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POLARIZATION AND ANGULAR CORRELATION 

IN THE PRODUCTION AND DECAY OF PARTICLES OF SPIN i AND SPIN i 
* Richard Spitzer and Henry P. Stapp 

Radiation Laboratory, University of California 
Berkeley, California 

July 1957 

ABSTRACT 

A general formalism describing the angular correlation and 

polarization effects in the production and subsequent dec~ of particles 

ot arbitrary spins has been developed. It has been specialized to the 

oases of production and decay of particles of spin ' and t· Expressions. 

for the angular distribution and polarization of the decay products have 

been reduced to tractable forms involving the physical vectors of the 

problem and a minimal number of parameters describing the production and 

decay interactions. The results are discussed for two particular 

production processes in order to determine what information on the spin 

ot the hyperon and the production and decay mechanisms may be obtained 

from the analysis of the decay products. 

This work was performed under the auspices of the u.s. Atomic Energy 

Commission. 
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POLARIZATION AND ANGULAR CORRELATION 

IN THE PRODUCTION AND DECAY OF PARTICLES OF SPIN ~ AND SPIN ~ 

Richard Spltzer and Henry P. Stapp 

Radiation Laboratory, University of California 
Berkeley, California 

July 1957 

Section I. Introduction 

The angular distribution of the products of decay of a hyperon provides 

information regarding the hyperon spin. If this spin is one-half, then the 

probability that the direction of the final nucleon will lie in one of the 

two polar cones ( I cos ® / > i , where ® is the center-of-mass 

angle between the hypero~ velocity and the final nucleon velocity) must be 

exactly one-half. On the basis of recent measurements of the angular 

distribution of ~ -decay products the probability that the spin of the 
1 . . 

~ is i is 5%. In view of this indication that the spin of the 

~ may be greater than is it is of interest to determine the detailed 

consequences of larger values for the hyperon spin. The purpose of this 

paper is to examine the correlation between the direction of the nucleon 

emitted in the decay· of the hyperon on the one hand and the directions 

defined by tho production process on the other hand. The polarization of 

the final nucleon is also treated. Some general formulas are quoted in 

this section and are applied to the case of spin~ particles in the 

following sections. Same analogous results for the spin-i case are given 

for comparison. We use an apparently nohrelativistic formulation, but the 

results may be applied to the relativistic~e if appropriate interpretations 

and corrections are made. These are discussed in Section III. 
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In the analysis of polarization phenomena statistical mixtures of 
. 2 

states must be consider~, and a density me.trix formulation is convenient. 

The spin-space density matrix U (e¢) is defined by the relation 

<A) e¢ = Tr A 'U.(e¢) (1.1) 

where ( A) e¢ is the expectation value of a spin operator A if the 

measurement is made on a particle in the beam moving in the direction e¢. 

The matrices A and . U (9¢) are square matrices of dimension (25 -f- 1), 

where S is the spin quantum number. It is convenient to introduce a 

complete orthonormal set of matrices in this space. We use the matrices 
. Q 3 
T(:. defined as follows a 

= 
( 

2Q 1)! 
2S' : 1 . 

S" Q S 1 

c;t' ~~ 
(1.2) 

= 
~ 

( 
2Q +- 1) C (S e JA.e' J.A'' ~ ) , 
2S I t- 1 S 11 Q I I 

where the six-index symbols on the right are the usual Clebsch-Gordan 
. 4 . Q 

coefficients. The matrices 'l'.t are real and their hermitian conjugates 

~ are their respective transposes. B.1 use of their completeness property 

the U(e¢) may be expanded in the form 

'U(e¢) . = 
-Q Q 
c< k. (e¢) T~ = (1.3) 

The coefficients O()t, Q(e¢) . and C( :(e¢) defined by the above equations 

are complex conjugates owing to the herm:l:ticity of the density matrix. In 
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virtue of the orthonormality condition 

Q -Q' 
Tr T T 

~ A::.' 

the . C(:(e¢) and ~ Q(e¢) may be expre~sed as 
~ 

Q 
or ~ce¢> = 

C( ~(a¢) • Tr U(e¢) T~ 

(1.4) 

(1.5) 

We shall be interested in processes in which the initial states 

e ' ' ¢' ) are described by the spin-orbit variables (S , )A , 9 , · and the ,.final 

states by the spin-orbit variables (s,,u,e,¢). The spin-space cha;-acteristi(lJ 

ot the initial system will be described by the ooe:f.ficients . or/::' (e'¢') 

and the .firial system will be similarily described by the coefficients 

. ~ ~(e¢). I:f the initial system is a plane wave moving in the direction 

' . f . Q ¢ e ¢' with a spin quantum number ... S , then the parameters . 0():, (S, 9 ) , 

which describe the spin-space characteristics o:f the rea_otion products 

that emerge in the direction e¢ and in the· state with spin ,S, are given 

Q1 I I I 
in terms o:f the parameters o( )(,' (S , e ¢ ) , which describe the spin-space 

' 5 
characteristics of the initial plane wave, by the equation 

~ J Jl * 
I(e¢) O(:(s, e¢) = 4~ ~ . 2 _: RSL;S'L' RSL";S'L"' 

" LL I L"L''' JJ' 

(2J + 1)(2J 1 t- 1) [(21 't 1)(21' _,..1)(2111 -t-1)(21111 + l)ji 

~ A ),
1 

L L"/1 
x L.__\ YA (e¢) Y/\' (e' ¢'>·co o· o 

;1 11' .A)' 
(Eq. (1.6) cont.) 
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Q' 1 
~ (S I 9 1¢ 1)(2Q 1 + 1)~ 

X,' , 

2 1\ z Q 
(2Z t-1) c A ~ ~ 

x X (L" L A , J' J Z, S S Q) X (1
111 

1 1 ;\1, J 1 J Z, S' S' Q1 ) • 

(1.6) 

6. m 
The X coefficient is the one defined by Fano, the Y1 (e¢) 

4 J 
are the usual spherical harmonics, the RSL;S'L' are reaction matrix 

"' 7• 
elements determined by the f!pocific nature of the reaction, ·and the. 

coefficient. N is a normalization factor. It the initial fiYStem is a 

plane-wave state with momentum k 1 , and N is taken as (2~/k•)2, then 

I ( e¢) is the differential cross section (see Appendix 0) • The value of 

I(e¢) may be determined by the condition (implied by Eqs. (l.l), (1.4) (1.5) 

and. the requirement that the expectation value of a pure number is equal 

to that number) 

(1.7) 

0 
If the initial system is unpolarized (i.e., only o<

0 
(s•)e'¢•)-~0), 

Eq, · (1.6) reduces to · 

! 

"'· 
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Q r:::1.. (s', e•¢• )N 

x0(e¢) O(~(s, o o) = __ o_----l~ 
(41!' )3/2 

LZ 
LL'L"L''' JJI 
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Jf * 
RSL11 ;S 1L111 

~ 2J 1-J-S' + L11 

[ (2J 1" l)(2J 1 't 1)(2L +- l)(2L" + 1) ] (-1) 

L L"/\ 
c 
000 

X 
t'" -L'- A I 

X (L" L 1\, J' J 1\', S S Q) ( i) . Z(L
111 

J.• L' JJS' /\•) 

(l.S) 

where for simplicity the z axis has been taken to lie along .the direction· 

ot the outgoing fe~ion. The Z coefficient is the coefficient defined 
a 

by Blatt and Biedenharn, 

In addition to processes in which the initial system is represented 

by a plane wave, we shall be interested in cases in which the initial 
' ' 9 

state is an incoherent mixture of various orbital angular momentum states. 

It the probability that the reaction is initiated in a state. of orbital 

angular momentum L is WL , and if there is no preferred direction for 
Q 

the initial system, then the c( )t:, (S , e¢) describing the final system 

are given by 
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/ ----

Q 
I(OO) of (S, 00) -

K, 

N ,_ 
4rf (2SO f 1) 

J* 
RSL'' ;S 11' 

WL' 
(21 1 + l) (

2J +-1 )i 
2S + 1 

Q-L-L" 
x ( i ) Z(Q S 1 11 J; S L) , (1.9) 

where the zaxis has again been taken to lie along the velocity.of.the 

final fennion. If parity is conserved, the value of Q is restricted to 
I 

even values. This is a consequence of the following relationship 

satis.t'ied by.the z coeffioientl 

Qt- L11-L 
Z(Q 5 L" J; S L) : (-1) Z(Q S L" J; S L) • 

By extracting from the general formula given by Eq. (1.6) the 

contributions from initialS states, on~:~ obtains the formula, .for the .<:>( 's 

that describe the final system of the decay interaction il,l terms of the 

~ 1 s that describe the spin-space characteristics o.t' the d~caying particler 

Q 
I(e¢) c( ~ (S, e¢) = * R 

SL";S 1 

X (2L + 1), (2L
11 + l)i ? (e¢) 

x(L"L 1\ , s 1 s 'Q 
1

, s s Q) 

. (1.10) 

\ 

!: 
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The combin~o: process of proQ.uction followed by decay may be described, 

therefore, by' first using Eq. ()..6), (LS).. or (l. 9) to obtain ·the o<_. 'e 

that describe the spin state of. the intermediate particle, and .then using 

Eqe (1.10) to obtain the c< 86 that describe the polarization and· angular 

distribution or the decay products. 

