s S Q) X(L
111 

L' /\1 , J' J Z, S 1 S 1 Q'). 

6 m 

(1.6) 

The X .coefficient is the one defined b.Y Fano, the Y1 (e¢) 
4 J 

. are the usual sPherical harmonics, the RSL ·S 'L I are reaction matrix. 
. . , . 7 

elements determined by the specific nature of the reaction, and the 

coefficient N is a normalization factor. If the initial system is a 
2 

·plane-wave ·state with momentuin k', and N is taken as (211"'/k 1 ) , then 

I(e¢) is the differential cross section (see Appendix A). The value of 

I( a¢) may be determined by the condition (implied by Eqs. (1.1), {1.4) (1.5) 

and .the_requirement that the expectation value of a pure number is equal 

. to that number) 

· o< 
0 

(s, e¢) = (2S + 1) ~ 
0 

(1.7) 

0 
If the initial system is unpolarized (i.e., only ~ (S I e' ¢') ~ 0) ' 

0 
Eq. (1.6) reduces to 
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0 
Jf * d., (S' 8'¢')N 0 , 

= ~-( 4-1!'---,) 3~/2't!"-. 
2--~~ 2~ R 

SL" ;S 1L 111 

LL 'L 11L''' JJ I 

.[(2J t' 1)(2J' T 1)(2L + 1)(21" + 1) J ~ 2J '-J-s i + L 11 

(-1) 

I 

L X. I A A Q 1 1 11 )\ 

X YJ\ 1 (9 ¢') C . C 
OVI.J . 000 1\ !\' I' lVI 

( 
2 1\ + 
2S'+ 

ltl A I 

.x 
L -L'- " 

X (L" L 1\, Jr J /\', S S Q) ( i) Z(L
111 

J 1 L' J; S 1 /\•) 

.(L8) 

v1here for simplicity the z axis has b'een taken to lie along tbe direction 

of the outgoingf'e:rmion. The Z coefficient is the coefficient defined 
- 8 

_by Blat.t and Biedenharn. 

In addition to processes in which the initial system is represented 

by a plane lo.-<a.ve, \-.re shall be interested ;tn cases in which the initial 

state is an lncoherent.mixture of various orbital angular momentum states.
9 

If the probability that.the reaction is initiated in a state of orbital 

angular momentum L is w1 ; and if there is no preferred direction for 

· the. initial system, then the 9" ,:(s , e¢) describing the final system 

are given by 

J 
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Q 
· T(OO) ol (5, 00) -

-l ..t, . 

J 

Rst;S 1J.. 1 

J* 
. . . . i 

(~;~) RSL" ;S 11 1 

Q-L-L" 
x ( i ) Z(Q S Ln J; S L) , . (1.9) 

· where the z axis has again been taken to lie along the velocity of the 

final fennion. If parity is conserved, the value of Q is restricted to 

even values. This is a consequence of the following relationship 

· satisfied by the Z coefficient: 

Qi- L"-L 
Z(Q S L11 J; S L) : (-1) Z(Q S L" J; S L) 

By extracting from the general formula given by Eq. (1.6) the 

-contributions from· initial S states, one obtains the formula for the eo< 1 s 

that describe the final system of the decay interacti<?n in terms of the 

~ 's that describe the spin-space characteristics of the decaying particle: 

Q 
... 1(6¢) c.(~ (S, g¢) - N (25 1 +1) 

(47f)i 

.l. u k 
x (21 + 1)

2 
(2L + 1) 

LL" 

* R 
SL" ;S I 

L L" 1\ It 
co 0 0 ·~ (e¢) 

1\QI. Q 
c) tc.' k:.. X (L"L 1\ ; sIs I Q I, s s Q} 

(1.10) 
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.The combined process of production followed by decay may be described, 

therefore, by first using Eq. (lo6), (1.8), or (1.9) to obtain the o<. 1 s 

that describe the spin state of the intermediate particle, and then using 

· .Eq, (1.10) to obtain the ~ 1 s that describe the polarization and angular 

distribution of the decay products; 

The above for.mulas relate the expectation values of ooerators in 

· the initial and final states. It is sometimes convenient to consider the 

reaction matrix itself. According to the definitions given in Appendix A 

the matrix element < s fA )Cit (e¢; 9 1fb 1
) I S' r' > ' t.ffien multiplied 

by (27/ /k•)(v/v•)~, where v 1 ·and v are the initial and final relative 
. s 

velocities, gives the reaction (or scattering) amplitude ;:u (e¢) when 

the initial state is a plane wave of unit particle density in the spin 
S' 

state AJp For the case in which the z axis is chosen to lie along 

.. the outgoing direction the (/(. (e¢; 9'¢') matrix may be ex:qressed in the 

form 

6?, (0 0; 9 1 ¢') "'-? Q -Q 
- a (S OO)T/C, - L-...>. /(,., , 

Q.f(. 

. vthere 

Q S'-S J k. .. 
a (S, 0 0) (-1) 

L RS L; 
y . (el¢') 

. ··t, . = 
(4'ff); 

S'L' L' 
L L' J 

. ~ L L' L Q 
X (21 + 1) (2J + 1) ( -1) C W(L J Q s I j s L I ) , 

}(. 0 /C. 
(1.11) 
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10 
where W is the P..acah cpefficient.. If the initial and final spin 

quantum numbers, S 1 and 8 respectively,. are equal then the matrices 
~Q. 

T~ are square matrices. Otherwise they are nons quare, with ( 2S I r 1) . 

colwnn~;~ and (2S r 1) rows . 
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. Section II. Reaction Formulas for Spin ~ and Spin ~ Particles. 

In this section explicit expressions are given for the angular 

distribution and polarization parameters for reactions in which the initial 

and final states are composed of one particle of spin 0 and one particle, 

which will be termed the fermion, of spin ~ or ~· · The case in which the 

initial and final fermtons are both spin ~ is very simple and the general 

formulas given in Section I are not particularly useful. The results for 

·this case will be quoted for comparison with the spin ~ case. 

For the case in which the· ini_tial and final fermions both have 

spin ~ the (j?, matrix can be 'fltritten in the completely general form 

· ~ (K , K') ........... ,...,... = 1 [' (2-Jf/k' J- f(e) -r g(e)cr-; + h(e>si: -t h' (9) cs~ 1 l, 
(2.1) 

_where k' is the incident relative momentum, .~ represents the Pauli 

spin matrix ~ •.!J and the vectors N and ~- are unit vectors in 

directions K' x K and N x K respectively. The arguments of the 

~ . matrix have been gi van as K1 and ,...__, K)' , unit vectors along the -
initial and final velocities respectively, rather than 9'¢' and e¢ as 

in Section I, because the dependence unon coordinate systems has been 

removed from the expression appearing on.the right. The angle 9 in 

Eq. (2.1); and in what follows, is the. angle between K and Kt. · The 

normalization is chosen so that the differential reaction cross section 

in the reaction center-of-mass frame is 



,, 

j 

UCRL-3796 

. I(K, K 1 ) 
.._, --..,; 

+ 2 Re(hr*)(pt ·K) + 2 Re(h I r*)(P' ·L) + 2 Im(gh*)(pt ·L) 
-- . __ ...,..._ -...-a.-

- 2 Im(gh 1*)(P 1 ·K) 1- 2 Im(hh 1*)(P 1 ·N) 
,..,- _,....., . - __, 

. (2.2) 

Here the vector !.,! is the polarization vector of the incident particle. 

