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ABSTRACT

Numerical integration’ of the previously derived alpha decay wave
equation, including electric quadrupole coupling terms, was carried out for
,sz‘l‘L2 inéluding 4 =0, 2, 4, and 6 partial waves. Eight integrations were
carried inward in spherical polar coordinafes on an IBM-650 computer with
different initiél conditions, such that a complete set . of eight linearly in-
- dependent solutioﬁs to the system.of'coupléd equations was generated. Eight
different linear combinations of this base set were found which satisfy the
boundary conditions imposed by experim.ental.Cm2h2 alpha group intensities.
Wave amplitudes on a spherical surface near the nucleus are given for all
eight cdses, and the radial variation throughout the barrier region is given
for two cases. The matrix formalism of Fréman is employed in another present-
ation of the results, and a comparison is made with the analogous Fr8man
matrix. By using a modified Fr8man matrix together with our results, fhe élpha
wave distributions are calculated for a spheroidal nuclear interaction surface.
A discussion is made of conditions for the existence of solutions satisfying
boundary conditions imposed by alpha group intensities, and the qpadiupole

phase shift problem is considered.
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INTRODUCTION

For nuclei with mass numbers greater than ~220 there seems to be a

stable spheroidal deformation, which gives rise to rotational bands and other

phenomena.treated in the Bohr-Mottelson m.odel.l The even-éeven nuclei exhibit

even-parity rotational bands based'on the O+ ground state and .consisting of

levels with 2+,'u+, 6+, etc. assignments. SuccessiVe'levels are connected by

especially large E2 transition matrix elements. It is these large electrdc
quadrupole interactions that.complicate_thé solution of the Schr8dinger equa-
tion governing alpha decay. General treatments of the alpha-decay problem with

noncentral interactions have been made by PrestOn2 and by Perlman and

i ‘
'Rasmussen.s"w,Mbre specialized treatment of the alpha decay of even-even

spheroidal nuclei haw been made by several authors, ” ' . and we-shall not here

repeét any detailed introduction to the spheroidal nuclear alpha-decay problem.

. THE WAVE EQUATION

It is convenienf to consider the alpha-~particle wave function with
respect to a spherical polar coordinate system (r,0) with polar axis the nuclear
symmetry axis of the spheroidal nucleus. The azimuthal angle hés no signifi-
cance, since the only final nuclear states to be considered here have no
angular-momentum componént along the symmetry axis, i.e., K= 0. With the'
daughter nucleus possessing an intrinsic guadrupole moment Q , and a’ flnlté
rotational moment of inertia, §, the wave equation is not separable. If only
the states of the ground rotational band are considered as final states, then

we may express the alpha-wave function by the expansion
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W(r,@,@) = ZKleZ(r)_f”23+l .Pz(cds 9), (1)
O<E<N Y b '

where the”Pg are Legendre functions. In this paper we shall neglect the

- 0dd~£¢ terms, since the 0dd-spin members of the rotational band usually lie

rather high in energy.
'Using the expansion (l), one can .reduce the three-dimensional wave.
equation to a set of coupled ordinary differential equations in the expansién

functions,wz(r). The first four equations have been explicitly given before,

‘and .are as follows:

’ b,mZe2 2nE Zm.Q,Oe2 v, ' . (28)
W'», - - w = er————— ——— . 28:
o \ 4%  #° o g3 5 | ~
1 hmzez ) 2mE2 6 | ) zmQOe? ' wO ZWZ y 6W)+
sl 23 et (T T S -
A%y A r 43 W 7w/
2 2 : .
X hmZe 2mElL 50 2mq_e” 6w2 Zowh 15w A A
Wl{. - > - > + _E W)+ = 3 + ’ + . s (ZC)
£y 7 r ' Py wWs 77 1113 |
2 2
/-\;nZe 2mE omd: e/ 1hw
ve -\ = - '26 +£§' Vg = 203 < - i T 556> T (24)
\ #°r 4 T A% 11W13 | : .

where Z is the charge of the daughter nucleus, m is the reducgd mass,‘Ez is
the total deciy-energy of the f4-wave alpha, and Qo is the intrinsic nuclear
quadrupole mo’ent.

