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ABSTRACT

lA general formalism déscribing the angular corwelatioﬁ and
polarization effects in the production and subsequent decaylof particles
 §£ arbitrgny spins has been developed, It has been apeciﬁlized to the
cases of production and decay of paiticles of spin % and_%,-.Expressiond
for the angular distribution and polarization of the decay products'have‘
been reduced to tractabls forms involving the physical vectoré of_thé |
problem and a minimal number of parameters describing the production and
decay interactions, The results are discussed for two particular
'ﬁroduction processeé in order to determine what 1nformation on the-enin
-"of the hyperon and the production and decay mechanisms may be obtained

from the analysis of the decay products,

&* . . : .
This work was performed under the auspices of the U.S, Atomic Energy
Commission.
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Richard Spitzer and Henry P, Stapp
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Berkeley, California

July 1957

Section I. Introduction _

The angular distribution of the products of decay of a hyperon prévid;;
information regarding the hyperon spin. If this epih is one-half, then the
probability that the direction of the final nucleon will‘lievin 6nd”of the
two polar cones ( | cos (@ f ';> % , where @ 1s the center-of-mass
- angle between the hyperon velocityvand the final nucleon velocity) mﬁst.be
| sxactly ohe;half On the basis of recent measurements of the angular
distribution of 22 ~decay products the probability that the spin of thev'

ZE: is % 1is 5% -In view of this indication that the spin of the

- may be greater than 4, it is of interest to determine the detailed
consequences of larger values for the hyperon spin. The purposé.of this
_papér is to examine the correlation beﬁWeen the direction of the nucleon
emitted in the deca&fof the hyperon on the one hand and the directions
defined by the productién process on the other hand. The polarization of
'thé final nucleon ié also treated. Sdme'generél formulas are quoted in ‘
this section and are_applied to thevcase of spin—% particles.in the "
.fdllowing sections, Some analogous results for the spin-§ case are'giVen‘
'for comparisoh.v We use an apparentlj ﬁonrelativisticlfohnulation, but the
résﬁlts may be-applied to the relativistic case if'appropriate interpretétions'

and corrections are made. These aré discussed in'Section I11.

i
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In the analysis of polarization phenomena statistical mixtures of
states must be consideregl, and a density matrix formulation is convenient.z

The spin-space density matrix W (ef) is defined by the relation
<A_>e¢ = TrA ‘LL(Q;zj) - (1.1)

where ( A> of is the éxpectation value éf a spin operator A 1if the
measurement is made on a particle in the beam moving in the direction 6f.
‘The matrices A and -2 (6f) are square matrices of dimension (28 +1),
’ whéré S 4s the spin quantum number. It is convenient to introduce a
-complete orthonormal set of matrices in this space. We use the matrices

. Q o 3
: '1'% defined as follows:

,\',-.Q o . 4 svast
AILIA) = (BR) ey
écu-l% o
(?s'_f-_?) Long® B

where the Six-—indjex symbols on the right are the usual Clebach-Gordan

- (1.2)

coefficients., The matrices T, are real and thelr hermitian conjugates

/A

T, are their respective transposes. By use of their completeness property

2 |
the WU.(6f) may be expanded in the form

ue) - 76 R O )

_rhe coefficients c(%Q(eﬁﬁ) - and _éf‘:(eﬁ) defined by the above equations

| are complex conjugates owing to the,hemxi-’cicity of the density matrix, In

©
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virtue of the orthonormaiity condition -

_— E'Q" .g gi (L)
r by ? 'y
oy T Q' Tk k' o - -

T

the . q%§(6¢) and %;?(6¢) may be expressed as

Q L . QI_ .
Q’,%(e¢) = Tr ?z(.(9¢) T)d »
(1.5)
Q =Q
Y M(e;d) = Tr Ul(ef) T)ﬁ .

| " We shall be interested in processes in which the initial states
are described by the spinuorbit variables (S', /p(, o', ¢g') and the final
‘states by the spin-orbit variables (S fL,9,¢) The spin-space characteriatic;
of the initial system will be described by the ooefficiem-.s , q/M, (e ¢ )
and the final aystem will be similarily described by the coefficients

o{if(e¢), If the initial system is a plane wave moving in the direction

_e'¢! with a spin quantum numberﬂAS , then the parameters . CKkKS Gﬁ),

which describe the spin-space characteristics of the reaction products

-ithét emerge in the direction 6@ and in the state with spin S, are given

]
;é, (s', 8'¢g'), which describe the opin-space
characteristics of the initial plane wave, by the equation5

' Jvo# .
I(9¢) °()6Q(3n 6¢) = Z Z SL S'L' RsLu.va”’
LTS T ’

(20 + 1)(2J'f- 1) [(21. + 1)(2L' + 1)(2L" + 1)(2L” + 1)._'{% '

o
2

LA 'L LELUFA
oty ') A ,

Y C (‘l)
/M’))’ ooo 000

(Ec. (1.65 cont.)
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Q! ' 3 ' ‘ é /\ZQ Q"/(IZ
x (s', 6'¢g")(2qQ" + 1) (22 +1) C_, v
};_;/ s Zzg _ Agzo x'X ¢

'x  x@W'L A, Jz,85Q x@ L A, Jd Iz, 58 QY),
(1.6)

_ _ - 6 m.
The X coefficient is the one defined by Fano, the ¥ (og)
5 _

_ ' I
are the usual spherical harmonics, the RSL-S'L' are reaction matrix

' 7
elements determined by the specific nature of the reaction, and the

' coefficient N dis a normalization factor. If the initial syatém‘ia a

B plane-wave state with momentum k', and N 1is taken as (2'”7k') ; then

‘_‘I(9¢) is the differential cross section (see Appendi.x G) The value of

| (6¢) may be determined by the condition (implied by Egs, (l l) (1. &) (1 5)

.and the requirement that the expectation value of a pure number is equal
" to that npmber) | -

. ‘ BT . | : 3 : , .

%, (5,00 = (mFDT - an

If the initial system is unpolarized (1.e., only cx (S‘ o ¢ )- 3?(» s

'Eq, (1.6) reduces to
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' 0
Q <« _{(s', 6'g')N 7 - J Jr #
IO(G¢) q,)a(sn 0 0) = 0. 3/2 2—__\ | Z RSL;S'L' . RSL";S 'L’_’/
(b 7) LLL"LY - JJ! R

. o 3 201-J-8'+ 1M
_[(2.} t (2 1) (2 + 1)(2n +1) ] © (-1)

- ' AA’Q LA 2 A+ 1}
_KZ Ly (¢ % xr oo (

2'+ 1

AN
o T Al o |
x X(@I*LA,JJIAN,58Q (1) ST L gpst A,
(1.8)
where for simplicity the z axis has been taken to lie aiong phe diréctionﬁ
of the outgoing fermion, The Z coefficient is the céefficiént-definéd

8
by Blatt and Biedenharn.

“In addition to processes in which the initial ayatem,is represented
by a'plane wave, we shall be interested in cases in which the initial
state is an incoherent mixture of various orbital angular momentum atates.9

If the probability that the reaction 19 initiated in a state of orbital

‘angular momentum L. is WL s and if there is no preferred direction for

o the initial system, then the c{ (S - ef) describing the final system

are glven by
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1(00) "o{)zcs, 00) .

o —r J J# W, A\
N 8'0)6’ - ' RSL'S'L' RSL'u .Aéva‘ L' ‘ '2J ke ) .
LYY (2504 1) TS 3 oLTe (L' +1) { 25 +1
o o N
x (i) zZ(Q s L" J; S L) , - (1.9)

where the z axis has again been taken to lie along the velocity:ofaihe
final fermion. If parity is conserved, the value of Q is restribﬁbd to
even values, This is a consequence of the following relationahip

~

satisfied by the Z coefficients

‘ , Q+L"-L : ) v
Z2(Qs L J; 8 L) = (-1) Z(QsSL"J; 8L) .
By extracting from the general formnla given by Eq. (1 6) the
contributions from initial S states, one obtains the formula, for the 'a
'that describe the final system of the decay 1nteraction in terms of the |

cg 8 that_describe the spin-space characteristics of the decaying particles

- Q * .
. N '
I(0¢) °(h (s, o) = W (2s'+ 1) g : PSL ;S SL"_;S'
LL» _ :
. . é ) | é L L' A 7‘

x (2L + 1)° (2L + 1) >"j Co 0 o T (ef) N

S Q! Q ’ . .
2 " (S' (2Q* + 1)% (- )L ;\)c’k: x(L"L A, $'S'Q', 58 Q) .
Q%’ . '

(1.10)
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The c‘»omb,in'e'n“ process of production followed: by decay may be describéd,
therefore, by first using Eq. '(l;é);_, (1.8), or {1.9) to obtain -the < 's

~that 'dveaicribe the spin state'of_the intermediate particle, and then uéir_)g_

Eq. (1.10) to obtain the < 's that describe the polarization and angular
distribution of the decay‘products, |

| | The above formulas rel.at,.e the expectation values of 6perato’r‘a in
the ini-tiai and final states, lIt is sometimes convenienﬁ ﬁo co‘nsidér the

reaction matrix itself. Acéording to the definitions given in Appendix B

b.the matrix element <S /M }@ (9¢; er'gr) / L /,,u > » when multb_ipliec_l_,

by (27 /k')(v/v')é, where v' and v are the initial and final relative

velocities, gives the reaction (or scattering) amplitude . fu (e#) ~when

‘the initial state is a plane wave of unit particle density in the spin

St

state Z px . For the case in which the z axis is chosen to lie along

the outgoling direction the G(), (ef; 6'¢') matrix may be expressed in the

| form

Reosep - > a:(S. 00) ?_KQ

QK
where .
Q. ©(=1) L —— , J ' & P '
s (s, Q 0) = W > By pigie Yo (07F0)
o LLYJd ’
. : L L'L
x (2L + :l.)é (20+ 1) (-1) C Ii W(L J QS'; 3 L) R
: k 0 -

(111)
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o

where - W is the Racah co_efficient.lo If the initial and final 'spin-

" quantum numbers, S' - and 3 respectively, are "_é'q"ixé.l’ then the ratrices

- T . are.square matrices. Otherwise they are 'n'ons‘q'uare‘, with = (25t + 1) .
colum'ns‘ and’ (25 +1) rows, |
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Section II. Reaction Formulas for Spinyé and Spin % Pérticles.