The above formulas relate the expectation values of operators in 

the initial and final states. It is sometimes convenient to consider the 

reaction matrix itself. According to the definitions given in Appendix B . 

. the matrix element < s ? }~ (e¢J 9 8'¢•) I 5 1 r' > .II when multiplied 

by (27/ /k•){v/v')i .. where v' ~nd v are tho initial and final relative 
. s 

velocities, give~ the reaction (or scattering) amplitude ?u- (e¢) ··when 

the initial state is a plane wave of ~nit particle density in.the spin 
S' 

state )t.)A • For the case in which the z axis is chosen to lie along 

the oUtgoing direction the (/(, (~; 9'¢') matrix may be expressed in the 

!om 

~ (0 0; 9' ¢•) - > : -
Ql(. 

Q -Q 
a~ (S, 0 0) T"-

where 

Q s•-s 
a (s, o o) - . (-1) 

K., - (471)~ L 
L L 1 J 

J 

!is L; S 'L' 

W(L J Q s I; s L') 

(1.11) 
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10 . . . 
where · W · is· the Racah coefficient. If the initial and final· spin · 

· quantum numbers, S 0 · and S respectively, ·are equal then the matrices 
-Q 
'r"'-' are . square matrices. Otherwise they are nonsquare, with ·· (25' + 1) 

columns and (2S t:>l) rows • 

.. 

.-· .. • . 
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Section II •. Reaction Formulas for Spin~ and Spin~ Particles. 

In this section explicit expressions are given for the anguiar 

distribution and polarization parameters for reactions in which the initial 

and final states are composed of one particle of spin 0 and one particle, 

which Will be termed the fermion, ot spin ~ or i· The case in which the 

initial and final fermions are both spin ~ is ver.y simple and the general 

forrm.tlas given in Section I are not particularly useful. The ·results for 

this case will be quoted for comparison with the spin i case. 

For the case in which the initial and final fermions both have 

spin i the ·~ matrix can be l-.Titten in the completelY general form 

= (27/ /k•) -l [ f(e) -r g(e)GN + h(e>si -r h' (9) <S"" L 1 , 
(2.;1) 

where k' is the incident relative momentum, <JA represents the Paull 

spin matrix ~ :!, and the vectors .[, and . f_ are unit vectors in 

directions K1 x K and N x .K respectively. The arguments of the 
,.._ _....., """"""'" - . 

GG matrix have been given as Jr. and K , unit vectors along the -
initial and final velocities respectively, rather than 9 1¢1 and e¢ as 

in Section I, because the dependence upon coordinate s,ystems has been 

removed from the expression appearing on the right. The angle 9 in 

Eq. (2.1) 1 and in what follows, is the angle betweeri !, and Kt. The ---
normalization is chosen so that the differential reaction cross section 

in the reaction center;_~f-mass frameis 
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+ 2 Re(ht*)(p• •K.) + 2 Re(h 1f*)(P' ·L) -t 2 Im(gh*)(?' •L) =--·· ' ·.-...,_. ................_ 
· 2 Im(gh •*)(p• ·K) t- 2 Im(hh1*)(p• ~ -- -

(2.2) 

Here the vector !.,! is the polarization vector of th~ incident particle. 

It is defined by the equation 

(2.3) 

The polarization vector P of the final particle is defined in an exactly - .. 

amlqgous ·. way and is given by 

_!(~ _£) :: I-l~ ~) { 2 Re(gt*)~ +- 2 Im(h 1h*)!_ + 2 Re(th '*)~ 

+ 2 Re(th*)!_. - 2 Im(gh*)~ + 2 Im(gh i*)!.. +-jt / 2 ·!.! 

-f J h' J 
2 

[ 2(!_1 •!:)~ -J:'] + 2 Im(gf*)(r X 1!) '+ 2 !m(hf~~ X ~· 

+- 2 Ra(/')1 '")[ (!' ·,9~ + (f_' ·!!J~ ]+ 2 Ra ~·* { (P' ·c0!_ + (~ •!_)!:_] j 
(2~4) 
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If parity is conserved in the reaction, either h(~): and h 1. (e). 

are ,~ero or r(e) . and g(9) are zero. These two cases represent the : 

pos~~ibilities that the relative intrinsic parities of the two initial 

particles are the same as, or alternately are opposite to, the relative 

intrinsic parities of the two final particles. 

When the initial fermion is unpolarized the differential cross 

section is a function only of the scattering angle e and of the reaction 

matrix elements. It will be written as I 0(e). If only the contributions 

from final S, P, and D partial waves are included, Expression (2.1) for 

the de matrix becomes 

.(j{ (K, K I) = 

-1 f i 3/2 . 'l 5/2 ' i . 3/2 
(47f) Roo - R22 - ~ R22 + (R11 + 2 Ru_ )cos e 

3/2 5/2 2 [ i 3/2 + 3(R22 + ~ R22 ) cos e + 1 sin e cs-N -Ru + Ru 

3/2 ' '5/2 1 
- 3(R22 - R22 )cos e 

3/2 2 5/2 3 ] -t- 3 R12 cos e + 15 a
23 

cos e · 
., 2 

[ 
.~ 3/2 3 5/2 .L 3/2- ' 15 5/2 2 .7] sin 9 cs-1 R01 - R21 - '2 R23 1 3 R12 _ cos e + "2 R23 cos ej 

(2.5) 
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If parity is conserved in the produc~ion and if the initial and final 

intritls~c parities are equal to each other then the contribution·s to I 0(e) 

from final S, P; and D waves give 

(2.6) 

where 

. I , J 
2 

J ~ . 2; ) . 312 J 2 ) 312/ 2 9 \ 512/
2 

A = ROO t" Rll 1 + Rll + R22 . + 4 R22 . 

~ 312* 1 312* 1. · 5/2* · 1 1 * 
2 R ( · R + 2' ) ( 2' _ R 3 2 R 5 2 ) 

- e ROO 22 · Rll Rll - 3 Re Roo R22 22 22 

i ' i* . 312 312* i 5/2* 
B : 2 Re(R00 R11 ) - 10 Re(R11 · R22 ) - 9 Re(Rll R22 ) 

c = 3 J Pn3/2 I 2 + 3 I R223/2 I 2 - ~ I R2//2 12 

. ~ 

+ 6 Re(R R 312*+ ~ 312*) ( ' . 5/2*) 
00 . 22 Rll Rll t 9 Re Roo R22 . . 

312 . 512* 
- 36 Re(R22 R22 ) , 
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. D , 

. 5/2 I 2 'J/2 5/2* 
E = ¥ J R22 + 45 Re(R22 R22 ) 

The polarization vector is, under the same conditione and in terms of the same 

reaction matrix elements, given by 

where 

~2 
= ..L sin 9 [F + G cos 9 + H coa

2 e + K cos3 e] !., 
4 

(2.7) 

3/2 'J/2i~ l . 5/ZJt- 'J/2 . 5/'» 
H : -18 Im(R

11 
R22 ) + 15 Im(R11 R22 ) + 'J Im(Ru R22 . ) , 

'J/2 5/2* 
K - 45 Im(R22 R22 . ) 

The formulas for the case in which the relative intrinsic parities differ 

are the same as the formulas given above except that the numerical values 

of L', the initial orbital angular momentum, are replaced by L' X 1, the 
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choice of sign being determined by the J value ·and the vector-addition law 
~ @ - 3/2 3/2 

(e.g., R11 -'----'? R10 , ~l ~ R
12 

, etc.). The above formulas 

apply to the associated production of K particles and hyperons in pion-nucleon 

collisions (involving unpolarized nucleons) if the spins of K particle and 

hyperon are 0 and ! respectively; and if parity is conserved in th~s ($trong) 

production reaction. 

The form of the angular distribution and polarization of the 

reaction products of the subsequent decay of the assumed spin-! hyperon 

(into· one spin-zero particl~ and one spin-! particle) may also be obtained 

from Eqs. (2.1) through (2.5) by dropping the contributions from all initial 

states with L' =j= 0. If the unit vector along the momentum of the 

fermion in the decay products is denoted by V and the polarization vector of 
' -;- ~ 

the initial system is denoted by !i' the ?ngular distribution of the decay 

products is given by 

(2.8) 

--and the polarization is 

-1 
P(V) --: I(V) . 
,_ ...._,. ,..,..... 