These equations are of a convenient form for numerical solution by
digifal computer methods. The results in this paper were obtained with the

aid of an IBM-650 computer.

BOUNDARY - CONDITIONS

-The sélutions in this paper-are those of the inward-integration

type, where boundary cconditions are taken from the experimental alpha-group’

intensities, and the final information sought is the wave function near tﬁe_

nuclear surface.

.The solutions at large:enoughydistance that the quadrupole termq

T

become negligible will be taken as of the form_of'outgqing,Coulomb,wayes,
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" but with the phase”factorselaz left to be determined:

w,—> A,(G, + iF)) o ' (3)

For the system of four second-order equations (Z)Zit,is necessary to
impose eight boundary conditions. Four of these:conditions come from the
experimental intensitieévIz.

VAL =T, , | | (1)
,with.vz the velocity of the 4-wave particle at infinity.

Since the alpha particle behind the potential barrier exists in a
quasi-stationary state, its wave function in the nuclear surface region may be
considered almost'purely real. Thus, the four additional boundary conditions
can be obtained to good approximation by imposing the condition that the
imaginary part of ‘each partial wave vanish at the nuclear surface. In actual
fact we have required the imaginary components to vanish on a spherical surface
near the nucleus, but the real parts of the solutions finally obtained were
found to be quite insensitive to the location of the surface on which these
boundary conditions were imposed. ) ‘

There is an ambiguity remaining in: the specification of the solution,

associated with the phase (or sign) of the partial waves (see Ref. 5).

EXPERTMENTAL DATA

.The following experimental va_lues'8 from,Cm‘242 alpha decay were used:

E_ =6.253 Mev I = 73.Th

E,=E_ - 0.0441 Mev I,s= 26.3%

Ey = E_ - 0.1460 Mev I) = 0.035% ‘

E, = E_ - 0.3037 Mev I = 0.006% o g
Qo = +9 x 10 cn

'NUMERICAL METHODS.

The set of differential equations (2) was integrated by applying.an
iterative numerical method to a set of approximating difference equations. The
arithmetic was performed on the University of .California Radiation Laboratory

digital'IBM-650 computer. The basic equation used relates the (n-l)th second
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difference AF‘yn-l to the second derivative y; (as obtained from the appro-
priate Eqs. (2)) and its second difference,A? y;—l:
y_y = boly" + (1/12) A% 37 0, (5)
n-1 n- " n-1"’

where A?yn_l is .defined as A?yn-l = yn+l --Zyn LAY and where h is the in-
terval in the independent variable, p. This equation requires three starting -
values at equally spaced intervals.of p. In this section we make frequent use
of the -dimensionless distance parameter ., p, which is equal to the product of
dlstance and ko, the wave number of the ground-state alpha group at 1nf1n1ty.
For the: szu problem we have k =1, 08508 x lOl3 . Hence, one unit in p

is equivalent to a distance of O 921 fermi (10~ 13 em). |

It was hoped that inward integration from p = 75 would yield. solu-
tions accurate to the order of a percent near the nuclear surface. The
solutions on which the final results are based were obtained with an interval
of h = 0.5 (units of p). This interval is coarser than desirable near the
nucleus, as evidenced by the size of the first error_term of difference formuls
(5), namely (1/240) Aé.yn, However, integrations on two solutions at an inter-
val of W = 0.1 showed only a 1% difference at p.= 14.5 from the values of the
functions obtained by use of the coarser interval. All four components of the
solution for the coarse .interval were larger by 1% .than the h = 0.1 values} at

=.11.5 the errors were between 1 and 2%. .The?reiétive‘values of the four com-
ponents are not much altered by integration with the finer interval. Therefore,
it was felt unnecessafy to rerun all the other linearly independent solutions
-at smaller interval.

