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page 22 Eq. (11) should read 

	

s = e (T 	 (kT)' 	 (11) 

and the succeeding equation should be 

P(r) = (kT) 
r 
 e 

 -kT 

r 

Eq. (12) should read 

n n-i .-kT dS 	kT e f(T) = - 	
= 	(n- l) 	 (12) 

page 23, about 3/4 way down the page, should read- - 

and the probability of survival of a single target is 

-kT 
q1-p=e 
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Donner Laboratory of Biophysics and Medical Physics 
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July 22, 1957 

Abstract 

A multistage model for the description of biological survival curves 
is proposed as a possible means of generalizing target and hit theorie's to 
provide for interdependence of events. The model includes single- and 
multiple -hit and multiple -target theories as special cases, emphasizing 
their similarities and their differences. Its increased flexibility points out 
the nonunique character of the fit of various current models to data. In 
addition it provides a simple scheme for holding in mind the current theories 
and their assumptions. 

The basic model consists of a series of n discrete stages. The 
time in each stage is randomly determined on the basis of a frequency k 
which can be set differently for each stage. When all the k's are equal, 
multihit theory results. An arithmetic progression in the k's gives rise 
to Kiga's multitarget theory. Alternatively, other untested relationships 
between the k's can be examined. 
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The Role of a General Model 

The model for survival proposed here is an example of a multistage 
stochastic model. Hoffman has explained the term stochastic process as 
"synonymous with 'random process' and by common usage. . . associated 
with processes depending on time. ,,l 

The application of a single-stage stochastic model to the duration of 
generation times has been discussed by Feller. 2  A more complex stochastic 
model for generation time, postulating a series of successive stages, with 
the time spent n each stage randomly determined, has been proposed by 
D. G. Kendall. On the other hand, a number of authors dealing with survival 
times have fitted data with curves derived in terms of independent "targets" 
or. independent "hits" on a single target. This treatngn has been most 
successful in describing survival after irradiation, ' ' 	It has also been 
used by Wood in describing heat inactivation of unicellular organisms 
An article by K. G. Zimmer summarizes much of thework with hit theory 
and suggests a number of other potential application. 8  Recent suggestions 
that radiation at low dose rates "accelerates aging" 7 ' 10  have prompted an 
examination of these different stochastic theories as models for survival of 
any nondividing cell or higher organism, both when subjected to injurious 
agents and in normal aging. 

A complex stochastic model for survival can ostu1ate "lifetimes of 
a series of excited states of very large molecules. " Or, it may pos4ulate 
a sensitive volume accumulating multiple "hits" before death 5eru.1e. On 
the other hand, it may postulate multiple "targets" being hi. ' ' 	These 
concepts have largely been developed independently. The assumption basic 
to each of them, however, is that of a chain of multiple discrete steps taken 
by the organism and leading to its death. The following model is proposed 
which makes this assumption but does not require the restriction of complete 
independence of targets or hits that characterizes the usual model. This 
development introduces greater complexity into the mathematical formulae, 
but undoubtedly can thereby bring them more into accord with biological 
reality. 

The General Model 

A series of stages that must be passed before an organism dies is 
postulated, with the length of time spent in each of these stages determined 
by a random or accidental event, See Fig. 1. The probability of occurrence 
of random events is constant within each stage, but different from one stage 
to another. Time is used as the independent variable in this treatment, but 
one might substitute units of radiation dose for time in any of these equations. 
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A model in which retrograde movement from one compartment to another can 
also occur might be useful for including "recovery. 	Its great generality 
might provide a helpful conceptual framework, but in biology one cannot 
specify enough parameters to make explicit use of such a model at present. 
The model proposed in this paper is used simply as an approximation less 
restricted than most current ones. We shall consider what Feller refers to 
as a "pure death process. 

The assumptions and the mathematical treatment of this model correspond 
with those used. in the differential equations of the multicompartment systems 
that have recently become a useful tool in biology. They also correspond 
with the mathematics describing chains of radioactive isotopes in transient 
equilibrium. 