In this section explicit expressions are given for the angqiar
distribution and polarization paraﬁeteré for reactions in which the initial
and final states are composed br one particle of spin O and onevparticle,

which will be termed the fermion, of spin % or %1 The case in'which the

4nitial and final fermions are both spin é is very simple and the general
formilas given in Section I are not. particularly useful. The results ror

.this case will be quoted for comparison with the spin g case,

For the case in which the initial and final fermions both have

Bpin é the-Q{_ matrix can be'written in the completely_general form

to.

Rx, &) = @IAN™ [1(0) + ate)oT, +hnle)sy + vhv(e)ﬁ],

(2.1)

where k! is'the incident relative momentum, & represehts the Paull

v A
spin matrix G +A, and the vectors N and L are unit vectors in

directions = X' x K and Nx EL‘ respectively. The arguments of the

. ({ matrix have been given as K' and kK, unit vectors along the

initial and final velocities respeétivély, rather than Gfﬁﬂ and 6f .as
in Section I, because the dependénce upon coordinate systema has been
removed‘from the axpression'appearing on the rigﬁt, The angle 6 in
Eq. (2.1), and in what follows, is the angle between X and K'. The
normalizatibn'ig chosen so that the differential ?eaction cross section

in the‘reaction,Cénter;Bf-méss frame is
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RS O E S L I R L o Jnt % 2 Reler™) P! W)
L 2Re) @) +2 Relh (D) + 2 Taea") (2! L)

-2 (@)K £ 2 meR @) .
A S . (2.2)

‘Hefe the vector P! is the polarization vector of the incident particle’

It is defined by the equation

UKD = 3+ Prg) . @

 The polarization vector P of the final pérticle is defined in an éxq.ctly_'

ardlogovs - way and is given by

}3'(1“(’, k) = '151(& K! ){ 2 Re(gi’*)ﬁ + 2 Im(h!ﬁ*)g + 2 Rve(f‘h___";%);l‘.__ |

+ 2 Ré(‘fﬁ”)’!& - 2 Im(gh*)L + 2 Im(gh‘*)£ + |r‘. [_»2 }3;

+ la—l-2 '-2(.‘3,'"?.‘.)!!,-3']1.’“ | h'.f 2 '[2‘(2"‘5)’1'".’1; ] s

+[ h.". - [2(2" I;)L--; pJ + 2 m(gr*)(P x N) + 2 Im(hr"XP' x K)

+ 2 Im(h'r*)(P' x L) + 2 Re(gh® )[_(P' -K)N +—(P'-N)K ]

+ 2 Re(an'™)[ (5' -3:)1 +(Pr ML ]4_'- 2 _ne @h!*)[(_ry -g);g + (P! -195”

(21&)
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If parity is conserved in the reaction, either h(8). and th(e)a
- are zero or“f(e). and g(@) are zero.» These two cases repreéent the .
poégibilities that the relative intrinsic parities of the two initial »
particlés are the same as, or aiternately are opposite to, the relative
vintrinsic parities of the two final pafticles. v

When the ihitial fermion is unpolarized the differential cross |
section is a fun¢tion only of the scattering anglé 8 and of_thé'réaction
métrix elemeﬂﬁs. It will be wriﬁten as IO(G),' If only the contributions
-from final S, P, and D ﬁartial waves are 1nclﬁded, Expression (2.1) for

the 08 matrix becomes

R, x) =

| (A7f)-l {ROO% - R223/? - % R + (Rllé +2 RllB/z)cos e

+ 3(R,, + %322 Jeos® @ +1 sin 6 G, [—-Rn + Ry

3/2  _ -5/2
=3(Ry - Ry /, )cos e]

3 3/2 3 3/ 5/2.
+ g [310 - R12 +-(RO1 +2 RZl - % R23 )cos 8

- - 3/2 5/2
1t 3 Ry, c':osz. 8 +”l-2é R23-/ coas3 GJ-

: | - % 3/2 3 5/2 3/2. . 15 5/2 . 2
- 8in 0 G?i [ROI - Ry - % R23 +3 Ry, cos Q +-?? R23 cos” 8

~(2.5)
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If parity is conserved in the production and if the initial and final -
intrinsic parities are equal to each other then the contributions to’ Io(e)

- from final S, P, and D waves give

I1,(0) = 21; [4 + Bcos ® + C cos? 6 + D cos’ ® + E gos‘* e] ,
| | (2.6)
whe;e , o '
392 3 2 32 % 32 % o 527
} r }Rn |+ )Rn ) t )Rzz / * g 1322 /

EIE A STy ST SR
- 2Re(Ry)" R, T Bjy” By ) = 3Re(Rpy By = Ryy™  Ry" )

% "35* 3/2 _ 3/

' , 2% 3 5/2
B = 2Re(Ryy Rpjy" ) = 10Re(R;™ "Ryy ) = 9 Re(Ryy " Ryp™ )
LT 32"
+ bReRy RT O RTR, ),

' 2 . 2 L
2 J R113/2] t3 / R223/2} ‘_% }R225/2 ‘2

¢ =
V- 5 3/2% Y
+ 6Re(Roo 322 + Ry, Ry )+ 9 Re(Ry, R, '), :
5/ -

22
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3 5/ 3/2 | 5/2%

N -3/2 3/ - ‘- B
D = 18Re(R, R, ) +15Re(Ry Ry~ )+ 12Re(Ry,™ R,"T)
E = " ! 322 / + 45 RG(R22 | 322 ) .

The. polarization vector i‘s, under the same conditidns and 1n terms or the same

reaction matrix elements, given by

- 2 _ , » . ‘
',IO(G)L = _Z__ .eine'[F-l-G cos ©® + H cos> © +'K0083 6__] N
: - (2.7)
where . .
o 3 2 3/ ' ot /2 5
F z 2 Im(Ryy Roo% + Rooé R, - Rllé, 3223 / S - 12223/ ,3113/ 2*._)
4 5/  3/2 5/
',3 Im(Rn Rzz =Ry Ry, )
3jox 3/2% . 3f2. sfe
G = 6 Im(R-llé Ry - Roo% Ry,  t Rooé 3225 / ) =15 Im(Ry, Ry, ),
3/2 _ 32w O} s/ 3/2 _ 5/
H = -18 ,Im(Rll_/ Rop / ) +15 Im(Rllé _5225_/ ) + 3 Im(Ryy / »3225 / )
. 3/2 2
K = h5 Im(Rz2 . R225/_ ) .

The formulas for the case in which the if-elative' intrinsic parities differ.
. are the same as the formulas given above except that the riumericai values

of L', the initial orbital angular mouientujm, are replaced by L'v t 1, the

\
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~ choice of sign being determined by the J value ‘and the vector-addition law

3 - 3/2 3/2

(e.z., R Ry Ry R12 , etc.); The above formulas
vapply té the associated prqductiqn of X particles_and hyperpns in pion-nucleon
collisions.(involving»unpOIarized nucleons) if the spins of K particle and
hyperon are O and % respectively, and if parity is conserved in this (strong)
production reaction. |

The form of the angular distribution and pola*ization of the
reaction products of the subsequent decay of the assumed spin-% hyperon
(into one spin-zero particle and one snin—; particle) may also be obtained
from Eqs. (2. l) through (2.5) by dropping the contributions from all initial
- states with L! 7#* 0. If the unit vector along the momentum of the
:'fermion in the decay products is denoted by V and the polarization vector of
Vthe initial system is denoted by Pi’ the angular distribution of the decay
products is given by
o 2 2 s
V) = f%, [I‘Ro/ +[r [T 2Retry Ry )Ei'Y,] ’ o

-and thé.polarization is

P(Y) = I(X)-—; ,23’77 {2 Re(Ry R, ")V - 2 In(R, Rl*)(fi x V) + )Ro. | 2 B

w pul* [oevwnos] |

o ; 2 2
= 1(v) ™ = v 2 Re(Ro 5 )vfzxmmo ; )(P xT)+ ! ‘ ol 4 }RI[ )(Py Y

(’2.9)



~17- UCRL-3796 Reve

' : . ' 2 , .2 '
If we take N =1 and»normalize the R; so that [ RO l +«‘ Rl ) = 1,

then I(V)d-"— is the probability that the final nucleon will have its
velocity in the solid angle d.n- sbout the direction v,

The case in which the initial fermion is a spin-% particle and
the final fermion is a spin—i particle may be described in a form similar to

‘the above. For this purpose we introduce.the symbols

S v K -1
T(w) = -‘1-31'/- o) T .
- K _2
T(42s ¥3) = Z%Z Y Qi 93) T, o |
=7 -3 o

, Ka :

Here the by are grbitrary vector; an§ the symbol IN- {31, .,;,’BN)

represents the function of the vectors uy that is linear in each argument,

is symmetric in all its argumenﬁs, and which becomes ‘YNK'(9¢) when all
set equal to

its arguments are/the unit vector‘in the direction e¢ The GE. matrix

may be exnressed as the following superposition ‘of these T matricea:
®(x, 1) vﬁ,—'(zrf/k')"l (. () T(K, ) + (e): (K, K1)
X, K') = , 21(8) T(N) + go(0) T(K, K) + g3 X, X!

