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Numerical integration of the previous:Ly derived alpha decay wave 

equation, including electric quadrupole coupling terms, was carried out for 

m22 including jj = 0, 2, Ii., and 6 partial waves. Eight integrations were 

carried inward in spherical polar coordinates on an IBM-650 computer with 

different initial conditions, such that a complete set of eight linearly in-

dependent solutions tothe system of 'coupled eq.uations was generated. Eight 

different linear combinations of this base set were found which satisfy the 

boundary conditions imposed by experimental Cm22 alpha group intensities. 

Wave amplitudes on a spherical surface near the nucleus are given for all 

eight cses,.and the radial variation throughout the barrier region is given 

for two cases. The matrix formalism of Fr8man is employed in another present-

ation of the results, and a comparison is made with the analogous Fröman 

matrix. By using a modified Frbman matrix together with our results, the alpha 

wave distributions are calculated for a spheroidal nuclear interaction surface. 

A discussion is made of conditions for the exit:ence of solutions satisfying 

boundary conditions imposed by alpha group intensities, and the quadrupoie 

phase shift problem is considered. 
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INPRODUCTION 

For nuclei with mass numbers greater than ."22O there seems to be a 

stable spheroidal deformation, 'which gives rise to rotational bands and other 

phenomena treated in the Bohr-Mo'ttelson model. 1  The even-even nuclei .exhibi.t 

even-parity rotational bands based on the 0+ ground state and .co.nsistin.g of 

levels with 2+, li-+, 6+, etc. assignments. Successive levels are connected by 

especially large •E2 transition matrix elements. It is t,hese large 'electric 

.quadrupole interactions that.coxnplicate the solution of the Schr8d"nger equa-

ti.on governing alpha decay. General treatments of the alpha-decay problem with 

noncentral interactions have been made by Preston 2  and by Penman and 

Rasmussen, 3'... More specialized treatment of the alpha decay of even-even 

spheroidal nuclei haw been made by seyeral authors, ,,:., and we shall not here 

repeat any detailed introduction to the spheroidal nuclear alpha-decay problem. 

THE WAE, EQUATION 

It is convenient to consider.the alpha-particle wave function with 

respect to a spherical polar coordinate system (r,) with polar axi,s the nuclear 

symmetry axis of the spheroidal nucleus. The azimuthal angle has no signifi-

cance, since the only final nuclear states to be considered here have no 

angular-momentum component along the symmetry axis, i.e., K .= 0. With the 

daughter nucleus possessing an intrinsic quadrupole moment, Q, and afinité' 

rotational moment of inertia, Z.,  the wave equation is not separable. If only 

the states of the ground rotational band are cOnsidered as final states, then 

we may express the alpha-wave function by the expansion 

/ 
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T .P 2(cs Q), 	 (i) 
O<2N 

where the 	are Legendre functions. In this paper we shall neglect the 

• odd-2 terms, since the odd-spIn members of the rotational band usually lie 

rather high in energy.. 

Using the expansion (I), one ;can reduce the three-dimensioal wave 

equation to a set of coupled ordinary differential equations in the epan.sion 

functions w2(r). The first four equations have been explicitly given before, 

and are as follows: 

	

2 	 2 	 - 
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- 	
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23 	
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w 	 - 	+ — 	,w = 	I 	w + 	+ 	(2d) 
6 	%\2r 	2 	r2J 	6 	23 '...,ll.ji3 

where Z is the charge of the daughter nucleus, m is the reduced mas., E2  is 

the total decay energy of the 2-wave alpha, and Q is the intrinsic nuclear 

quadrupole moment. 

These equations are of .a convenient form for numerical solution by 

digital computer methods. The.results in this paper were obtained with the 

aid of an IBM-650 computer. 

BOUEDARY CONDITIONS 

The solutions in this paper are those of the •.inward-.int:egration 

type, where boundary -condition .s are taken from the exerimental alpha-group 

intensities, and the final information sought is the wave function near the 

nuclear surface. 