If the length of time spent by the organism in any single stage i is t 1 , 
and the probability that a random event will terminate the organism's presence 
in that stage during an interval dt is the constant k  times dt., then the lengths 
of time spent in that stage have a distribution of probabilities given by 

f (t 1 ) = k. e _ kti 	(See Fig. 2)  

In a two-stage inactivation process, one must work out the frequency 
distribution for total time spent in two such compartments (see Appendix). 
This distribution has quite a .different form from the one-compartment case, 
and the difference illustrates the reason for using multistage theories for 
fitting bell-shaped death-rate curves or sigmoid survival curves (Figs. 3 and 
4). One can obtain the solution of the equations for death-rate curves as 
more and more stages are added, either by considering the statistics of times 
spent in the whole process in relation to the time spent in each stage, or 
alternatively by the successive solution of first-order differential equations 
describing the numbe± of individuals in each stage (see Appendix). One can 
then obtain a more general result through mathematical induction: 

When 
-k.t. 

f(t.)= 
1

k.e 	11 
1  

-kT 	 -kT 
f(T ) a 	e 1 n +a 	e 2 n n 	n,l 	 n,2 4- a 	

-T 
n + 

n, 3 	
].c 

e 3 
 

+a 	
e -k T 

n n 
n, n 

Or, 
n 

	

f(T ) 	 a . -kiTn  

	

Ti 	 . 	n,1 
1=1 

(2) 

where the first subscript indicates the number of stages and the second sub-
script indicates the number of the term considered. 
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ti 	 t2-II_.  

  

f(T2 ) 

T2  

(A) 
	

(B) 

Fig. 3. (A) represents schematically the two discrete stages 1 
and 2, each with its random influence, k 1  and k2  respectively, 
on the duration of time (t 1  and t 

2  ) spent in each stage. N 1  
and N, represent the number in each stage. T 2  represents 
the total time for passage through the two stages. (B) is the 
linear spot of f(T 2 ) against T2. 
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(B) 

MU-138Z3 

Fig. 4. (A) illustrates the change in the death-rate function f(T) 
plotted against time - as n, the number of stages is increased. 
Note the change from exponential to a progressively more 
bell-shaped curve. (B) illustrates the parallel changes that 
take place in the survival function S(T) = rf(T)dt as n is 
increased. 
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The recursion formula 

	

f(T+i) 	k+i 	
k.k +i .(e±1 

T+l  -e 	Tfl+1) 	(3) 

gives rise to relationships between the coeficients a1 1 = k 1 , 

k 
n+l 

a+i 	 k.-k +1 
(i<n+1) 	

1 fl 

an+ln+1= 	 a 
i=1 	n+1, 1 

 

 

 

which are useful for obtaining the form 'and coefficierfts of the death-rate 
function. When nune of the K. are equal, this crude death-rate function is 
always the sum of n expone'ntial terms in k.T. It has coefficients, both 
positive and negative, of increasing complexfty, but involving onlythe kts. 
The recursion formulae permit fairly rapid calculation of the coefficients in 
a particular case even when n is rather large. After the coefficients have 
been tabulated, the individual exponential terms may be added graphically on 
semilogarithmic paper to show the form of the death-rate curve. The 
formula:can be .integrated, term by term, and similarly plotted to give the 
survival, curve. In some cases, to be described later, the values of the 
coefficients rapidly conver.ge to limiting values regardless of further increase 
in the number of stages. 

For the sake of generality, it is important to note that the order of 
occurrence of the n stages used in visualizing the process has no bearing 
on the form of f(T), the death-rate function. 

A Special' Case 

If all the ks have the same value, then.in  deriving the death-rate 
function one obtains a somewhat different result. To avoid division by zero, 
the general formula given above must assume k 1 	k 2  k3 / ...... k. 
However, with k. = const =k and all other assumptions remaining the same, 
one obtains the s'ingle expression . 	. 

kT n-1 eTT1 

f(T) 	
(n-l) 	

(7) 
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The recursion formula here is simply 

f(T  
kT 

 f(T ), n+l 	n 	n 

when 

	

f(T1) = e T1 
	

U 

The curves derived from these expressions as n is varied are qualitatively 
similar to those in Fig 4A, B. It is this special case, in which the k's are 
all the same, that Kendall has treated. 3  He indicates that with a simple 
change of variable, Eq. (7) corresponds to the equation for the frequency 
function of the x variable with Zn degrees of freedom. This points out 
some interesting relationships between the x2 variable, the Poisson distri-
bution, and the random processes used in the multistage derivation of Eq. (Z) 
In addition it makes possible reference to tables of x2 for curve fitting in 
this special instance. 