Eight separate inward integrations of the four coupled second-order
linear differential equationé.from.a.large distance were run with different
initial conditions. Eight linearly independent solutions were obtained, con=-
stituting a complete set. Any general solution is expressible as a linear cOm-
bination of these solutions. - The boundary conditions consisted in setting
the amplitude and first derivative of one partial wave equal to the corres-
ponding regular (F ) or irregular (G ) Coulomb function (calculated by the
Riccati II approx1matlon formulas) (Ref Fererg), with all other partial-
wave amplitudes and first derivatives eqpal to zero. nThé matching to pure
Coulomb functions at p = 75 amounts to solution of an approximate set of
equations.of the form of (2) at distances p < 75, but where all the quadrupole

potential terms are "turned off" at distances greater than p = T75.
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9 has .developed a perturbation method to treat the coup-

Pennington
ling effects.on out to infinity. His work involves numerical integration of
.the .alpha wave equation in spheroidal coordinates for many heévy element nuclei
taking into account £ =0, 2, ahd-h groups only. His general approach in
constructing solutions frdm linear combinations of a basic linearly independent
set is similar to ours. | |

From these eight linearly independent solutiohs of Egs. (2) as base
vectors, the cbmplex solutions that satisfied the asymptotic boundary conditions
(h) and whose imaginary parts vanished on a,spheré of radius p = 12 were found
algebraically. The solutions of eight simultaneous algebraic-equations, four
of them quadratic, were required, and these solutions were obtained by use of
the IBM-650 computer.

As an example of the extent to which quadrupole terms affect the base
-vector solutions, the base vector derived by setting W, = SioGo at p =75 has
- the following values at p = 15:

Yo :.lo6h6xlolo,‘w

5 = 2.h20x109, vy, ==1,338x108, and.w6.=.3.607x106.

In the absence of gquadrupole terms Wz, wh, and W6 would remain
identically zero for all p.

As an example of a solution (linear combination of base vectors)
satisfying the intensity boundary conditions, we give at p = 15 the partial
wave amplitudes of one of the eight solutions:

Wy = l.83lxlOlO, W, = l.89lxlOlO, V),

This solution (for all p) is formed from the eight base vectors by expansion
 coefficients of 1.000, 0.5973, 0.01709, and 0.009112 for the Gb.% 0, G2 # 0,
etc. vectors and -0.009372, -0.03615, -0.01373, and -0.0006825 for the»Fi #£0

vectors. With these expansion coefficients the real part of the general out-

= 3=837x109, and w, =_3.629x109.

going wave solution is obtained. By exchanging corresponding expansion
coefficients for,Gi_£-0 and.Firﬁ_O solutions and changing the sign of one, the
imaginary part of the general solution is .constructed, but it is not expected
to be accurate within the barrier when constructed from inward-integrated

solutions, since it will involve small differences of large numbers.
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RESULTS

-There are several ways in which the numerical results may be pre-

"sented. First, we give partial wave amplitudes (real-part) as a function of

distance for two of the .eight cases satlsfylng the empirical szu2 aipha group

) 1ntens:.t1es° These solutions are given in Table I, and the-normaliZation is

such that the S-wave goes over asymptotlcally into an oscillatory function

‘with unit amplltude.

Second, there is presehted in Table II the relative wave amplitude
values on the spherical surface ( p 11.0; i.e. r = ZLO.lx‘lO_13 cm). For com-

parison are given the relative values that would be calculated if the quadru-

. pole moment were zero (colﬁmn L) and the values that would be calculated if

‘both the~qpadrupole-moment and centrifugal barrier effects were ignored

(column 3)° In<comparing column 4 with the eight numerical cases it is noted

that inclusion of'qpadrupole terms seriously affects only the £ = 4 partial

wave. - This resul£>is readily understandable from the structure of the coupled

:Eqs.(éa,b-c @ where coupling terms will have,greatest,effect-on a partial wave

of small amplitude coupled to one of large amplltude,

Examination of colum U4 suggests that the Legendre expansion is not
conVerging rapidly and that the 4 = 8 group and possibly higher rotational
groups are not negligiblé. )