It is defined by the equation· 

(2.3) 

The polarization vector P of the fi:nal particle is defined in an exactly 
. --

·ar~~ oy,.l(u.s· :' way and is given by 

+ 2 Re'(fu*)~~ .;_ 2 Im(gh*)~ + 2 Im(gh '*)!_ t-jf J 2 ~' 

+- 2 Re(gh'* {<!_• ·~'!.__ + (!_' ·~1:._ ]+ 2 Re (hh •* f (P' '.!:)!_ t (_t •)S)!:_] J 

(2.4) 
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If parity is conserved in the reaction, either h(e) and h!.(9) 

· are zero or f(e) and g(9) are zero. These tl'io cases represent the 

possibilities that the relative intrinsic parities of the two initial 

particles are th~ same a·s, or alternately are opposite to, the relative 

intrinsic parities of the two final particles~ 

~ihen the initial fermion is Uripolarized the differential cross 

section is a .function only of the scattering angle 9 and of the reaction 

matrix elements. It will be written as I 0 (e). If only the contributions 

fro!D- final S, ?, and D partial waves are included, Expression (2~1) for 

the Ql· matrix becomes 

Vt (K, K') = 

. . 3/2 3. 5/2 2 . [ i 3/2 
+ 3(R22 t :l R22 )cos e + i sin 9 ax~ . -R11 + R11 

3/2 
t 3 R12 

3/2 . 5/2 . 1 
- 3(R22 - R22 . )cos e 

2 . 15 5/2 3 ] cos e + 
2 

R
23 

· cos e 

. . \ 

[ 
• 3/2 3 5/2 . 3/2 1~ 5/2 2 :r;· 

- sin 9 cs-1 R01 - R21 - 2' R23 f- 3 R12 cos 9 + T R23 cos ej 

(2.5) 
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. If parity ie conserved in the production and if the initial and final 
. . . . 

intrinsic parities are. equal to each other then the contributions to I0(e) 

· from final S, P, and D waves give 

2 . . . . 
I

0
(e) : .k, lA + B cos e -t c cos2 e + D cos3 e t- E cos4 e J. 

4 l' . 

2 

+l 

:B. 

c = 3) Rll3/2 I 2 + 31 [!223/2! 2 - ~ I R225/2 ( 

' ~ 3/2* . i 3/2* ' '. 5/2{~ + 6 Re(R
00

. R
22 

+ Rll R
11 

) t 9 Re(R00 . R22 ) 

' 3/2 ' 5/2* 
- 36 Re(R22 R22 ) , 

(2.6) 

f 5/2/ 
\ R22 

2 
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3/2 3/2* ~ 5/2* . 3/2 5/2* 
D - 18 Re(R

11
. R

22 
) + 15 Re(Rll R22 . ) -t 12 Re(R11 R22 ) , 

2 
3/2 5/2* + 45 Re(R22 R22 ) 

The polarization vector is, under the sa..'tle conditione and in terms of the same 

reaction matrix elements, given by 

where 

= . ,_ 
2 

sin e [F t G cos 9 t H cos? 6 t K cos3 6] _II... 
4 

(2.7) 

. . . 3/2 3/2* . i 5/Zl~ . . 3/2 5/'2!t 
H . : -18 Im(R11 . . R22 ) + 15 Im(R11 R22 ) + 3 Im(Rll P..22 ) 

3/2 
K .= 45_Im(R22 

5/2*)' R . 
. 22 . 

The formulas·for the case in which.the relative intrinsic parities differ 

are the same as the formulas given above except that the numerical values 

·, of L',. the initial orbital angular momentum, are replaced by L' 1. 1, the 
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choice of s~gn ·being determined by the J value and the vector-addition law 
~- . . ~ 3/2 3/2 

(e.g., · Rll ~ R10 _ , __ ·1\l ----:--:.-'!. R12 , etc.) • The above formulas 

app~ to the associated production of K particles and hyperons in pion-nucleon 

collisions (involving unpolartzed nucleons) if the spins of K particle and 

hyperon are 0 and ~ respectively, and if parity is conserved in this (strong) 

production reaction. 

The form of the angular distribution and polarization of the 

reaction products of the subsequent decay of the assumed spin-~ hyperon 

(into one spin-zero particle and one spin-i particle) may also be obtained 

from Eqs. (2.1) ·through (2.5) by dropping the contributions from all initial 

states with 1 1 f: 0. If the unit vector along the momentum of the 

fermion in the decay products ie denoted by V and the polarization vector of ........... . 

the initial system is denoted by !i' the angular distribution of the decay 

products is given by 

. 2 2 J 
I('!r) -- 4· I~ [ J Ro J. + { R j t 2 R (R · R *)P v _ _.! 

11 
1 e 0 1 -i · -J , 

(2.8) 

and the polarization is 

P(V) --
-1 

: I(V) 
. - N 

471' 
f 2 Re(R0 at)!_- 2 Im(R0 R1 *> (_!'1 x _!.l + / a0 /

2 .r1 

+ I Rl I 
2 

[ 2<!1 ·YY!. -.h] l 
- I(!)-

1 

4~ [ 2 Re(R0 R1*)!- 2 Im(R0 R1"~) U'i x !J + ( J R0 J 
2 

1 

-</ Ro )2 - / Rl /2l<I:i x !) x !; J 
(2.9) 
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If we take N = 1 and normalize the ~ so that I a;;J 2 
-+- -~ ~ f2 

; 1, 

then I(~)d...{}- is the probability that the final nucleon will have its 

velocity in the solid angle d .JL about the direction J..: 

The case in which the initial fermion is a spin-!. particle and 

-the final fermion is a spin-J. particle may be described in a form similar to 
- - - 2 
the above. For this purpose we introduce the symbols 

(2.10) 

)<.. 
Here the ~i are arbitrary vectors and the symbol YN ~l, •.• , ~N) 

represents the functi9n of the vectors u1 that is linear in each argument, 

is symmetric in ail its argwnents, and which becomes YNJC. (e¢) when all 
-- set equal to . 

its arguments are/the unit vector in the direction 9¢. The 6G matrix 

may be expressed as the following su~erposition of these T matrices: 

Vt(!_,£) = 

(2.11) 

The explicit form of the gi and hi when only·S- and ?-wave final states 

contribute is given in Table I. The normalization factors in Eq. (2.11) 

have been chosen so that the differential reaction cross section for the 

case of an unpolarized initial fermion is 
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I0(e) = ~i~. ( \ gi 1
2 + \hi\ 

2
) t 2 Re(h1 h2*)cos 9 +' ~ Re(h3 h4*)cos 9 

2 . 2 2 2 
- t( J ~ / f / h4 l + sin 9 ) g3 \ ) 

(2.12) 

If parity is conserved in the reaction then the hi(e) will be zero for the 

case in which the relative intrinsic narity of the initial particles is the 

same as that of the final particles; the gi(9)_ will be zero if these relative 

intrinsic parities are opposite. 