N 

471 
{2 Re(R0 ~*)!_ ~ 2 Im(R0 a1*>(!1 x!) + / R0 /

2 
! 1 

+ /ad 2 [ 2(!1"!l'L-J'i} l 
: I(V-l 4~ .[2 Re(Ro Rt)!_- 2 Im(R0 R 1*)(!1 x !'2 + ( /n0 (t 

-( I Ro 12 - I Rl (H~i x !,l >: -~ J 
(2.9) 

li 
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If we take N = 1 and normalize the ~ so that 

then I{Y.)d .£).- is the probability that the final nucleon will have its 

velocity in the solid angle d _{L about the direction V. _.., 

The case in which the initial fermion is a spin-~ particle and 

the final fermion is a spin-2. particle may be described in a form similar to 
2 

the above. For this purpose we introduce. the symbols 

(2.10) 

)<,. 
Here the .2i are arbitrary vectors and the symbol YN ~l' ••• , _2N) 

represents the function of the vectors ui that is linear in each argument, 
. JC. 

is symmetric in all its arguments, and which becomes YN (e¢) when ali 
. set equal to 

its arguments are/the unit vector in the direction e¢. The GG matrix 

may be expressed as the following superposition of these T matrices: . ,. 

+ g4(e) T(~-~' ~·) + h1 (e) T(~) t h;le) T(~~).+ h3(e) T(!iJ!) t h4(e) T(~ E)] 

(2.11) 

The explicit form of the gi and hi when only S- and P-wave final states 

contribute is given in Table I. The normalization factors in Eq. (2.11) 

have been chosen so that the differential reaction cross section for the 

case of an unpolarized initial fermion is 
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2 2 2 2 
- t( J h3 { t / h4 I. + sin e j g3 \ ) 

(2.12) 

If parity is conserved in the reaction then the h1(a) will be zero for the 

case in which the relative intrinsic parity of the initial particles is the 

same as that of the final particles; the gi(e) will be zero if these relative 

intrinsic parities are opposite. 

If parity is conserved in the interaction andthe initial fermion 

is unpolarized, the density matrix describing the spin of the final particle 

must be of the form 

'l.{ (~ ~) : t + b(9) T(!9 + c(e) T(_~I2 + c 1 (9) T(!_Kj + c11 (9) T(~~ 

+ d(9) T(~<_l + d 1 (9) T(~:! +-d 11 (9) T~~K_j. 

(2.13) 

The coefficients in this expression as functions of the g1(e) and hi(e) 

are given in Table II. When only S and P final states contribute, the 

differential reaction cross section reduces to the form 

= .£ L-A 1 +- B 1 cos 9 +- C 1 cos
2 9] , 

-4 . 
(2.14) 

where, for the case in which the relative intrinsic parities of the initial 

and fi~al stRtes are the same, 

. : __ - ~. ···' 
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TABLE I 

( ) i\ r i ~ . rr;' 3/2] g1 G = 
4

"" \- 2 11_1" - 1 ~2 . R sin G 
II .l. 2 11 

g (G) _A.. rR -~ _ ~, R_. 3/2 + 2 rr R 5/2l 
3 - 4 rr L 11 ~5 __ 11 {5 13 _j 

. ,· 

g4 (G) = fn [- f Ro23/2 - 5 Jf R135/2 cos Q J 

h1 (Q) - 2_ rR_. ~ + t ~ R . 3/2 + 1 fl'· R 5/2] 
- 411 L"-lO f5 12 2 ~ 5 12 

h2(Q) = 4~. [- 12 R 3/2 - 1_ [f'· R 3/2 cos Q - .2 IT R 5/2 
cos Ql 

/I PI- 01 2 f5 12 ' . 21 5 12 :J 

() _J.. 
h4 G - 4il 
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TABLE II 

+ 1 Re 

4{5' 

+ 003 9 
sin e 

+ l 
8 

cos2 9 
2 sin e 

UCRL-3796 Rev. 
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TABLE II (Cont.) 

[ -i Re(g2gt + g3g4* + 2 hih/ + ~ hJht) 
. ' 

I 
. 2 2 ~ . 2 

_ oos .e ( . g1 f + 1 •/ hJ/ + , 1 h4 / ) _ 
sin2 Q . 4 4 . . 

cd(e) = - ~ Re(g1g2* -1- h1h3*) - ;7=? Im [(sin e)-l h3h4* 

- g2g3* sin eJ 

UCRL-3796 Rev. 
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TABLE II (Cont.) 

.. 
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A' : I ~ / 2 / 3/2 J 2 . '14 / Ru3/2 ./ 2 9 / R, 'l 5/2 [ 2 . Rll +- 2 R02 t 5 . -t- . 5 ~ 

.f;;' i 3/2* 4 3/2 3/2* 
. B' : - 2 ] ,.. Re(R11 R02 ) + -==; Re(R11 R02 ) 

i 5 

. {f' 3/2 5/2* + 6 · '5 Re (R02 Rl3 ) , 

/3' · ~ 5/2* R 3/2 . 5/2* 
- 9 / 5 Re(Rl1 Rl3 ) + * I .., Re(Rll Rl3 ) • 

(2.15) 

When the contribution of the P final state is much smaller than that of 

the S final state, the oarameters in Eq. (2.,13) are given in terms o:f' 

these same reaction matrix elements by 

)(2 
r 0 (e) b(e) = --LL 

4 

r0(e) c(e) ~ o , 

sin 9 o( 1 , 
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I0 U~J c' (e) = I i 2 "( 3 +51'4 J ' 4 

I0(e) c"(9) - _r_ i "'( 2 - 5 cos e '{3}' - 4 

I0(e) d(e) - 0 , 

I0(e) d' (e) = 0 , . 

! 0(9) d"(Q) = _f ) sine c( 5 / , 
4 

(2.16) 

where the o( 
1 

are 

c(l = rm[-{f 
2 

I 3/2 I 
R02 - --

[ ! 
3/2i~ 

o(4 .... Re {2' Rll Ro2 + 

rm[¥ 3/2 3/2* 
~5 = R02 Rll 

(2.17) 
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. . . 
The case in which the initial and final intrinsic parities are different is 

described by these same formulas modified by the substitutions described 

below Eq. (2 .• 7). 

The expressions given above may be applied to the associated 

production of'hypcrons and K particles in pion-nucleon collisions if the 

K particle and hyperons are spin 0 and spin 3/2 respectively. In the 

subsequent decay of this hyperon into a pion plus nucleon, each term in the 

hyperon density matrix U (K, K1 ) -- ,......_... 
.. 'L! H gives a characteristic angular 

distribution and also a characteristic angular dependence for the 

polarization of the final nucleon. In order to exhibit the angular dependences 

in a convenient way we first express 'U. H in its most general form, 

(2.18) 

In this formula the are vectors that are to be selected in a way 

that gives the desired form of 'U.H. For example we obtain the form of 
1 1 1 

U H given in Eq. (2.13) by the choice J!l : _E, ~2 : !' 23 : _!, 

... ~2 
2 = . !_, ~3 2 = .!.' , etc. The angular distribution of the decay products 

is given in terms of the general parameters introduced in Eq. (2.18) by 



-2C- UCRL-3796 Rev • 

I(~ = (471) -l l c) R1 ( + / R2 )
2

) -t >-:;i 5 -i -z-1 \l !)4 Re(RlR2 *) . 

- Lj -r/ [Jc~/!H~/y> - '.hj ::;2j>} (! al/2 + I R212) 

6 Re(Rl}l2*)J 

(2.19) 

. The polarization vector of the nucleon in the final state is given by 

- 8 Im(Rl R2*)(~ X J) J. 
.;:;;.....,.. j * [ j j j j] 

- ~j .(2 ·2 Re(R1 R2 ) 3(~1 ·X) (£2 ·'Q_ - ~ ·~ ) !_ 

- ?k 5-~ l3k f[ ( I Rl 12 + I R2 /2H!_:'!hl.'..., 

+ ( / R1 /
2 

- j R2 / ~)Y., X \~ k x y). - 2 Im(Rl R2*) (~1 k x !,~ ] 

· r5~·!JC::J·~- 3~2·':))] + Sym. n 
~· ·"' (2.20) 

. ... 
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. The symbol Sym. in the above line represents the sum of the two terms 

needed to symmetrize the contents of the braces.-

The expressions given above apply to the production of hyperons in 

pion-nucleon collisions. Under the conditions stated in Section I the 

density matrix of the hyperon produced by K-particle absorption from 

low-lying orbits may be obtained from Eq. (1. 9). If parity is conserved 

in the nr()du,ction process the form of this density matrix. is particularly 

simple. Of the coefficients that appear in Eq. (2.13) only c(e) is 

different from zero. The coefficient c(e), which is in this case 

independent of G, completely determines the decay angular distribution. 

According to Eqs. (2.13) and (2.19),this angular distribution is given 

by 

I(V) = .,.._._. 

(2.21) 

where ([!) is the angle between J.. ... and L as measured in the decay 

center-of-mass frame. When the K particle is captured from S and P 

states only, c(e) has the form 

c(e) ' (2.22) 

where for the case in which the initial and final intrinsic parities are 

the same we have 

2 
j 3/2 ' 2 

r R31 > ' 
= 1 

3 
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(2.23a) 

. and for the case in which the relative intrinsic parities are different we 

have 

2 

wl = I RlO~ / . ' 

(J)2 = ~ I 1\21! (t- ~( hl312 
1

2 

+ IR2l'
12 

[

2

) • 

!± Re(R 3/2 R . 3/2* ) 
3 ' 01 21 

(2.23b) 

The polarization of the final nucleon is independent of c(e) and is given 

by 

(2.24) 

If parity is conserved in the decay eith-er R1 or R2 must vanish. The 

polarization of the final nucleon must, therefore, also be zero unless 

parity is violated in either the decay or production process. 