+ 2,00 UL, K1)+ By (0) T(R) + hp(0) T(K!) + hy(6) TH, K) +my(6) 71, K1)

(2.11)
The.expiicit form of the 84 and hi when only S- and P-wave final states
contribute is given in:Table I. The normalization factors in Eq. (2. ll)
Have.been chosen so that the differential reaction cross section fqr the

case of an unpolarized initial fermion is

-
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- < 2 2 o ;
Io(e) = :ZIJ (:{ g4 l + \'hi \ )+ 2 Re(hl hzﬁ)cos 9 ﬁ-:% Re(h3‘hh4)cos ]

+ 2 Re(zg, gB*)éos;e-+‘2 Re(g3'gh*)cbs 6-f Re(g, gh%)(B cos? 9 - 1)

2V 2 72 ' v2
B ng| + "hb |+ sin” 0 }igB\ ) " (2.12)

If parity is conservéd in the reaétion then the hi(e)' will be zefo'for ﬁhe
’case in whiéh ﬁheirelative intrinsic ﬁarity of the initial pg;ticles is the
same as that of the final pafticleé; the gi(e)_ will be zero if thesé rélative
intrinsic parifies are opposite.

If parity is conserved in the interaction and the initial fermion
is unpolarized; the'density-métfix describing the spin of the final.partiéle

must be of the form
UM KD = &+ b(6) T(N) + o(6) T(KK) + o'(8) T(K!) + o"(8) T(K'K)

+ a(e) T(NKK) + a1 (o) T(NKK') + dn(8) TNK'K') . |
S '(2.13)

The - coefficients in this expression as functions of the gi(e) and hi(e)
" are given in Table II. VWhenonly S and P final states contribute, the -

differential reaction cross section reduces to the form

Iy(k, k! ) _21_. LA' + B' cos © + C' cos e.] s (2.14)

—w,

where, for the case in which the relative intrinsic parities of the initial

and final states are the same,f
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TABLE I

LA i, % f 3/2
gl(O)—Am‘-vfxl—l 2R11 sin ©

151
N
—
o
j
L
o

oo, [t Fapneaf
;4 N ;W' - J; w2 s E 5135/2;013 g]‘
hi@ -4 [Rl %+%fn 3/~°~+sz 5/2]
® =& [fﬁ 7 zfﬁ a/zcosg_gf ]

hA(é)' ='£:;[ -1 BJ—\R 3/2+1F Ry 5/2:}51n0
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TABLE II

b(0) = Io-l'(é) § -:_Q-Y_,?Re[;’,(hlhfi— hoh,”) = »_2'('glgz*‘+ glg,f‘)} - i;i In(hyhy )sing -‘

+
.

=

Re [3(hih:+ hois®) - 2 g,85" } cos 0

-

Im(2 3283* +2 g.3gh* "f~'h3hls* -.{V-.‘h‘:gzg.h* co‘s 8)sin © }

E

e(®) = I, (6) [ Re(g,g,”) - & f 8, lz -2 )831 lhl/z'
F (2 ein )™ In(gye*+ hyn,” - 2 h2r$3*)"
+ (2 sin” e)‘l(_ { él ’2 + % ,hh,l 2)' -"é Re(gzg.3*4)éos ) |

+ :g:g I?(glsg - % hjhg *) +' % z:sg Re(hth)

sin ©

1_,.% cos? O lh3/2]



-2~ . ‘ UCRL—3796 Rev,

TABLE II (Cont.) .

o . | .
c'(8) = I, (8) {-é Re(gzg; + ngl‘* + 2 hlh fy 2 h3 4 )
| a., . 2
+ (sin ©) 1 Im‘(fglgh* - glgz*f 3 hlh3* -4 'h2hh*) + 4 {gB{ cos ©

- 3 Re(gog),") cos 0 + % ;s g Im(h2h3 - by, )
sin

RV TS SLVRN

- 3 cos? @ Re(hsh *)
£ 2082 4
2 4in? 9 > 4

o"(8) = I, (o) [36(828h ) -% [ &3 [?-é | 8h(2-_é /.h2{.2 |

+ (2 otn 01 In(2 hyn,® = gyes" - hohy™) + (2 stn® 0)7X( [ gy 4 2 [y %)

- % Re(g3gz, )cos 6 4+ 028 Im(} hzhh gt *)

sin ©
+%cose Re(hh*)'+3_°°529.)h ’2}
si® 34 [ sin° O h
4(8) = - -2 Re +hh )-_l_m[(ine"lhh*
75 8182 + hyh o (e 8) " hgh,
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da(e) = - 2_- Re(ges” + hl'h:‘ + hohs®)
5
3 "cosé ,"* % .
+ fs" Im( ] h3h4 + 828, sin 6) |
: dn(e) =

-3 Re(ggv*+ih *y 3 In |(sin 0)°L han)® ‘
A e ¢ o) - 2w [l

- g3gh* sin 6»] e
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\ _ X 2 3/2 2 1L 3/2 2
P | oz |t 7? | P | j + % 1313
L 3/0% /2*
+{-%- Re(R);” Ry, / ) +3 7C%;? : (311% R135/ )
-2 5 Rty 7
/2 3 2%
Bl = - 27/?’2"“‘11% 3023/, ) + — Re(Ry / R023/ )
+ 648 Re(RozB/2 R135/2*) ,
3/2 2 5/2, 2 3/2*
12 18 2
= '?‘l%l |+ 2 ]n, 31% RelRpy By )
¥ R
-9 [;Re(Rll RBS/ ) + EFRe(Ru 3135/2) :
(2.15)

" When the contributiéh of thé P final state is much smaller than that of
the 8 final state, the varameters in Eq. (2.13) are given in terms of
these same reaction matrix elements by

—ﬁ SinQC)(l s |

b

In(8) b(e)

Io(e) c(8) =

]
el
-
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1,(8) c'(8) =

{
hat

N
<

W
-+
‘g

ol

\_\'\‘

- ¢ 2 o
Io(8) c"(8) = - 5‘42 - 5cos @ °{3§ ’
Io(e) ae) = 0 ,
CIh0) are) = 0,

I,(6) a"(e) =

i
bl
.’N'
: o/]
P ‘
= .
D
A%, 4
—————

where the o(i afg

0]

it

L

_

:U L

<2
X
N

—————

N B . . & 3¢
o, = Re | & 6 R 3/2 R 5/2 + b 3/2 3/2
3 - 5 /5 02 13 513 73 11 02 ’
o3/t 32 3/ o 3/2_ 5/2
- 8 p " .2 48
X, = Re [{? B B T Sy o1 o2 575 B2 i3 [0
- 3/2  3/2" ~1 7 3/2 5/2%
18 3
5 = Im ['B‘ Roz 11 5 16 o2 |
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The case in which the initial éhd final intrinsic pafities éfé diffetent-is
described b& these same formulas modified by the substitutions described
below Eq. (2.7). | |

The expressions given above may be applied to the aséociated‘
production'of‘hyperons and K particles in pioh-nucleon collisions if the
K'particla and hyperons are spin 0 and spin 3/2 respegtively. Invthe
subsequent decay of this hyperon intd a pioﬁ plus nucleon, each‘tqrm in the
hyperon density matrix 71,(§£ EL) = QA,H giveé a chéracteriétic éngular
distribution and also a characteristic angular dependence for the
polarizatioﬁ of the final nucleon. ‘In’order to exhibit the angular dependences

in a convenient way we first express QAX{ in its most genérél form,

i i 7 J
A YO R FR S (PR
< kK g K
-+ : k . :
>—--\k TB T(/Blb » _3-5 ’ '36 ) X . (2-18‘)

n : : '
In this formula the ”PNY are vectors that are to be selected in a way

that gives the desired form of ?AH' For example we obtain the form of

' 1
Z(H given in Eq. (2.13) by the choice ,gil - _E},,gzl =.~§’ Yy = X,
2 ‘ 9 :

Ny = k‘”fvs, 33 = XK', ete., The ang\ilar distribution of the deéay products

is given in terms of the general parameters introduced in Eq. (2.18) by
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| ;o - 1
1 = @ ? ([ry }2 + |7 )'2) 1 ,Zi 57 2y (DL Re(Ryy )

- hetnete - wled] (nite (m])

. k kK .\, k v . k kK k.
= T Uy [5@1 D M) = (o Doy )
(K750 ) - () (k) | 6 Ry [
W2 N3 R Y W M R elligi2 Jf
(2.19)
- The polérization veétor of the nucleon in the final state is given by

- -1
WP = 7)) Ez'neml RV,

P Pt P

- %-Zi 5t ™! [2031 RENES }2)(“1'”"

Har - fm [ OrxGlxp

- om0y R ) |

- 213 T, +2 Re(Ry Ry ) [3(31_'X)(223'22" lej'zzj);} I

{

- k '
-2 st H(lnl [?+ RIS

+ Ry |- Ry [Py x (0 x 1) - 2 In(Ry R xggj

' ( 5ua D7) - 3&“_2'29] * Symﬂ
- o ’ P I ' (2!20)
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.Tﬁe symbol Sym. in the above line rénresents the sum of the two terns
needed to symmetrlze the contents of the braces.