The solutions at large enough. distance that the quadrupole terms 

become negligible will he taken as of the form of outgoing Coulomb waves,7 
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but with the phase factor 	left to be determined: 

—> A2(G2  + iF2) e'2. 	 () 

For the system of four second-order .equation (2Y it is necessary to 

impose eight boundary conditions. Your of these conditions come from the 

experimental intensities I. 

( 1 ) 

with .v the velocity of the 2-wave particle at :infinity. 

Since the alpha particle behind the potential barrier exists in a 

.qusi-stationary state, its wave function in .the nuclear surface region may be 

;considered almost purely real. Thus, the four additional boundary conditions 

can be obtained to good approximation by imposing the condition that the 

imaginary part of each  partial wave tanish at the nuclear surface. In actual 

fact we have required the imaginary components to vanish on a spherical surface 

near thenucleus, but the real parts of the solutions finally obtained were 

found .to be quite insensitive to the location of .the surface on which these 

boundary conditions were imposed. 

There is an ambiguity remaining in the specification of the solution, 

associated with the phase (or sign) of the partial waves (see Ref. 5). 

E)ERIMENTAL DATA 

The foflowinge.xperiniental value8 fromCIn22 alpha decay were used: 

.E2 

.4 
E6  

6,253 Mev 

E 	 - 0.0141 	ev 

E 	- 0.i1i60 Mev 
0 = E0  - 0.3037Mev 

10  

12 
I.= 

16 

73.7% 

263% 

0.035% 

0.00.6% 
=_ 2 	2 +9 ,x io 	cm 

1'UMERICAL METHODS 

The set of differential equations  (2). was integrated by applying an 

iterative numerical method to a set of app±oximating difference equations. The 

arithmetic was performed on the University of .California Radiation Laboratory 

digital IBM-650 .coniputer. The basic equation used relates the (n-l)th second 
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difference A, 'n-1 to the second .deri'ative yU (as obtained from the appro-

priateEq.s. (2)) and its second difference ,2 
	

: 

2n-1 	
h2 u ± 

 ( 1/12) 2 ;_1 ], 	 () 

where A27 1  is defined as A2y= 	
- 	+ _' and where h is the in- 

terval in the independent variable, p. This euation requires three starting 

values at equally spaced intervals.of p. In this section we make frequent use 

of the dimensionless distance parameter , p, which is equal to the product of 

distance and k 0  , the wave number of the ground-state alpha group at infinity. 

For the Cm2l2  problem we have k0  .108508 x :il3  cm 1 . Hence, one unit in P 

is equivalent to a distance of 0.921 fermi (10 -13  cm). 

It was hoped that inward integration from .p = 75 would yield solu-

tions accurate to the order of a percent near the nuclear surface. The 

solutions on which the final results are based were obtained with an interval 

of ii = 0.5 (units of p). This interval is coarser than desirable near the 

nucleus, as evidenced by the size of the first error term of difference formula 

(5), namely (l/21i-0.) 
6 y, However, integrations on two solutions at an inter-

val of..h = 0.1 showed only a 1% difference at p .14.5 from the values of the 

functions obtained by use of the coarser interval. All four components of the 

solution for the coarse interval were lrger by i% than the h .= 0.1 values; at 

p = 11.5 the errors were between 1 and 2%. The relative values of the four corn-

ponents are not much altered by integration with the fine.r interval. Therefore, 

it was felt unnecessary to rerun all the other linearly independent solutions 

at smaller interval. 

Eight separate inward iitegrations of the four coupled second-order 

linear differential equations from a large distance were run with different 

initial conditions. Eight linearly independent solutions were obtained,  con-

stituting.a complete set. Any general solution is expressible as a linear cOm-

bination of these solutions,. The boundary conditions consisted in setting 

the amplitude and first derivative of one partial wave equal to the corres-

ponding regular (F.) or irregular (G.) Coulomb function (calculated by the 

.Riccatill approximation formulas) (Ref. .Fr8berg), 7  with all other partial-

wave amplitudes and first derivatives equal to zero. - The matching to pure 

Coulomb functions at p = 75 amounts to solution of an approximate set of 

equationsof the form of (2)at distances p < 75, but where, all the quadrupole 

potential terms are "turned off" at distances greater than p = 75. 