Comparison with Fréman's Treatment -

FeranlO in a recent comprehensive treatment of alpha .decay has de-
rived analytical expressions for alpha decay of spheroidal nuclei. . With these
expressions he has calculated numerical values for matrix elements of & matrix
kzg! (B) which by multiplication carries over the Legendre expansion coeffi-

cients, a ,of the .alpha wave function on the spheroidal nuclear surface into

2’

coefficients bz, related to the alpha group intensities, i.e. z =2 kgg'(B)a£‘°

Ib, | 1s the reciprocal of the product bffhe hindrance fadtor -candthe

centrlfugal barrier reduction factor
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The argument B is a function of the deformation of the surface and
the intrinsic quadrupole moment. Fr8man's matrix kz gJ(B) might be’eqpatéd to
.
a product of two similar matrices. By multiplication one carries the spheroid-

al expansion vector a over tova~Vectoq,a? giving expansion coefficients on a

y/ 2
spherical surface of the same mean radius as the spheroid.. The second matrix

carries the a! vector over to the asymptotic vector b The off-diagonal

elements of tﬁe first matrix arise as a ébnseqpehce og-the transformation be-
‘tween two different surfaces, and those in the second arise. as a consequence
of the electric quadrupole interaction. Numerical values for each of these

matrices may be taken from the values on page 41 of Fr8man's paper but.using

arguments Bl'and B_ calculated in the following manner. Bl for the former

matrix is calculatgd from Fréman's (VI-9).by setting q, equal to zero. _B2_is
calculated by use of (VI-9) by leaving out the term unity in the final factor
‘and inserting the value of q defined by Fréman's (VI-2).

It is this second matrix which may be directly derived from the
numerical wave fﬁnctions of the present work. Linear combinations of our
eight linearly independent solutiohs are foﬁnd which represent the irregular
Coulomb function of a single partial wave at p .= 11. The expansion coeffi-
cients are found by solution of eight-éimultaneous.linear equations, and these
.expansion.ccefficiénts, when renormalized to accouﬁt fbr differenﬁ penetra-
pilities of the different partial waves due to the centrifugal potential and
to nuclear rotational energies, constitute the matrix elements of the second
matrix described in the preceding paragraph. Unlike the métrix derived by
.Frgman's approximation our matrix is not symmetric and the matrix elements are
generally complex. This complex nature reflects the phase shifts on the Cou-
lomb waves arising from gquadrupole coupling terms in the wave equation.

The matrix applies.to the surface of radius r =.lO.12xlO-l3 cm
(p =.ll.O), which is representative of alpha particle -interaction radii and
_Would,satisfy the expression:

3 [¢

r = (1.23 A3 + 2.5) X 1073 em,

Our matrix is then as follows:
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Quadrupole interaction matrix :

Q
=0 L=2 T L=1 r ?
| 1.0i5+o.0116i . .-0;167u~0.0176i‘ 0{01166+6.002171 -0.0005093-0.00013%1
-0.2107-0.04561 0.9542-0.001581  -0.1195-0.005921 0.007260+0.0006791
0.02114+0.01351 -0.1899-0.05951 '.-0.9191~o,003601 -0.1008-0.001871
-0;001089-07002161 0.01885+o:0187iv v-0.2652-0;68931 , 0.9086-0.02h?i

For the ?arameters r = 10.12X10-13 cm . and Qo = 9.Ox10-2h,cm? of our

matrix one may calculate that the appropriate argument of the analogous Fr8man
matrix is.B = -0.455. The matrix resulting from interpolation (7 point) of

Fr8man's numerical matrix elements for this argument is given below for ¢om-

’parisoh Vithnthe preceding matrix.