The expressions plven above apply to the production of hyperons in
piOn-nucleon collisions. Under the conditions stated in Section I the
density matrix of the hyperon produced by K-particle absorption f"om

| 1ow-lying orbits may be obtained from Eq._(l.9). If parity is conserved“
in the vroduction process the form of this density,matrix‘is particularly
simple, Of the coefficients that appear in Eq. (2.13) only. c(o)  is
oifferent from zero. The coefficient c(8), which is in this caoe
independont of 9o, completely.détennines the decay angular distribution;v
According to Egs. (2.13) and (2.19), this angular distributiooAis given

by

,I@ = (W)*H)lezju [5, 1% [1-c(e)(3 cos® (@ ~1)] y
| - " (2.21)

where (H) is the angle between V and K _as measured in the decay
' center-of-mass frame.. When the K particle is captured from S -and P

states only, ¢(8) has the form

c(0) = -Hwy Wo<*° iy Wl)fl(au Wy + W Wl) - ,' - (2.22)

where for the case in which the initial and final intrinsic parities are

the same we have

N |
C(.)l ] - ‘ RZO i ’
) 2 2 2
L1 5 2 ] 3/2 i 3/2 +°
C.(..2 -3- / Rll ,/ wde ....( / 11 ; + ; RBl ) B
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3 |2 /2|2 3/2 | 2
y - X 8 . i Ty
“3 23" |ty ( } 31 '{ g 1 i )
- .l.t,‘Re’(RlIB/'z 3313-/2 )

(2.23a)

-and for the case in which the relative intfinsio parities are different we

have S
a2 .
@y = .‘,vﬁlo%f!. v - o
= o . % 2a : - / _2 3/2. 2 L
“o = %‘.Ra I 1’""3%(}“0132" ’L'(-Rzl32 bE
w3;:,.,:- % RZié ! ; - £3t 35(3013/2 1%2;.3/2*) .

- (2.23b)

The polarization of the final nucleon is independent of ¢(8) and ié'given

by | -
R e L 12 42 -1 ' | ,

P(V) = 2Re(Ry B,V } Rl_‘ + ’ R, ‘ y . o (2.24)

ladd

If parity is conserved in the decay either R, or R, must vanish. The
polarization of the final rucleon must, therefore, aiso,be zefo unless

parity is violated in either the decay or production process.
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Section IIJ. Discussion

In this section thé'angﬁlar correlation between the directions
defined by the production and decay events is diSCussed, We coﬁsider ‘
specifically the associated production in a pion-nucleon colliéion of a
spin-zero K particle.with a hyperoh of spin & or spih:%, ahd the,

- subsequent decay of thé hyperon into a pion-nucleon system. If the.
hyperon has spin % ﬁhe'production—decay'prpcess is described4by Egs. (2.1)
through (2.9).¥ If'parity is conserved in the production proéess and the ‘
initial fermion is unpolarized, then the deviation from isotropy in the
.angular distribution of the decay products is proportional tg ;§:Y3 as is
- shown by Egs. (2.8) and (2.4). The amplitude of this term must be'Zero |
if parity is conserved in the decay, since parity cénservationfwould;
require either RO or Rl to vanish. The occurrence, expefimentaliy,

of this tem would.constitute proof that parity is violated in the decay
process.ll Parity nonconservation in the decay procesé can also be
demonstrated by experimehts measuring the pOlarization'of thé final
nucleon. From Eq. (2.9) one sees that when .X, is in the production

plane the longitudinal (proper) polarizatioh ié equal to 2 Re(RO Ri*j/
(‘! Ro /2'+- / Rll 2). The occurrence of this polarization would imply

a parity violation. The magnitude of this effect does hot depend upon

the unknown aﬁount of polarization of ﬁhe hyperon aé'does the above- ~

- mentioned magnitude of the asymmetry in the anguiar distributioh.' Thiév
could be important if the hyperon polarization were-smali. If, on the
other hand, the hyperon polarization is largé wé see frdm‘Eqs. (2.9) and
(2.8) that the values of Ry and R, can be determined up to an

over-all phase by the knowledge of‘the nucleon angular distribution and
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polarization; Thése coefficients. R, rand R, provide the complete
' phenomenological char_acterization of the deéay process; _th}e»ir values give
all 't_}lfxe,iv‘hform‘ation that can be deduced from ‘the expérimental study of
the procéss. |

The measurement of th; final polarization also permits a direct
vtest of invariance under time reversal. The term in Eq. (2.9) that is
pxjopofﬂional to Im(RO R_l*) will be zero in so far as ihe decay can be
QOnsidered to be first order in the weak interaqtion, and invariant under
‘time reversal, provi.ded final-state interactions can be ignored. The
inclusioh»of the final—staté interactions changes £hisrcondition somewhat ,
qu-ﬁhe case .EZ -:f-arﬁ + 77 tﬂe upper limit on the'ébéolute magnitude
of the component of polarization ajong Py x ¥V i,‘or the case in which L
lies in the plane of produc‘tio.n, is ',b_sin‘( SP - SS) ‘ . The §P -
| a‘ndv SS ‘are the J = & , isotopic spin—% phase shifts of ,ti;e pion- | |
| Tnucleqn aysteni. A si‘milar limit may be obtained for the cases in which
bothvisotopic spin stétes are involved, ’ v

If the» hyperon 1s spin%, the correl_ation between the directions
defined by the production processvand'those of the decay process are
given by Egs. (2.11) through (2.20). At production threshol@,.wheré only
the 5 waves of the final state contribute, the angular distribution for
the pfoduction is isqtrOpic_and the angular dispribut}on-of the decay
products in the decay center-of-mass frame is of the form (3 cosztﬁf + 1),
where Qif_ is ﬁbe angle, measuredvin the decay center-of-mass frame,
betﬁeén the directioh of the incidgpt nucleop in the prodﬁction broceég
and the outgoing nucleon of.thg decay prqcess. This may be compared to

the case discussed by.Treim@nlz in vhich it was the initial state of the
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production nrocess ‘that was an S state, In that cose the angular
distribution of the decay products was of the form (3 cos @ + l),
where Qﬂ : labelsvthe angle between’the hyperon velocity and the
velocity of the finalvnucleon. For this iimit in which only S waves.
are produced there Wiii be no asymmoffj with respect to the nor@al to
the plana of prodﬁotion. At somewhét higher ohergies, whefevthé
interference between the final S and P waves becomos important; the’
hyperon-density.matrix will contain nonvaﬁishing contributions proportional
to T(N),» T(K K'), T(K', K'), ‘and T(N K! K'). The form of the'decay
angular distribution associated with each of these terms mey be obtalned
from Eq. (2.19). From the T(N) term one obtains a contrlbution
proportional to cos QDN, where (ﬂ N _is the angle between the normal
to the production plane and the direction of the nucleon from the decay.
This term 1s analogous to the one that aopeared when the hyperon was
considsred to be spin %,.and it must vanish if parity is conserved in the
decay procass.' Thevcontributioﬁ from tho ‘Tng E:, EL) term will also.
be nonzero only if parity is violated in the decay. The angular
‘distributioq‘.associated with this term is obtained from the 7:‘3'

1 1

conti_bution to Eq. (2.19) by setting m, =N, ) =K

_ ’ :
It is of the form cos (B}N [5 c052 @ - 1] . This gives an asymmetry.

v

1
s au'mlv_‘t_z‘3 =K'

with respect to the normal to the production plane that is greatest for

| particles that decay in the plane defined by the vectors‘ N ‘and Kt

‘and which reaches a maximﬁm”whon {ﬁ?ﬁ (gi 58,9°, The maximum asymmetry

from tho T(N) term ocours,vof course, at ‘f%Dﬁ = O, | |
In addition to these terms, Uthh reveal parity violations,

'there 'is another new term in the angulqr dlstributlon This one 1is a
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conseguence of‘the T(K Y') contribution to the hyperon~density matrix.

According to Eq. (2. 19), the angular distribution characteristlc of this<'

term is [3 cos () cos (&, ~ cos e] Fach of these tenms will also

give its characterlstic contributlon to the polarizatlon of the flnal

nucleon., The form of these contributions is given by Eq. (2. 20) Ag

higher energies, where all the terms in the general form of the hyperon :

density matrix given in Eq. (2 13) contribute, three additional terms B

may enter in the decay angular distributlon. Two are present only if‘

parity“ is violated,’ and have t_he foms cos’ ®N [5 cos- @ ‘.’COS | @, - CoS 9_]

‘and cos @y [_5 cos® ® - l]‘ . The other has the form (3 :0032",@ -1.
‘We conclude this section with a few remarks, Firsﬁ,vﬁhencontributions

‘to the decay'angular distributionmthaﬁ are present when’parity is nbt |

H violated give no inrormation about the decay mechanlsm except its total

strength. They are proportional to ( / 01 } R ll ) “for the

spin-} case and to ( ’ Rl ) [ R, ’2) for the spin-% case. - This

- form does not allow the contributions from the twe final angular~momentum

"states to be distinguished. For the same reason, howover,_phese terms

.give information about the production processqthat is independent of the

detailed nature of the deoay neaction, and theirlmeasuroment provides T

information useful in the studv of the strong reactions. Second, 1if,

in the decay anvular diatribution there should occur a term that is

asymmetrical with respect to any directlon thab lies in the plane of

production, then pafity must be violated bothiin the decay and in the

produotion. It is asénmed nere that the strange particles are single

parniclesa—not parity dodblets, Third, it is of inﬁerest>to determine

whether the intrinsic pafity'of the‘Kéhyperon system is the’samé as the
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intrinsic parity of the pion-nucleon system. In view of the great
disébmilarity in the forms of the 02, matyrices in theséutﬁo cases