When some, but not all, of the k's have the same value, the formulae 
become more complicated, and a separate derivation becomes necessary. 

The Multihit Case 

The general model, when restricted to k. = const (i. e, , when all the 
k's are equal), gives rise to the mathematics of muitihit processes, with 
kdt the probability of a hit in dt and n the number of hits required to 
inactivate. The correspondence of this model, that of Kendall for generation 
times, and the multihit model becomes obvious when one considers the basic 
assumption of successive irreversible steps taken randomly. In each of 
these cases, simultaneous hits are excluded from the model as having a 
negligibly small probability. 

The correspondence of the mathematical details derived from the 
present model and from the usual consideration of the Poisson distribution 
is indicated in the Appendix. 

The Multitarget Case 

If one imposes, instead, the restriction 

k- 
 __ 	

k i+l 	i-i+l 

an arithmetic progression in k 1 /n, he obtains the equivalent of.the multitarget 
theory developed by Kiga' 1  (Appendix). In this theory there are n indepen-
dent targets, any m of which, when hit, give rise to death of the organism. 
The mathematical work involved in applying Kiga's 1 ormula is much simplified 
if a table of the incomplete P function is available. 	If the. target number 
goes beyond these tables (or for convenience in graphical work), one can cal-
culate the coefficients according to the recursion formulae given here (Eqs. 
(3), (4), (5), (6)). The correspondence between the arithmetic progression 
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in k's and Kigavs  multitarget model can be indicated by an example (Fig. 5). 
In this case, if k indicates the probability of a hit on an individual target, 
we see that in the first stage, four targets are exposed; in the next, three 
targets remain, and so on. The number of stages corresponds to the 
number of hits necessary to kill, while the coefficient of k corresponds to 
the number of targets left. 

In the multitarget case, k. is the sum of the individual probabilities of 
a hit for each target, with the assumption that none of these probabilities 
is much greater than the average. If any individual target has a probability 
of being hit that is large in comparison with the sum of probabilities for the 
rest of the targets, it will have the practical effect of creating an (n-i)
hit curve from an n-hit curve. This point has 	en developed by Wijsmari 
in the analysis of radiation-induced mutations. 	Rigorous consideration 
of such situations, as well as the occurrence of injurious stimuli that 
simultaneously injure many targets, is excluded from our present model 
by the very nature of its assumptions. Their importance, however, would 
be obvious in a theory of survival that could include catastrophic events, 
for example the wiping out of a population, or the sudden destruction of a 
healthy organism. 

A case of particular interest is the survival of populations that appear 
to have been converted from a multi-rent type to a single-event type- -for 
exame, human cancer populations, 	or a population of hypophysectomized 
rats. 	In this case, one might visualize rapid inactivation of all targets 
but one at the time of the unknown metabolic change, or creation of anew 
type of interdependence of targets such that when a particular target is 
later hit, all the others are simultaneously inactivated. A more attractive 
alternative would be to visualize one or more targets as individually essent-
ial to life, and having such a low probability of being hit that they are not 
involved in the ordinary death mechanism. The metabolid change then might 
simply raise the susceptibility of one of these targets to damage to such a 
high level that this single-hit mechanism predominates. It might do so by 
removing protective factors, for example, without changin.g the present 
interpretation. 

The multitarget model by Atwood and Norman 5  is particularly suited 
to analysis of survival curves where geetic damage and considerations of 
ploidy may reasonably be presupposed. 	In its simplest applications, it is 
easier to use for curve-fitting than the general model given here. It 
rigidly restricts the relationships of the target hits necessary for death. 
In its present form it cannot provide for more general interdependence of 
genetic units, 

The Generality of the Model 

The n-compartment generalization given here was developed in order 
to allow the expression of conditional probabilities, so that, for instance, 
when one target is hit, the probability of the next hit can be adjusted at 
will. This is done by varying the values of the kts. 
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Fig. 5. The multitarget case. 
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New general relationships between k. and k+i  can be examined. A 
type of "recovery' or an' increased susceptibility may be described this way. 
Preliminary examination of some of these relationships has been carried out 
to learn their effect on death-rate curves. Some interesting points raised. by 
these studies are mentioned in the next section. 