... 
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Section III. Discussion 

In this section the angular correlation between the directions 

defined by the production and decay events is discussed~ vle consider 

specifically the associated production in a pion-nucleon collision of a 

spin-zero K particle with a hyperon of spin ~ or spin~' and the 

subsequent decay of the hyperon into a pion-nucleon system. If the 

hyperon has spin i the production-decay process is described by Eqs. (2.1) 

through (2.9). If parity is conserved in the prodUction process and the 

initial fermion is unpolarized, then the deviation from isotropy in the 

angular distribution of the decay products is proportional to N•V, as is ,....., __., 

shown by Eqs. (2.8) and (2.4). The amplitude of this term must be zero 

if parity is conserved in the decay, since parity conservation would 

require either R0 or R1 ,to vanish. The occurrence, experimentally, 

of this tenm would constitute proof that parity is violated -in the decay 

11 . . 
process. Parity nonconservation in the decay process can also be 

demonstrated by experiments measuring the polarization of the final 

nucleon. From Eq. (2.9) one sees that when V is in the production ..... _ 
plane the longitudinal (proper) polarization is equal to 2 Re(R0 R1*)/ 

( j R0 J 
2 + / R1 J 2). The. occurrence of this polarization would imply 

a parJ.ty violation. The magnitude of this effect does not depend upon 

the unknown amount of polarization of the hyperon as does the above-

mentioned magnitude of the asymmetry in the angular distribution. This 

could be important if the hyperon polarization "1-rere small. If, on the 

other hand, the hyperon polarization is large we see from Eqs. (2.9) and 

(2.8) that the values of R0 •:md R1 can be determined up to an 

over-all phase by the knowledge of the nucleon angular distribution and 



-30- UCRL-3796 Rev. 

polarization. These coefficients R0 and R1 provide the complete 

phenomenological characterization of the decay process; their values give 

all the information that can be ·deduced from the experimental study of 

the process. 

The 1neasurement of the final polarization also pe~~ts a direct 

test of invariance under time reversal. The term in Eq. (2.9) that is. 

proportional to Im(R0 a1*) will be zero in so far as the d~cay can be 

considered to be first order in the weak interaction, and invariant tinder 

time reversal, provided final-state interactions can be ignored. The 

inclu.sion of the final-state interactions changes this condition somewhat. 

For the case ~ - -· -~ N +- 77'- the upper limit on the absolute magnitude 

of the component of polarization a4.ong J~i x !, for the ease in which . J-
lies in the plane of production, is I sin( Sp - /58 ). l . The a .P 

and ~S are the J = ~ , isotopic spin-i phase shifts of the pion­

nucleon system. A similar lilnit may be obtained for the cases in which 

both isotopic spin states are involved. 

If the hyperon is spin ~~ the correlation between the directions 

defined by the production process and those of the decay process are 

given by Eqs. (2.11) through (2.20). At production threshold, where only 

the S waves of the final state contribute, the angular distribution for 

the production is isotropic and the angular distribution.of the decay 
' f. 

2 / products in the decay center-of-mass frame is of the form (3 cos ® +- 1), 

where Q£( is the angle, measured in the decay center-of-mass frame, 

between the direction of the incident nucleon in the production process 

and the outgoing nucleon of the d~cay process. This may be compared to 

12 the case discussed by Treiman in 'vlhich it was the initial state of the 

. ' 

.. 
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production process that was an S state. In that case the angular 

distribution of the de~ay products wa.s of the form (3 co/··® + 1), 

where ® labels the angle between the hyperon velocity and the 

velocity of the final nucleon. For this limit in which only S waves 

are produced there will be no asymmetry with respect to the normal to 

the plane of production. At somewhat higher energies, where the 

interference between the final S and P waves becomes important, the 

hyperon density matrix will contain nonvanishing contributions proportional 

to T(!), T(~ ~), T(!S1 , K~, and T(N,~,£). The form of the decay 

angular distribution associated with each of these terms may be obtained 

from Eq. (2.19). From the T(N) term one obtains a contribution 

proportional to cos (jj)N, where (jj) N is the angle between the normal 

to the production plane and the direction of the nucleon from the decay. 

This term is analogous to the one that appeared when the hyperon was 

considered to be spin ~' and it must vanish if parity is conserved in the 

decay process. The contribution from the T(~ ~, _£,) term will also 

be nonzero only if parity is violated in the decay. The ar~ooular 

distribution associated with ~this term is obtained from the L 3 
( )

. . 1 1 I 1 I 
contl_bution to Eq. 2.19 by setting J;L1 = J!J .;az = ~-' and. ,E 3 = ~-· 
It is of the form cos (B;N [ 5 cos2 ® 1

- 1 J . This gives an asy!ILmetry 

with respect to the normal to the production plane that is greatest for 

particles that decay in the plane defined by the vectors JL, and .K_~ 

and which reaches a maximum when (t!.N rv 58.9°. The maximum asymmetry 

from the T(~) term occurs, of course, at 

In addition to these terms, 1-lhich reveal parity violations, 

there 'is another nee: term in the angular distribution. This one is a. 
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consequence of the T(_!S ~) contribution to the hyperon· density matrix. 

According to Eq. (2.19), the angular distributio"n characteristic of this\· · 

term is [ 3 cos (t£) cos (&)" - cos e] . . . 

Each of these terms will also 

give its characteristic contribution to the polarization of the final 

nucleon. The form of these contributions is given by Eq. (2.20). At 

higher energies, where all the terms in the general form of the. hyperon 

density matrix given in Eq. (2.13) contribute, three additional terms 

may enter in the decay angular distribution. Two are present on~ if 

parity ie violated, and have the .fonns cos ®N (5 cos ® oos (jj)' - cos 9 J 
and cos ® N [5 cos

2 ® - 1] The .other has the form (3 cos2 (@- 1). 

We conclude this section with a few remarks. First, the contributions 

to the decay angular distribution that are present when parity is not 

violated give ·no information about the dec·ay mechanism except its total 

strength. They are proportional to ( J R0 J 
2 + / R1 /

2
) ·for the 

spin-~ case a.nd to ( / R1 j 2 + j R2 / 2) for the spin~ case. . This 

· form does not· allow the contributions from the two final angular-momentum 

. states to be distinguished. For the same reason, however, cthese terms 

give infonration about the production process that is independent of the. 

detailed nature of the decay reaction, and their measurement provides 

information useful in the study of the strong reactions. Second, if, 

'in the decay angular distribution there should occur a term that is 
. . . -

asymmetrical with respect to any direction that lies in the plane of 

production, then parity must be violated both in the decay and in the 
. . . 

production. It is assum~d here that the strange particles are single 

particles--not parity doublets. Third, it is of interest to determine 

whether the intrinsic parity of the K-hyperon system is the same as the 

.. 

' . 
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intrinsic ])-<trity of the pion-nucleon syste.11. In view of the great 

dissimilarity in the fonns of the (Jt matrices in these two cases 

(see Eqs. (2.5) and (2.11)), it might be thought that the correlations 

near threshold between the various angular distributions and polarizations 

would depend upon the relative intrinsic parities. However, no information 

about the relative intrinsic parities of the two systems can be obtained 

from. the analysis of the angular distributions and polarizations discussed 
' 

in this paper unless assumptions are made regarding the relative magnitudes 

of the contributions from various initial angular-momentum states in the 

production process. This is a consequence of the close similarity, \'rhich 

is discussed below Eq. (2.7), of the formulas that describe the two 

alternative possibilities. 
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Section IV. Relativistic Corrections 

Although the expressions given above are nonrelativistic in form 

they may, if properly interpreted, be anplied to relativistic problems. 

