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ABSTRACT 

In analogy to the dispersion-relation method for scattering, the 

description of nucleon electrpmagnetic structure by local-field theory is dis-

cussed in terms of mass-spectral representations for the form factor.s. The 

existence of such representations is made plausible although not proved, and 

it is shown that the spectral distribution functions are related to scattering 

amplitudes on the mass shell but sometimes in a nonphysical region. It is 

argued that the main contributor to the magnetic moment structure in the 

spectral distribution must be the two =pion state, and an attempt is made to 

evaluate this contribution in terms of the known behavior of pion-nucleon 

scattering. A semiquantitative calculation yields results in reasonable 

agreement with experiment. 

It is emphasized that since in a local theory the charge-form factor 

will have a complicated behavior for very large momentum transfer, the 

large observed charge radius of the proton does not imply the dominance of 

the two-pion state in the charge structure. Thus it is not impossible that 

higher mass configurations supply the isotopic scalar charge needed to 

explain the small neutr on-e leçtron interaction. 
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I. Introduction 

1. Theoretical calculations of the electromagnetic properties of the nucleon 

have been carried out for many years within the framework of local-field-

theory, but mainly by perturbation techniques 1  of dubious validity. Recently 

the use of dispersion relations in the problem of pion-nucleon scattering 2  

and photopion production 3  has shown that local-field theory is capable of 

some quantitative correlation of physical phenomena even when the perturbation 

method fails. It is the purpose of this paper to attempt to apply the kind of 

relations that have succes sfully correlated experiments involving low -energy 

pions to the problem of the nucleon electromagnetic form factors. To the 

extent at least that the electromagnetic structure of the nucleon is determined 

by virtual pions of sub-Bev frequencies such a program should be enlightening, 

even though in the end local theories in the strict sense may be abandoned. 

There are at least three reasons forbelievig that the anomalous 

magnetic-moment structure of the nucleon is dominated by low-frequency 

virtualpions: 

(a) The anomalous moment is almost entirely a vector, in isotopic 

spin, i.e., the anomalous moments of neutron and proton are nearly equal 

in magnitude, with opposite signs. This situation prevails not only for the 

* 
Now at Department of Physics, Stanford University, Stanford, California 
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static moments but up to frequencies at which the moments have fallen to 

	

about 1/3 of their static values 	It will be explained below that the 

pair, the virtual configuration of lowest energy contributing to the nucleon 

electromagnetic structure, is a vector in isotopic spin space. It is of course 

possible for a combination of virtual effects other than pion pairs to produce 

an almost purely vector moment, but such a circumstance must be regarded 

as unlikely. 

The sign and the approximate magnitude of the anomalous moments 

are correctly given by the cut-off model of the Yukawa theory. This model 

is normalized to the same low-frequency limits as the local theory, but 

neglects nucleon recoil (as well as antinucleons and strange particles) and 

excludes virtual pions of energy higher than about 1 Bev. 

The measured mean square radius of the magnetic-moment 

distribution 4  corresponds to the wavelength of a pion of about 1/3 Bev. 

In contrast to the anomalous magnetic moment, it is experimentally 

clear that the charge structure of the nucleon is not dominated by low-energy 

virtual pions. The decisive fact'here is the extremely small second radial 

moment of theneutron charge distribution as compared with that for the 

proton, which is at least ten times as large. 6 
 Thus the charge density is 

certainly not an isotopic vector. One of the purposes of this paper is to 

emphasize that within, the framework of a local theory one should not be too 

surprised at such a difference between the charge, and magnetic-moment 

distributions.  

2. . Before going into the details it is perhaps advisable to outline the 

approach to be used. It is well known that the linear interaction of nucleons 

with the electromagnetic field can be expressed in terms of four real scalar 

functions of q 2 , the square of the energy-momentum-transfer four-vector. 6, 

We shall label these functions G 1 S( qZ) G1'V(qZ), G23(q2), G2V(qZ),  where the 

index .1 goes with the part of the interaction proportional to yA (the 

"charge") and the index 2 goes with the part of the interaction proportional 

to a A q (the "magnetic momeht"). 6 
 The superscripts S and V refer 

to the isotopic character of the interaction, scalar or vector, the normalization 

	

being specified by the relations 	. 	. 

5(0) + G 1 V G1 	 (0) = e, 	' 

	

G 1 S(0) - GV(0) = 0, 	 (2.1) 
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G2S(0) + G2V(0) = 

G 2 S(0) - G2V(0) 	 .2) 

where e is the proton charge and 4 P  and p. the proton and neutron static 

anomalous magnetic moments, respectively. The conventional form factors 

are given by the ratio of the appropriate G(q 2 ) to the value at.q 2  = 0. Thus 

in our notation the proton form factors are 

S2 	V2 
P 2 - 	G 12  (q ) + G12  (q 

F 12 (q)- 
G 12 (0) +G 12 (0) 

Our approach is to be based on mass spectral representations of the 

type 

•2 	
2 	

2 	g1  (ni 
G 1 (q ) 	- 	-- j dm2 	

2 	2' 	
(2.3) 

(3m 1 ) 	rn (m +q 

V 2 
2 	

2 	 g1 (ni) 
G(q ) = 	- - J 

 
00 

 
drr2 	

2 2 2 	
(2.4) 

(2m g ) 	rn (m +q 

co 	 S 2 
S 2 	1 	 2 g 2  (m 

G 2  (q ) 	- i drn2 	2 	2 	 (2.5) 
• 	 (3m) 	m+q 

Go 	 V 2 g(m) 
G 2 	= 	) 

dn 	
2 2 	

(2. 
(2ni 1,.) 	m+q 

which have been suggested by a number of authors. The four real weight 

functions g15 	(1Z) may be nonzero for m equal to themass of any 
1 2 

system strongly coupled to the nucleon which at the same time can be 

created by the electromagnetic field. The lightest s:uch isotopic vector 
+ 	- 	 • 	 + 	- 	0. system is the Tr , ii pair, while the three -pion iT , Tr , iT system is the 
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lightest isotopic scalar; hence the thresholds at (2m) 2  and (3ni). It will 

be shown in Section III that, in general, systems of even numbers of pions 

contribute only to the isotopic vector charge and magnetic moment while 

odd numbers of pions give purely isotopic scalar contributions. Of a mass 

comparable to six. pions is the K, K pair, and eventually of course one 

comes to the baryon pairs, starting with the nucleon-antinucleon system. 

From a practical standpoint lone .  must hope that in the mass spectra the 

contributions from the simplest systems are the most important. 

The derivation of the representations (2.3) (2,6) to be given in 

Section II presupposes that G 1 (Z)/Z and G 2 (Z) approach zero for large Z. 

