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ABSTRACT

In analogy to the dispersion-relatior{ method for scattering, the
description of nucleon electromagnetic structure by local-field theory is dis-
cussed in terms of mass-spectral representations for the form factors. The
existence of such representations is made plausible a.lthoﬁgh not proved, and
it is shown that the spectral distribution functions are related to 'scattering
amplitudes on the mass shell but sometimes in a nonphysical region.‘ It is
argued that the main contributor to the magnetvic moment structure in the
spectral distribution must be the two-pion state, and an at‘y'tempt is made fo
evaluate this contribution in terms of the known behavior of pion-nucleon
scattering. A sémiquantitative calculation yields results in reasonable
agreement with experiment. '

It is emphasized that since in a local theory the char.ge -form factor

~will have a complicated behavior for very large momentum transfber; the

large observed charge radius of the proton does not imply the dominance of
the two-pion state in the charge structure. Thus it is not impossible that
higher mass configurations supply the isotopic scalar charge needed to

explain the small neutron-electron interaction.
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I. Introduction

1. Theoretical calculations of the electromagnetic properties of the nucleon
have been carried out for many years wifhin the framework of local-field-
theory, but mainly by perturbation technique'_sl of dubious validity. Recently
the use of dispersion .relations in the problem of pion—nuéleon sc:attel_'ing‘2
and photopion production3 has shown that local-field theory is capable of
some quantitative correlation of physical phenomena even when the perturbation
method fails. It is the purpose of this paper to attempt to -apply the kind of
relations that have successfully correlated experiments involving low-energy
pions to the problem of the nucleon electromagnetic form factors. To the
extent at least that the electromagnetic structure of the nucleon is determined
by virtual pions of sub-Bev frequencies such a program should be enlightening,
even though in the end local theories in the strict sense rﬁay be abandoned.
There are at leasf three reasons for believing that the an(‘)malousz
magnetic-moment structure of the nucleon is dominated by low-frequency
virtual pions: _
(a) The anomalous moment is almost entirely a vector. in isotopic
spin, i.e., the anomalous moments. of neutron and proton are nearly equal

in magnitude, with opposite signs. This situation prevails not only for the

s . o . .
Now at Department of Physics, Stanford University, Stanford, California
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stat1c moments but up to frequencies at wh1ch the moments have fallen to
about 1/3 of their static va_lues.% It will be explamed below that the 1r+, le-
pair, the virtual configur.ation of lowest energy contributing to the nucleon
electromagnetic structure, 'is a V-ector in :is-o_topi_c,spin space. Itis of course
possible for a combination of virtual effects other than pion ;;airs to produce
an almost purely vector moment, but such a circumstance must be regarded
as unlikely. ‘

(b) The sign and the approximate 'mégnitude of the anomalous moments
are correctly given by the cut-off mbdel of the Yukawa theory. > This model
nis normalized to the same low-frequency limits as the local theory, but
neglects nucleon recoil (as well as antinucleons and strange part1c1es) and
excludes virtual pions of energy. hlgher than about 1 Bev. » '

(c) The measured mean square radius of the magnetic -moment
distribution4 corresponds to the wavelengtﬁ of a pion of about 1/3 Bev.

In éontrast to the anomalous magnetic moment, it is experimentally

clear that the charge structure of the nucleon is not dominated by low-energy

virtual pions. The decisive fact here is the extremely small second radial
moment of theAneutronA charge distribution as compared with that for the
proton, which is at least ten times as large. 6 ‘Thus the charge density is
certainly not an isotopic vector. One of the purposes of this paper is to
emphasize that within the framework of a local theory one should not be too
surprised at such a difference between the charge and magnetic-moment
distributions. _ |

2. . Before going into the details it is perhaps advisable to outline the _
approach to be used. It is well known that the linear interaction of nucledns
with the electromagnetic field can be expressed in terms of four real scalar
functions of qZ,, the square of the energy-momentum-transfer four-vector.
We shall label these functions Gls(qz) le(qz), st(qz), : V(qz), where the
index ,1' .goes with the part of the interaction proportional to YHAH (the
'"charge'') and the index 2 goes with the part of the interaction proportional

to opv Ap q, (the "magnetic rrlome'nt").6 The superscripts S and V refer

to the isotopic character of the interaction, scalar or vector, the normalization