The fundamental idea is to apply the formulas to the proper polarization13 

of the fermions. The proper polarization is the polarization as observed 

in the rest frarrte of the particle, and it may be described by the 

nonrelativistic operators. If the covariant reaction matrix. is.nrultiplied 

by appropriate Lorentz transformatior.s it acts directly upon the operators 

describing the initial covariant·proper polarization to give the final 

covariant proper poL1rization. Specifically, if the reaction is treated 

in the center-of-mass frame, the reaction operator GG p that directly 

relates the initial and final proper polarizations is given in terms of 

the usual covariant reaction matrix VGr by the equation14 

where L(k) is a Lorentz transformation that transforms spinors from 

theirvalues in a frame in which the center of mass (of the reaction) 

is at rest to their values in a rest frame of the final particle whose 

four-momentum is k; the transformation L(k') is defined in the same 

way but relative to the initial particle. The part· of the matrix CRP 
that des·cribes the transitions between initial and final states having 

energies of a well-defined mar.~nitude and sign is a reduced matrix of the 

nonrelativistic form. Noreover, if the Lorentz transformations . L(k) 

and L(k 1 ) are chosen to be pure timelike15 transformations, then the 
,-) 

vectors and spin matrices that e.npear in the reduced UC matrix 

transform under spatial rotations in the usual nonrelativistic manner. 
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The nonrelativistic reaction matrix and density m~trix of the 

earlier sections ·may therefore be identified :vrith the reduced part of 

Gt p and the proper density matrix respectively. 16 

If the center-of-mass frame of the reaction is not identical 

with the laboratory fr&~e then there is an ambiguity in the definition 

of the proper polarization. The correspondence described above between 

the relativistic and the nonrelativistic formulations is valid specifical~ 

in the center-of-mass frame, and the components of proper polarization 

refer to those rest frames of the initial and final particles that are 

related to the center-of-mass frame by the transformations L(k 1 ) or 

L(k). In the usual definition of proper polarization the rest frame of 

the particle is taken to be one generated by the action upon the laboratory 

frame of a pure timelike Lorentz transformation. In order to obtain the 

usual proper polariza~ions from those proper polarizations appearing in 

our nonrelativistic expressions, the vectors describing the proper 

polarizations in the latter formalism must be transformed by the sequence 

of transformations that takes them first to the center-of-mass frame, 

then to the laboratory frame, and then to the usual rest frame. This 

sequence of transformations is equivalent to a pure rotation. If the 

center-of-mass frame is the one generated fromthe laboratory frame bY; 

a pure timelike Lorentz transformation, then the sequence of the three 

pure timelike transformations produces a rotation of the vectors describing 

the proper polarization by an amount specified in Eq. (48) of Reference 16.17 

A detailed .treatment of the Dirac-particle case i;:; given in that paper. 
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Appendix A: Notation 

The formal manipulations are most easily represented in the 

18 
notation of Dirac 

19 
and Condon and Shortley. The symbol 

< s r L m ( s I L I J M > represents 
SLJ 

~ ~ss I S'LL I ' where sij 

is the Kronecker delta and 

also convenient to define 

20 
C is the Clebsch~Gordan coefficient. It is 

/sf'e¢): 

(e ¢ / L m) = 

Z / SF L m) (1m j e ¢) (A.l) 
Lm 

where Y1m(e¢) is the usual spherical harmonic. 4 

In accordance with Dirac 1 s conventions we require that 

<sir'>- ~~lr·><;"I,J'> =<s'li>*, 
(A.2) 

where a summation over indices that appear only twice is implied; for 

continuous indices this summation is defined to mean integration over the 

appropriate ranges. Eqs. (A.2) will be consistent with the orthonormality 

properties of the Clebsch-Gordan coefficients and of the spherical 

harmonics if the following definitions are made: 

IS J..A. L m I S 1 .U..1 L 1 m' ) = 0 £ ~ C' 
" I r 0

SS 1 Pf' LL' 0 mm 1 

<s 1 J M 1 S' v J' M' ) (A.3) 

( s f' e ¢ I s' f-' 9' ¢' > - ~ 8Ccos9-cos6')b(¢-¢'). 
Pf-' . . . 
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=3S-

So far, only spin-angle variables have been d.isc)..l.ssed. The radial 
21 

dependence could be included by defining 

< s r e ¢ r I s I ?I e I ¢I k I > - < s f- !:, I s I ? I !-' > 

~~ 

a 
SS' 

411 ·2:: i 1 j
1
(k'r) Y

1
m(e¢) Y

1
m (e'¢') 

1m 

(A.4) 

where we have used the usual expansion of a plane wave in terms of 
22 

spherical harmonics and the spherical Bessel function j 1 (kr). · For 

consistency, we would then have to interpret the summation over the 

repeated index r to mean J"'>C r 2 dr and choose 

£(cos e- cos e') &c¢-¢') 8Cr-r') 
r2 

(A.5) 
@10 

Similarly the summation over k would be interpreted as (271)-J J k2 dk 

and < s r ls } s' ?-'!.: > as 

~SS' ~1 ~(cos 9- cos 8
1

) ~(¢ 3 
¢') ~ 8(k 

k 
k') 

(A.6) . 
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With these definitions the plane wave times may be expressed 

by 

<sf- e ¢ r /·S r L m r > < 'S? 1m r I s' ?-' 1
1 

m' k
1 > 

X (s' ?' 11 
m' k1 Is' fA-' e' ¢' k') 

m'* . 
S' r' 1

1 
m' k 1 > Y1 , (Q'¢') 

(A.?) 

Comparing this with the expression (A.4), we make the identification 

< ~ r 1m r I S 1 f'' L' m' k' > -& . ~ 8 . . S 4/( i 
1 

j 1 ( k' r) 
SS' }'A)'A' LL' mm' · 

(A.8) 

Throughout this paper, however, we consider the energy as well-

defined; k and v are the corresponding momentum and velocity (both for 

the reduced relative motion). The radial dependence in the asymptotic 

region is then well known, and the radial and momentum functions will be 

suppressed. We shall normalize so that the ket l S )'A 1 m) 
~ ' s 

this appendix, represent ~he state with spin function ~~ 
_.! m L 24 I ) wave function (2k v 2

) YL (8¢) i j 1 (kr). . The ·. ket e¢ 

will, in 

and space 

represents, 

therefore, a state with a space wave function whose asymptotic form is a 

plane wave: 



= 

2k 
-r 
·v2· 

e 
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ik.r' 
-"""'-' (A.9) 

The normalization of the radial function has been chosen so that its 

asymptotic form is 

2k i
1 

jL· (kr) rJ i
1 

(-i) e 
[ 

L ikr 

--r . .!. 
v2 i r v2 

+ c.c. ] (A.lO) 

With this normalization the outgoing flux density (number of particles per 

ZMS unit time per unit solid angle) of particles in the spin state 1'/ 
that move in the direction e¢ is 

r(s ~'' e ¢) - I YLm(e¢) < s r L m I > l2 
-

- { ( 8 ¢ I L m > ( s ? L m I / ·1 
2 

-

- j (sf-G¢ />12 -

= (I s f' e ¢)· (s ;t e ¢ I> 
- < (] (.s j'A' e ¢) > . (A.ll) = 

Here <. S )"A L m / > is the amplitude of the state / S ?'- L m) , 

and we have used the definitions (A.l) and 
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C?cf> - IJ'>·< f I (A.l2) 

The dot before < J ·' j signifies that the sum over the repeated index 

J' is not to be performed. The operator will be referred 

to as the projection operator for the state labeled by the indices 

For the discrete parameters, 

I( s I) (A.l3) 

is the probability that the system will be found in the state labeled 

by } I With our normalization, it is also the outgoing flux in this 

state. The total outgoing flux density (i.e., summed over spin states) 

in the direction e¢ is 

r(e¢) 

= 

( ~ C?cs /.-., e ¢)) 

<~ [isre¢)-<s;<-e¢/]) 

<[/e¢)·<e¢ 1]) 
= (C?<e ¢)) (A.l4) 

The projection operators GPC _f') defined above are therefore of 

funda.ril.ental significance; their expectation values < (? ( } 1 ) ) are 

interpretable as probabilities and flux densities in the manner just 

described. The expectation value of an arbitrary spin-space operator A, 
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if the measurement is made in the beam ~merging in the direction e¢, is 

The physically measured. quantities are therefore directly related to 

expectation values of the form <. (? ( e¢) A / . 

(A.l5) 

In the above, we have considered systems represented by pure 

states. The treatment of statistical mixtures of states will be considered 

in Appendix B. 
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Appendix B. Density Matrix and S Matrix 

In the treatment of polarization phenomena, it is necessary to 

consider statistical mixtures of states. Statistical mixtures are 

conveniently described by a density matrix f' . 
Consider a mixed state, i.e., an incoherent superposition of 

pure states I ¢m )> with statistical weights Wm. The expectation 

value in the mixed state of an arbitrary operator a. is then the weighted 

sum of the expectation values of ~ in the pure states, 

<o.. > -
= 

z 
m 

~ Wm <¢m I { >< 11 ~I ¢m> 

~ <1 I a_ I ¢m)wm <¢m I~) 

<·~(Q ~ Wm )¢m><¢m I~> 

< 1 I 0.. f I()= < 1' a_ '1' ><~I I ~I ~ > 
(B.l) 

where we have defined the density matrix as 

(B.2) 

and the symbol Sp means the diagonal sum, which may be evaluated.in any 

representation. The density matrix is regarded as defined by Eq. (B.l) 

rather than (B.2). 
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The dynamics of the :reactions that we consider may be represented 

by a unitary operator J defined by 

and are eigenstates of an unperturbed Hamiltonian 

and represent a pure state before and after the interaction respectively. 

Such a unitary transformat~on also changes the density matrix that 

25 
describes the initial system into 

where the 'bar denotes the Hermitian conjugate, The effects of the 

(B.3) 

reaction are ,contained in the difference of the final and the initial 

states 

(B.4) 

In order to obtain the density matrix that describes the reaction products, 

we express the e f in. terms of the R operator 

(1- i ~) fi(l +.iG() 

fi- iCK ~i + i~iU( +ut~i ~ (B.5) 

According to the interpretation of (6?( ~ 1 ) >,as given in Appendix A, 

the final flux density in the state ) ¢a) is, from Eqs. (B.l) and 

(B.5), 

< ~ ) ¢a) e <¢a I e f ·I ~) - < ~ 1 ¢a> &\¢a t e i I ~ > 
- i < ~ 1 ¢a>·<! I [ Gt ~ i - _f i ~ ] I ~ > 
t < ~ I ¢a> ~ < ¢a I CR. e i Cit I ~ > , 
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which gives 

- o(¢a lei\ ¢a)'- i•<¢a I [at Pi~ fi ~JI¢a). 