Actually, it may be inferred from the work of Lehmann, Symanzik, and 

Zimmermann 
8

that G 1 (Z) approaches zero also. In that case one may 

write a relation of the form 

S V 2 	1 f 2g1S,V(m2).
C ' .(q ) = 	dm 	2 	

2 ••' 	 (2.7) 
m+q 

V i with the restriction on 91 S, 
	mplied by Eq. (2.1). The convergence, 

however, is achieved only because of electromagnetic damping, which sets 

in for extremely large q 2 	M 2  e 137 , while it maybe seen from perturbation 

theory that the functions C. 1  are likely to behave logarithmically for large 

2  in the range M 2  e 137  >>q 2  >>M2  q 	 . To avoid the large contribution from 

this unexplorèk region we prefer to use Eqs. (2.3). and (2.4). The anomalous 

magnetic-moment distribution, on the other hand, for reasons which are 

essentially dimensional, is dfinitely expected to vanish for q 2  >>M 2  with 

or without electromagnetic damping. Thus for practical purposes we are 

confronted by a fundamental difference between- the charge and magnetic 

moment distributions. 

3. Often it seems appropriate to discuss the nucleon electromagnetic 

structure in configurationspace language, and to that end one conventionally 

introduces three-dimensional Fourier transforms of the functions G' 1,2 

SV()  = - 
	

(d 	e rG 1 SV(p Z) , 	 (3.1) 
- 	(Zir)j 	- 

SV(- 	
•f.i .  . . GSV( 2 ) 	 (3.2) 

(2ir) 	 - 

V 
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Although the configuration-space functions p  and '?fl have no precise 

physicalmeaning they correspond roughly to charge and anomalous magnetic-

moment densities respectively Substituting Eqs (2.5) and (2.6) into (302), 
JR 

•wehave 

-mr 
V(r) 

= 	J dm2 gS V(mZ)  e r 
	

' 	(3.3) 

which shows that in the spectral decomposition of the magnetic moment the 

contributionof a particular mass value m has a "range" 	l/ni. Thus the 

lightest masses that contribute to g 2 (m 2 ) give rise to the longest-range 

structure. 

A quantity often used to characterize the size of the nucleon is the 

"mean square radius of the anomalous magnetic moment, 
,,6 

 that is 

(suppressing the superscripts S and V), 

r2 = J'd r 2fl(r) /Jd)r(r),. 	 (3.4) 

which is easily shown to be related to the logarithmic derivative of 

(q2)atq2O 	
2 

dG 2 (q 
r 

__ (
) 

- 	 (3,5) 
m 	

GjO) '\ dq 2 
	

)q
Z

= 0 

or 	

= [dm2 
9(m2) 

 /[dm2 
 g(m2) 	

(3.6) 

Thus the mean square radius is related to some average mass in the weight 
2 	 - 

function 9 2/m 

1 	2 	-2 
6 rm = m , 	 (3,7) 

a notion which is useful if the spectral distribution is predominantly of one 

sign. Actual calculation, as will be seen in Section V, shows no tendency 

for 9 2  to oscillate, although it has not been proved that a change of sign is 

impossible. Taking the measured root-mean-square radius of theanomalous 

(vector) nucleon magnetic moment one finds a corresponding average mass 

of Sm, which, if divided between two particles, would give each an average 
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total energy of 2.5 m.rr.  This low average energy suggests, as mentioned 

above, that virtual K particles and baryons play only a srnall'role inthe 

determination of the anomalous magnetic moment. 

4. Because of the complicated behavior of G 1 (q 2 )at infinity, one cannot 

find a useful connection between the second radial moment of the charge 

distribution and an average virtualmass. Going through the same 

manipulations as above but using Eqs. (2. 3) and (2.4) rather than (2.5) and 

(2.6); one finds for the meansquare radius of the (scalar orvector) charge 

the formulas 

Co 
S 2 

1 	 2 	
g1(m) 	2 

-. (r ) 	= ire 	
dm , 	 (4.1) 

2 	m. 
(3m) 

-IF 

V2 
2 	

g1(m) 	2 
- (r ) = - f 	dm . 	(4.2) 

t 	p 	ire  	2 	m 
(2m) 

11 

Often the statement is made that because the lowest-mass intermediate 

state, the irk,  ir pair, contributes to the vector charge but not to the scalar 

the latter should have a much smaller mean square radius than the former. 

Such reasoning, however, is tacitly, based on the assumption that a formula 

of the type of (3.7) holds for the charge radius as well as for that of the 

magnetic moment. Formulas (4.1) and (4.2) in themselves imply nothing 

about either the relative or the absolute magnitudes of the second radial 

moments of the scalar and vector charge distributions. 

If one wishes to use the representation (2.7) it still cannot be 

concluded that the second moment of the scalar charge is small, unless the 

spectral function g 15  is of one sign. In that case, however, the normalization 

condition 
S,V2 co 

dm2 g1 m2 
	

e/2, 
Tr f  

- 	-. 	v which follows from Eq. (2.1), requires 	91 S, 
	to be small, 

S V 91 
	/e 	 , because as discussed at the end of Sec. I, 2 the region of 

integration is so extensive. Since the strong pion-nucleon interaction 
S implies fairly large values of g 	V for moderate values of its argument, 
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s,v 	 i we conclude that the g 1 	must actually oscillate n sign in order to satisfy 

Eq. (4.3). 	Thus no useful purpose is achieved by using Eq. (2.7) instead 

of the more conservative Eqs. (2.3) and (2.4). 

The experimental fact that the scalar and vector second radial 

moments of the charge are almost equal of course means that configurations 

more complicated than the ii ,' iT pair are important. Why this should not 

also be true for the magnetic moment we must say at once we do not under-

stand. It is, however, fortunate that at least part of the problem of the 

nucleon electromagnetic structure may be tractable. 

5. In our present state of knowledge an attempt at a specific evaluation of 

the weight functions g 1  2 S V(2) must be confined to the two-pion contribution, 

and even here we have not succeeded in formulating a reliable method of 

calculation. We shall show that the two-pion part of the weight function is 

proportional to the charge-exchange pion-nucleon scattering amplitude, but 

at a negative, value for the square of the momentum transfer. An extension 

of the physical scattering amplitude is thus required, which we attempt to 

carry out by means of dispersion relations combined with Legendre poly -

nomials. If integrals, are 'cutoff and an expansion is made in invers.e p'owers 

of the nucleon mass the results of the static model 
5

can be reproduced. 

Without a cutoff we are unable to make a definitive calculation, but arguments 

will be given to support the belief that the 'local theory, properly evaluated, 

will be in agreement with the observations. 

In Section II we discuss and to some extent justify the representations 

(2.2) to (2.6). Section III deals with general properties of the various 

intermeiate-stãte contrbutions to the weight functions g1 	V(Z) and 

in Sections IV and V we concentrate on the two-pion intermediate state. In 

Section VI our findings are summarized. 
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II. The Mass -Spectral Representations 

6. Recently Bogoliubov, Medvedev, and Polivanov 9  and others '°  derived 

dispersion relations for meson-nucleon scattering from the causal nature 

of a local-field theory. In this section we shall show that the electromagnetic 

structure factor satisfies requirements that are analogous to the.properties 

of the meson-nucleon scattering amplitude. We therefore infer that it has 

a spectral repre s entation.similar to the dispersion relation,s for the 

scattering amplitude. Our discussion closely follows that in Ref. 9. 