(s’ée Egs. (2.5) and (2.11)); it migh't be thought that the correlations
near threshold between the vafious angular distributiohs and polariﬁatioﬁs
would‘depend upon the relative'intrinéic parities, Hdﬁe%er, no infofmation
- about ﬁhevrelatiVe intrinsic parities of éﬁe two.systgms can be obtained
frém.the anélysis of the‘ahgular distribuﬁions and”polariéations discussed
in this papér unless asgsumptions are made fegérding the relgtive magnitudes |
of the contributions from various initial angular-momentum states ;h ﬁhév

i production process, This is a consequence of the close similariﬁj, whiéh
is‘discussed below Eg. (2.7),.of the formulas that describe the two

alternative possibilities,
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Section IV, Fhelativistic Corrections

_ Althpugh the expressions given abové are nonrelativistic in form
| they may, if properly interpreted, be applied to relativistié_problems.
The fundamehtal idea is to'épply tﬁe formulas to the proper polarizatio'IB
of the fermionsf 'The prover po;arization is the polarization as cbserved
in tﬁe rést frame of_the particle, and it may Se described by the
nonrelativistic operators. If thg covariant reéction matrix is multiplied
by apbropriate Lorentz‘transformations it acts directly upon the operators
describing the ihitial covariant- proper pélarization to give the final
covariant_proper ﬁoiariz&tion, Specifically, if the reaction is treated
invtbébcenter—of-mass frame, the reaction operator QZ p that directly |

relates the initial and final proper polarizations is given in terms of

the usual covariant reaction matrix Q%Ar by the equation

R0 k) = L0 Ryl kLR
where L(k) is a Lorentz transformation that transforms spinors from.
their values in a frame in which the center of mass (of the reaction)

-is at rest to their values iﬁ a rest frame of the final particle whose
four-momentum is k; the transférmation L(kx') is defined in the same
way but relati#e to the initial part.iclef The part of the matrix Qap
that describes the ﬁ;ansitions between initial and final states having
energies bf a weil—defined maznitude and sign is a reduced matrix of the
nonrelativistic form. Moreover, if tﬁe Lorentz tranéformations - L(k)
and L(k'} are chosen to bé pure timelike15 transformations, then the

: , )
vectors and spin matrices that appear in the reduced (U  matrix

transform under spatial rotations in the usual nonrelativistic manner,
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The nonrelativistic.reaction matrix and density matfionf the
earlier sections may therefore be identified with the reduced part of
'(R b and the pfpper density matrix respectively.l6

If the center—of;masé frame of the reaction is not identicél
with the laboratory frame then there is an ambiguity in the defini£i§n
‘of the vroper polarization, The correspéndenpe described above between
the relativistic and the nonfelativistic formulations is valid §pe¢ifically
" in the center-of-mass frame, and the components of proper poléfization
refer io those rest frames of the initial and final particles thét are
related to the center-of-mass‘frame by the tfansformationsv L(k') or
L(k). In the usual dgfiﬁiiion of<propef boiarization the rest fréme of
the particle is taken to be one generaﬁed by the action upbn the labératoryv‘
frame of a pure timelilke Lorentz ﬁransformation. Iniofderuto obtaiﬁ the
usual proper polarizations:from those prbper poiarizations apovearing in
our nonrelativistic expressibﬁs, the vectors describing fhe proper
' »polarizations in the lattér formalism must be transformed by the seaquence
of transformations that takes them first to the center-of-mass frame,
then to the laboratory frame, and then to the usual fest frame. This
sequence of transformations is equivalent to a puré rotation. If the
center—of~mass frame is the one generated from the labofatory frame bx
a pure timelike Lorentz trdnsformation, then the séquence of the three
pure timelike transformations produces a rotation of the vectors“describing
the proper polarization by an amount specified in Eq. (48) of Reference 16.17

A detailed treatment of the Dirac-particle case is given in that paper.
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Appendix A: Notation

The formal manipulations are mosﬁ easily represented in the
' .18 _ 19
notation of Dirac  and Condon and Shortley. The symbel
SLJ ’
. . . ! t :
<S/.ALm{ S L JM> represents C SSS' SLL, R wk}ere Sij
o 20
is the Kronecker delta and C is the Clebsch-~Gordan coefficient. It is

also convenient to define

R

ls/ue;zf>
where <16 ¢ l L m/>

In accordance with Dirac's conventions we require that

fs/uLm><Lm|e¢>, (A.1)

Y m(6¢) is the usual spherical ha.rmonic.LF

Gy < Gl hE> =<5 P

(A.2)

where a summation over indices that appeaf_only twice is impiied; for
cohtinuous indices this summation is defined to mean integration over the
appropriaté_ranges° Egs. (A.2) will be consistent wiﬁh the orthonormality
properties of the Clebsch-Gordan coefficients and of the spherical
harmonics if thé followiﬁg definitions are made:

S. & s s ,

sst Mp TLL' Omm

<§ fA.L m ( S'A/A' LY m‘j}v-

S 8 S (4.3)

ss+ TLL!

| ]

BLaM[sLiarny

"
00

(s prop | st o #r> - %/w §(cos 6 - cos ef) S(Qﬁ - ).



UCRL-3796 Rev.,
=38-

So far, only spin-angle variables have been discussed. The radial
- - _ REANR O }
dependence could be included by defining

s pegr s pe gy s ozl s u K

f

St SM, °

(N1

3

w7 ST AR ) e T (e')

S5t
(4.4)
where we have used the usual expansion of a plane wave in terms of
spherical harmonics and the-spherié:al Bessel function jL(ki').22 : Fér

consistency, we would then have to interpret the summation over the
o v

repeated index r to mean J r'2 dr and choose

A<S T | gt /Uu rl> SS' §4/x (cos e - cos 8") §(¢—¢') _5_1(_;32‘_'_:_2'_) .

(A.5)

&0

Similarly the summation over k would be interpreted as (277)—3 J 'k'2 dk

(o pilo iy o
(:S//A / st k't7 =

gSS' %A’ g(COSG— cos 8") §(¢—¢') %7/)_3. S(k—/k')

(A.6)
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With these definitions the plane wave ﬁimes 8\ S may be expressed

SSY /,L/,J .

by
<S/*~!S'/*k'>
Gposrlapinsy (spinr]s R
e ey

| ‘ ' : 13
e (o prmn [ 8 > e
| (4.7)

Comparing this with the expression (A.L), we make the identification

o pmmnforprunmncy s 8 8, 8, 8 1T 4 5000
" | (n.8)

Throughout this paper, however, we consider the energy as we;l—
defined; k. and v are the corresponding momentum and velocity (both for
the reduced relative motion). The»redial dependence in the asymptotic
region is then well known, nd the radial and momentum functions w1ll be .
suppressed We shall normallze so that the ket } S/ﬂk L n1:> will, in -
this append1x,23 represent the state with spin function ;};ﬁ& and space
wave function (2k v 2) Y (6¢) 1L JL(kr) 2h The - ket I 6¢‘>> represents,
therefore, a state with a space wave function whose asymptotic form is a

plane wave:
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@ 1983 G lenycenlosy

_\%{_S_L;: i 3 (ket) Y_Lm(e";é') _Y'Lé*(%)

Bend e e . . . (Aog)

2k
= T I

L7 3
The normalization of the radial function has been chosen so that its

asymptotic form is

L r | L ik | '
2k i JL(_kI') ~ i SiL{__ + c.c. . : _(A.lO)

v2 , irve

With this normalization the outgoing flux density (number of particles per
unit time per unit solid angle) of particles in the spin state X/A

that move in the dlrectlon of is

e o |l (e pin 5|

REIAEVICV S l>|

| o pen 5]

s posycspes |y |

P mem>. (a.11)

n

L

Here <S/U~ Lm /> is the amplitude of the state 4 I ) /.LL m> s

. and we have used the definitions (A.i) and
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_ \ » P .
@(}:') = \§><§' . o (aa2)
The dot before < ! , signifies that the sum over the repeated inde;;
}' is not to be performed The operator @(JE ) will be referred
t

‘to as the projection operator for the state labeled by the 1ndlces f .

For the discrete parameters,

. ' ' .
gD = <@<§)> | (4.13)
is the probability that the sjrstem_ will be fouﬁd in the state labeled
by f ', With our normalization, it is also phe‘ outgoing flux in this
state. The total outgoing flux density (i.e., summed over spin states)

in the direction 6g is

1(ef) = <<SZ'_;.@(S,A,9¢)>

- G ['S/*”>°<Sf*5¢/]>

: <[}e¢> <e¢ I]>

z <G>(e ¢)> . | | | CED
tne progection operators (') defined sbovs are theratore of

fundamental significance; their expectation values <@(§ ) > are
interpretable as probabllltles and flux densities in the manner Just

described. The expectation value of an arbitrary spin-space operator A,
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if the measurement is made in the beam emerg:mg in the direction 6@, is

<0°(e¢) A> /B> - (4.15)

The phy51cally measured quantltles are therei‘ore dlrectly related to
expectation values of the form <@(6¢) A >

In the above, we have considered systems represented by pure-
‘states. _The treetment of statistical mixtures of states will be considered

in Appendix B.
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Avpendix B. Density Matrix and S Matrix

In the treatment of polarization phenomeha; it is necessarj to
" consider statistical mixtures of stétes, Statistical mixtures are
conveniently described by a density matrix Hfﬁ .