+ e <¢a l UC 

- ~<¢a I ei I ¢a> - io< ¢a I ut L. wm 
m 

f'i (1 I ¢a) 

\ ¢m) < ¢m \ ¢a) 

(B.6) 

The last term on the right-hand side of the above equation is the flux 

density in the final state / ¢a > due to transitions from all initial 

states, We shall therefore define the density matrix for the reaction 

products as 

(B.7) 

In order to interpret the second and third terms on the right-hand side 

of Eq. (B.6) we shall make use of the unitarity of the S matrix~· We 

have the operator equation 



which yields 

i( ((, - ~ ) 

or, in matrix notation, 

* i(R ,. - R I ) . nn n n = 
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= 

If we choose n = n' and the state 
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(B.8) 

I ¢n ) to represent a plane wave, 

then Eq. (B.8) merely states that the imaginary part of the forward-

scattering amplitude is proportional to the to:tal cross section. The 

expression in Eq. (B.6) now becomes 

+ z.: 
m 

(B.9) 

The physical interpretation of this equation is clear~ the final flux 

in the state / ¢a) is equal to the initial flUx in ) ¢a > minus 

the flux·due to transitions from ) ¢a ) into all possible final states 

plus the flux due to transitions from all initial states into \ ¢a> · 

If the amplitude of the state I ¢a > in the initial system 

is zero, we have 

If this amplitude is different from zero, the interpretation of Pr as 

the density matrix for the reaction products is still correct; the 

quantity Sp [I ¢a>· <¢a I Pr. J is, however, no longer the total nux in 

the state / ¢a) • 26 .... .. . 
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The density matrix that represents a plane wave normalized to unit 

flux density and moving in the direction (9'¢') is, with our normalization 

conventions, represented by 

2 
c 21/') (PCe'¢') Uce'¢') (B.lO) 

k' 

where 'V,(e'¢') is a spin-space density matrix with unit trace that 

describes the spin-space characteristics--polarization in the general 

sense--of the system. If the initial system is a plane wave moving in 

the direction e'¢' with spin characteristics described by ~ ' then 

the expectation value in the final state,of the operator 

according to (B.l), (B.7), and (B.lO), 

(e¢)A is; 

. <JPCe¢)A > = c 2 7r )2 
sp (?{e¢) A RQ=>.ce'¢') C:Uce'¢') ~ 

k' 
(B.ll) 

Because, with the assumption of rotational invariance, J is a constant 

of the motion, it is convenient to express the spur in the J repre-

sentation. Thus we write 

(B.l2) 

sp (? (e¢) A (R.(f' (e'¢')U(e'¢') '6?, 

- (_s'' L" J" M" J (? c e¢) A f s L"")J M ) < s 1 J M JCR. / s' 1' J' M' > 
x \s' L' J' M' JCP

0
(e'¢')'U.Ce'¢') 1 s'11 1''' /'' M'") 

/s, ,, 1,,, J111 M''' / ?5 ·1 ) 
" IJ\.. S" 1

11 J 11 
M

11 

J 
.... (s" L" J" M" JcP (e¢) A Is 1 J M> RsL;S'L' 

* 
I 

/::) I Ill J" 
X I S1 L' J M l...r ce'¢')'2.(.(e'¢') s 1111 

Jll M"> R /1/ 
'\ S"L" ;S111 t 
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Here we have used the fact that 4( is diagonal in J :and M and 
27 

to justify the abbreviation
28 

independent of M 

J 

(s 1 J M I ot/ S' L' .J' M' > = RSL;S 11 1 SJJI 8MM, ' 
(Bol3) 

and the definition 

<J Cl, J 11> - (~~I 0v I j/ (B.l4) 

_Jn J"* 
to write RS111 1111 ;8 111 11 = RSIILII ;Sill L''' 0 

Because the matrices A and 

U(e¢) are square matrices, we have S" = S and s"' = S'; 8 1 and S 

are the initial and final spin quantum numbers, which we assume to be 

fiXed. The matrices A and &t(e¢) may be expanded in terms of the 

Q 
basis matrices T/G.. • 

' Q 
various possible T~ o 

It is sufficient to consider the A to be the 

For processes in which the initial system is not represented by 

a plane wave, a different Pi is used. To represent processes that 

that are initiated from an incoherent mixture of orbital angular 

momentum states the appropriate ft is 

z 
1m 

W1 . (?(L,m) ,m (B.l5) 

where = is the projection operator for 

the state I L m) and w1 m is the probability that the reaction 
' 

initiates from the state . \ L m) • 

The spins S and 8 1 may be considered fixed in many problems. 
J 

The reaction coefficients Rst.;s·, 11 · are, in these cases, abbreviated 
J 

by RLL' • 
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For the decay process, the formalism is again changed only by a 

change of the incident density matrix. Because there is no orbital part 

of the state of the incident particle, the density matrix pi becomes 

simply {J... Then J = J" = 5 1 and the indices 1
111 and 1 1 drop out. 

The reaction coefficients may therefore be abbreviated as R1 . This 

abbreviation sufficies to distinguish the reactior1 coefficients (i.e., 

the R 1 s) of the decay process from those of the production process. 

It is sometimes convenient to consider the reaction matrix 

explicitly, That is, Eq. (B.l2) may be expressed in the form 

sp ~Ce¢) AGt,<Pce'¢')'U..Ce'¢')(Ji 

= <s ;tAL m \ e ¢>· ( e ¢ I A CR. I e' ¢' )·( e' ¢' )'Uce' ¢')(R I SfL m) 

(B.l6) 

where the symbol Tr means a trace over the spin variables. (The symbol 

Sp is a diagonal sum over both spin and .orbital variables.) The oper~tors 

A and U ( 9 1 ¢') are. matrices with respect to the spin variables alone 

and are scalars with respect to the orbital part of space. Thus the 

above equation redpces to 

sp (? (e ¢) A <X.. <P ce'. ¢') 'U (e' ¢') ~ 

= Tr A Gt, (e ¢; e' ¢') 'U.(e' ¢')<K.. (e' ¢', e ¢) (B.l7) 

where we have defined the spin-space reaction .operator 
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Citce¢; e' ¢') < e ¢ I (](_ I e' ¢' > (B.l8) 

This spin-space reaction operator is a matrix between the initial and 

final spin spaces. If S f S 1 , the matrix i~ nonsquare. . It may be 
. Q .. . 

expanded in terms of the T~ defined in the text, which are also 

nonsquare if S 1 S 1 
• The matrix elements of 02 ( e ¢; e 1 ¢ 1 

) are, 

according to Eq. (B.l8), 

= <e ¢-)1m ><s r-1 m 1 S" 1 11 J M)<s" 1 11 J M /(Jt I 5
111 

1
111 

Jl w> 

X <. s''t 1;;t J' M' IS' )-t' L1 m1)< L1 m1 I e' ¢1) 

m S1J J S 11 1 J m'* 
- y1 (e ¢) ~mM RS1;S'1' ~'m'M y1' (e' ¢') -

(B.l9) 

Using the properties of the Racah and Clebsch-Gordan coefficients 

(see Appendix C), we can reduce this to the form given in Eq. (1.11) of 

the text. 
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Appendix C. Sums over Magnetic Quantum Numbers 

In the calculation of angular correlation and polarization effects, 

surmnations over magnetic quantum numbers of products of Clebsch-Gordan (C) 

coefficients have to be performed. The evaluation of these sums is greatly 

simplified through the use of the formalism developed by Racah and Fano. 29 

The Racah coefficient W is in fact a particular sum of the product of 

four C coefficients, while the Fano coefficient X is,a particular sum 

of the product of three W coefficients. In the derivation of the 

formulas of Section I, we shall make use of the various relations involving 

the C, W, and X coefficients and their symmetry properties. 

Some of the symmetry relations of the C coefficients are, as 
. 30 
given by Racah, 

abc 
co<t3~ = 

= 

bac, 
c 
-p~-?f 

a+b-c bac 
(-I) cPc:.('f 

a-0( 

(-1) ( 2c + 1 )k 
2b +- 1 . 

acb 
c 
0\ -~-(d 

( _1 ) bt,G ( 2c + 1 )k Ccba 
2a + 1 -~p ...s:J.. 

They obey the sum rule 

abc 

CO(~~ 
adc 

c . 
o(g() = 2c + 1 

2b + 1 

(C.l) 

(C.2) 

The orthonormality of the tensor operators defined by Eq. (1.2) follows 

from (C.2): 
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/ 

Q- Ql 
Tr T)c, T)[;,, _ <sr· ('' J T~Q j S"fA")o<S"f'-" / T~?

1

) · S.1 )A~ 

z(2Q + 1 )~ cS"QS I' {2Q1 t 1 )~ 
~ ?'' 2S It 1 f<"J::,f<-

1 
2S I + 1 

' ·. . 