We shall write the form factor for the emission of a virtual four-

vector quantum with momentum q(0 < q 2 ), 
kL 

• 	
ü (ps')F(p',q;) u(p,$),  

where the nucleon makes a transition from the state with momentum .p,. spin 

and isotopic spin s, tO the state p ' , s'; u and u are the usual normalized 

spinors. The index s wi1lbe suppressed where no loss of clarity resuits. 

If the field operator A(x) for the virtual electromagnetic field is introduced 

in addition to the nucleon operators • (x) 
I and 4(x) , we can consider the 

fuction in Eq. (6.1) as an S-matrix element to which the reduction'formulas 9  

can be applied: 

Ü(ptsl) F(p',q;p)u(p, s) =(p's', q 	I Sips) 
VL 

= (2) 
Jd xd Y 	

iqx e 	(p'si OA(x)ö(y) S 1O)u(ps) 

3f 	I T(j(x) 	(yiO)u(p, s), 

(6.2) 

plus a possible local contribution to the integrand when x = y. 

Here the currents are 

i.(x) = i 5(x) 	(1p(y)= 	5W() 	• 	
( 6.3) 

In the final step of Eq. (6.2), the causality conditions have been used in 

the form 
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öj(x) 	 2 	öfl(y) 	 2 

	

0, x0 >y0 	or (x-y) >0; 	Ax) 	
0, x 0 < y or (x-y) >0. 

(6.4)' 

	

We may now define the causal function 	and a set of related covariant 

functions, 	 1 
-i--(x+y) 	C.  (p! T(j(), 7f3(y))IO) = - ie 	 S 	(x-y); 	 (6.5a) 

(! 	3) 10) = -e 	
p' 	

(adv) (x-y), 	 (6 5b) 

o?( Y ) 	- i4 j(x+y) 	(ret) 
(p I OA (x) 10) = -e 	 S 	(x-y); 	 (6.5c) 

IJ. 
1 

-i 	p(x+y) 	
( ) (jYI j(x) 	(y)I0) = - i e 	 S 	- (x-y); 	 (6.5d) 

.1 
-  

(p 1 I (L(y) j(x)I0) = 	
- 1 2-p (x4.y) 

e 	 S (+) (x-y). 	 (6.5e) 

The translation invariance of the field equations assures that the functions 

defined in this way are functions only of the difference x-y. Two use-

ful relations among these functions are 

	

(x) = S (x) + SH(X) = 	 - S(x) 	 (6.6a) 

and 

st)(X) 	 = S(x) + S p H(x ). 	 (6.6b) 

In terms of the Fourier transform G(k), 

S(i) (x) = ()4 w 	e1G(1)(k)d4k, G'(k) je -i 	S'(x) d4x, 	(6.7) 

the form-factor Eq. (6.2) is written 

u(p)F(', q;)u(p, ) = 	 u(p,$). 	(6.8) 
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The quantity of physical interest is this form factor considered as a function 

of positive q when 

2 	.Z 	2 
p = p 	= -M , 	 (6,9) 

where .M is the nucleon mass. 

Because of momentum conservation (or translation invariance) at 

least one momentum in addition to q must be varied. The representation 

Eq. (6.2) we have constructed is most convenient when p' is held fixed, 

because then the dependence on momentum transfer is contained entirely 

in the exponential factor 

	

-iqx ipy 	-i(q+ p)(x-y) 4 -- 	 ip(x+y) 
e 	e 	= e 	 e 	 , 	 (6.10) 

which has been used to obtain Eq. (6.8). •. We shall therefore use the rest 

system of the final nucleon with the following notation: 

pV = (0,M), 	 . 	 (6,1la) 

= (Xe + ), 	 (6.1lb) 

= (-Xe, E = M 	). 	. 	 . 	(6.1c) 

The condition that p be a nucleon momentum leaves w the only variable 

(be side the trivial possibility of rotating e), because X is determined by 

	

Eqs. (6.9) and (6.11c)tobe. 	.. 	 . 

x = [( M + 
)2 

 - M2] 1/2 
	

(6,12) 

7. In order to establish a dispersion relation we should now like to apply 

Cauchy's theorem to G(c)(. pv+q) considered as a function of complex 

c. The Fourier integral Eq. (6.7), 
,- 

 i 	
1 . 

1 c . 	 - 2-p ? x 	-i(X ex 	x0) 	 4 
G' ' (p+q) = 	e 	e 	' 	 '(x)d x, 	(7,1) 

unfortunately exists only on part of the real axis, 

ImwO, Rew>0 orRe<-2M, 	 (7.2) 

where 

Im W I ?I Im X I. 	 . 	 ( 7,3) 
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It is necessary to determine, therefore, whether there is an analytic 

function which is equal to the integral in Eq. (7.1) where that exists, and to 

locate its singilarities if it can be found. In perturbation theory (' (x) and 

G(c) (k) 	can be exhibited explicitly as polynomials in the momentum 

components times simple functions of the invariant squares of the momenta, 

so that the analytic continuation can be carried cut by inspection. 7a 

We shall proceed by establishing a dispersion relation for nonphysical 

values of 

= -T, T < 0, 	 (7.4) 

so that Eq. (6.12) becomes 

21 

	

x = [(M + 	- TJ/2 . 	 . 	 (7,5) 

We then conjecture that the analytic continuations of the 	as a function 

of T can be extended to 

M 

	

'r < 	2 , 	 (7.6) 

for which they have the required values given by Eq. (7.1) and its obvious 

modifications. 

The functions 	are the easiest to discuss. By introducing into 

Eqs. (6.5d) and (6.5e) a complete set of states labeled by the quantum 

number n, with the rest-energy M, and the energy-momentum vector .  

k (0 = -M 
2) 

 we obtain 

%

fl 

i 4x( 
1 
 p-k) 

S+ 
	= 

- 	 3 	k.2k0  (k0 ) ö(k2+M2) e
(Zir) 

 ~jd 

	

x  (pv Jñ(0)Jnk)(nkI j(0) lo) 	(7.7a) 

and 

	

jd 	
.1 

 2 	2 _lxZp -k) 
S 	(x) _ 	k 2k0  9(k0 ) O(k +M) e 

	

X 	j(0) I  nk)(nk l ( p (0)  J o). 	(7.7b) 
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In view of Eq. (.4), q 2  and the momentum N. are now given by 

q 2  = M + ZM W -  T, 	K = [(M 	- T], 	 (.7) 

whence follows 

jImJ? 	ImKI 	 (7.9) 

for all values of w , real and complex. The Fourier transforms at the value 

can therefore be obtainedas 

G( p .'+q) G( 1 T) = Ziri 	2(-) 6(q 2 +M) 

	

('I°I n+,q)(n+, q j(°)I o) 	(7.10) 
 Op  

and 

( 
p+q) =G 	(, 

T2i 	2E(E) O(p 2 +Mn Z ) 

(P ' I  j 4  ( 0 ) l 	 o 	7.11 

where we have introduced notation to indicate the functional dependence on 

, i-  and to distinguish the sets of states n ± that contribute to 

respectively. 