If parity is conserved in the interaction and the initial fermion 

is unpolarized, the density matrix describing the spin of the final particle 

must be of the form 

U (K, K1 ) = t + b(9) T(N) + c(9) T(KK) + c'(9) T(KK') + c"(9) T(K'K') 
~ ........... """""'-J ,.,_Aov -- ~· ....._... 

+ d(e) T(~l + d 1 (9) T(!J<_!(~ +- d" (9) T\~~K_j • 

(2.13) 

The coefficients in this expression as functions of the gi(e) and hi(e); 

are given in Table II. When only S and P final states contribute~ the 

differential reaction cross section reduces to the fonn 

= X [·-A., 1- B' cos 9 + C' cos2 e], 
•• 

(2.14) 

where, for the case in which the relative intrinsic parities of the initial 

and final states are the same, 
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-TABLE I . 

gl(e) = 4:, [- ~Ru_k- 1 {f Rll3/2] sine 

g2(e) = 0 

/ 1 ~ ~ ff g3(e). = R - - R11 41i 11 . . . 5 

[ . 3/2 
g4(9) 1 - Fao2 -= 4rr' 

[ i {f h1(e) = ....L RlO ,f ~ 
471 

1 [- .,fi =w 

3/2 If 5/2 J t 2 R13 

{f 5/2 
cos e J 5 R13 

3/2 5/2 ] 
R12 + l{f Rl2 2 5 

3 ,r--; . . 3/2 9 r; 5/2 J 
2 /s Rl2 COB e - 2 15 Rl2 cos e 



'·' 

+~ 
sine 

TABLB II 

t l 
8 

cos2 9 
2 

sin e 
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cos e 
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d(e) 
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TABLE II (Cont.) 
,, 

,. 

d 11{9) 
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·"-1 l 3/2* 3/2 3/2:* 
B' - - 2 J 2 Re(R11 R02 ) + --l!_ Re(R11 R02 . ) 

f5' 
16' 3/2 5/2* + 6 1- Re(R02 Rl3 ) , . 5 

- g .I R 3/2 /. 2+ 18 } . 5/2/2 . 127 ~ 3/2* 
C' = 5 11 . 5 Rl3 - 3j5 Re(Rll R11 ) 

.1T . ~ 5/2* !"_., 3/2 5/2* 
- 9 1 S Re(R11 R13 ) t ~ y6 Re(Rll R13 ) • 

(2.15) 

When the contribution of the ? final state is much smaller than that of 

the S final state, the ~arameters in Eq. (2.13) are eiven in terms of 

these same reaction matrix .elements by 

)(2 
r 0 (e) b(e) = -A.. 

4 

I 0 (e) c(9) - · 0 , 

sin Q 0( 
1 

, 

'' :~ .. ~) 
~:-:--
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I0{9) c' (9) = L ) .2 ~ 3 +cf4}' 4 

I 0(e) c" (e) - _f f <>{ 2 - 5 cos e o{ 3} ' - 4 

r 0(e) d(e) = 0 , 

r 0 (e) .d • (G) = 0 , 

r 0(e) · d"(e) = 1 f sine o( 51 , 
4 

(2.16) 

where the o( 
1 

are 

2 

"'~2 - - / ao/12 
/ , 

. [. r., · 3/2 5/2* 
6 

3/2. 3/2* J 
: Re_ . _.1±5 1' ~5 R02 R1· 3 t - R R 

5r51 11 02 . 
, 

. o(
4 

- Re 
. 3/2* 8 3/2 3/2* 3 {f' 3/2 5/27 

R02 + ---- R R - - - R R , 5 y-s7 11 02 5 5 92 13 

rm[¥ 3/2 . 3/2* 
.1 

,-., 3/2 5/2*] 
~5 = .R02 R11 - 16 R02 ~3 . . .. 5 

(2.17) 
'• 
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The case in which the initial and final intrinsic parities are different is 

described by these same formulas modified by the substitutions described 

below Eq. (2.7). 

The expressions given above may be applied to the associated 

production of hyperons and K particles in pion-nucleon collisions if the 

K particle and hyperons are spin 0 and spin 3/2 respectively. In the , 

subsequent decay of this hyperon into a pion plus nucleon, each term .in the 

hyperon density matrix {A. (K, K') _.......,. ~- H gives a characteristic angular 

distribution and also a characteristic angular dependence for the 

polarization of the final nucleon. In order to exhibit the angular dependences 

in a convenient way we first express "U H in· its most general form, 

i i ~y 
?: . ~ :. 1 T~l ) + j 

(2.18) 

n 
In this formula the ~~ are vectors that are to be selected in a way 

that gives the desired form of 'UH. For example we obtain. the form of 
. 1 1 1 . 

{).H giveninEq. (2.13) by the choice ,E-1 = EJ ~2 = .. _!<, 23 = .... K.~,· 
~2 2 

:: !, 2!3 
2 = ·'"!S', etc. The angular distribution of the decay products 

is given in terms of the general par~~eters introduced in Eq. (2.18) by 
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1 r 2 I }2 ~ -~ i i * 
I(Jj : (471')- 1 ( / R1 J · + R2 ) f ~i 5 "('1 (_~ ·J.)4 Re(R1R2 ) 

~J '2J [ J(l!/ ·Y._)(uty> - CJ>1 J ::J2J>} (/ Rlf 
2 + I R2 !

2
) 

(2.19) 

.. The polarization vector of the ·nucleon in the final state is given by 

(2.20) 
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The symbol Sym. in the above line represents the sum of the two terms 

neeaed to symmetrize the contents of the braces. 

The expressions given above apply to the production of hyperons in 

pion-nucleon collisions. Under the conditions stated in Sectio~ I the 

density matrix of the hyperon produced by K-particle absorption from · 

low-~g orbits may be obtained from Eq. (1.9). If parity is conserved 

in the ~reduction process the form of this density matrix ~s particularly 

·simple. Of the coefficients that appear in Eq. (2.13) only c(e) is 

different from zero. The coefficient c(e), which is in this case 

independent of Q, completely determines the decay .~ngular distribution. 