-7- 
	

UCRL- 383 5 

Pennington9  has developed a perturbation method to treat the coup-

lingeffectson out .to infinity. His work involve.s numerical integration of 

the alpha wave equation in spheroidal coordinates for many heavy element nuclei 

taking into account £ = 0, 2, and .Ii groups only.. His general approach in 

constructing solutions from linear combinations of a basic linearly independent 

set is similar to ours. 

From these eight linearly independent solutions of Eqs. (2) as base 

vectors, the complex soluti.ons that satisfied the asymptotic boundary conditions 

4) and whde imaginary parts vanished on a sphere of radius 12 were foind 

algebraically. The solutions of eight simultaneous algebraic equations, .four 

of them quadratic, were required, and these solutions were obtained by use of 

the IBM-650 computer. 

As an example of the extent to which quadrupole terms affect the base 

vector solutions, the base vector derived by setting w. = 8 io  G at p = 75 has 

the following values at p .= 15: 

110 
1.66x1010 , w2  = 2.20xl09 , w 	l,33808, and .w6 = 3.607xl06 . 

In the absence of quadrupole terms w2 , Wy  and w6  would remain 

identically zero for all p. 

As an example of a solution (linear combination of base vectors) 

satisfying the intensity boundary conditions, we give at p = 15 the partial 

wave amplitudes of one of the eight solutions: 

wo 
 = 1.831x1010 , w2  = 1 .891xl010 , w = 3.837x109 , and w6  = 3.629x109 . 

This solution (for all p) is formed from the eight base vectors by expansion 

coefficients of 1,000, 0.5973, 0.01709, and 0.009112 for the G 
0 

j 0, G2 A,  0, 
etc. vectors and -0.009372, -0.03615, -0.01373, and -0.0006825 for the Fi / 0 

vectors. With these expansion coefficients the real part of the general out-

going wave solution is obtained. By exchanging corresponding expansion 

coefficients forG. A 0 and F. AO solutions and changing the sign of one, the 
imaginary part of the general solution is constructed, but it is not expected 

to be accurate within the barrier when constructed from inward-integrated 

solutions, since it will involve small differences of large numbers, 
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RESULTS 

There are several ways in which the numerical results may be pre- 

sented. First, we give partial wave amplitudes (real part) as a function of 

distance for two of the eight cases satisfying the empirical C2l2..alha  group 

intensities. These solutions are given in Table I, and the normalization is 

such that the S-wave goes over asymptotically into an oscillatory function 

with unit amplitude. 

Second, there is presented in Table II the relative wave .alitude 

values on the spherical surface ( p 11.0; i.e.' r . 10.11013 cm). For com-

parison are given the -relative values that would be -calculated, if the quath'u- 

pole momen,t were zero (colunm ii.) and the value.s that would be calculated if 

both the .qua.drupole• moment and centrifugal barrier -effects were ignored 

(coluxsn 3)0 In comparing dolunin Ii. with the .eight numerical cases it is noted 

that inclusion of quadrupole terms seriously affects only the 2 = ii- partial 

wave. This result is readily understandable from the structure of the coupled 

Eqs. 	 where coupling terms will have greatest effect on a partial wave 

of small amplitude coupled to one of large amplitude 

Examination of column Ii- suggests that the Legendre expansion is not 

converging rapidly and that the 2= 8' group and possibly higher 'rotational 

groups are not negligibl'6... 