Since j ,, (0) is a vector operator, its matrix element 

(\n+, qj  j(0) 1  0 vanishes unless the state n+ contains at least two pseudo-

scalar mesons; hence the lowest-energy intermediate state has M = Zm 
'TI 

and the function G (+)  (,T) vanishes over a large part of the real axis, 

	

T)= 0, 	q 2  > -4m 2  or >((T) 	
- M +i-4m 	 (7.12) 

In particular, 	vanishes in the "physical" region c? 0 where the 

quantum is really. emitted .(E ? M). Similarly, the matrix element 

p1 fl(0) 1  0 
) 

vanishes unless the state n- contains at least one 

nucleon and a meson, M n 
> (M + m ) so that we have

Tr  - 

	

G(c, 7) = 0, 	p ~ - (M+m) 2 	or 7< (M +m). 	(7.13) 

Since the inequality is always satisfied in the region (7.6) in which we are 

interested, the function 	will not be considered further. 
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From Eq. (6.6) we may now infer the corresponding relations among 

the Fourier transforms, 

G(c)(, T)  = G(ret)(C, ,T ) = G(v)(T) W >o (T) 	 (714) 

and 

	

Get)(, T) - G .(adv)(T) = G ()  (, T) W < 
	(i). 	 (7.15) 

8. To construct the analytic continuation of the retarded and advanced 

functions we must exploit their space-time behavior, Eq. (6.4). To avoid 

the branch points at 	X = 0 in the integral representations Eq. (7.1), we 

shall treat the forms symmetrized and antisymmetrized in the sense of the 

vector e, 
- 

 i 
t 	1 
I - —p'x ic,x 

(e, o) 	(ret) 	i 	2 	 -i 
G 	(, T) = e 	e 	(cos X e•x, 	sin X e. x) 

	

(ret) 	4 
(x)dx, 

which are even functions of X. Because S (ret) 
 (x) restricts the integration to 

the future light cone, these functions are analytic in the region 

Im o. > I Im x I 	 (8.2a) 

or 

Im W>O 	 (8.2b) 

in view of Eq. (7.9). The functions 

.1, 
- - VX iwx (e, o) 	

ip 
G (adv) 

( T) 	fe 2 
	

e 	0 (cos X e x, 	sin X e x) 

	

(adv) 	4 	 (8.3)  

4
(X)dX 

are analytic in the region 

Im (A) < - lIm X I 	 (8.4a) 

or 

Imc<0 	 (8.4b) 

because the integration extends only over the past light cone 
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Furthermore, Eq. (7.14) states that on part of thereai axis 

(8.5) 

the causal, advanced, and retarded functions are equal; they are, therefore, 

the same analytic function 	(e, o) G
1 (c, T) , regular in the entire complex 

to plane with a branch point at 

= 	o ('r) 	 . 	(8.6) 

and a cut from there to infinity; we shall take the cut along the negative real. 

axis.. A retarded function is obtained by approaching the cut from the upper 

half plane and an advanced or causalfunction by approaching from the lower 

half plane, 

Since the discontinuity in G on the cut is known from Eq. (7,15), we 

can apply the Cauchy theorem to the function (e)G  (c)/o if this function 

approaches zero for large values of c. In accordance with the discussion 

in Section I, 2, we assume that this is the case, and that 	may not 

approach zero. The resulting dispersion relation or spectral representation 

is 

	

f0c)

0(T) G 	(t)

(e)G 	(c,T) = --.- 	 d 	+ (e)G 	(0,T), 

	

2Tr1 
	

)(()—O)) 

ü) >0. 

It follows from covariance arguments that the function 

(e)G approaches zero for large values of w if (e)G(w)/w does, 

spectral representation for that function is therefore 

I 	 .. 	7(A)0 (T) 	(o),., 	(+) , 

	

'r) - L. / 	 ____________ 	d, 	(A >0. 
ZiTi 	J —CD 	 (A) - (A) 

The 

(8.7) 

9. We shall now assume that Eqs. (8.7) and (8.8) hold for 

T = M 2 . 	 (9.1) 

The possibility of such an analytic continuation, has been proved rigorously 10 

only for the case in which the meson and nucleon masses satisfy the inequality 

m> (J1)M. 
Tr 

We believe that this restriction is a result of the method used for the proof 

and that it will be I removed when further progress is made in the study of this 

problem. 
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We may therefore write the spectral representations for the even 

and odd form factors (e, o)F which differ from the functions (e, o)G only 

by the constant final nucleon spinor. It is still more useful first to 

decompose the form factor into the four real scalar functions described in 

the introduction, 

q;p) = iy [G 1 (q 2 ) + T 3  

(S) 2 	3 G 2 (V) ( q  Z)], 	(9.2) + a P.  q [G 	(q )+T 
V v 2 

(+) and to do the same for G 

G(,M2 ) = -2i jj(pr,  s) {iu [g 1 (q 2 ) + T3 g(V) (--q2fl 

q{g (S) 	2 	(V) 	2 	. 
1 v 2 	(-q ) + 7 3  g 2 	(-q )] 	(9.3) 

It is clear that each of the functions g 1 	 is related to the analytic 

continuation of the corresponding 	 G1 	
V) 	in the same way as 

G(+) is related to 	Then the g1 	V) are real functions as a 

consequence of the Riemann-Schwarz "principle of reflection. ,,l 1 

Each of the two functions G 1 
 s,v has a spectral representation of 

the form Eq. (8.7), in which we may set (Eq. (7.8)) 

	

2 	 2 

	

_q 	 m 	 4 

to obtain Eqs. (2.3) and (2.4). The functions q,G2S V satisfy a 

representation of the form (8.8), while q0G2 
s, kr satisfy one of the 

form (8.7) with [q0G2S V1 =0 = 0; both give the same result, which 
q O  

leads to Eq. (2,5) and (2.6) after the change of variables in Eq. (9.4). 
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III. General Properties of Intermediate -State Contributions 

10. Having obtained the spectral representation for the form factors, we 

now focus our attention on the four weight functions 

g12SV(m Z ). 	 (10.1). 