S11 Q1S 1 

~~i~';;' 

The W coefficient can be defined by the relation 

W(abcd; ef) = [ ]-~ C"""' abe edc bdf afc 
(2e + 1)(2f t 1) {f ~~e c~8 '( c~&? ~~r 

.. . , .. 
1 
·rl. abe edc bdf afc 

[(2e + 1)(2f + 1~ 
2 L c ~+~ 8 c~8 ~~ +8 . o(;B ctf3 ~~ r 

Their basic symmetry relations are 

W(abcd; ef) = W(badc; ef) = W(cdab; ef) = W(acbd; fe) 

e+f-a-d 

= (-1) W(ebcf; ad) 

etf-b-c 
- (-1) . w(aefd; be) -

They also satisfy the three sum rules 

L:, (2e + 1) (2f + 1) W(abcd; ef) W(abcd; eg) -
e 

W(acdb; fg) :2::::. 
e 

a+e-b 
(2e + 1)(-1) W(aefd; be) W(aegc; bd) , 

W(ao<b(3; c '() W(do(ep; f~) = 2:' (2) + 1) W(d/to(c; af) 
;t 

x W(b'A_~f; ec) W(d)tb; ae) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

(c.?) 
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Equations (C.4), (C.5), (C.6), and (C.?) define the W coefficient 

completely, except for a phase. Equation (C.5) can be put in the 

equivalent forms 

bdf 
Cf& W(abcd; ef) : [ 

_.! abe edc afc 
. (2e + 1)(2f t 1)] 

2 ¥- co(~ ~+,d s ~ ~+~ 
(C.8) 

abe 

~,d 
edc 

c<:>(t~& = 7 [(2e + 1)(2f +- 1) ] ~ bdf 
c,ss Cafe W(abcd; ef) 

ot(3+S 

From Eqs. (C.8), we obtain the further r~lationship 

abc dee dfg gah c c c. c 
Of~ ~ o( +,8 0 ~ ..c(·& ~-~ o( 

= 

~ b+d-e+f-g 
[ (2c +- 1)(2g r 1) J ( -1) = 

"' ' k 
~ . ( 2k ~ 1) ( -1) 
k~ 

fkh . . 
x C L< W(abde; ck) W(ahdf; gk) 

?-M~ . . . 
It is also convenient to definethe particular combination 

bke c 
~}~ 

(C.9) 

ftc-a · 
Z(abcd; ef) = i [ (2a + 1)(2b + 1)(2c t 1)(2d 

.! acf 
+ 1) ] 2 c

000 
W(abcd; ef). 

(C.lO) 

The Fano X coefficient (also called the Wigner 9j symbol) is 

defined by 

c b c) ~ 2: (2). + 1) W(bd cg; ;{a) W(b d hf; A. e)W(cgfh; ) i) X d. e :: = (-1) 
g h ~ ) 

- X( abc, def, ghi) (C.ll) 
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where cr-: = a t- b +- ••• + i = integer. An. odd permutation of the rows 

or columns of X multiplies it by (-lr , .and a reflection in either 

of the. two diagonals leaves4t invariant. 
< ....:~. • 

Some of the speciaiized formulas in the text can be obtained from 

(1. 6) .by. setting one of the arguments of the W or X co.efficients equal 

to zero, 

W(Obqd; ef) : [ (2b t- 1) (2c -1- 1) ]-~ ·~ · £ 
be , cf 

X(Obc, def, ghi) = 

(C.l2) 

We shall now use the above expressions to derive the general 

formula (1.6) in the text. The quantity I(e ¢) will be defined by31 

I(e¢)0():, Q(S, e¢) : Sp [G' (e¢) T;(s) f r] : Sp [ f (e¢)T :(S) (t f i ft]. 

(C.l3) 

From th-e' definition of the spur and the expansion (1.3), this is equal to 

' .. \ . ' . ·-
.. ' . . . .(Equation continued) 

...... __ / 
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SQS S1J 
c c 
1-J.}j.f"'" ~ 

Jl* 
R 

SL" ·S I 1111 

' 
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Q' ~ Z ~ , (s', e'¢') ·(2Q' + 1) 
Q'}::,' ~ 25 1 + 1 

S11 1J 
c 
f-<-'m'M 

SIt'" J I 
c 
J-<M m' 11 :M' 

The product of two spherical harmonics can be expanded in a sum of 

spherical harmonics: 

= ~ (2J..' +- 1) ~ ( -1/-' 
_LM 471 

Substituting this expression into the previous one, we obtain 

Q 
r(e¢) o{~ (s, e¢) = 

= N {2Q:+ 1)~ > ·. , 
41t" 2S -1- 1 LL'L"L'" 

L 
JJV 

J 

RSL;S 1L1 

Jii!-

RS1" ;S 11111 

X 

X 

X 

~ ) I LL"I\ 1111 1 I/\' 
[ (21' + 1)(21" + 1) ] (-1)

1
'+L" E Y (e¢) Y,'>l (e'¢') c000 c

000 1\t\')).' ;\ 1\ 

z 
m 1m'11 

jJ-. ')-t ,,, 

1 

e'¢')(29' + 1)2 ? : 
2S 1 t 1 mm",..u 

. ~~~~· 

S 1L 111 J' 

cl''" m"' M I 

SL"J I SQS' SLJ . V'!\1 

~"m"M' ~¥''~mM . Cm'f,4m 
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The last two sums can be evaluated with the 'help of Eqs. (C.9) and (C.ll) 

to give the expression on the right .hand side of Eq. (1.6). If N is set 
. . 2' .. 

equal to (27f /kin) , then E.qs. (B.ll) and (C~l3) give 

.. Q . Q .· 
<.@ ( e¢) T~ ) = I ( e¢) ~ ( s, e¢) c c .14) 

From Eqs. (C.l4), (1.4), and (l.?), one then obtains 

<~ (e¢) > ·= I(e¢) 

This justifies the interpretation of I(e¢) that was given in the text 

(see also Eq. (A.l4)). 
0 

For an unpolarized initial system only 0( 
0 

(S 1 , e 1 ¢') is. different 

from zero. Eqs. (C.l2) and (C.lO) can then be used to reduce (1.6) to (1.8). 

When the initial system is an incoherent mixture of various 

orbital angular momentum states, as described in Section I, the O(.tlt Q(S, e¢) 

that describe the final system are given by 

.! 
- N(2S' + 1)-1 (2Q + 1.)2 

2S + r .. 
. . 

N 

2S 1 + 1 
WL v atJ 

21 1 f' 1 

? : 
LL 1L11 J 

SL11 J SQP 
c. c 
)A'm 1M )A~/' 

J* 
R 

SL11 ;S 1L1 

SLJ c . 
f-mM 

\ 

By choosing the z-axis along the direction of the outgoing particle 

(e = ¢ = 0) and using (C.S), the above expression reduces to Eq. (1.9). 
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The c( 1 s that describe the final system of a decay interaction 

can be obtained from Eq. (1.6) by considering only initial S states 

(L' = 1 111 = 0). Equation (1.10} then follows from (C~l2). 

The interpretation of the formulas of S~ction I is simplified by 

expressing them in terms of the physical parameters of the particular 

problem. Such expressions are given in Section II for processes in which 

the initial and final states consist of one particle of spin 0 and one 

particle of spin ~· or 3/2, and for the subsequent decay of the fermion 

into one spin-~ and one spin-0 particle. 

In order to obtain the relationship between the coefficients of 

Eqo (2ol) and those of Eq. (1.11) we need merely note that 

-o To (~) 

"Tola) = 

(2)~i 1 
_.! 

(2) 2 

-1 - 1 
Tl (~) + T_l (~) 

\S"'""z 

i cr­
y 

(C.l5) 

where the ~ are the usual Pauli spin matrices. We simplified the 

evaluation of the expression in Eq, (1.11) further by choosing the 

incident direction to lie in the xz-plane with ¢' = 0 (i.e o , K 1 x K: = -y) . ......, 

This choice gives 

(:.11't f(e) = 
1 

:-2 0 
(2) ao <i, 00) 

c~rl g(S) : . ~ [ a1
1

Ct, 00) - a_/(!, oo)J 
(Eq. C o 16 cont . ) 
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c2:.r _l. 

a0
1(~~ oo) h(9) - (2) 2 -

(7:t h' (e) i [ 1 l. 00) 1 l. oo)] = - al (2, -1-a-1(2, 0 

2 
(C.l6) 

For the case in which the initial fermion is a spin-~ particle 

and the final fermion is a spin~ particle, we introduced the quantities 

defined by Eq. (2.10). We can correlate the coefficients of (2.11) with 

those of (1.11) and the coefficients of (2 .13) with those of (1.3) through 

the relationships · 

a~\~, oo) = {2'~::) -l tt G1(e) y/'(~ + h1(e) Yt<& 

+ h2 (e)Y1~(~)] 

~ 2<~, oo> - {2' e:.yY¥1 [g2(e)Y:% JD + g3(e)Y21:'-~ !£: > 

+ g4 (e)Y:(E ,!S) f h3 (e)Y:(~~ +- h4 (e)Y:(!~JS)] ' 

and 

1(3 ) -C(~ 2' 00 

2 3 <::!(~ (2,. 00) -

~ 3 c~, 00) = 
t. 