Fr&man‘matrix.for:B~='—O.h55

Z=0 7= 2 7= b 7-6
1.019 -0.193 .01k -0.0005
©-0.193 .0.908 ao.158 0.014
0.014 -0.158 - 0.917 -0.155

-0.0005 0.0lh ~-0.155 0.917

- To facilitate comparison the'overall normalization of our complex
matriX'wasAcarriedﬂouf‘to make the £.= £' = 0 diagonal components nearly equal.
The normalization to 1.015, compared to Fr8man's 1.019, was arbitrarily made
slightly less from qualitative consideration of.the sign.of the éxpected de-
viation from the Fr8man approximation. Comparing'the twb matrices one sé€es a
fairly close correspondence of the real,componehts. The imaginary components

are usually considerably smaller than the real components except for elements
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far from the diagonal. The asymmetry of the matrix is of ﬁhe sense that an
off-diagonal element in the upper-right-hand half is always smaller than its
counterpart in the lower-left-hand half.

In the Fr8man approximation the quadrupole .coupling terms (off-
diagonal terms) .in the;aipha decay wave équation are considered to operate
only over .the inner part of the barrier and the diagonal terms for‘each par-
tial wave in this region are considered the same; the effects of the difference
in diagonal terms (centrifugal potential and nuclear rotationalvenergy) are
‘considered to arise from the outer region of the barrier. vThenasymmetry of the
matrix derived from our numerical solutions may be said to arise as a consequence
.- of the operation of off-diagonal termsover the same radial fegion where diago~-
nal terms significantly differ .for fhe different partial waves. The imaginary
components .of the matrix elements arise principally as a consequence of quad-
rupole terms, diagonal and off-diagonal, in the region .of the classical turning
points. Frdman's approximation neglects quadrupole terms in the turning point

region.

Wave Functions on the .Spheroidal Nuclear_ Surface

‘Since the nuclear surface of the alpha decay daughter of‘.Cm'Z)1L2 is

supposedly spheroidal, it is of interest to determine Legendre expansion co-
efficients for the wave function on the sPheroidal,surface.' In princiﬁle we
could take a spheroidal section through the numerical wave functions defined
by our spherical expansion coefficients, but this procedure is not very
practicéble. Instead, we chose. to multiply our relative spherical expansion
coefficient vectors (Table»II)vby a modified Fr8man inverse matrix. The

deformation of the spheroid . of mean radius p = 11.0 was chosen from calc?lation
' ' ' =13 ,1/3
A cm

3

-of a nuclear matter spheroidal surface for mean radius r = 1.23x10

.and.Qo = -i—9.OxlO_2LL cm2 and then adding a constant distance Z,SXlO-l

cm. to
take into account the finite range of the nuclear interaction and "radius of
the alpha particle.” This proqedure led to a deformation parampter 32 of
+0.159. Using the modification of Fr¥man's Eq. (VI-9) described in the pre-
ceding section we then calculatel the argument B.= +2.00 for the Fr8man matrix

which by matrix multiplication transforms the distribution vector on the
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spheroidal surface into- the corresponding vector on the spherical surface of

the same mean.radius. .We desire the inverse matrix to convert to the spheroidal
.distribution vector, and this matrix is just the Fr8man matrix with argument

B .= -2.00. Multiplying the spherical surface amplitudes of cases 1l to 4 from .
Table II we get the spheroidal distribution vectors given in Table III.. The
transformation will give rise to components of £ = 8 and higher, but these are
not listed in Table III, since with the arbitrary exclusion-of £ = 8 partial
waves from our work, the'proper values of the £4.= 8 coefficients are quite un-
certain. Cases 5 to 8 were not transformed, since indirect evidence discussed
later gives information on the probable £ = O, £ = 2 phase difference which

excludes cases 5 to 8 as actual possibilities.