As already observed, these functions contain a sum of terms c•orresponding 

to the possible intermediate states in Formula (7.10); thus for each g, 

g = 9(2 11) + g(3..) + 	. 	+ 9(2) + 	 + • . 	 (10.2) 

Each of these partial weight functions g, vanishes for value of m 2  less than 

2  (rn.) , where m  is the sum of the rest masses of the particles in the state 

i. As argued in the introduction, a particular g 1  therefpre contributes to 

the nucleon structure only within radii of the order of the Compton wave-

length associated with the mass m. Thus it is appropriate to concentrate 

on the functions g i  corresponding to the low-mass intermediate states, in 

order to discuss the outer regions of the nucleon in configuration space. 

The lightest states are those containing only pions. Our first 

observationabout these is 

	

- 0 	if fl is even 	 (10.3) 

and 

	

(nir) = 0 	if n is odd. 	 (10.4) 

This fact may be demonstrated by observing that the photon couples through 

an interaction that is odd under charge conjugation, so that the intermediate 

state must be odd under charge conjugation. Since under this operation 

mesons of. Types 1 and 3 (coupled to nucleons with T 1  and T 3 ) are unchanged, 

while mesons of Type 2 (coupled withT 2 ) change sign, we conclude that the 

number of Type 2 must be odd. To make the total charge zero, then, the 

number of Type 1 must also be odd. Thus, in the absorption of the charged 

rnesons by the nucleon, one extra T 2  T 1  appears which boils down to the 

appearance ofone'r 3 . The entire process is then proportional toT 3  or 1 

according as the number of neutral tnesons is even or add, i. e. , according 

as the total number of mesons is even or odd. 

Id 
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We thus have 

g = 9(3) + (51T) + 	+ g(ZK)  + 	+ g(-) + 

- 	
gV= 9(2) + 9(4) + 	+ g+ 	+ () v+ 	 (10 5) 

If the charge contribution from the threepion intermediate state 

were of the same magnitude as that of the two-pion state, one might have 

an explanation for the difference in second radial moments between the 

proton and neutron charge distributions. There is no visible reason, of 

course, why the three -pion configuration should contribute substantially 

to the charge density and not at the same time to the magnetic moment. 

However, this same statement can be made in our current state of knowledge 

abdut any possible source of isotopic scalar char.ge , so that the three -pion 

state must be regarded as a possible condidate to supply the needed scalar 

charge. 	At the present time we know of no sensible way to estimate even 

the' sign of the three-pion contribution. On one side a closed nucleon loop 

is required to couple this system to the electromagnetic field and on the 

other side a nonphysical matrix element for the process 

3Tr - N + N (or ir + N - Zir + N) is involved. 	 ' 

Concerning the heavier (nonpionic) intermediate states even less 

can be said. One point of interest, however, is the observation that the 

contribution to the weight functions 91 S,v 
2 	(m 2 ) from the nucleon-anti- 

nucleon state is given by the product of nucleon electromagnetic structure 

factors themselves, evaluated at q 2  = -m 2 , and nucleon-antinucleon elastic 

scattering amplitudes in the physical region. There seems no reason to 

think that this (NR) contribution èhouid'be even remotely approximated by 

setting 92S V(mZ) = 	g S V -m 2 ) 1/2 e and using the Born approximation for 

nucleon-antinucle'on scattering, the procedure equivalent to the standard 

perturbation calcu1tioñs. 
1 
 This point is discussed further in Section VI. 
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IV. Formulation of the TwoPion Contribution 

11. The contribution to the nucleon electromagnetic structure from the 

two-meson intermediate state will be calculated in the next two sections. 

The reasons for concentrating on this part of the process are: (1) it is the 

Only part for which at pesent anything like a calculation is feasible; (2) 

there is reason to hope, as explained in the introduction,- that the two-meson 

contribution dominates the magnetic moment. 

For an intermediate state consisting of mesons of-four-momenta 

q 1  and q2  with -isotopic spin indices j and k, we have for the spectral-

distribution function, Eq. (7.10)-,, 	 - 

	

- (Zir) 	 1 	(±). 	2 	(Zir). 
tt (p ) I 	(p ,'p) u(p) 	- '- [G 	(w, M )up (p)] 

- 	L '/()3  jd3 q 1 d 3q 2  O(q 1 +q2 +)(P(0)  q1 j q2k) u(p) -. - 
jk 

	

- -•• 	 (qij, qkj j(0) 1 0). 	- 	(11.1) 

The second factor of the integrand, i.e. , the matrix element Jdescribing the 

disappearance of the photon with the creation of a pion pair, may on the-

basis of invariance considerations be written 

(q1j, q 2  k j(0) 0> =' -. 

2 	

,x F4(q +q2 ) 2 ] 	 (11 2) 

Here F 1 .[(q 1  + q2 ) ] is. a form factor associated with the one-photon, two-

me son vertex, normalized to unity for zero argument. This function for 

positive argument describes the electromagnetic structure of the pion in the 

same sense as the functions G 1 S,V describe the nucleon,, and in principle 

could be measured directly by electron-pion elastic scattering. In 

practice we shall be forced to set F 11  equal to unity (tipoint  pion" - 

approximation) since there is at present no understanding, either experimental 

or theoretical, of the pion structure. However, this approximation may be 

postponed until the very end of the calculation, since F (-ni 2 ) appears simply 

as a multiplicative factor in the weight functions g 21 (m).. 	 - 

14 
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The other factor in the integrand of Eq. (11.1) is related to.:the 

meson-nucleon scattering amplitude. Explicitly., if the amplitude for 

scattering a meson in the state q by a nucleon in the state p, leading to 

amesonq' and anucleonp', is denotedby (pt,qr  Tpq) , thenwe 

have 

(' fl(0) q1 5, q 2.k) u(p) 	(p' 1 -q 2.k T 	, q1j) . 	 (11.3) 

Of course, writing -q 2. for the final pion energy-momentum implies an 

extension of the scattering amplitude to a nonphysical region. This ex-

tension will occupy Section III, 14. 

Using the notation introduced by Chew, Goldberger, Low, and 

Nambu, ila 

(p'q2.kjTp, q 1 j 1 	
(() ftA(w2,q2) 

+ iQ B(W2., q2))Oik+ (Au(w, q 2 ) +iQB(W 2 , q) 	T j ]j u(P)) 

(11.4) 

where -q = (q 1  + q2 ), Q 	(q 1  q2 ), P 	(p + pt),  and W 	(P +Q) 2 , 

we may carry out the isotopic-spin sum in Eq. (11.1) to obtain 

T3Jd4qld4qz 6(
1 +q2 +q) O(q+ 	Z)O( q2 2  + m 2 ) 

(q 1 -q2 )  

The three-dimensional integrals over q 1  and q 2  have been increased to four 

dimensions by adding the mass-shell delta functions. It can be seen that 

only positive frequencies contribute. 
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12. It should be noted that in Eq. (11.5) only the charge-exchange 

scattering amplitudes• occur: and that•thé contribution, as expected, is only 

to the isotopic vector part of the nucleon electroti -iagnetic structure. 