Consider a mixed state, i,é,, an incohérent superposition qf
pure states , B :> with statistical weights Wp. The expécﬁation |
value in the mixed state of an arbitrary operator A is then the weighted

x> = Zm~ iy <?.v PRI <¢m el >
-2,% w15 12|
- <\7|6L| ¢>w <¢ 0>
= <y2[aZ W )¢><¢ |vz>
{nla P'*z> <q!a«m >N le|q>

s(Ae) S (8.1)

bt

where we have defined the density matrix as

SRS EO TR

and the symbol Sp means the diagonallsum,_which may be evaluated in any
representation. The density matrix is regarded as defined by Eq. (B.1)

rather than (B.2).
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The dynamics of the reactions that we consider may be represented
by a unitary operator £5f7 defineéwpy | ‘\iféf:> ; sz7'q)i;> . Here
' \ MP> and l LIUf> are eigenstates df an unpertﬁrbed Hamilt.onian
and represent a pure state before and after the 1nteractlon respectlvelye
Such a unltary transformatlon also changes the den51ty matrlx that

describes the 1n1t;a1 system into

——

.= L e, L .~ 6

where the bar denotes the Hermitian conjugate. - The effects of the
reaction’afe;contained in the difference of the final and the initial

states

[y> = }%> 3- \\71/1> - (J;‘n ] $i> = Y. >
o | | (8.4)

In order to obtain the dehsity:matrix that‘describes the reaction products,

we express the Qf‘ in terms of the 62 operator

it

e = (-1 R) et +1R)

e -1®e + ipi--@ +@\Qi@ . (3.5)

v According to the interpretation of <;CP( 1) :> ; as given in Appendix A4,
‘the final flux density in the state l ¢aj7' is; from_Eqs, (B.1) and

(B.5),
Y2\¢><¢ leflvp <Ql¢><¢ L e "l>v

ygl%> < 1[@e-eRTID
+<m¢a ke IRe R (>
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°'<¢a lef\ ¢a> = °<¢a \ (Ji \ ¢%>’_ i"<¢a,[_@Piv—' Fi@-—]’¢a> v

Fodnl® ey Rlgd '
- "<¢a \ Gi l ¢a> - i’< Pa ‘@Zm W \¢m><¢m ‘¢a>'

tie {4,

Zm,7>?wm|¢m><¢m ’é—e‘¢a> |
AR v ) 05<0, \&Wa) .

| = ’<¢a , pi ‘ ¢a>“" .iwa/[.Raa -Raa*J _+ Zm wm\ R:3.rn\2 -

(B.6)

The last tgl_'m on the right-hand side of the above eq}uation is the flux
density in the finél state ) Qfa > due to transitions from all initial
states.  We shall therefore define the density matrix for the reaction

products as |
er = ® Ps @ - | - B

In order to interpret the second and third terms on the right-hand side
of Eq. (B.6) we shaf]_.l make use of the unitarity of the S matrix:: We

have the operator equation

Jj: 1 = (1+ iC—R)'(Z_L—i(R‘.’)»; 1+i-@-’i@+@@ ,
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which yields _ _
1(@ - @ ) = G—e, @ ' )

or, in matrix notation,

' ¥ Ao 3 s
i(Rmr - Rn.’n ) = (@. R )rmg = B B - (B.8)
If we choose n = n' and the state ' ' ¢n‘> to represent a plane wave,

then Eq. (B;S) merely.states that the imaginary part of ‘the forward-
sc'atter‘i'r‘}g'bamplitude is proportiohal to the total cross section. The

expressior_ivin Eq. (Boé) now becomes

TSN IATS R R AT W
-t Tﬁ" ‘Wm , Ram'2

| | (8.9)

- The physical interpretatién of.this equation :‘Lé clear: the fi_nal fiux

~ in the state , ¢a > , is equal té the init‘ial'fllix in ’ ¢a > minus
the flux-due to transitions from ’ ¢a- > into all possible final states
plus the flux due to transitions from all initial states into ‘ ¢a> |

If the amplitude of the svtvaté | ¢a.> in the initial system

is zero, we have

e Pty = o< Pl B S
If this amplitude is different from zero, the interpretation of Pr
the density matrix for the reaétion products is still correct; the

quantity OSp ¢ ¢ is, however, no longer the. total flux in
allr. | =% ,

the state . l ¢a>
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The density matrix that_repfeéents a plane wave riormalized to unit
flux density and moving in the direction  (8'@') is, with our normalization

~conventions, represented by

2 o | |
e, = (2I) Q(a'g) Ule'd) , a0

kv
where QUB'F') 1is a spin-space density matrix with unit trace that
describes the‘spih—space characteristics-—polarizatidﬁ in the general
- sense--of the system. If the initial system is a plane wave moving in
the direction '©'¢' with spin characteristics described by W , then

the expectation value in the final state of the operator (e@)A is,

according to (B.l), (B.7), and (B.10),

: : ) E S
(P = (ZL)" s Popy a RE6'g) Ue'sH R
o ' (B:11)
Because,‘with the assumption of rotational invariance, J is a constant’
of the motion, it is convenient to express the spﬁr in the J repre-

seﬁtation. Thus we write
’ (B.12)

Sp.@((eﬁ) A @?(e'gf')%(e%')&i— |

CIRARAR o I‘.@(e;d) AlsLyg MH>LSLIM [@ [ sr1r g My

w

<s' Lt J' M j@.(e'ﬁi,‘) Ue'g) | s" 1" J"
. e
<Sm .Lm JM MM }G-E, I S" Ltlvan‘ Mn >

i

<S" Ln}Jn M }@ (e¢) A }'S LJ M> R;L;S'L'

gn’
R

.y (Y 11 S »
x <s' L' J M ]@(e g yue'sg") ] s* L7 gvwr > S 1Y
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Here we have used the fact that vde is diagonal in..J .and- M and

- 27 28
independent of M to justify the abbreviation

J

SL;SIL! S 5MM' R (8.13)

{(s519n | R | s L'AJ—' M R

and the definition

<§‘ o | §/> : < §=/ | 5{,/ §;>’* (B.14)

}to write RS”'L"';S"L" = RS"L";S”’L”/

' Because the matrices A:‘aﬁd
: ZL(éﬁ) are square matrices, we have sn - Sr and S” - s';' S8t and S
‘aré thefinitial and final spin quantum numbefs, which wé'aésume £o be .
fixed. The matrices A and 24 (6g) méy Be expanded in terms of the
basis matrices ka, It is sufficient to consider the A  to bevthe
various possiﬁle >?a .

For processes in which the initial system is not represented by
~a plane wave, a different Pi is used. Tb‘represeht processes that
that are initia%ed from an incohererit mixture of orbital angular“

momentum states the appropriate Pi is

€1 =j Z’L; thm- Cam | (B.15)

where GD(L,m) = l I,nlj>°<fL m l is the‘projection operator for

the state | Lm > " and W, is the probability that the reaction
3

initiates from the state »\ L n1;> .

The spins‘ S and S may be considered fixed in many problems.
. d » .
The reaction coefficients RSL‘SWL' “are, in these cases, abbreviated
J . ) R -9 ] .
by RLLQ : o .. :
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For the decey process, the formalism is agaiﬁ changed only by a
cﬁange‘of the incident densitj matrix. Because there is no orbital part
of the state of the incident particle; the density matrix Pi‘ becomes
simply 7WU. Then J = J = S! ‘and the indices L” and L' drop out.
The reaction coefficients ﬁay therefore be abbreviated as RL.i Thie |
-abbreviation sufficies to distinguish the reaction coefficients (i,e,;
the R's) of the deeay process from those of the pfoduction proeess.

It is sometimes convenient to consider the reaction matrix

explicitly. That is, Eq. (B012) may beAexpressed in the form

sp (P (e9) A@@(e g )‘Me g )Gi

<s/uLm \e¢> <e¢ ]A@\@ ¢><e ¢}%(e ¢)@|5/-<Lm>

Hi

(s pue g | A G{l\e’ g'><e' g | W (e’ ;zj')@ | S/*M}

(B.16)
where the symbol Tr means a‘trace over the spin variebles (The symbol
Sp is a diagonal sum over both spin and orbltal varlables ) The operators
A and ?4,(8 g' ) are matrlces with respect to the spin varlables alone
and are scalars with respect to the orbital partvof space. Thus the

above equation reduces to -

sp Ped) a® e gy (e ¢) ®

- tra® (e g; o' #') Uo' ¢')@ (e' ¢'s o &) , -~ (Ba7)

where we have defined the spin-space reaction operator
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Reegse ¢ = (og |R |8 > . . © (B.18)
This spin-s;;ace i’eaction operatorv is a matfix between the initial and
final spin spacés. " If s ‘7-"‘ St, »t,he".matrix is nonsquarev.‘ It may be
expanded in terms of the 'T?gQ defined in the text, which are also
nonsquare if S F S'. The matrix elements of 02 (6 g; ' ¢') are,

>accqrd'ing to 'Eq., (B.18),

\

.<s/<49¢/.63, | s' ' e ¢"> =

1]

<e ¢) Lm ><S/ML m.V] st ird MV>I<S"_ " J M ’@ ’ »s’” L_W Jt Mv>-

x < s 1 g | st L m'>< L' m! }Ve'-¢'>

m S g S'L'J mt¥ _
: [P a |
e (/;L«mM Rsnssimt %'va e (g .

il

(B.19)

Using the pfoperties of the Racah and Clebsch-Gordan coefficients
(see Appendix C); we can reduce this to the form given in Eq. (1.11) of

the text.
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Appendix C. Sums over Maggeﬁic Quanﬁum Numbers

In the calculation of angﬁlar correlation and polafization effects,
Summations over magnetic quantum numbérs of products of Clebsch-Gordan ©)
'coeffiéients have t§ be pérformed; Thé évaluatibn of these sums is greatly
simplified through the use of the formalism developed by Racah and Fanb.29
The Racah coefficient W lis in faét a parﬁiéUlaf sum of the product of- ”
four C coefficients, while the Fano coefficient X is a pértipular sumv
of the product of three W coefficients. In_the derivation of the
formulas of Section I, we shall make use of the various relations involving
the €, W, and X cdefficients and their symmetry properties.
| Somg of the symmetry relatiéns of the C coefficients éfe, as
given by Racah,3 | |

abe bac-
a+b-c Dbac
(-1) C(SG{Y

( )a-w 2¢ +1 2
-1 c T e
<2b+1> A ¥R
, 1

btg 2 cba
(-1) (20+ 1) o4

2a + 1 ‘&ﬂ -4
(c.1)
~-They obey the .sum rule |
abe ade | . v .
> ¢ ¢c .. = 22t1 § § : (c.2)
<y SPf¥  «8¥ 2b + 1 bd BS