Table III. Expansion coefficients of wave functions on
‘ the nuclear surface

Case ’ .
4 I 11 1T v
0 0.482 ‘ 0.5022} 0.483 0. 465
2 0.246 '.fo..172'3 0.235 0.303
4 -0.273 -0.0257 -0.152 -0.390
6 | 0.264 -0.1950 -0.136 00315

The.wave.function_variationsover the,spheroid obtained with the ex-
pansion coefficients of Table III fall into tWo_groups. Cases 1 and 4 are quite
similar %o one another, showing maxima of roughly equal height at Q.¥ 0° and
~550aand.changing sign near 900. Cases 2 and 3 are similar to one another and
show a main peak around 30—350 with a minimum at OO. .Solutions 2 and 3 al§o
both show slight peaking atr9OO with.minima.at.GOQ and 750, respectively. .
Inspection of column.k of Table II leads us to believe that dinclusion of the £ =28
partial wave could significantly altervthe.detéilsﬁof the distributions and, of
course, would lead to twice as many possible cases. The distributions of cases
2 and 3 bear a stronquualitative similarity to the distribution (case I) .de-
rived by Rasmussen and Segall,5 except that the single maximum in this earlier

work lay near 500.' The differences from this earlier'work are due to inclusion

o
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in the present work of the 4 g 6 wave and to use of a.deformation about half
as great as was used before. The inclusion .of the 4 = 6 wave has given rise
to the two disfinct alternative patterns within cases 1 to k.
- . Let us now turn to the question-of~decidihg on the physically

correct case of ‘the eight possible solutions. Angular correlation experiments
with alpha particles may give resultsvdependent,on phase differences. The
different cases correspond to different phase differences between the various
alpha groups, but since the various groups in even-even alpha emission are all
‘of‘different energy, there can be no interference terms in angular distribution
experiments. However, in the alpha decay of odd-mass nuclei there may be more
than one partial wave in single alpha groups, and there may thus be inter-
ference terms in angular distribution experiments. From the sign of the
interference terms one may decide between the two possible phase differences
of two interfering partial waves., ‘ ‘

Bohr, .Fr8man, and,Mottelsonll have shown good correlations between
relative alpha-group intensiiies.in even-even nuclei and in "favored" decay
- groups in odd-mass nuclei; (See also Ref. 3 for discussion of favored alpha
decay.) We may meke further use of the analogy by proposing thét the phase
differences found in angular distribution.experimenté‘on favored alpha groups
in odd-mass nuclei should be the same as in the neighboring even-even nuclei.

The two best and most readily interpretable experiments are the
alpha 60-kev gamma angular correlation in Am?hl by Krohn, Novey, and Raboylz
and the alpha angular distribution from aligned.U233 nuclei by Dabbs, Roberts,
and.Parkerql3 The main part.of the anisotropy in each experiment is thought
to arise from an S-wave D-wave interference term in the main alphavgroup
(AT = Q)° The.AmZAl result can only be interpreted as indicating the correct-
ness of one of cases 1 to U4 and rejecting cases 5 to 8 (i.e., there is a con-
structive S-D interference along the nuclear symmetry axis). From the lack of
any sharp variation in £ = 2 group-hindrance factors for even-even alpha
emitters between mass 233 and 24l we should expect the S-D phase difference to
be of the same sense for U?33 as for Amzul. The theoretical interpretation of
the U233 anisotropy can give information on the S-D phase if the sign of the
quadrupole coupling constant for uranium in rubidium uranyl nitrate is known.

We would like to suggest that the sign of fhe qpadrupolé,coupling constant in
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rubidium uranyl nitrate is probably negative. In this crystal the linear
++ '

g

) ions are aligned along the c-axis of the crystal. Eisenstein

have_proposed.that:a strong hybridization of atamic orbitals 64

and Ts in uranium occurs for the o-bonding orbitals, and they state that this

hybridization will give rise to a "column of charge" along the uranyl bond
axis. If this axial .column of negativée charge characterized the bonding
orbitals at all distances from the uranium nucleus, then the positive quadru-
pole moment of the nucleus,would give rise to a positive quadrupole coupling
constant, i.e., magnetic substates my =.£I_=115/2 would lie lowest in energy.