Introducing q and, Q. in place of q 1  and q 2  and then performing the integration 

over d4q, we obtain 

IZnp,p) 
—T3 

jc1 4
Q 
 o((q+Q)2 + m Z)ô ((qQ)2 + mw 2) 

q2) - ivQH(W2,q2)] F(q2).
Tr 

• 	 • 	.••• 	. 	 (12.1) 

The next task is to relate Formula (12.1) to the scalar weight functions 
V 2 	 . 	2 	2 g1 2(2w)  (m ). Clearly we are to make the identification m 	-q and by 

standard invariance arguments we find 

g1()(m) = IM CL(m
2 ) + 1(m2) +M2:2(m2)] 	F( 2 ) 	(12.2) 

g2i2ir 	a(m) - M 2(m)] 	Fw(m2) 	 (12 3) 

where 

jd4Q(Q2+ q2 +m 2 ). 6(2qQ)(PQ 	2) AN(W q Z ), (12.4) 

(.2)jd4Qo(Q2 	q+ m 2 ) ö(ZqQ) [
22

) /2P2]BN(W2, q2 

P z ( JdQ ô(Q.+ q2+ m2) 6(2qQ)  [(P2Q23(PQ)2)/z(P2)2] B(W 2 , q 2 ). 
77 

- 	 •• 	(126) 

If we recall 	 • 	• 	• 

P2  -M2  - q2/4 	 (12.7) 

it is clear that these integrals indeed depend only on the single scalar q2. 
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13, In order to exploit these results the pion-nucleon scattering amplitude 

is needed in anonphysical region, in particular in a region where the 

square of the momentum transfer q 2  is negative. The variable W 2  = 

also takes on nonphysical values, but the dispersion relations permit us to 

extend the scattering amplitude to values of W 2  anywhere in the complex 

plane. It is the technique of extension to negative q 2  that is our particular 

problem here. 

Actually, for q 2  less than .4M 2 , the matrix element we are concerned 

with can be identified with the physical amplitude for the process 

T + iT - N + R. In the future this identification may turn out to be useful, 

but at the moment the only good theoretical approach we have to pion-nucleon 

matrix elements derives from the prominence of the(3/2, 3/2)-state 

scattering resonance. Any calculation attempted now has to be based on 

pion-nucleon scattering rather than on pion..pion production of a nucleon 

pair. This conclusion is reinforced by the empirical fact, emphasized in 

the introduction, that the TaverageH  value of m 2  in the magnetic-moment 
2 

weight function g2 V (m 
2 
 i ) s less than M , so that we may hope not to have 

2 	2 	 2 
to be. concerned with values of, (-q ) m that are greater than 4M . If 

the high-virtual-mass region turns out to be crucial in understanding the 

nucleon magnetic moment, our motivation for concentrating. on the two-pion 

contribution will be lost. 

So long as one works with Feynman diagrams, i. e. , with a perturbation 

evaluation of the pion-nucleon matrix element, there is no problem about 

continuing to negative values of q2;  the functional dependence is explicit. 

The whole point of the approach adopted here, however, is to avoid, the 

perturbation method; and the most obvious alternative is the method already 

used with some success in the dispersion relations for nonforward scattering, 

where nonphysical values of q 2  also occir--that, is, an extension by means 

of Legendre polynomials. 	 . 	. 

It is clear that a polynomial expansion cannot be valid for indefinitely 

high values of I q2  I. In fact, as pointed out by Symanzik, the possibility of 

mesonmeson scattering implies that strictly speaking the expansion will not 

converge for Jq21 > 4 m 2 , a condition which excludes our entire range of 
Tr 

integration. However, there is reason to think that meson-meson scattering 
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is weak and that for practical purposes the Legendre expansion may be 

used for Iq2 I < 4M2 . We shall make this optimistic assumption here, 

thereby allowing a crude calculation of g 2 (m 2 ) in the low-mass region 

14. Let us start with the conventional scattering dispersion relations in 

the form used by Chew, Goldberger, Low, and Nambu: 
00 

A(W 2 , q2) 	
dWI2ImA(W12q2){ 	1

-

2çp2 

(14.1) 

B(W2 ,q2 ) = 4 [M2 ~P~Q 2  + M2 +(PQ) 2 ] 

(14.2) 

a) 

+ 	I 	dW t 2 1m B(W,q2 ) 	 + 	
1 

• 	I,W' +(P+Q) 	W?. +(P-Q) J 
Tr 

where g 2  is the rationalized and renormalized Yukawa coupling constant. 

As emphasized by these' authors, the forms (14.1) and (14.2) correspond to 

the most optimistic assumption possible about the behavior of the amplitudes 

as W 2  approaches infinity. There is, however, some experimental evidence 

to support the optimistic assumption for charge.exchange scattering, the 

case with which we are dealing here. 
13 

 We note for future reference that 

the Born approximation; i.e. , neglect of 	and of the integral contribution 

to in the calculation of the weightfunctions Eqs (12.2) to (12.6), is 

equivalent to including in the nucleon form factor only the lowest-order 

perturbation-theory contribution to the meson current effects. 

The only place in Eqs. (14.1) and (14.2) where the dependence on 

q 2  is not explicit is in the imaginary parts of 	and 	in the dispersion 

integrals. It is here that the polynomial expansion is needed. According 

to Chew etal., 
12a 

 th'ese imaginary parts may be expressed in terms of 

partial_ware 1 ttotal" charge...exchange cross sections 	for s tates 

with parity (-1)' + 1 and total angular momentum .1! ± 1/2, 



-25 	 UCRL-3929 

00  
Im (A;B) 	(;1) 	 P1(x) 

Co 	
(14.3) 

- P'(x) 

Here E is the nucleon energy and k the relative pionnucleon momentum 

inthe barycentric system, while P(x) are derivatives of Legendre poly. 

nomials of the cosine : x  of the scattering angle, 
2 

	

x = 1 	, 	 (14.4) 
2k2  

which exhibit the dependence on q.. 