According to Eqe~ (2.13) and (2.19), this angular distribt1tion is giyen 

I(V) = 1 2 . 2 [ 1 (4 Tf)- ( J ~ / + J R2 ) ) l - c(a) (3 col (t1; - 1) , __,· 

(2.21) 

where Ci:i) is the angle between V and K as measured in the decay ........ _ ,__...., 

center-of-mass fra~e. When the K particle is captured f~~ S and P 

states only, c(Q) has the form 

(2.22) 

where for the case in which the initial and final intrinsic parities are 

the same we have 

I R20~ 12 
wl - ( , -

~ 
2 

I 
3/2 

2 
3/2 12 1 

I I ~( I '-02 = R· + Rll +- ~ R3l . ) 3 ll 
, 

3 
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I 3/2 I 2 ) 
} Rll I 
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(2.23a) 

and for the case in which the relative intrinsic parities are different we 

have 

i 
2 

I RlO 
I 

wl - , -
?t ·2 

2() '3/2 2 . . 2 
1 

\ R21 1 I : I 3/2 
1 

) w2 - - +·- R t R21 • . ,. - 3 3 01 

~ 2 !± Re(R 3/2 R 3/2~:- ) 
w3 

1 
I R21 I - -- 3 3. .01 21 . 

(2.23b) 

The polarization of the final nucleon is independent of c(e) and is given 

.by 

. 2 -1 I R2 \ . ) • (2.24) 

If parity is conserved in the decay either R1 or R2 must vanish. The 

· polarization of the final nucleon must, therefore, also be zero unless 

parity is violated in either the decay or production process. 
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Section III. Discussion 

In this·section the angular correlation between the directions 

defined by the production and decay events is discussed. We consider 

specifically the associated production in a pion-nucleon collis:ton oi; a 

spin-zero K ?article \11th a hyperon of spin ! or spin ~' and the 

subsequent decay of the hyperon into a pion-nucleon system. If the 

hyperon has spin i the production-decay process is described by Eqs. (2.1) 

through (2.9). If parity is-conserved in the production process and the 

initial fermion is unpolarized, then the deviat.ion from isotropy in the 

angular distribution of the decay products is proportional to N·V, as is ,._, ,...., 

shown by Eqs. (2.8) and (2.4). The amplitude of this term must be zero 

if parity is conserved in the decay, since parity conservation would. 

require e~ ther., Ro or R1 to vanish. The occurrence, experimentally, 

of this tenn would constitute proof that parity is violated in the decay. 

process.11 Parity nonconservation in the decay process can also be 

demonstrated by experiments measuring the polarization of the final 

nucleon. From Eq. (.2.9) one sees that when !__ is in the production 
. . * 

plane the longitudinal (proper) polarization is equal to 2 Re(l-t0 R1 )/ 

( I R0 }
2 + J R1 f 2). The occurrence of this polarization would imply 

a parity violation. The magnitude of this effect does not depend upon 

the unknown amount of polarization of the hyperon as does the above-

mentioned magrlitude of the asymmetry in the angular distribution. This 

could be important if the hyperon polarization \orere small. If, on the 

other hand, the hyperon polarization is large we see from Eqs. (2.9) and 

(2.8) that the values of R0 and R1 can be determined up to an 

over-all phase by the knowledge of the nucleon angular distribution and 
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·polarization. These coefficients R0 and R1 provide the complete 

phenomenological characterization of the decay process; their valu~s give 

all the information that can be deduced from the experimental study of 

the process. 

The measurement of the final polarization also perrrits a direct 

. test of invariance under time reversal. The term in Eq. (2. 9) that is 

proportional to Im(R0 R1*) will be zero in so far as the decay can be 

considered to be first order in the weak interaction, and invariant under 

time reversal, provided final-state interactions can be ignored. The 

inclusion of the final-state interactions changes this condition somewhat. 

For the case ~ - --'7 N + 77'- the upper limit on the absolute magnitude 

v of tho component of polarization a~ong .Ri x~ for the case in which --· 
lies in the plane of production, is 

and -~3 are the J = ~ , . isotopic spin-i phase shifts of the pion

nucleon system. A similar li~it may be obtained for the cases in which 

both isotopic spin states are involved. 

If the h;Vperon is spin ~~ the correlation between the directions 

defined by the production process and those of the decay process are 

given by Eqs. (2.11) through (2.20). At production threshold, where only 

the S waves of the final state contribute, the angular distribution for 

the ~roduction is isotropic and the angular distribution of ths decay 
. 2 I 

products in the decay center-of-mass frame is of the form (3 cos ® +- 1), 

tt:r( where l.lY is the angle, measured in the decay center-of-mass frame, 

between tne direction of the incident nucleon in the production process 

and the out~oing nucleon of the decay process. This may be compared to 

12 the case discussed by Treiman in which it was the initial state of the 
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production process that was an S state. In that case the angular 

· distribution of the decay products was of the form .2 
(3 cos ® + 1), 

where ® labels the angle between the hyperon velocity and the 

velocity of the final nucleon. For this limit in which only S waves 

are produced there will be no asymmetry with respect to the normal to 

the plane of production. At somewhat higher energies, where the 

interference between the final S ·and P waves becomes important, the 

hyperon density matrix will contain nonvanishing contributions proportional 

to T(~), T(~ Ji:),. T(!', ~~), and T ( N, K 1, K ' ) • -- .......... 
The form of the decay 

angular distribution associated with each of these terms may be obtained 

from Eq. (2.19). From the T(N) term one obtains a contribution 

proportional to cos @N, '"here (/j) N is the angle between the normal 

to the production plane and the direction of the nucleon from the decay. 

This term is analogous to the one that appeared when the hyperon was 

considered to be spin ~~ and it must vanish if parity is conserved. in the 

decay process. The contribution from the . T(~ ~, £) term will also 

be nonzero only if parity is violated in the decay. The angular 

distribution associated with this term is obtained from the ?:: 3 
1 r: 1 r 

contribution to Eq. (.2 .19) by setting .a1 = !, JaQ_ = !L, and .E 3 = ~~. 
It is of the fonn cos (BIN [ 5 cos2 @

1
- 1 J . This gives an asynnnetry 

with respect to the normal· to. the nroduction plane that is greatest for 

particles that decay in the plane defined by the vectors N and. K 1 _ 
~.... _..,_, 

and which reaches a maximum when (jj)N rv 58.9°. .The maximum asymmetry 

from the T(~) term occurs, of course, at 

In addition to these terms, -rlhich reveal parity violations; 

there is another new term in the angular distribution. This one is a 



,. 

,. 

UCRL~3796 

-31-

consequence ·of the T(L~) contribution to the hyperon··density matrix. 

According to Eq. (2.19), the angular distribution characteristic of this 

term is [ 3 COS® COS (ji:f "':' COS 9] . Each of these teNtS will also 

iive its characteristic contribution to the polarization of the final 

nucleon. The form of these contributions is given by Eq. (2.20). ·At 

higher energies, where all the terms in the general· form of the hyperon:. 