A number of techniques aie already developed which might also have 
applicability in adjusting the kts. 	Dependence of the outcome in a particular 
stage on the outcome of the directly preceding one (a Markov chain) might be 
incorporated in a model of survival. This might prove a worth-while technique 
for constructing a gross model for human survival, for example, if the change 
in probability of death on entering each of the major diagnostic disease cata-
gories could be ascertained. However, this consideration of ,  targets individ-
ually goes beyond our present model. 

High Multiplicity, the Normal Curve, and the Central-Limit Theorem 

The investigation reported here was begun with the idea that stochastic 
models of this type might be used to fit survival data (e. g 9 , 1 uman survival 
data) that have been described by the Gompertz function, ' 	in which the 
logarithm of the age-specific death rate rises linearly with age. This effort 
has not met with complete success. However, it has led us to consider 
multistage processes which have very high numbers of stages, and in which 
the probability of the nexthit rises sharply as the hits accumulate. Some 
interesting ideas in this regard will be mentioned 

R. A. Fisher has shown that the x 2 variable approaches the normal 
distribution as n-co, and for practical computation, more than 30 of freedom 
(more than 15 stages in the multihit model) can be treated as if the time of 
death were' normally distributed, 16  This points out a very interesting possible 
relation of stochastic processes in biology to the normal or Gaussian distribution. 
The normal curve can be derived as the limiting case in a number of processes 
and need not be related to the concept of 'ttrue value with a Hcurve  of error. 
The interplay of genetically determined variability in a populations resistance 
to a lethal agent with other chance factors in resistance is not explicitly 
handled by target theories. This is a major weakness of present target 
theories. It is a less serious one, however, when genetically highly homO-
geneous populations are being described. One might profitably investigate 
the stochastic basis for a number of approximately normally distributed 
variables in biology, such as size or weight. Such an approach would appear 
warranted for crude death-rate curves for humans, or for mammalian red 
blood cells, for example. 14, 17 

A consideration of the Central-Limit Theorem 18  •shows that a wide 
variety of relationships between the ks gives rise to a death-rate curve that 
approaches the normal curve as the number of stages is increased without 
bound. However, specific cases of interest such as an arithmetic progression 
(multitarget case) or a geometric progression in the ks give rise to nonnormal 
distributions when n-*cD, and in fact may converge rapidly to a limiting curve 
that is largely determined by a small number of the slowest stages. When 
death rate is given by the norml curve and log ag.e-specificdeath rateis 
plotted from it, it gives rise to the nearest approximation to the straight-line 
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Gompertz function that these investigations have furnished. It always has a 
concave downward curvature, however Whether curves of this sort, more 
nearly linear when plotted against the log of time than against time, are a 
more or less adequate fit to human survival data than the Gompertz function 
remains to be settled. Multihit curves have greater downward concavity 
than normal curves, on the semilog plot, approaching the normal curve as 
n - 

Co . Multitarget curves are still more sharply curved on this plot, and 
curves with a geometric progression in the ks even more so. Recalling 
that the order of occurrence of stages is immaterial in this result, we see 
that the multihit curves (k. = const. ), and the normal curve that they 
approach, are as close to the straight-line Gompertz function as this sort 
of theory comes. Additional considerations will be necessary to fit data in 
which the Gompertz plot is truly linear throughout the survival of 95% or 
more of the population. However, in some cases, multihit theory appears 
to fit data at least as well as the Gompertz function (see Figs. 6 and 7). 
Such a circumstance can be predicted whenever the log-log plot of age-
specific death rate is more linear than the semilog plot, 

Some Other Models 

9, 10, 19 The work of Brues and Sacher and of Jones 	indicates that at 
low dose rates, doses of ionizing radiation are approximately additive in 
determining the age-specific death rate. In addition, a great deal of the 
material presented here is applicable to survival curves if radiation dose 
is substituted for time in the equations. These facts suggest that radiation 
and normal aging may both involve random accints to the same targets on 
a macromolecular level. This idea is not new, 	but bears re-emphasis. 
Further examination of hit theories in which the independent variable is 
(t ±const. x D) may be of interest, (See Fig. 7(B). 