However, the 6d and .Ts orbitals have fhree and six radial,nodesycrespectiely, and:.a

hybrid orbital will thus exhibit alternating concentrations of charge at the

poles and in equatorial rings as the radial distance changes.  The quadrupole
coupling constant will be most dependent on the electronic charge distribution
near .the nucleus. For the bonding 6d-Ts hybrid the innermoét interference
region will have an equatorial ring of charge. An evaluation of the radial

integral for the 6d-Ts interference term in the gquadrupole coupling expression, -

using unscreened, nonrelativistic electron wave functions, and also using

screened relativistic wave f’unctions,15 did yield a negative contribution to
the coupling constant.l6 The 64 component alone yields a positive contribu-
tion, so the sign of the quadrupole coupling constant will'depend on the

degree of ‘§-d hybridization; If, as we believe, it is negative; the Am?ul and

,U233 experiménts are consistent with each other and support the choice of one

of our cases 1.to k4.

Deciding among the cases 1 to 4 is not possible'with present infor-
mation. In prinéiple the needed information can be obtained from a study of
the D-G and G-I interference terms in alpha angular-distribution experiments.
In practice the information will be difficult to obtain because of the rela-
tive weakness of G and Inwaves for ﬁavored.alpha,transitions.

Let us summarize the method Of transforming the vector describing
the alpha particle wave function on the spheroidal nuclear surface to the

vector b, whose components are partial wave amplitudes (WZ = rwz) at infinity.

£ .
One multiplies successively by the modified Fr8man matrix (whose argument B is

calculated setting 4, to zero), by our complex quadrupole interadtion.matrix
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given earlier in this section, and finally by a diagonal matrix kzz‘ =

(kr) 8 E

and Gﬂ is the irregular Coulomb function.

where r is the mean radius of the nuclear spheroidal surface,

CONSIDERATiONS REGARDING EXISTENCE OF SOLUTIONS TO THE
COUFLED ALPHA-DECAY EQUATIONS

If there are no noncentral . interactions, the wave equation separates
exactly, and satisfaction of the boundary condition that imaginary components
~of all partial waﬁes,vanish at the nuclear surface can be achieved for any
choice of relative group intensities simply by adjusting the phase .of .each
partial wave separately. However, for the coupled equations here it seems on
brief consideration that some combinations of relative intensities may be
mathematically excluded by the nonexistence of solutions satisfying all the
boundary conditions. For .example, suppose we seek solutions to Eq. (2) ‘
satisfying both the nuclear and the‘asymptotic boundary. conditions -of Egq. (4)
with-all intensities vanishing except for the £ = 0 group. .Thus; only two . of
our eight base vector solutions (i.e., those derived from Go # 0 and from
-F % 0 at large dlstance) can be used. Yet at the nuclear surface, because of
.coupllng, these base vectors will have components in wz, Wh’ W6’ etc. as well
as in Vo It does not. seem likely that the imaglnary parts of all these com-
ponents can be made to vanish by any linear comblnatlon of just two base
vector solutions.

An example of forbidden intensity comblnatlons was furnished when we
attempted to calculate solutions with our Cm.2h base vectors as 1f.Cm2h2 ad
the hindrance factors of ionium (Th230), which experimentally are 1.1 (£ :_2),
12 (£ = 4), and 8200 (£ = 6). No solutions satisfying the boundary conditions
ex1sted but when_a larger intensity of the 2= 6 group was tried (hindrance |
factor, 820), all eight solutions were found.