ComDaris:on with Fr8man s Treatment 

Fr8rnan10  in a recent comprehensive treatment of alpha decay has -de-

rived analytical expressions for alpha decay of spheroidal nuclei. With these 

expressions he has calculated numerical value-s for matrix elements of a matrix 

All. 	k 22  (B) which, by multiplication carri-es over the Legendre expansion. coeff i- 

cients, a 2 ,of the alpha wave function on the spheroidal nuclear surface into 

coefficients,b 2, related to the alpha group intensities, i.e. b 2 	E k2 , (B)a 21 . 

2 	
'is the reci'proeal..qf the (product 	:-e:.hjn&ti" f tó.cnd4the, - 

centrifugal barrier reduction factor. 
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The argument .B is a function of the deformation of the surface and 

the intrinsic quadrupole moment. Fr8man t s matrix k £t(B) might be equated to 

a product of two similar matrices. By multiplication one carries the spheroid-

al expansion vector a over to -- a ector. a 	ii.ngexpns.iOfl coefficients on a 

spherical surface of the same mean radius as the spheroid.. The second matrix 

carries the a vector over to the :asymptotic vector b 2. The off-diagonal 

elements of the first matrix arise as a consequence of the transformation be--

tween two different surfaces, and those in the second arise, as a consequence 

of the electric quadrupole interaction. Numerical values for each of these 

matrices may be taken from the values on page •41 ofFrman t s  paper but. using 

arguments B1  and B2  calculated in the following manner. .B 1  for the former 

matrix is calculated from .Fr&iian's (VI-9),by setting q 0  equal to zero. B2  is 

calculated by use of (VI-9).by leaving out the term unity in the final fa.ctor 

and inserting the value of qo  defined by,Frmants  

It is this second matrix which may be directly derived from the 

numerical wave functions of the present work. Linear combinations of our 

eight linearly independent solution,s are found rhich represent the irregular 

Coulomb function of a singLe partial wave at p 11. The expansion coeffi-

cient.s are found by solution of eight simultaneous linear equations, and -these 

expansion .coef.fieients, when renormali.zed to account for different pen.etra.-

bilities ofthe different partial waves due to the centrifugal potential and 

to fluclear rotational energies, constitute the matrix elements of the second 

matrix described in the preceding paragraph. Unlike the matrix derived by 

.Fr&ian's approximation our matrix is not symmetric and the matrix elements are 

generally complex. This comple.x nature reflects the phase .shifts on the .Cou-

lomb waves arising from .quadrupole coupling terms in the wave equation. 

The matrix applies to the surface -of .radius r = 10.12xlO
-13 
 cm 

(p = 11.0), which is representative of alpha particle interaction radii and 

would satisfy the expression: 	 - 

(1.23 Al/B + .25) x 103 cm. 	.. 

Our matrix is then as follows: 



Q,uadrupole inieraction 

712- 

matrix 

UCEL-3835 

2=0 22 4 6 

1.015+0.01161 -0.1674-0.01761 0.01166+0.00217i -0 . 0005093 -0 . 000139i 

-0.2107-0.0456i 0.9542-0.001581 -0.1195-000592 i 0.007260+0.0006791 

0.02114+0.01351 -0 . 1899.-0 . 0595i 0.9191-0.003601 -0.1008-0.001871 

-0.001089-0.0O216i 	0.01885+0 . 01871 	-0.2052-0.08931 	0.9086-0.0241i 

For the parameters r 10.12x10 13  crn.and Q0 
9,0x1024 cm2  of our 

matrix one may calculate that the appropriate argument of the analogous Fröman 

matrix is.B 	-0.455. The matri,x re.ailtlng from interpolation (7 point).of 

Fr&ilan ts numerical matrixelements for this :argurnent is given below for om-

parison with the preceding matrix. 

Fr8uian matrix .for.B .= -0.455 

2=0 	2=2 	2=4 	2=6 

1.019 	*0.193 	0.014 	-0.0005 

- -0.193 .Q.908 -0.158 0.014 

o.014 -0.158 0.917 -0.155 

-0.0005 	0.014 	-0.155 	0.917 

To facilitate comparison the overall normalization of our complex 

matrix was carried out to make the .2. 2' = .0 diagonal components nearly equal. 