·density matrix given in Eq. (2.13) contribute, three additional terms 

may enter in the decay angular distribution. Two are present only if 

parity is violated, and .have the forms cos @N (5 cos (jJ) cos. {jj)' - cos 9 J 
and cos ® N [ 5 cos2 ® - 1] The other has the form (3 cos2 ([1_)- 1). 

We conclude this section with a few remarks. First, the contributions 

to the decay angular distribution that are present when p~ity ia not 

Violated give no information about the decay mechanism except its total 

strength. They are proportional to. C J R0 {
2 + / R1 /

2
) for the 

spin-~ case and to ( / R1 /
2 

t j R2 /
2

) for the spin~ case. This 

form does not allow the contributions from the two final angular-momentum 

states to be distinguished. For the same reason, however, these terms 

give information about the production process tha.t is independent of the 

detailed nature of the decay reaction, and. their measurement provides 

information useful in the study of the strong reactions. Second, if, 

·in the decay angular distribution there should occur a term that is 

asymmetrical with respect to any direction that lies in the plane of 

production, then parity must be violated both in the decay and in the 

production. It is assumed here that the strange particles are single 

particles--not parity doublets. Third, it is of interest to determine 

whether the intrinsic parity ·of the K-hyperon system is the same as the 
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intrinsic parity of the pion-nucleon system. · In view of the great 

dissimilarity in the fonns. of the (R. matrices in these two cases 

.<see Eqs. (2.5) and (2.11)), it might .be thought that the correlations 

·near threshold between tho various angular distributions and polarizations 

. would depend upon the. relative intrinsic parities. However, no infonnation. 

about the relative intrinsic parities of the two systems can be obtained 

from the analysis of the angular distribUtions and polarizatinns discussed 

in this paper unless assumptions are made regarding the relative magnitudes 

of the contributions from various initial ·angular-momentum states in the 

production process. This is a consequence of the close similarity; lrmich 

is discussed below ~Eq. (2.7), of the formulas that describe the two 

alternative possibilities. 
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Section IV. R.elat:l.vistic Corrections 

Although the expressions given above are nonrelativistic in form 

they may, if properly interp~eted, be anplied to relativistic problems. 

The fundamental idea is to a~ply_ the formulas to the proner polarization13 

of the fermions. The proper polariiation is the_ polarization as observed 

in the rest frame of the particle, and it may be described by the 

nonrelativistic operators. If the covariant reaction matrix is multiplied 

by appropriate Lorentz transformat:)..ons it acts directly upon the operators 

describing the initial covariant proper polarization to give the final 

covariant proper pol~rization. Specifically, if the reaction is treated 

in the center-of-mass frame, the reaction operator ~ p that directly 

relates the initial and final proper polarizations is given in terms of 

·the usual covariant reaction matrix (jG r by the equation 
14 

= 

where L(k) is a Lorentz transformation that transforms spinors from 

their values in a frame in which the center of mass (of the reaction) 

is at rest to their values in a rest frame of the final particle whose 

four-momentum is k; the transformation L(k') is defined in the same 

way but relative to the initial particle. The part of the matrix 

that describes the transitions between initial and final states having 

energies of a well-defi.ned rna!~nitude and sign is a reduced matrix of the 

nonrela.tivistic form.· Moreover, if the Lorentz transformations L(k) 
. . 15 

and L(k 1 ) are chosen to be pure timelike transfo~~tions, then the 

vectors and spin matrices that.anpear in the reduced a matrix 

transform under spatial rotations in the usual nonrelativistic manner. 
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The nonrelativistic reaction matrix and density matrix of the .. 
earlier sections may therefore be identified ~;ith the reduced part of 

(j . . 16 \1\..p . and the proper density matrix respectively. 

If the center-of-mass frame, of the reaction is not identical 

with the.la.boratory frame then there is an ambiguity in the definition 

of the proper polarization. The correspondence described above bet\-.reen 
-._ 

the relativistic and the nonrelativistic formulations is valid specificalLy 

in the center-of-mass frame, and the components of proper polarization 

refer to those rest frames of the initial and final particles that are 

related to the center-of-mass frame qy the transformations L(k') or 

L(k) •. In the usual definition of proper polarization the rest frame of 

the particle is taken to be one generated by the ·action upon the laboratory 

frame of a pure timelike Lorentz transformati.on. In order to obtain the 

usual T'roper polarizations fromthose proper polarizations apnearing in 

our nonrelativistic expressions,-the vectors describing the proper 

·polarizations in the latter formalism must be transformed by the sequence 

of transfonnations that takes them first to the center-of-mass frame, 

then to the laboratory frame, and then to the usual rest frame. This 

sequenceof transformations ~s equivalent to a pure rotation. If the 

center-of-mass frame is the one generated from the laboratory frame by 

a ~mre timelike Lorentz transformation, then the sequence of the three 

pure timelike transformations produce~ a rotation of the vectors describing 

th~ proper polarization by an amount sp~cified in Eq. (48) of Reference 16.
17 

A detailed treatment of the Dirac-particle case is given in that paper. 
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Appendix·A: Notation 

The forma~ manipulations are most easily represented in the· 

n~tation of Dirac18 and Condon and Shortley. 19- The symbol 

< s;;-Lm / S'L'JH) represents c51(JM,}J" m) &55 , 8
11

,, where gij 

is the ~ronecker deita and. C is the Clebsch-Gordan coefficient. 4 The 

. expansion theorems are then renresented by the equation 

(A.l) 

where S 1 
and. J 11 represent either set of the four parameters given 

above and a summation over indices that appear twice is implied. The 

I 
. ~ ~ 

ket S.fALm ? will, in this appendix, represent the state with spin 

S -~ m L 
function J? and space wave function (2kv "')Y

1 
(9¢)i j 1(kr), where 

Y1m(e¢) is the usual spherical harmonic4 and j 1(kr) is the usual 

4 
spherical Bessel function. We consider the energy as well defined; 

k and v are the corresponding momentum and velocity (both for the 

reduced relative motion) •. Vlith this normalization the outgoing flux 

density (number of particles per unit time per unit solid angle) of 

cyS 
particles in the spin state /L;-- that move in the direction 9¢ is 

I(S;p., a, ¢) = I Y1m(e¢) ( SfL m_ f ) j 2
, where < SpL m /) 

is the am.pli tude of the state j S j-A-L m) . It is convenient to 

define ( 9 ¢ / L m > = Y1m(e¢). Then 

I(S,)A, e¢) = 

= 
5. 