In actual fact the gquadrupole moment appropriate for Th 230

decay is
surely considerably less than that for_Cm 2hz decay, and with lower qnadrupolé
coupling we know that the existence conditions would impose less restrictive
limits on the intensities of weak groups. Surely the 8200 hindrance factor

230

for 4 = .6 would give allowed solutions if the Th problem were solved pro-

perly with a small Qo. In a reverse application of the existence conditions
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one could, for a given set .of experimental hindrance factors, set an upper

limit on Qo as that value above which solutions to the problem vanish.

CONCERNING PHASE SHIFTS DUE TO QUADRUPOLE COUPLING

Aside,from.the.imébrtance of including quadrupole coupling to
derive alpha surface distributions from relative intensity data, gquadrupole
coupling may be of some importance in_affécting,the'interpretation'of alpha
angular-distribution experiments with spheroidal nuclei; The phase of ‘alpha

waves cannot affect any experimental measurements - on the even~-even. alpha

emitters; since each alpha group has only one associated angular momentum

7(consequence-of zero spin of parent)c However, odd nuclei may be expected

often to have two or more partial waves associated with an individual alpha
group. This mixture_can give rise to interference terms in the,alpha.angular
distributions, and.the»expressions;for these interference terms involve the
phases through a,coéine factor having as argument the phase difference of the
two partial waves. .The phase difference has usually been calculated.from,fhe
difference of arguments in the general asymptotic .expression fo¥ outgoing

Coulomb waves,

.. . i '-
G, + iF, —> expli(p -1 log 2p- Uz)], | | _(6)
where o, = arg I (in + z'+”1) and 1 and p are the standard Coulomb function

2
arguments. . Where noncentrall interactions operate on the alpha particle after

it leaves the nuclear surface, additional phase shifts may be introduced. To
determine precisely how much additional shift would require study of the par-

ticular céses; however, we‘may get a rough estimate‘of the magnitude of phase

shift .effects to be expected in.favored.decay‘of'odd—mass.neighbors o:f‘:‘szlL2

2h2

by examining the phase shifts dn the Cm solutions discussed above.

At the end of the section on "Numerical Methods" the eight éxpanf _
sion coefficients for the case I.Cm‘zu2 solution were given. The extra phase
shifts due to guadrupole coupling are easily calculated‘by simply taking the

arc tangent of the ratio of the expansion coefficients for corresponding

,Fi:#AO-and.Gi,# 0 sdl.utions° The extra phase shifts (in radians) are~§o = -0;009,

5, = ~0.060, 64 = r0.68,‘and.66 = =0.075. As a first approximation we might

take these phase shifts for analysis-of‘angular correlation data involving
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hz, From the asymptotic

favored alpha-decay groups of odd-mass neigﬁborsfof,sz
expression,(6) one can derive the phase-difference formula given by Devons .and
Goldfarb,l7 and according to this formula the D-wave lags the S-wave by 7.30

at infinity. When the additional phase lags due to the quadrupole interaction
are taken into account, the D-wave may lag the .S-wave by.lO.Zo.at infihity. " The

size of the theoretical.5~D interference term should thus be reduced by about

one percent from the values previously derived, neglecting quadrupole coupling.

This correction does not seem very sérious.

If one should perform an experiment in which the D-G interference

term enters, then a more serious correction due to quadrupole phase shifts is

to be expected, for the estimates above indicate an.additionél 360 lag between
D- and G-waves. In the Cm,zl+2 problem the G-wave is subject to the greatest
phase shifts, since it is a weak group .coupled to a relatively intense £ = 2

group. It should be emphasized that the above numerical values of the addi-

‘tional phase-shifts,apply only to case I. The phase shifts will be different

for the different possible cases.

We .can expect, regarding the noncentral interaction phase shifts,
thatv(a) only the large collective-E2 couplings will be of significancé;
(b) the shifts will be larger, the larger the intrinsic quadrupole moment;
(c)vthe shifts will be largest ‘for low-intensity groups coupledAto.high— _
intensity groups; and (d) the coupling may introduce phase shifts of either.:
sign depending on'the rélative signs.bf the coupled partial waves in the

classical turning»point‘region.
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