Our intention, of course, is to use experimental information about 

the total cross sections for the first few partial waves in pion-nucleon 

scattering to effect an approximate evaluation of Eq. (14.3) and thus of 

Eqs. (14.1) and (14.2). Any single partial-wave contribution can then be 

extended to negative values of q 2 . The difficulty, as explained above, is 

that the series in I does not converge for large I q 2  I 
15. In evaluating the quantities a(m 2 ), p 1 (m 2 ), and 13 2 (m 3 ) as given by 

Formulas (12.4) to (12,6), we may use the representations (14.1) and (14.2) 

to carry out the integration over Q, because they give the dependence on 

W and thus on Q. One obtains inverse trigonometric functions of avàriable 

	

22 	2qq 
y(W ,m  ) = 	 2 	2 	

(15.1) 
W +q .q 

	

IT 	n 

where  
)1/2 	 7 	2 

(m 	2 	 (2 	m 

(15.2) 

The functions are 

Ia(W2 +m 2 ) = 	 [ 	1  tanly], 	
(15.3) 
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2 

I(W' 2 ,+m 2 ) = 	 tan 1 y 	(1tan1y)] 

	
(15.4) 

I(Wt2 1 +m 2 ) 	 [tn'y 	(ltan 1 y)] , 	 (15.5) 

and the final formulas for the spectral functions are 

gjV(m Z) = 	F(-m 2 ) g[I(M2 ,+m 2 +-M 2 I(M2 ,'+m 2 ) 

00 

+ 	 dW 2  I(-)(MImAWtm2)I a (W
TT 

(M+m)2  
iT 

+ 	 +m 2 ) 

+ M 2 I (W'2, +mZ))] 	(15.6) 

2 	e 	ZfM2 	2 	2 
9 2  (.2,T )(m :) Zr?F(.m ) 	 I (M -m 

	

4 	 2 

OD 

+ 	dW 2 	ImA(W 2, -m 2 )I(W' +m 2 ) 

J(M+m 

- Im BH(W m2)I(W +m 2 ) . 

/ 	 (15.7) 

This is as far as one can carry the caléulation without making approximations. 
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V. Attempted Evaluation of the Two.-Pion Contribution 

16. Several different kinds of approximations may be distinguished. First 

one may take advantage of the dominance of the.(3/2, 3/2) resonance in 

Eqs. (15.6) and (15.7) Ito treat W t -M as small compared with M, this being 

the approach which has had, considerable success in theoretical discussions 

of pion-nucleon satteringlza  and photopion production. 1 
	

Of course for 

making practical use of the polynomial expansions it is also necessary that 

2  = 	2  in 	-q be small- -an unfortunate requirement, since for calculation of the 

electromagnetic form factors an integral over all values of m 2  is involved. 

Nevertheless, it may be of interest to see how the weight functions 

g 2 (rn 2 ) behave for small in 2 ; therefore we tentatively neglect all terms 

of order l/M and assume Iq I sufficiently small that the polynomial 

expansions are well approximated by keeping only S and P waves.. Formula 

(14.3) then becomes 

ImAH(Wt.Z,qZ) k'[u+3 (-) 	( 	 . - 	[ffp H 
- 

	

P3/2 	2k /J 	. , 1/2 	3/2 j 

(16.1) 

Im BH(1Art Z , q Z ) 	 ff'H 	a 	H 	,. 	
. 	 ( 16.2) 

L 1/2 	3/2J 

where ' = W. - M. 	' 

Furthermore, in view of the uncertainties involved it seems legitimate 

to set all partial cross sections for pion-nucleon scattering, except that for 

the (3/2, 3/2) state, equal to zero and to approximate the latter by a delta 
14 

function. From the effective-range approach one may relate integrals 

over the (3/2, 3/2) resonance to the value of the coupling constant g 
2
, viz. 

IT 	
I 	

P3/2 	- 	 2_(M+CA)r)2) 	 (16.3), 

where
r  is the resonance energy (c 	2m) In this way we approximately 

evaluate the integrals over dW 2  in Eqs. (15.6) and (15.7) tq find 

V 	. 2 	ef2 	Zq  j in 2 	.2 :.8 	.2 in 2 	.2 	r 	.l qTr 

	

2 _n:;1z_ - m) 	 .) 

Tr 

(16.4)' 
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g 	(m 2)L 	+ ± ( rhir 	
tan' 	

- .) , 
	(16 5) 

where. 	 / 	 2 
g 

	

f 	
= 	

1T) 	._L 	0.08. 	., 	 .. 	 . 	 .. .. 	 . 	 . 	 ... 	 .. 

In Eqs. (16.4) and (16.5) only terms of lowest order in 1/M have been kept, 

in order to achieve simple formulas and to facilitate comparison with the cut-

offmodel. The first terms in the large brackets are due to the nucleon poles 

and are seen to be substantially larger than the contribution from the (3/2, 3/2) 

resonance.  

The general form of these approximate (no-recoil, low-m 2 ) expressions 

is similar to results obtained by several authors using the cutoff model. 

In that modelone finds for the electromagnetic structure factor the lowest-

order perturbation result plus relatively small corrections proportional to 

integrals over charge-exchange scattering cross sections. For the magnetic 

moment it is the spin-flip cross section that occurs, while for the charge it 

is the non-spin-flip, the same forms obtained here. If our expressions (16.4) 

and (16.5) are cut off at m 2  ''(2M) 2 , numerical results close to those of the 

cut-off model emerge. 16 

Because of the approximations made, the results (16.4) and (16.5) 

have incorrect asymptotic behavior. Instead of vanishing at infinity, 

approaches.a constant.while g2(2 ) (m 2 ) increases as m. As 

explained already, it. is not easy to remedy this defect because the polynomial. 

expressions (14.3) and (14.4) are inappropriate for asymptotic considerations, 

and so long as the behavior at infinity is wrong we cannot calculate the 

electromagnetic structure factors without cutting off. For pion-nucleon 

scatteringiza and photopion production 1 	it was posible, by use of the 

spectral-repre sentation approach to local-field the ory, to reproduce the 

essential results of the cut-off model once the position of the (3/2, 3/2) 

resonance was known. It was not necessary to.introduce a cutoff explicitly. 

We have not been able to do the same here, and we infer that the cut-off 

model is correspondingly less reliable for describing the nucleon electro-

magnetic structure than it is for phenomena involving real pions of low 

energy.., 	 , 
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17. It is intereting to note, hôwver, that inthlw-ni 2  region dir results 

(16.4) and (16.5) are fairly well represented by making th& Born approximatiOn 

to the scattering amplitude, i.e. , keeping only the rational Ierrn in Eq. (14.2) 

which comes from the single -nucleon intermediate state. For example, at 

the empirically determined "average" m (see Eq. (3.7)) the contributin 

to the magnetic moment arising from the integral over the (3/2, 3/2) 

resonance is only 17'%, according to Eq. (16.5). Once we recognize this 

simplifying fact, it is easily possible to evaluate the magnetic-moment 

form factor with no further approximations other than treating the iT meson 

as a point charge. As stated earlier, the result is' precisely e uivalent to 

	

lowest-order perturbation theory. 	 . 