I < 9 ¢ / L m > < S )~L m / / \ 
2 

l< sfe¢ 1>12 

(/ s;;,e¢ >·,Sfe¢ f) 
< (p ( s fA , e ¢) ) (A.2) 
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Here we have used the'definitions 

(A.3) 

and 

(p ( g I) - I 5 I> . < 5 I I (A.4) 

The dot before < t ' { . signifies that the sum over the reneated index .., 
f' is not to be performed. The operator .<f ( 5 I) will be referred 

t·o as the nrojection operator for the- state labeled by the indices 5 1 , 

t I where .5 may now represent the sets of parameters /SLJM), 
\ Sf L m >, or I s p- e ¢ > . For the discrete parameters' 

I( s') - <C?< s')> (A. 5) 

is the ~robability that the system will be found in the state labeled 

.·by· F 1 • With our normalization it is also ·the outgoing flux in this 
.) 

state. The total outgoing flux density ( L.e., smnmed over spin states) 

in the direction e¢ is 

I(a¢) 

(A.6) 

The projection operators U) ( ! 1
) defined above are therefore of 

fundamental signific"lnce; their expectation values are 

interpretable as probabilities and flux densities in the manner just 
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described. The expectation value of an arbitrary $pin-space operator A, 

if the measurement is made in the beam emerging in the direction e¢, is 

· < cr (9¢)A >/<\· (? (e¢) > . (A.7) 

The physically measured quantities are therefore direct~y related to 

expectation values of the forn 

In the above we have considered systems represented by pure states. 

In the treatment of polarization phenomena it is necessary to consider. 

statistical mixtures of states. Statistical mixtures are conveniently 
2 ' 

described bY a den~ity matriX (' , which is defined by the equation 

(Cl.) a..e - < ~ 
/ 

I 1 r, > - Sp = CLf -

. <1 I 

t~ } r II> < ~ /I 1 e 1 r> (A.S) = ,.. ·' ' 

where· (ct.) is the expectation value of the arbitrary operator ~ • · 

. The dynamics of the reactions that we consider may be represented 

A defined by 
' . I ifr > = Here by an operator 

. llf f l . are eigenstates of an unj:)erturbed problem 

and represe.nt the· system before and after the interaction, respectively. 

·.The effects of_ the reaction are contained in the difference of these 

states, 

(A.9) 

If the density matrix that describes the initial state is r 1, then,the 

density matrix for the reaction products is21 ~· 
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(A.lO) 

where ·.the bar denotes Hermitian conjugate. 

The density matrix that represents a plane wave normalized to unit 

flux density and moving in the direction (9'¢') is, with our normalization 

· conventions, represented by 

E\ = ( 2 1/k' ) 2 ~ ( e 1 
, ¢ 1 

) 'U ( e '¢' ) , (A.ll) 

where ~(e'¢') is a spin-space (density) matrix with unit trace that 

describes the spin-space characteristics--polarization in the general 

sense--of the ayate~. If the initial· system is a plane wave moving in 

the direction 9 I¢' with Spin CharaCteristiCS described by 'U_ 1 then the 

expectation value in the final state of the operator (? (9¢)A is, 

according to (A.8),. (A.lO); a.nd (A.U·),. 

(A.l2) 

Since with the assumption of rotational .invariance J .is a constant of 

the motion, it is convenient to express the spur in the J representation. 

Thus we write 
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sp ·cr <a¢) A ~. ·f ce'¢') CUce'¢' l ~{ 

<s". L~ Ju M".l :{f(Q¢)A 1 S L J M > < S L J M .,en ls' L' J' M'> 

. (2) . ~ J I ill Ill /II '" > x <_s' L 1 J' M
1

_ \ \l (e'¢') CA(e.'¢') S L J M. 

'. S · L J M < 
11i II' . !" 111 

< 
111 111 n 

. S L J M" 

J" 
<s' L' J r-t JC? (e'¢')2i(e'¢') J s'l' t''' J" M" > 

RS111 L'
11 ;s"t" 

Here we have used the. fact that ~ is diagonal in J and 14 and 

ind~pendent of M 
22 

to justify the abbreviation23 

(A.13) 

(A.l4) 

Since the matrices A and CV (e¢) are square matrices we have S" = S 

and S ~" = S 1 ; S' · and S are the initial and final spin quantum 

numbers, which we as~ to be fixed. The matrices A a.nd U(e¢) 
~ 

Q 
may be expanded in terms of the basis matrices T.. • It is sufficient 

.1(-

Q 
to consider the A to be the various possible Tft,. Using Eq. (A.13) 

we obtain, by performing the sums over the magnetic quantum numbers, for 

the quantity 
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N sp ~ (e¢) TQ ~fee'¢') CU<e'¢') R, 
. k,. . . 

, 

.the expression on the right:..hand side of Eq. (1.6). If N is set equal 
2 

to (21( /k1n) , then Eqs. (A.12) and (1.6) give 

<~(a¢) TQ ) : I(e¢) · ~~ (S, e¢) 
. "' Tv 

, (A.l5) 

from which one obtains from Eqs. (1.4) and (1. 7) 

< q:> (e¢)) = t(e¢) ... 

This justifies the interpretation of !(a¢) that was given in the text 

(see also Eq. (A.6)). 

For processes in which the initial system is riot· represented by 

a plane wave, a different · E> i is used. To represent processes that 

· are initiated from an incoherent mixture. of orbital angular momentum · 

· . states the .appropriate Pi is 

2: 
. Lm 

where· C? (L, m). = I ·t m > • < L m / is the projection operator for 

. the .. stat~·/ L~ m) and WL,m is the probability that the reaction initiates 

from the state J L m > . 
The spins S and 

The reaction coefficients 

J 
by RI.t• . 

5 1 may be considered fixed in many problems. 
J 

RSL;S'L' are, in these cases, abbreviated 
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For the decay'procese the formalism is again changed only by a 

. change of the incident. density matrix •. Since there is no orbltal part 

of the .state of the incident particle, the density :matrix pi · becomes 
. C) 1 II 

simply · £A. • Then J = J · = S' and the indices L'H and L l d t . rop ou • 

The reaction coefficients may therefore be abbreviated as R1 . This 

abbreviation suffices to distinguish the reaction coefficients (i.e., 

·the R1s) of the decay process from those of the production process. 

It is sometimes convenient to consider the reaction matrix explicitly. 

Tha~ is, Eq. (A.l3) may be expressed in the·form 

sp CP (e¢) A CR (( ( e '¢' ) U ( e' ¢' ) CR, · 

<_s;;-tm Je¢>·<e¢ I A~ I e'¢')·(e'¢' (u{e'¢') ~~s~Lm> 

. (A .16) 

where the symbol Tr means a trace over. the spin variables. (The 

symbol Sp is a diagonal sum over both spin and orbital variables.) 