The normalization to 1.015, compared to Fr&ian's .1.019, was arbitrarily made 

slightly less from qualitative consideration of the sign.of the expected de-

viation from the Frönian apprQximtiOn.. Comparingthe two matrices one sees a 

fairly close corresndence of the real components. The imAginary components 

are usually considerably smaller .than the real cononents except for elements 
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fr from the diagonal. The asymmetry of the matrix is of the sense that an 

off-diagonal element in the upper..right-.han.d half is always smaller than.its 

counterpart in the lower•.left-hand half.. 

in the Frdman approximation the quadrupole coupling terms (off-

diagonal terms) in the alpha decay wave equation are considered to operate 

only over the inner part of the barrier and the diagonal terms for each par- 

tial wave in this region are considered the same; the effects of the difference 

in diagonal terms (centrifugal potential and nuclear rotational energy) are 

considered to arise from the outer region. .of the barrier.. The asymmetry of the 

matrix derived from our numerical solutions may be said to arise as a consequence 

of the operation of off-diagonal ter over the same radial region where diago.-

nal terms significantly diffr for the different partial waves. The imaginary 

components of the matrix elements arise principally as a consequence of quad-

rupole terms, diagonal and off-diagonal, in, the region of the classical turning 

point:s. F8man's approximation neglect:s quadrupole terms in the turning point 

region 

Wave Functions on the Sphér..idal. NuciearS.uface 

Sance the nucle 	
312

ar surface of the alpha decay daughter of Cm 	is 

suposedly spheroidal, it is of interest to determine Legendre expansion. co-

efficients .for.the wave function on the Spheroidal.surface. In principle we 

could take a spheroidal section through the numerical wave functions defined 

by our spherical expansion coefficients, but this procedure is not very 

practicable. Instead, we chose to multiply our relative spherical expansion 

coefficient vectors (Tablell) by a modifiedFr8man inverse matrix.. The 

deformation of the spheroid.of mean radius p.= 11.0 was chosen frofri calculation 

.of a nuclear matter spheroidal surface for mean radaus .r . 1.23x10 -131/3A 	cm 

and .% = +9.OxlO 21 cm2  and then adding a con,stat distance 2.5x10 
13  cm to 

take into account the finite range of the nuclear interaction and "radius of 

the alpha particle.' t  This procedure led to a deformation .paramter P2 of 

+0.159. Using the modification of Fr8man's Eq. (VI-9) described in the pre-

.ceding ,section we then calculat& the argument :B...= +2.00 for the .Fr&'nan matrix 

which by matrix multiplication transforms the distribution vector on the 
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spheroidal surface intothecorre.sponding vector on the spherical surface of 

the same mean radius. We desire the inverse matrix to convert to the spheroidal 

• distribut±on vector, and this matrix is just. the .Fr8man matrix with argument 

.:B. -2.00. Multiplying the spherical surface amplitudes of cases .1 to 4from 

Table II we get the spheroidal distribution vectors given in Table III.. The 

transfdrmtion will give rise to components of 2 =. 8 and higher, but these are 

not listed An Table III, sjnce with, the arbitrary exclusion of 2 ;. 8 partial 

waves from our work, the proper values of the 2...8 coefficients are quite un-

certain. Cases 5 to 8 were not transformed, since indirect evidence discussed 

later gives information on the probable 2 0, 2 2 phas.e difference which 

excludes cases 5 to 8 as actual possibilities. 