It may seem remarkable that a perturbation result can be anywhere 

near the truth, since it is wellknown that the perturbation calculation of 

pion-nucleon scattering is grossly misleading. The main trouble for 

scattering, however, occurs for the non-charge-exchange amplitude, where 

the S-vave part is overestimated by an order of magnitude. The g 2  

approximation to the charge-exchange amplitude, on the other hand, is 

not too bad at low energies e'ven in the physical region and, inthe nonphysical 

region required here, is relatively more accurate because one is closer to 

the pole at W = M than to the (3/2, 3/2) resonance. In the immediate neigh-

borhood of the pole, of course, the perturbation result is exact. The 

weight functions we obtain now without the neglect of nucleon recoil are 
2 	2 ( 

V 	ef 	 J 21 	-1 
9 1  (Zir) 	. 	

mq 	-_-- (1- . 	tan 	r) 	. 	 ( 17.1) 
m 	fl 	 0 	 0 

	

m [ 2 	-1 	3  
- tan y 	- (1--- tan y) 

4q2  [ 	 Yo 	Yo 	- 

and 

	

2 	M3q2 	 1 V 	ef 	 ii 	- 	3 	. . 
,g 2  (Zir) 	-a 	 tan 	y 0  - - ( 1-..— tan 	y0) 	, 	( 17.2) 

m 	mq 	 Jo 	'0 

	

iT 	 n 

where now 

Zqq 

	

y0= 1 	2 	2 	
. 	 (17.3) 

—m -m 

	

2 	iT 

4-,  
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One is tempted to assume that the weight functions 9 1 2 (m) are everrwhere 

reasonably well represented by this approximation and proceed to an 

evaluation of the structure factors. The anomalous (vector) nucleon magnetic 

moment obtained from Eq. (17.1) is 1.5 e/2M, quite near the experimental 

value 1.84 e/2M, although the close agreement must be fortuitous because 

the mean square radius of the magnel:ic moment, similarly.calculated, is 

only about half the experimental value. Nevertheless we may regard the 

perturbation result as giving a qualitative and perhaps a semiquantitative 

representation of 9 2 (m 2 ). 

Assuming the same to be true for g 1 (m 2 ), one may use Eq. (17.2) 

to estimate the mean square radius of the vector-charge cloud (Eq. (4.2)). 
- 	

i
ZV 	 -2 	 4,6 The result for (r ) 	s 0.24 m 	, which agrees with the measured value 

within the fairly large experimental uncertainties. It should be remarked 

that these results for the vector charge and magnetic-moment structure 

obtained from the local theory, using only the Born approximation to the 

meson-nucleon scattering amplitude, are not very different from those 

given by the cut-off, model in the same approximation (both being in 

reasonable agreement with experiment).. That is to say, the effect of nucleon 

recoil in the Born contribution introduces a natural 'cutoff" in the neigh- 
2 	2 , 

borhoodof m = (2M) . Presumably if a correct mhod for handling the 

scattering corrections could be formulated a, natural cutoff would appear 

there also. 	 . 
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VL Summary and Discission 

18. The reader may at this point feel that the authors have perpetrated a 

fraud, cloaking nothing more than old-fashioned perturbation theory in a 

vast cloud of words and equations. To refute this impression let us review 

what has been accomplished, starting with the problem of the magnetic-

moment structure, which is much clearer than that of the charge. 

We began with the observation that in th framework of the spectral 

representation the observed qualitative properties of the anomalous nucleon 

magnetic moment suggest that it is due principally to the two-pion intermediate 

state. We then attempted a calculation of this contribution and Iad to deal 

with the problem of extending the meson-nucleon scattering amplitude into 

the region of negative squared momentum transfer. However, it was found 

that for small values of m 2  = -q2  the main part of the weight function 

2(21r) (m 2 ) was due to the nucleon pole in the pion-nucleon scattering 

amplitude, which depends only on the renormalized Yukawa coupling constant 

and which canbe extended without difficulty. Thus it seems reasonable to 

ignore the scattering corrections and use only the nucleon pole in order to 

gain a rough idea of the content of the local theory. When this is done one 

finds a magnitude for the static anomalous moment and a TsizeH  which are 

in semiquantitative agreement with the observations. Our conclusion from 

this result is that a correct calculation based on the local theory may very 

well yield complete agreement with experiment. The fact that the practical 

estimate finally carried Out here is equivalent to a piece of lowest-order 

perturbation theory is irrelevant to the validity of this estimate. 

It has of course not been shown that more complicated intermediate 

states fail to contribute appreciably to the magnetic moment. Here we are 

unable even to make an estimate until some understanding has been developed 

of the matrix elements coupling these states on one side to the electromagnetic 

field and on the other side tothe nucleon. We feel, however, that because 

there are no general properties of local-field theory requiring peculiar 

behavior of the magnetic spectral distribution for large masses, it is 

plausible that the higher-mass states make only small contributions. 

The particular high-mass intermediate state that has discredited 

local-field theory in the magnetic moment problem is the NN system, 

whose contribution when evaluated by perturbation theory is of the same 
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order of magnitude as that of the two-pion state and which contains a large 

incorrect isotopic scalar part. The reader may well ask why he should 

disbelieve perturbation theory for the NR state when he is asked to accept 

it for the 21T configuration The situations in these two cases, however, 

are quite different, because in the former the relevant scattering matrix 

element (N + R -"  N + R ) is to be evaluated in the physical region and there 

is no reason to think it is even remotely approximated by the second-order 

Born approximation, This approximation is known to be totally misleading 

even for nucleon-nucleon scattering, and in the nucleon-antinucleon 

problem the influence of annihilation processes on elastic scattering is 

enormous. Furthermore the NR contribution to the magnetic moment 

	

involves the nucleon structure factors G1 	V which we know are 

important but which are ignored in the perturbation calculation. The 

corresponding pion-structiire. factor F, which occurs in the 2w contribution, 
ir 

may be important but there is no evidence to this effect. In fact, the 

observed pion-nucleon scattering suggests that nucleon closed-loop 

contributions are small, 1 7 and if the same is true in our problem here the 

point-pion approximation will be a good one, 

19. The situation with regard to the charge structure of the nucleon is 

not nearly so clear, but we feel that in this case also one should not con-

clude that local-field theory is incapable of ever explaining the known 

facts. We do not claim to foresee the probable mechanism of explanation 

as has been done for the magnetic moment, but we have emphasized a 

fundamental difference between the charge and the magnetic-moment 

spectra,l distributions which opens the door to anomalous behavior for the 

charge structure. In particular the fairly large "charge radius" observed 

for the proton 4  does not imply that the two-pion state is the main contributor. 

It is quite possible that an isotopic scalar part, approximately equal in 

magnitude to the vector part, will be forthcoming from some higher-mass 

state to produce the required small charge radius for the neutron. 

A finalcomment may be in order regarding the proton "radius" 

as determined by considerations of hyperfine structure in hydrogen. 18 
 This 

"radius" can be shown to depend sensitively on the asymptotic behavior of 

the structure factor, and the conclusion that its value is incompatible with 
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the electron-proton scattering radiu follows only if both G 1 (q 2 ) and G 2 (q 2 ) 

behave in a simple way for large q 	Thus, if our conjecture is correct 

that G 2  behaves in a peculiar way at large momentum transfers the s-nall 

value of the hyperfine-structure Hradius lt may very well emerge fr.om the 

local theory. 
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