A number of alternative models might be proposed for the production 
• of sigmoid survival curves (survival curves corresponding to a roighly 
• bell-shaped crude death-rate curve- -see Figs. 4A and 4B). For example, 

a sigmoid curve might be related to random chemical events by analogy with 
one of the chemical "clock reactions" that has been investigated in detail. 1 
Such a theory might describe the competition between protective and destruc-. 
tive agents for a site' in the cell, 22  The actual situation is undoubtedly a 
complex of competing cnemical reactions of this sort. 

A very interesting new stochtic theory of the origin of the mortality 
curve has been advanced by Sacher, 	presenting quite a different viewpoint. 
It is not wholly inconsistent with target theory, however, nor is it basically 
any more successful. It explains the Gompertz function as the approximate 
result of a linear change with time in a "mean physiologic state. " However, 
the change in mean state requires further assumptions that might well be 
justified by a target theory. 

At the macromolecular level, the various aging theories -- accumula-
tion of toxic products, consumption of protective agents, or accumulation of 
partially inactivating changes in structure - - may one day be combined into 
a complex but coherent picture of events. As indicated here, target or hit 
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MU-138Z5 

Fig. 6(A) A family of cumulative normal curves used as a 
good approximation to multiple-hit survival curves when 
n, the hit number, is 15 or greater. The paiameter k 
(the probability of a single hit) is varied, giving rise to 
this family of curves as n is held constant. (Such a 
situation might be visualized in populations x-irradiated 
at constant intensity throughout life. ) 
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Fig. 6(B) Illustrates the properties of the family of curves 
shown in (A) when replotted as log of age-specific death 
rate against time (the Gompertz plot). A log-log plot 
would straighten these curves only a bit more. 
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Fig, 7 (A) The data of Lorenz on LAF 1  mice iadiated at 
constant average intensity throughout life, 	refitted with 
the cumulative normal curve appropriate to multihit theory 
with n > 15. This was done by fitting the best straight line 
on probit paper, which uniformly gave a good fit. It has 
been replotted on plain paper for greater readability. 
Application of more complex models suggested as possibilities 
in the text does not appear warranted by these data; however, 
such models serve to remind us of the nonunique nature of 
the present fit. 
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Fig. 7(B) A plot of k (the probability of a single hits) divided by 
n, the hit number, against dose rate in r per 8-hr day, using 
the data of 7(A). Here n, the hit number, is assumed constant; 

• k = n/mean survival from hit theory. The lowest dose rate 
(O.11 r per 8-hr day), should be used for comparison instead of 
the control, in order to avoid for the present the unsettled problem 
of apparent increase in survival at low dose rates. Note that the 
increase in k is approximately linear with increase in dose rate. 
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Fig. 7(C) The Gompertz plot of the cumulative normal curves 
of (A). Judgment of the fit to the data is more appropriately 
made in (A). The Gompertz plot is shown to indicate the shape 
and relationships of these theoretical curve.s for comparison 
with the same data fitted with straight lines in Fig. 5 of 
Ref. 18. 
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theories portray a ptogressive stepwise accumulation of basic cellular 
defects regardless of the interplay of protective and destructive agents. The 
model presented here emphasizes the basic assumptions in these models and 
the variety of sigmoid survival curves made possible by simple combinations 
of purely random events. 

APPENDIX 

Derivation of the General Model 

Two alternative methods of deriving the form of the death-rate curve 
for the general model are outlined below (A and B). In each case, let t be 
a random variable denoting time of death, and f(t) the frequencyfunction of 
time of death. S(t) can then be defined as 

00 

S(t)= 
	

f(t) dt 

S(t) is then the survival-curve function andf(t) the death-rate function. 
From Eq. (1) we have 

dS 
dt 	(t 

	

The age-specific death rate is defined as - 	/ S . Also, let N be the 
dt 

probability that an organism is present in stage i, so that we have 

n 
S(t). = 	i. Ni  (t) 

and 

f(t) = k 	N (t), n n 

A. If the length of time spent by the organism in any single stage i is t i  
and the probability that a random event will send the organism into the next 
stage during any interval dt is the constant k 1  times dt, then the length of 
time spent in stage i occurs with the frequency .( 

f(t.) = k, e1(iti 

while the total length of life, Tni  occurs with a frequency f(T) that depends 
on n and the k1 s. The derivation of the death-rate curve for a two-stage 
process is used as an example. The problem is to find the frequency function 
for total time T 2  spent in the two stages from the frequency functions for t 1  
and t 2 , the time spent in each separate stage. (See Fig. 3) Similar problems 
can be found in Ref. 15. 
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Given 
f(t) = 	e 

f(t 2 ) = k2 .e2t2 

we have 

f(t 1 t 2 ) = f(t 1 ) f(t 2 ) = k1k2 ek1t1 + k
2t 2 ) 

Let 
T 2  = t 1  + t 2  

V = t 2  , a change of variables preliminary to obtaining f(T 2 ). 