Table III.. Expansion coefficients of wave functions on 
the nuclear surface 

Case 
2 	.1 	 II 	 III. 	:IV 

0 	0,482 0.5022 0.483 0.11.65 

2 	0,246 .0.1723 0,23.5 0.303 

11. 	-0.273 -0.0257 -0.152 -0.390 

6 	•0.26 -0.1950 -0.136 0.315 

The wave function variations over the spheroid obtained with the ex-

pansion coefficients of Table III fall into two groups. Cases 1 and ii. are quite 
0 

similar to one another, shoLng maxima of roughly equal height at Q = 0 and 
.,550 

and. ..chnging sign near 90
0 . Cases 2 and 3 are similar to one another and 

show a main peak arouxid 30_350 with a minimum at 00 Solutions 2 and 3 also 

both show slight peaking at 90 with. minima at .60 and 75 , re .spectivel. 

Inspection of column .11. of .Table II. leads us to believe that -inc luion of the 2 ...8 

partial wave could significantly alter the details of the di,stributions and, of 

course, would lead to twice as many possible cases. The distributions of -cases 

2 and.3 bear a strong qualitative similarity to the distribution (case I) -de-

rived by Rasmussen and Segall, 5  except that the single maximum in this earlier 

work lay near 500.  The differences from this -earlier work are due to inclusion 
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in the present work of the 	6 wave and to use of a deformation about half 

as great as was used before. The incliision .of the £ 6 wave has given rise 

to the two distinct alternative pattexns within cases 1 to L 

Let us now turn to the question.of deciding on the physically 

correct case of the eight possible solutions. Angular correlation experiments 

with .alphapa±'ticles may give results dependent on phase differences. The 

different cases correspond to different phase differences between the variou.s 

alpha groups, but since the various groups in even-even alpha emission are all 

of different energy, there can be no interference terms in angular distribution 

experiments. However, in the alpha decay of odd-mass nuclei there may be more 

than one partial wave in aine alpha groups, and there may t.hus be inter-

ference terms in angular distribution experiments. From the sign of the 

interference terms one may decide between the two possible phase differences 

of two interfering partial waves, 

Bohr, Fr8man, and .Mottelson have shown good corre3,ations between 

relative alpha-group intexsities in even-even nuclei and in Ttfayoredt? decay 

groups in odd-mass nuclei, (See.:also Ref. 3 for discussion of favored alpha 

decay.) rwe may make further use of the analogy by proposing that the phase 

differences found in angular distribution experiments on favored alpha groups 

in odd-mass nuclei should be the same as in the neighboring even-even nuclei. 

The two best and most readily interpretable experiments are the 

alpha oO-kev 	
21.i 

gamma angular correlation in Am 	by Krohn•, Novey, and Raboy 12  

and the alpha angular distribution from aligned U 	 nuclei by .Dabbs, Roberts, 

i and Parker.
13  The main part of the anisotrppy n each experiment is thought 

to arise from an S-wave D-wave interference term in the main alpha group 

i ( 	0). The Am .2)4.1 result can only be interpreted as ndicating the correct- 

ness of one of cases 1 to ii. and rejecting cases 5 to 8 (i.e., there is a con-

structive S-D interference along the nuclear symmetry axis). From the lack of 

any sharp variation in .. .= 2 group-hindrance factors for even-even alpha 

emitters between mass 2.33 and 241 we should expect the S-D phase difference to 

be of the same sense for.0 
233 as for Am 241 . The theoretical interpretation of 

the U233  anisbtropy can give information on.the S-D phase if the sign of the 

quadrupole coupling constant for uranium in rubidium uranyl nitrate is known. 

We would like to suggest that the sign of the quadrupole coupling constant in 
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rubidium uranylnitrate is probably negative. In this crystal the linear 

uranyl (uo) ions are aligned along the c-axis of the crystal. Eisenst:ein 
and.Pryce have proposed that •a strong hybridization of at,auic orbitals 6d 

and 7s in uran:ium occurs for the o-bonding orita1.s, and they state tiat this 

hybridization will give rise to ,a "column of charge" along the uranyl bond 

axis. If this axial column.of negative charge characterized the bonding 

orbitals at all distances from the uranium nucleus, then the positive quadru-

pole moment of the nucleus would give ri.se  to a positive quadrupole coupling 

constant, i.e., magnetic s.ubstates m1 .= ±1 = ±5/2 would lie lowest in energy. 