The operators A nnd ~ (e'¢') .are matrices with respect to the spin 

variables alone·, an::i are scalars with respect to the orbital part of 

space. T.hus the above equation reduces to . . . 

sp(?(e¢)A CR. {Pca'¢'>CU<e'¢') ·CR 

= Tr A C?~ (a¢; a'¢') U(a'¢') ~. (e'¢'; e¢) J 

. (A.l7) 
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where we have defined the spin-space reaction operator 

G(ce¢; a'¢'> (A.l8) 

This spin-space reaction operator is a matrix between the initial and 

final spin spaces. If S. f 5 1 the. matrix is· nonsquare. It may be 

expanded in terms of the TQ defined in the text, which are also 
~ 

nonsquare if S t S'. The matrix elements of (it {a¢; e'¢') are, 

according to Eq. (A.l8), 

<st-e¢ f CR.! s' jJ' e'¢') = 

X S L. J M < 
/1/ f/1 I I 

SLJ 
c 
f.mM 

.J 
R 
SL;S'L' 

/·s' f' 1 1 m') ( L' m' 

S'L'J c . 
F'm 1M 

/ a' ¢' > 

(A.l9) 

Using the properties of the Racah·and Clebech-Gordan coefficients we can 

reduce this to the form given in Eq. ( 1. 21) . of the text • 
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Appendix B: Initial- and Final;;.state Interactions, Ti.nie Reversal, and 

Space-Time Inversion~ 
'J 

The matrix.element RSL;S'L' ~as defined in Appendix A as 

< S L J 1'-1 ·1 G\. / .. S 1 L 1 
. J M ) , where the basis vector I S L J M > 

was the vector representing the wave function 

. -i L . SLJ M . 5 
(2kv ) i JL (kr) ~mM Y

1 
(Q¢) :;t').A._ • This definition is appropriate if 

the unperturbed Hamiltonian H0 is the free-particle Hamiltonian. If H
0 

is a more general unperturbed Hamiltonian, the basis vectors should be 

defined as eigenstates of this new H
0

., Consider the generalization to 

a case in which ·H
0 

again commutes with the orbital angular momentum 

operator but may be identified with the free-field Hamiltonian only at 

large radial distances. A definition of / S L J M > that is suitable 
. . . 

in this case is obtained by replacing in the above definition the 
. . 24 

spherical Bessel function jL (kr) ~ £1 (kr), a real solution of the . 

(new) unperturbed radial equation for the eigenvalue L. The normalization 

of f 1 (kr) will be choaen so that at large r it approaches 

(kr) -l ein(kr - (it' t/2) + & J . The outgoing part o:t the asymptotic 

wave function in the spin state 's . 
~. is then given by 
I' . 

.& -1 . · i c&L . . m . · 
(irr) exp ikr e r1 (g¢) < S fL m I > 
: (1,.)) -l axp; ikr r"L < e¢' l L If. > < s /.A L m I ) 

. ~ -1 . 1 b L = ( irv ) exp ikr ( e¢ J L m > < s j-A L m J e / ) 

1 1 iS 
: (irv")- exp ikr \ s f 9 ¢ 1 e L I > , 
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where in the last line $1 is considered to be an operator (i.e.' in 

Dirac;~ notation I L~; m 1 > S ) . The o-perator 
. L' 

whose expectation value is the total outgoing flux density becomes, 
-iS1 +i81 therefore, e · · (P ~ ( e¢) e , where the prime on 

(?' (e¢) signifies that the basis vectors represent 

the states whose wave functions have the radial dependence f1(kr). 

Similarly ·the form of the incident-density matrix depends upon whether 

the basis vectors represent states with wave functions having the. radial . 

dependence r1(kr) or j 1(kr). In particular the d·enaity matrix 

representing·an incident plane wave of u~it flux~ensity movi~~ in the 
. . . . ·. 2 iS L -1& L 

direction e'¢' is · ~~i ;:;;(2 7f/k 1 ). e (?'(e'¢') e ~t(e'¢') 

In this representation, where the basis vectors are eigenstates of the 

_·generalized H0 ; the matrix element <( S L J 14 f dt { S 1 L' J M ) . is 
. J 
denoted b,y R' · The effect of the initial- and final-state 

SL·S'L' . , . J . 
interactions is to replace RSL;S'L' . in the formulas obtained with the 

. . iS 1 J iS L' .. 
free-particle Hamiltonian H

0 
by e · R 'SLjS 

1 
L 

1 
e • Thus, 

for the case in ¥hich the unperturbed Hamiltonian includes initial- and 
J 

final-state _interactions, the unprimed.quantities RSL;S 1L1 that appear 

· in the various equations in the mairi body of the text should be interpreted 
· iS

1 
J i£

1
, . 

as e · R' e 
· SL;S 1L1 

Th.e requirement of invariance under t:Ltne reversal imposes certain 
J . 

conditions upon. the R' • The fundamental consequence of this 
SL;S'L' 

requirement .is the equality of a matrix element of the ~ matrix a.nd 

the transpos~ matrix element between time-inverse states. The time 

inverse of the state represented by } S p L M ) . is the . state represented 
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S-~iL-m . · S-t-J- . 
by (-1) { s, -fA' L, -m > The .ta.ctor (--1) . is part 

of the definition of t.ime reversal for a spin state. 25 T~e (-ll- m 
. . 

com~s' from the complex ~onju~ation ·or the space ·part of the ,.,.ave function . 

. From the properties of the Clebsch-Gordan coefficients the states 
. . 

represented by j S L .J M) = J S f"- L m > < SJA L m / S L J M ) have 

J-M I . > as their time inverses the states (-1) S L J - M • One then 

. tJ . R'J readily obtains the symmetry relation R - The same 
·. SL;S'L' -· S 1L1 ;SL 

. J ' 
·relationship is true for RSL;S'L'' 

A second consequence of time-reversal invariance is obtaj_ned if 

the reaction is considered to be first-order in the interaction term. In 

virtue of its unitarity the . .J matriX may be expressed as 

J .: (l - ~ i) · . )(1 + +.'K. )-\ where 71. is a Hermitian operator. 

To first ord~r in /i.. we have Qt - ·. iC J - 1) ~ }( • To this order 

the G\ operator is. Hermitian, and its matrix elements R'J 
SL;S'L' 

are 

J 
real, owing to the symmetry property. The R , though symmetric, 

SL:S'L' . 
are not real in general. 

For the consideration of the consequences of invariance under the 

product of time reversal and space inversion, it is cqnvenient to remove 

the factor of 1
1 

in the definition of the basis vectors. Then the 

space-time inverse of the state represented by 

S-f-+L -m j 
e(-1) . S, - , L, -m > , where e 

/ Sf" L m) is 

is the intrinsic parity 

.of the state:..-the product of the intrinsic ~arities of the elementary 

particles that are represented in the state~ The reaction matrix elements 

nJ 
in this representation will be denoted by RSL;S'L' If the interaction 
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is invariant ·under space-time 

symmetry property.· R~i;siL' _:: 

inversion these matrix elements satisfy the 

e~i.* R11 J e where e 1 and e are 
. . S 'L' ;SL ' 

.. . the intrins.ic parities of the initial state and the final state respectively. 