Then we have 

aT 2 	aT 	av 	av 
 = 	____ = 0, 	at = 1, 	and 

f(t 	
1 2 

t ) 	
k k e -(k1t1 + k 2 t 2 ) 

f(T 2 , V) = 	a (T2)V) 	
= 	

1 	
= kjk2e k 1 (T22 

a (t 1 , t 2 	 0 	1 

Then f(T 2 ) is obtained from f(T
2) 

 V) 

f(T2) = 	f(T
2) 

 V) dV = 
	k1k2 e k1(T2-V) + k2V dV 

= k1k2 e lT2 j2 	 dv, 

f(T) 	 (e2T2e klT2) 	 (10) 2 
k1-k2  

Addition of a third stage requires that this process be repeated, using Eq. 
(1O)and ' 

f(t3) 	k3ec3t3 

to obtain f(T).  The general result, Eq. (2), and the recursion formula, 
Eq. (3), cane obtained similarly by mathematical induction. 

If k. = const and the same process is followed, repetition of the in-
tegration step in the above derivation continues to give rise to a single term; 
hence the simplicity of Eq. (7) compared with the general formula. 
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B. The same result can be obtained as follows:. 

In the first stage 
-dN 	 1 1 	 -c1t 

dt = k
1 N 1  or N 1  = e 

If a second stage is added we obtain, 

dN
. 	 k 

dt 	
= k 1 N 1  - k2N 2  = k1e 1 - 

a first-order linear differential equation whose solution is 

k1 	
-k2t 	-kit 

N2 	
k -k 	

(e 	- e 
12 

The rate of death is then 

f(T 2 ) = k 
2  N 

 2 = k1-k2 (e2t - e1t) 

If a third stage is added, we have 

dN 

dt 	
= k 

2  N 
 2 - k 

3  N 
 3 

which, by use of the result for k 2 N 2 , can be, solved for N 3 ; k3N is then 
the death rate for a three-stage process. Mathematical induction again will 
give the general result, Eq. (2), Solution of these differential equations 
involves successive solution of first-order linear equations, always yielding 
an answer in closed form. 

The Multihit Case 

The form in which the multihit survival curve is usually given 4' is 
(in our notation) 

r 
-kT 

n-i 
 (kT. ) 

S = e  
V 	 V 	 rO 	r 

Here the number surviving at time T is given by the sum of those which 
have received hits of zero to n- 1 where the probability of having received 
r hits is given by the Poisson formula 

P(r) (kT)r e T 

Differentiation of Eq. (11) gives 

V 	 nn-1-kT 
- dS 	k T e 

V' 	

(n-i) 
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which corresponds with Eq. (7) derived by one of the methods given above. 
It is easier, to visualize the significance of Eq. (12). if it is written 

f(T) = k• 	
(kT)eT 	

(13) 

The factor on the right in Eq. (13) is the probability of exactly n-i hits 
having occurred by time T according to the Poisson formula, and k times 
this factor gives the probability of the nth hits pccurring at time T. 

The Multitarget Case 

The multitarget theory developed by Kiga, 	in which there are n 
independent targets, any m of which when hit give rise to death of the 
organism, expressed in our notation is 

Snm• = 

	
() (le t ) r ( 	t)n-r. 	

(14) 

The number S 	is seen to be the sum of those who have received hits of 
zero tom- 1 wfe'e the probability of having received r hits is given by 
the binomial formula 

n r n-r 
P(r)()p q 

and where p, the probability that a single target has been hit, is given by 

-kt 
p1-e 

and the probability of survival of a single target is 

-kt 
q1-p=e 

The correspondence of this formula for S(t) and the one derived from Eq. (2) 
of the general model we have shown only by an analysis of the assumption 
involved, which are identical, and by the checking of simple cases. Further 
formal demonstration has not been done. 
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