However, the 6d and 7s orbitals have three and six r i,eseet±, and.a 

hybrid orbital will thus exhibit alternating concentrations of charge at the 

poles and in equatorial rings as the radial distance changes. The quadrupole 

coupling constant will be most dependent on the eleOtronic charge distribution 

near the nucleus. For the bonding 6d-7s hybrid the innermost interference 

region will have an equatorial .ring of charge. An. evaluation .pf the radial 

integral for the 6d7s interference term in the quadrupole coupling expression, 

• using unecreen.ed, n.onrelativistic electron wave functions, and also using 

screened relativistic wave functions, 15  did yield .a negative contribution to 

the coupling con.stant) 	The 6d component alone yields a positive contribu- 

tion, so the sign of the quadrupole coupling constant will depend on the 
241 

degree of 's-d hybridization If, as we believe, it is negative, the Am 	and 

experiments are consistlent with each other and support the choice of one 

• 	of our cases l.to j. 

Deciding.among the cases 1 to Ii- is not possible with present infor-

mation.. In priniple the needed information can be obtained .from a study of 

the -G and .G-I interference terms in alpha angular-distribution experiments. 

In practice the information will be difficult to obtain because of the rela-

tive weakness of G and I waves for favored alpha transitions. 

Let us summarize the method Of transforming the vector describing 

the alpha. particle wave function on the spheroidal nuclear surface to the 

vectOr b 2  whose conon.ents are partial wave amplitudes (w 2  = r4r 2) at infinity. 

One multiplies successively by the modified .Fröman matrix (whose argument B is 

calculated setting q to zero), by our. conlex quadrupole interaton matrix 
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given earlier in this section, and finally by 'a diagonal matrix k ,  = 
.-1 
G 2  (kr) 	where r is the mean radius of the nuclear spheroidal surface, 

and G 2  is the irregular Coulomb function. 

CONSIDERATIONS REGARDING "EXISTENCE OF SOLUTIONS TO THE 
COUPLED ALPHA-DECAY EQUATIONS 

If there are no noncent±al interactions, the wave equation separates 

exactly, and satisfaction of the boundary condition that imaginary components 

of an partial waves vanish at the nuclear surface can he achieved for any 
choice of relative group intensities simply by adjusting the phse of each 

partial .wave separately. However, for the coupled equations here it seems on 

brief consideration that some combinations of relative intensities may be 

mathematically excluded by the nonexistence of solutions satisfying all the 

boundary conditions. For example, suppose we seek sqiutions to Eq. (2) 

satisfying both the nuclear and the asymptotic boundary, conditions of Eq. #) 

with all intensities vanishing .except for the £ -= .0 group. Thus, only two of 

our.eight base vector solutions (i.e., those derived from G 0 J 0 and from 
0 at large distance) can be used. Yet at the nuclear surface, because of 

•coupling, these base vectors will have components in ,w 2 , w, w6 , etc. as well 

as in w0 . It does not seem likely that the imaginary parts of all .thes.e corn-

pon.ents can 'be made, to vanish by any linear combination of just two base 

vector solutions. 

An example of foibidden.intensity combinations was furnished when we 

attempted to calculate-solutions with our Cm22  base vectors as if Cm2 2 had 

the hindrance factors of ionium (m230 ), which experimentally are 1,1 (2 2), 

12 (2 .= )i-), and 8200 (2= 6). No solutions satisfying the boundary conditions 

existed, but when.a larger intensity of the 2= 6 group was tried (hindrance 

factor, 820) 19  all eight solutions were found. 
230 

In actual fact the quadrupole moment appropriate for. Th 	decay is 

surely considerably less than that for ,Cm22  decay, and with lower quad.rupole 

.coupling we know that the existence conditions would impose less restrictive 

limits on the intensities of weak groups. Surely the 8200 hindrance factor 

.f or 2, 6 would give .;allowed solutions .if'.the Th °  problem were solved pro-, 

perly with a small Q0.  In a reverse application of the existence condittons 
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one could, for a given .set of experimental hindranc.e factors, set an upper 

limit on Q.  as that value above which solutions to the problem vanish. 