(C.l7) 

{ 4 r 1 

, [ c( 9)Y/(!_.J9 + c' (9)Y 2j;(!_,~) + c" ( 9)Y2
10

(E_• ,!£:)] 

{¥7[ctce)Y;~c_!!,!,!9 + d'(e)Y:C!!J!_,JS;) 

+ d 11 (9)Y ~(N K 1 K 1 )] 3 ,_, ~ ,__., 
(C.lS) 

~ 
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where the Y1 s appropriate to our problem are listed in Table III. It 

should be remarked that because the Y1 s are linear functions of each 

argument and K' - COS 8 Z + sin 9 X , the following relationship holds: - -
•• 

(C.l9) 

,. 
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TABLE III 

~ . . . . 

Values of YN b' ... ~N) functions. Uppermost value is. for ·. k,· = 0, 

lowermost for / /(.., '/ = N. Upper sigri is for /(., = + / -~ j , lower for 

IC- = - I h~ 1 

f""i":7? y /C. ( N) -
73 1 ~ 

fJ3{' y ~(K') -13 1-

~cos 9 

L~ ~sin 8 

0 

0 

0 

0 

2 . 2 
cos 9 - 1 sin e . 4fY 

+ i {f cos e sin e 

.L {5 sin2 e 
4 

0 

i. cos g 

TY 
{f' sin 9 

0 

. . . 



.fil?y"'(K,K 1 ) = Y""T 2 ----

~47"""'y \K',Ki)= 5 2 ....._. ~--

fi • 
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TABLE III -- Cont. 

t
cos e 

. +=~ JI' 72 
0 

0 

;{f 
0 

0 

sin e 

_JI' cos e 
2 7 2 . 
_ i JT sine 
+- 2 72 

UCRL-3796 Rev. 
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Appendix D. Initial- and Final-State Interactions, Time Reversal, and 

Space-Time Inversion. 
J 

The matrix element R 
SL;S 1L 1 

. •. 

was defined in Appendix B. as 

(s L J M ·j GG I S 1 1' J 1-i) , where the b~sis vector \ S L J M) 
· 1 1 SLJ m S 

represented the state with the wave function (2kv-2)i jL (kr )~ Y
1 

(e¢) ,X,A . 

This definition is appropriate if the unperturbed Hamiltonian H
0 

is the 

free-particle Hamiltonian. If H
0 

is a more general unperturbed 

Hamiltonian, the baas vectors should be defined as eigenstates of this new 

H0 • Consider the generalization to a case in which H
0 

again commutes with 

the orbital angular momentum operator out may be identified with the free-

field Hamiltonian only at large radial distances. A definition of 

) Sf' L m) that is suitable in this case is obtained by replacing in 

the above definition the spherical Bessel function j 1 (kr) by f1 (kr), 
32 . . 

a real solution of the (new) unperturbed radial equation for the eigen-

value L. The 

it approaches The outgoing part of the 

asymptotic wave function in the spin ~tate 

1 -1 iS m 
(ir v2) exp(ikr) e 

1 
Y1 (e¢) <s ?- LM.J> 

i81 
(ir v~)-l exp(ikr) e <e ¢ I L m) < S fAL m J > 

l. -1 
(ir v2 ) exp(ikr) 

·6 < e ¢ { L m) < S jA 1 m \ e ~ 1 
) 

(ir v~) ... 1 
exp(ikr) < S p.e ¢ 

i6. 
e 1 I) 

r 

' .. 



,. 
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where in the last line 6
1 

is considered to be an operator -(i.e., in 

Dirac notation S
1 

j 1 1 m1 ). - I 1 1 m') ~L'). The total outgoing 

flux density becomes, therefore, 

I(e¢) = 

' 
(D.l) 

i.e., the operator whose expectation value is I(e¢) becomes 

-iS , +i81 
e 1 (p (e¢)e ·, where the prime on I e¢ > · < e¢ I 
signifies that the basis vectors represent the states whose wave functions 

have the radial dependence f 1 (kr). Similarly, the form of the incident 

density matrix depends upon whether the basis vectors represent states 

with wave functions having the radial dependence f1 (kr) or j 1 (kr). 

In particular the density matriX representing an incident plane wave of 

unit flux density moving in the direction e•¢' . is 

I 

~ i = 
+i81 

e 
-i SL 

(f' (e'¢')e' ~(e'¢') (D.2) 

In this representation, where th.e basis vectors are eigenstates of the 

generalized H
0

, the matrix element (s L J M / (R, ) S' L' J M) is 

denoted by R'J If the initial system is a plane wave moving 
SL;S 'L' 
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. in the direction . 9 1 ¢' with spin characterized by U , and the measurement 

is made in the beam emerging in the direction e¢, the expectation value 

of a spin space operator A is then 

= 

= 

(D.3) 

where use has· been made of the identity Sp(BC) = Sp(CB) ·.and the fact 

that A q.nd · U, are scalars with respect to the orbital part of space . 

. The effect of ·the initial- and final-state interactions is therefore to 

J 
replace RSL;S'L' in the formulas obtained with th~ free-particle 

iS 1 J iS 1 , 
Hamiltonian H0 . by e R'st;S'L' e Thus, for the case in which 

the unperturbed Hamiltonian includes i!}itial- and final-state interactions, 

. . J 
the unprimed quantities RSL;S ,

1
, that appear in the various equations 

ic:S'1 J i8 L' 
in the main body of the text should be interpreted as e R1 · e • 

SL;S 1L 1 

The fundamental consequence of the requirement of invariance under 

time reversal is the equality of a matrix lement of the . J . matrix and 

the transposed matrix element between time-inverse states. ·.The time 

·inverse of the state represented by /- S ~L m > is the state 

represented by 
S-,U+L-m I s -m> fact.ar · (-l)S-fl (-1) . .. 

... ~ -L. The is . ' 

· 33 . L-m 
part of the definition. of time reversal for a spin state. The (-1) 

•. 



·' 
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comes from the complex conjugation of. the space part of the wave function and 
mi:· 

the relationship Y1 = m -m 
(-1) Y1 . From the properties of the Clebsch-

Gordan coefficients, the states represented by 
. I, 

I sj;.Lm>(Sf'Lm}SLJM) 

have as their time inverses the states 

SLJ S-)A+ L-m 
~mM (-1) I S -)A- L -m) 

· J-M SLJ 
( -1) C \ S -u L. -m) = · -,M-m-M I r 

J-M 
( -1) / S -p. L -m) < S /A L -m J S L J-M) 

J-M. 
= (-1) I s L J -M > . 

The above-mentioned equality of the matrix elements then leads to the 

symmetry relation 

,J 
R 
SL;S'L' 

< s L J M I (j( I S' 1
1 

J M > 
= 

2J-2M rD I 
( -i) . < s' L I J -M J \11; s L J -M > 

- R'J 
S 1.L 1 ;SL 

J . 
The same relationship is true for RSL;S'L' · 

A second consequence of time-reversal invariance is obtained if 

the reaction is considered to be first order in the interaction term. 

In virtue of its unitarity the J matrix may be expres~ed as 

(1 - i ~ ) (1 + i ?()-l , where i( is a Hermitian operator. 
2 2 

order in J1 we have cK :: i( rf - 1) ::::; iL To this To first 
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order the (R operator is Hermi~ian, and, 
,J 

its matrix elements R are real. 
SL;S'L' 

are not real in general. 

owing to the 
J 

The R 
SL;S'L' 

UCRL-3796 Rev. 

symmetry property, 

, though symmetric, 

For the consideration- of the., consequences of invariance under the 

product of time reversal and space inversion, it is convenient to remove 

the factor of i
1 

in the definition of the basis vectors. Then the space-

. . / S .?- L m) is time inverse of the state represented by 

S-,ft+L-m) 
e (-1) S 7 . L -m) , where e is the intrinsic parity o;f the 

state--the product of the intrinsic parities of the elementary particles 

that are represented in the state~ The reaction matrix elements in this 
J 

representation will be denoted by R"sL;S 'L 1 • If the interaction is . 

invariant under space-time inversion these matrix elements satisfy the 

IIJ * J symmetry property R . " = e 1 R" e , where e 1 and e are 
SL;S 1L1 S1L1-;SL 

the intrinsic parities of the initial state and final state respectively. 

If the reaction is considered only to first order in the interaction, 

theHermiticity of the ·R matrix, together with the above symmetry property, 
. ,,J *. ,,J * 

gives the reality condition R SL;S'L' = e (R SL;S'L') e'. 

When expressed in terms of the amplitudes of the basis vectors 
I 

just introduced, the observable quantities must be representedby new 

functions. Arguments analogous to the ones used.in the case of time 

reversal lead now to the identification 

J 

R SL;S'L' 
. -w-r . nJ 

exp i~ 0'1 - T ) R SL;S'L' exp i(cS' L' + 17'~' ) 

., 
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