If the reaction is considered only to .first order in the interaction, the 

Hermiticity of the (R. matrix, together with the above symmetry property, 

gives the realj,.ty condition 

J 
R" 

SL;S 1L 1 

When eXpressed in.terins of the amplitudes of the basis vectors 

just introduced, the observable quantities must be represented by new 

. functions. Arguments analogous t-o the ones used in the case of time 

reversal lead now to the identification 

= exp i( ~. ~ Ji:b. ) R"J · . ·exp 1(8 - 11't' ) 
. L 2 SLjS I L t . L I 2 



1. 

2. 

UCRL-3796 

-48-

REFERENCES 

From a compilation of 1 ·1 available emulsion and bubble chamber data, 

made at the 1957 Rochester conterence by G. Snow. 

P. ·A. ·M. Dirac, The Principles of quantum Mechanics, Third Edition 

·(Clarendon Press, Oxford, 1947), p. 130;· 

· L. Wolfenstein and J. Aahkin, Phys. Rev. !!2,, 947 (1952); 

U. Fano, Revs. Modern Phys. ~~ 74 (1957). 

3. A more general matrix representaticm of these operators has been given 

by ·c. Eckart'· Revs. Hod ern Phys. _g, 305 (1930). We have chosen. the 

normalization differentlY from that of most authors. 

4. Blatt and Weisskopf, Theoretical Nuclear Physics (John Wiley arid Sons, 

.New York, 1952). 

5. -We have assumed S + S' is integral. For a derivation of this equation 

and a much more deWled discussion of general formalism for the 

treatment of production and decay see Richard Spitzer and Henry P. Stapp, 

Polarization and .Angular Correlation ·.in the Production and Decay of 

·Particles of Spin i and Spin 2., University of California Radiation · 
- 2 . b~ . . 

Laboratori Report No. UCRL-37'6"A,June '!957 (unpublished). A formula 

essentially equivalent to Eq. (1.5) is given by A. Simon, Phys. Rev •. 

~, 1050 (1953). 



~. 

UCRL-3796 

-49-

6. u. Fano, National Bureau of Standargs Report 121.4, p. 48. Algebraic 

formulas arid tabla.& of the X .coefficients are given by H. Matsunobu 

and H. Takebe, Progr. Theoret. Phys. Japan 14, 589 (1955) •. The phase 

and normalization ·or our X coefficient are the same as those of the 

U coefficien~ of ~1atsunobu and Takebe. 

7. See Appendix A. for a defiriition of the reaction coefficients. 

8. J • M. ·Blatt and L. C. Biedenha.rn, Revs. ~1odern Phys. 24, 258 :(1952). 

The values of the z coefficient have been tabulated by n. c. 
Biedenharn, Tables of the Racah Coefficients, Oak Ridge National 

Labora~ory Report No. ORNL-1098, 1952. 

9. If a system has made transitions to the low-lying orbital angular 

momentum states by ~ emission or by collision processes, then 

contributions to the reaction processes that initiate in these states 

will be incoherent. 

10. G. Racah, Phys. Rev. 62, 438.(1942). See ORNL-1098 for tables of the 

Racah coefficient. 

11. This has been discussed in a preprint, Possible Detection of Parity 

Nonconserva.tion in Hyperon Decay, by Lee, Steinberger, Feinberg, Kabir, 

and Yang. 

12. s. B. Treiman, Phys. Rev. 101, 1216 (1956). 

13. The term polarization is interpreted to include tensor-type 

polarizations. 



L 

u 

UCRL-3796 

-50-

14. ·The light-face vector arguments are four-vectors. We have suppressed 

the dependence of the operators in this equation upon the total energy

momentum vector for the reaction. Since we are considering the 

center-of-mass frame, this vector is pure timelike. The operator 

~P may be obtained formally by introducing into Eq. (A.l2) the 

.. unit operators L -l(k)L(k) and L-1 (k' )L(k 1 ) and identifying 

L(k') f L-
1

(k 1) as the proper initial density matrix and making a 
. 1 

similar identification for the operators related to the final density 

matrix. See reference No. 16 for a detailed discussion. 

15. A pure timelike-Lorentz transformation will mean one that leaves 

unchanged the.epace components along directions perpendicular to the 

relative velocity of the. two· frames. The transformations L(k) and 

L(k'), When restriCted by the .conditions we have imposed, are pure 

timellke transformations. 

16. :H. P. Stapp, Phys. Rev •. lOJ, 425 (1956). This reference gives a 

detailed justification for the nonrelativistic treatment of_spin i 
~tc1es.. For higher half-integral spins it is convenient to consider 

the formulation of the relativistic wave equation as given by W. Rarita 

and J. Schwinger, Phye. Rev~ .2Q, 61 (1941). In this formulation the 

wave functioJ:l. t/l ... f\. of a particle of spin k +- '- has the mixed 

transformation properties of a Dirac four-component spinor (the spinor 

indices have been suppressed) and of a symmetric tensor of rank k. 

Because the proof of the validity of the nonre1ativistic treatment 

for.the spin i case depends essentially on the transformation properties 

of the .Dirac· spirtors, and each tensor component of L/Jp . fJ does . IJ 1 .. •. k 



"' 

,, 

(I 

UCRL-3796 

-51-

16. (Cont.) 

transform like a spinor, it follows that for our case the vt matrix 

can also be put into a form the reduced part of Which can be expanded 

in terms of nonrelativistic spin operators. 

17. The velocity vectors ~!a· and ~- that occur in Eq. (48) of this 

reference are the relativistic or covariant velocities 

'((<ix/dt), 'mere t, 1::' ·, and ~are time, proper time, ,., · .. 

and relativistic contraction factor respectively. This fact is not 

made sufficiently clear in the reference. 

18~ P. A~ M. Dirac, ibid. 

19. Condon and. Short.ley, The Theory. of Atomic Spectra (Uirl.versity Press, 

Cambridge, 1951). 

. 20. This definition is used if the unperturbed Hamiltonian is taken as. the 

fJ;"~e-particle Hamiltonian. For the more general case see ·Appendix ·B. 

21. L~ Wolfenstein and J. Ashkin, Phys. Rev. !!2,, 947 (1952). 

22. J. M. Blatt and L. c. Biedenharn, Revs. Modern Phys. 24, 258 (1952). 

. . . . 

23. -If initial- and final-state interactions are present the interpretation 

·. ofJ the states · · J ~ > . are slightly altered. In this case it is 

· R' that is defined by Eq. (A .14). (See Appendix B). 
SL;S 1L1 

24. It is sufficient that r1 (kr) be r~al in the asymptotic region. This 

can certainlY be arranged if there is conservation of particles in each 

arigular momentum state (when the interaction Hamiltonian is neglected) 

and if only elastic processes are generated by the Hamiltonian H
0

• 



UCRL-3796 

-52-

· 25. L. C. Biedenharn and 'M. E. Rose, Revs .• Modern Phys. ~, 729 (1953). 

\(.'.} 

f' 

(j 
.. 