CONCERNINQ PHaSE SHIFTS DUE TO QUADRUPOLE COUPLING 

Aside from. the importance of including quadrupole coupling to 

derive alpha surface distributions from relative intensity data., Quadrupole 

coupling may be of some importance in affecting the interpretation of alpha 

angular-distribution . experiments with spheroidal nuclei. The phase of alpha 

waves cannot affec.t any experimental measurements on the .eveneven. alpha 

.ernitters, since each. alpha group has only one associated angular momentum 

(consequence of zero spin of parent) However, odd nuclei may be expected 

often to have two or more partial waves associated with an individual alpha 

group. This mixture can give rise to interference terms in the alpha angular 

distributions, and the expressions .for these intei'ference terms involve the 

phases .through a cosine factor having.as argument the phase difference of the 

two partial waves.. .The phase difference has usually been calculated. from..the 

differenc.e of arguments in the general asymptotic expression for outgoing 

Coulomb waves, 

G 2  + IF 2  —> exp[i(p. -1  log a,- 	+ a 2)], 	 (6) 

where 	arg P (ir + 2 +. .i) and r and p are the standard Coulomb function 

arguments. where noncenti'alI interactions operate on the alpha particle after 

it leaves the nuclear :surface, additional phase shifts may be introduced. To 

determine precisely how much additional .shift would require study of the par-

ticular cases; however, we may get a rough estimate of the maitude of phase 

shift ..eff.ect.s to he expected in favored decay of oddmass neighbors of . C m22  

242 
by examining the phase shifts in the Cm 	solutions discussed above. 

At the end .of the section on "Numerical. Methods" the eight expan-

sion coefficients for the case I..Cn22  solution were given. The extra phase 

shift.s due.to quadrupole coupling are easily calculated by simply taking the 

arc tangent of the ratio of the expansion coefficients for corresponding 

.F. 	0 and G. 	0 solutions, The extra phase shifts (in radians) are 5 	-0.009, 

2 
=-0,060, 6 = -0.68, and 

6 
= -0.075. As a first approximation we might 

take these phase shifts for analysis of angular correlation data involving 
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favored alpha-decay groups of bdd-mas neighbors ,oicri22.  .rom the asyntotic 

expression (6) one can derive the phase-difference formula given by Devons and 
GoidThrb, 17  and according to this formula the Dwave lags the 3-wave by 7.30 

 

at infinity. When the additional phase lags due to the quadrupole interaction 

are taken into account, the fl-wave may lag the .3-wave by 10.2 °  t infinity.......The 

size of the theoretical S-D interference term should thus be reduced by about 

one percent from the values previously derived, neglecting quadrupole coupling.. 

This correction does not seem very .sèrious 

If one should perform an experiment in which the D-G interference 

term enters, then a more serious correction due to quadrupole phase shifts is 

to be expected, for the estimates above indicate an additional 360 
 lag between 

D- and G-waves. In. the Cm22  problem the G-wave is subject to the greatest 

phase shifts, since it Is a weak group couied to a relatively intense 	2 

group. It should be emphasized that the above numerical values of the addi-

•tinnal phase shifts apply only to case I. The phase shifts will be different 

for the different possible cases. 

We can expect, regarding the noncentral interaction phase shifts, 

that (a) only the large collectiveE2 couplings will be of significance; 

the shifts will be larger, the larger the intrinsic quadrupole moment; 

the shifts will be largest for low-intensity groups coupled to high-

intensity groups; and (d) the coupling may introduce phase shifts of either: 

sign depending on the relative signs of the coupled partial waves in the 

classical twning-point region. 
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