The orthonormality of the.tensor'operétors defined by Eq. (1.2) follows

from (C.Z):v
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Q-q! o
Tr T T?;? = Z/ <SY /LA ’ T Q l S"/M"> <S"/¢(" } Q ’ 51 /(,(>
el
| l ] v
= 2at1)’ P [t 1 : G
e\ 1) _/4//23_/" 28+ 1) #):/J
b SQQ' é;;)é/

~The W coefficient can be defined by the relation

[(
[

- W(abcd; ef)

26 + 1)(2f l)_] cedcv def ‘Cafc
© t »ﬁé °<§e eSx B84 Py

abe edc bdf afe
e+l)2f+l)] ‘

g

. Their basic symmetry relations are

W(ba

 W(abed; ef)

- e+f-a~d

(-1)

i

(-1)

They also satisfy th

S7 (2e +1)(2f +
=~

W(acdb; fg) = %

W(ax bR c ¥) Wdy

X

de; ef) = W(cdab; ef) = W(acbd; fe)
~ W(ebef; ad)
e+f¥b—c |

.W(aefd; be)

e three sum rules

5

1) W(abed; ef) W(abed; eg) = ng

a o - :
(2e + 1)(-1) W(aefd; bc) W(aege; bd) ,

e,/e,;f‘a’) = > (22 4+ 1) W(dAc; af)
A : _

W‘(bll@f; ec) W(dXX¥b; ae)

S Yus B Ypas

(c.3)

(c,u)l

(C.5)

(C.6)

(c.7)

i
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Equaiions (C,A)PH(C.S), (C.6), and (C.7) define the W coefficient

-completely, except for a phase. Equatioh (C.5) can be put in the

equivalent forms

def W(abed; ef) ,[(2 l)(2f‘ : -% - abe ede afec
‘ . _ 1) -
£8 abed; ety = e+ Ljlete l)] % C«/s 2(+/SS E(ﬂ+8
‘ (c.8)
abe edc ' v% bdf afec
c c = Z[Ze +1 2f'+l] c C W(abed; ef
‘From Egs. (C.8), we obtain the further relationship
:E: abe dce dfg _gah -
¢ C % C_ . =
8 9B Se+p n=-§ N4«
_ ‘ " btd-etf-g <— ok bk
= [(20 +1)(2g +1) J% (-1) 2_. (2k +1)(-1) c°
fkh 3 : '
x C'? bk W(abde; ck) W(ahdf; gk) .~ (C.9)
It is also convenient to define the particular combination
fic-a : ' %"aCf
Z(abed; ef) = i _[(2a-+ 1)(2b + 1)(2¢ + 1)(2d + l)J COOC W(abed; ef).
" (€.10)

The Fano ‘XA coefficient (also called the Wigner 9j symbol) is

defiﬁed by
abec | | |
| a | ,

X [def]| = (-1) > (2X+1) w(bdeg; Aa) W(bdhf; Xe)W(egths; 11)
i _ . _ !

‘X(abe, def, ghi) - (C.11)
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where o = at+ b ...+ 1 = integer. ‘An odd permutation of the rows
or columns of X’ ._mu]_.tip_lies it by (-lf_ 5 and é reflection in either
of the. two diagonals leaves :-'it invariant. |

Some of the spec1allzed formulas in the text can be obtalned from

(l 6) by settlng one of the arguments of the W or X coeffic:.ents equal

~ to zero, B : Ly
1 : :
W(Obcd; ef) = - [(Zb + 1)(2c + l.)] * ‘§bé Scf 5
) | o R (c.12)
X(Obe, def, ghi_) = [(Zb + l)(_2& + l)] _% w_(bh_fd; e:"v.“) ‘gbc Sdg‘ o

We shall now use the above eXpressmns to derlve the general

formula (1.6) in the text. The quantity I(6 @) will be defined by31

T(eg)of

;(s;]ém - sp [@cem T <S>€ ] = o [P ioke e/

(c.13)
From the definiﬁion of the spur and the expansion (1.3), this is equal to

N<S"L"J'M' le¢><6¢,T (S))SLJM> SL3S'L!

<s* L' J M } o' g' <o ¢ }0{ (st o' gnyT ,(sv))s"’ 1_.”'2 J-v_Mv>

Ji¥

"

RsuLn os’// L

(E_qﬁatj.pn continued)
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- N _29;’.'_1. E E , | | E g Y ( og)
- : 1T ¢ " "

. (28 +' l LL 1 L"L//I JJ (] SL S L SL" S ! L : ml m"m/// .

Q' 28"+ 1

xY(ecf)YL, “o') L,,,(6¢) ZG{ s, e¢)(?~Q'+1>

SL"J 59 SLJ va','J oswQrstt g g
xﬂ/_(//w//uw 94("111"M' /“5/"'// /,,mM /utmuM (zbdk“l/“’t// C/w” m' M

°

MM

The product of two spherical harmonics can be expanded in a sum of
* spherical harmonics:

, 3 ! PL L M
(e¢) v, (e¢) Z (21 t 1 (-1)2 c(foo cﬁ,;}n{ 1. (eg) .

Substituting this expression into the previous one, we obtain

I(eg) %, (s, ) =

3‘7 . Jg'*
= Bsnion Remngsin#
AW/ 28 + l L'L"Lm JJy SL;S'L . 2
roo : LN < LA LY L
X '[(ZL' + l)(-2L" + 1) ]% -1)L e : 15\) (9 g') Co00 000
' AN
' f
N 2 Q(Q (s, o ¢ ) 2 +1 + 1 CSL"J' .GSQS CSLJ .CL':/\L
QY 25 F 1 mn/,{ MY Mg Ml Tmtm
/U\"MM'
StL1d S'Q'S' SILMJr . LiaLY
X

m'm”’ C/“ m'™M /‘"fé/*/// C/“mmva Cm')'.mm
pija |



'U’CR’L*-TB"?% Rev.
=56~

" The last two sums can beé eyaluaied with the “help of Eqs° (C.9) and (C.11)
to give the expression on the right hand side of Eq. (1;6), If N is set

.equal.to (zzf/kin)z; then‘EQS, (B.11) and (C.13) give
T NG E A N (0.14)
From EQ;; (C.14), (l,h), and (1°7)}>one ﬁhen obtains
RGP C

This justlfles the 1nterpretation of I(e@) that was given in the text
(see also Eq. (A.14)). | |
" For an unpolarized initial system only <X (S' e‘¢')‘ is different
from zero. Eqgs. (C.12) and (C.10) can then be used tO‘reduCe (l'é) to (1.8).
‘ When the initial system is an incoherent mixture of various
orbital angular momentum states, as described in Section I, the c( Q(S eg)

that describe the final system are given by

1(00) c(lf(s,oo) = Sp [G‘(efﬂ R 2L X L @J
Lt 28'+ 1 2L'+ 1

- N(2'S',+‘l)—l (ZQ*'l) > . R RJ* ' "L

s+ T = Fangsin SLM;S'L'  Zri+ 1

SL"J | SQs SLJ
X Z Y (6¢) Y (9¢) /%ﬂ-‘ 'm'M /{4%/4 MM

‘ 0 - . .
. By choosing the z-axis along the,direction_of the outgoing particle

(6 =@ =0) and using (C°8), the_abbﬁe expreésion}redu¢es to Eq. (1.9).
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The X 's that_deScribe the final system of a decay {nteraction
c¢an be obtained from Eq. (1,6) by conSidering only initial S states
.(L' =LY - 0). Equation (1.10) then follows from (c.12).

The interpretation of the formulas of Séction Iis simplified'by
gxpressing them ih Ferms of the phyéical parametérs pf the particular
problem. Such expressions are given in Seétion IT for processes in which
the initial and finai states consist of one particle of spin O and one
particle of spin % or 3/2, and for the éubsequent decay of the fermion
into one spin-g and one,spip-o_particlé,

: In order to obtain the relatiénship between the coefficients of

Eq. (2.1) and those of Eq. (1.11) we need merely note that

1 1

') = @7 &,

— 1 o | (C.15)
L®+T, @) - 1o »

Ty - = s

' wherg the S are the usual Pauli spin matrices. We simplified the
evaluation of the expression in Eq. (1.11) further by choosing the
incident direction to lie in the xz-plane with ¢' =0 (i.e., ,EJ X 5;: -y).
This chéice gives

S

(2_7" o) - @7 803, 00)
k! : o

=

-1 | 1 1 ’
. (27 : g(e) %" [al (%, OO) - a—l (%) OO)] s
k! | '
(Eq. C.16 cont.)
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-1 a1 S
-2 1
(‘2{—7) h(e) = (2) 7 a (%, 00) K
B U S SRS W
_ZZ) ni(e) = - L a3, 00) +a (3, 00| .
k! : 2
: (C.16)

For the case in which the initial fermion is a spin-% pérticle v
- and the final fermion is a spinf% particle, we introduced the quantities
~ defined by Eq. (2.10). We can correlate the coefficients of (2.11) with

those of (loll) and the coefficients of (2.13) with those of (1.3) through

the relationships -

' -1
B Gk 7/ [gl(e) v M) + hl(e) Y

1.3
ab (,2-, 00) =
+‘h2(9)Y (K')]
a):(i, 00) = F(Z ) {W [g 01,7k, K)+ g3<e>Y “, £
F gt + rEnimn Fnerfux]
(€.17)
and

o, G 0 = {4l b(6) Y )
z}é_sll .[c(e)xz"(g{,rg) + o1 (O),) (K1) + ()7, (k'K |

| e - -
JAT [d(e)YB' (LEK) + ' ()L, (LK,K!)

| .
+ (015 (LK K )]

2.3 |
e(/b (-2-9' 00)

Y, % )

(c.18)
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where the Y's appropriate to our problem are listed in Table III. It

should be remarked that because the Y's are linear functions of each

argument and jgf' = cos 6z + sin © x , the following relationship holds:
YQ?(;”, K1y o) zeos 8T, 2, 1) + sin 0 1L, x,

(C.19)
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| TABLE III

|2 ' . , » '
Values of YN (}51,,” -EN) functions. Uppermgst value is_for u:)g‘» = 0,

lowermost for , /C, ’ = N. Upper sigﬁ is for I, = + Hﬁl, lower for

£ - -]k
g - o , o 1
pL: Py = v - |
3 -~ / i 3 »l ~,
| vl 0
cos 8
S
+ — sin 8
72
0 0
[ o b 2
LT Y, (WKK) = A LT Y. (NK,K') = \ _i cos ©
T &l R ¥ El
0 _;.iz gsine
O .
0
A YB/C(N,K',,K') = | i cosge- i sin“ @
7 B 13" 473

Ii"/-g— cos 6 sin 6
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TABLE IIT —- Cont.

, ‘ 1
{é»l v Mep) = o
5 2 e~ :
. ) ’ YQ .
‘ ' cos © < v
| })%7_”_ Y, (K,K') = T %—%ﬂlsin.,e

0

'/cosz 8- % sin® 6

- L7 Koo . ,{'3""/ . :
—g— Y2 (E:,Ej) = [ F I3 sin © cos 2]

:I(%. %  sin2 o

(@]

LI YZK(N,Y) i3
5 R Al 2 |2
0
{EYZK(N,K ) = Ji 43 cose.
5 ~ 2 |2

sin ©

W
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Appenduc D Inltlal— and Flnal-State Interactlons, T:Lme Reversal, and

Space—Tlme Inver31on

J o o
The matrix element R was. defined in Aopen‘dix B: as
SL;S'L!
<SLJM ' @ l 3¢ LY JM>,where the ba81s vector \ SLJM>
SLJ
represented the state with the wave function (2kv™ 2)1 (kr)%M Y (GQS)}/{q .

This d.efinition' is appropriate if the unpeftﬁrbed Hamiltonian .Ho is the
free—particle Hamiltonian., Ir Ho: is a moi-e general unperturbed
Ham:thonlan, the tads vectors should be defined as eigenstates of this new

H Con51der the generalization to a case in Wthh H, again commutes w:|.th

o°
the orbital angular momentum operator 'But may be identified with‘ the free-
field Hamiltonian only at large. radial d:fustamc:és° A definition of

: ' S/LAL m> that is suitable in thi'sv'case is obtained by replacing in
the above definition the spherical Bessel functlon JL(kr) by fL(kr)

a ]c'eal32 solutlon of the (new) unperturbed radlal equatlon for the . e:KLgen—
value L. The normallzatlon of fL(kr) will be chosen so that at large r
1t a-pproaches' (kr)-, sin (kr - 7/L + g ) The outgoing part of the |
asymptot.lc wave functlon in the spin state /'Z/A is then given by

e
(ir vE) 1 exp(ikr) el_ L YLH_l(e;;d)(s_/u Lu |y

-1

i

)

(1r v

- ié .
e>‘<‘p(i.1~.:.r:) e L <6 g | L m>< S/ML m‘l>

(1rv)‘exp(1kr)<6¢!Lm><S/~ALm‘ >

e A eptar) Ss pog [0 L |

i
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where in the last line Si‘ is considered to be an operator (i.e., in
Dirac-notatien SL.\ Lt nﬂ';>, = l L' m! :> S;”). .Tne notal ontgoing

flux density becomes, therefore,

1(eg)

2 | <_S/*e¢'1«=éi S )

Sh

g <l Lls#e¢>§

| .S 418
= (e L@wme Ly

oy

(D.1)

ioec; the operator whose expectation value is I(ef) becomes

f~ig +18 ' . s
e @(Gﬁ)e L',, where theprime on @(6525). = , e >°<6¢ l

signifies that the basis vecﬁorsirepresent the states whose wave functions
have the radial dependense fL(kf) v Sunllarly, the form of the incident

| den51ty matrix depends upon whiether the basis vectors represent states
with wave functions having the radial dependenee fL(kr) or jL(kr)°
In'particnlar the densiﬁy matrik representing an incident plane Wane of
unit flux density moving in the direction é’¢' ‘s

L \2 418 as
e - (skz! o L opte'ge Tue') . (0.2)

In this representation, where the basis Vectors’areveigenstates of the

generalized H_, the matrix element -<LS LJM I GQI) S'' L' Jd M:} is

[eXd

Jd : .
denoted by R'SL STt If the initial system is a plane wave moving -
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~in the direction ©'@' with spin characterized by U, and the measurement
is made in the beam emerging in the direction g, the expectation value
of a spin space operator A is then

o P epe Tay s - |

2 18 #18, 4§ PR .
= (2Z) @G;.Le@@e%LAﬁe;Iv%§Wki YU ® )
L SL" —iSL :
(&kZ'f Sp(é’(emAe, X <e¢)%<e¢)e RBe ),
| | | (DQB)
where use has been ﬁade of the’identity.'Sp(BC) ‘= Sp(CB) ~ and- the fact

that A and U ,are scalars with respect to the'_orbit,al--pa,rt._éf"space°

. The effect of ‘the; initial~ -and final-staté interactions is therefdre to

‘replace RJ ~ in the formulas obtalned with the free—partlcle
SL3;S'L? 8 3 ‘ S .
‘ i g i
Hamiltonian Hg . by e R SL3S'L! e ,‘ Thus, for the case in which

the unperturbed Hamiltonian 1ncludes initial- and flnal—state 1nteract10ns,
| that appear in the varlqus equations

J

SE°S'LY '
. . ’ . iSL J igLi
in the main body of the text should be 1nterpreted as e Rt SL S'LVe .

The fundamental consequence. of the requlrement of invariance under

the unprlmed quantltles

time reversal is .the equallty of a matrix lement of the 2%7.nmtr;x and
the trénsposed matrix element between time-inverse sﬁétes " The time e
'iriverse of the state Vrepresen_t‘ed by - I S /A L m > ~ 1s the state

S=paL-m

represented by (-1) - ] S ph L. —m>_l° The factor (~l) is

~'part of the deflnltlon of time reversal for a spln state 33 ;Thef(nl)
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comes from ﬁhe complexfconjugation'of-the space'part of the wave function and
: o
the relationship YL =

Gordan coefficients, the states represented by

—S'L'JM> 's/uLm>:<s/L,\L'm}"SLJ.M>

‘have as thelr tlme inverses the states

(-1) b4y m From the properties of the Clebsch-

1 Septlem. o -
S s ey - T s

[}

J-M - ,
‘ls - L '-m><S -/,(L -—m' SLJ-M>

(—:L)J_M f SFL_J'~M> .

The above—méntioned equality of the matrix elements then leads to the

symmetry relation

d

-
SL3;S'L!

<s L_JM‘ ]GH 5! _L' J'M>

' 2J—2M

<S'L'J-MIRISLJ-M>

'J
R
SPL';SL

Th t .
e same relationship is true for RSL 2SI |
A second consequence of tlme—reversal invariance is obtained if
‘the reaction is considered to be first order in the interaction term.
In virtue of its unitarity the .ﬁd’ matrix méy be expreséed as

adp = ?{ y(1 + 17() s where 7{ is a Hermitian operator.
To first order in }f we have = 1(Qﬁ7-— 1) ~ 7( . To this
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order the (R operator is Hermipian; and, owingvto the symmetry property,
s 2 .l 2
its matrix elements RSL;S'L‘ are real The RSL ST ,:though symmetric,
are not real in general, ' ' '

For the consideration of theiconsequences.of invariance under the
product of time reversal and space inversion, it is convenient to remove
the factor of iL in the definition’of the basis vectors Then the space-
‘tlme 1nverse of the state represented by / S M Lm ;>
' ' S =+ L-m
e (—

state--the product of the 1ntr1n510'par1t1es'of the elementary particles

) S M L —m> , where e is the intrinsic parity of the

that.are_represented‘in'the State, The reaction matrix‘elements'in this

representation will be denoted by R"SL S If the interaction is .
1nvar1ant under Space—tlme inversion these matrlx elements satisfy the

wd J ‘
symmetry pro ert R .= e'™p" e here e' and e are
JHMELEY PYOPEILY & gresint =% % gipigst > Where : .

the intrinsic parities of the initial state and final state respectively.

If the reaction is cOnsidered only to first ordervin'the interactioh,

the’ Herm1t1c1ty of the R matrlx, together with the above symmetry property,
*( ud *

.
R SL,S'L') e -

glves the reality condltlon R' e

J -
SL;S'L' = |

When expressed in termsyof-theiamplitudes of the basis vectors
Just introduced, tﬁe observable'quaoﬂities must be representediby new
functions; 4Arguments analogous to the ones_used.iovthe case of time
reversal lead now to ﬁhe identification. |

R'SL;S“L' = °Xp 1‘( SL - —72—1'- ).R SL3S'L! . exp l(SL" + —-2—771' )
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| o X sos -
<S' l T (S) ls" /un> 29 +1 ) (344”,(-;/0’ SSS‘ SSS"

-.zs'+ 1/
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