‘being specified by the relat1ons
(0) +a, () =

1
(¢}

1l
o

>0) - G, V(o) (2.1)

@



-5 - ' UCRL-3929

'S Y .
G,7(0) +G, '(0) =

S VA
G, (0) -G, (0)

where e is the proton charge and Kp and p‘vN the proton and neutron static
anomalous magnetic moments, respectively. The conventional form factors
are given by the ratio of the appropriate G(qz) to the value at,q2 = 0. Thus

in our notation the proton form factors are

S, 2 -~ Vv, 2

S Vv,
Gl,Z(O) + Gl,Z(O)

. P, 2
Fl_,Z (q7) =

~ Our approach is to be based on mass spectral rép'resentations of the

type

o joo ,gS (_'mZ
.S, 2, e q o2 1 , :
G2q°)= € - L | am® , (2.3)
PR 2T Bm )2 mi(mitqd)
2 @ g (%) |
G a9 =% - % d“gz (28
| . (2m )% m%(m +q%) ‘
i g,5(m?)
6% - b ) ami B B G E
_ (3m_) m +q : :
R
c,"wh= 3L | amf (2.6)
(2m_)~ m+q

which have been sugg.ested by a number of'authbrs. ! The four real weight
functions gl"s’zv (mZ-) may be ndnzerq for m -equal to the mass of any
system strongly coupled to the nucleon which at the same time can be
created by the electromagnetic field. The lightest s':u'c"h'isotopic vector

system is the x, n° pair, while the three-pion 1r+, T, 0 'system is the
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lightest isotopic scalar; hence the t»hl_'esheldsb_,e.t' (?mw); and (3mﬂ)2., It will
be shown in Section III that, in general, systems of even numbers of pions
contribute only to the isotopic vector charge and magnetic moment while
odd numbers of pions give purel.y isotop’i‘c scalar contributions. Of a mass
comparable to six.pions-is the K+, K~ pair, and eventuallyzof course one -
comes to the baryon pairs, ‘s‘tarf-i’ng with the nucleon-antinucleon system.
From a practical standpoint '-one_ must hope that in the mass spectra the
contributions from the simplest systems are the most important.:

v The derivation of the representations (2.3) - (2.6) to be given in
-Section II presupposes that G (Z)/Z and G (Z) approach zero for large Z.
. Actually, it may be inferred from the work of Lehmann, Symanzik, and
Zimmermé\nn8 that Gl(Z) epproaches zero also. In that case one fnay

write a relation of the form

g : 1 -
G, (q7) = T dm® —s—, (2.7)
= A m +qg

2

with the restriction on g, implied by Eq. (2.1). The convergence,

however, is achieved only because of eletromagnetic damping, which sets
in for extremely large q2 >3 M2 137, while it may be seen from perturbation
theory that the functions G1 are 11ke1y to behave logar1thm1cally for large

q2 in the range MZ 137 >>q2 >>M To avoid the large contribution from
this unexploresl region we prefer to use Eqs. (2.3) and (2.4). The anomalous
_ magnetic-inoment distribution, on the other hand, for reasons which are
essehtially dimensional, is definitely expected to vanish for q2 > M2 with

or without electromagnetic damping. Thus. for practical purposes we are
confronted by a fundamental difference between the charge and magnetic
moment d1str1but1ons

3. Often it seems appropriate to diseuse the nucieon electromagnetic

structure in configuration-space 1anguage, and to that end one conventionally

introduces three-dimensional Fourier transforms of the functions G?’X :
S,V.‘ 1 i Dol i_";’ S‘;’Vv 2, .

p> (r) = — 5 [dp PTG 7 ), (3.1)

MS V= Lo, Jag TS Viph. (3.2)
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Although the conf1gurat1on space functions p and M have no prec1se
physical mean1ng ‘they correspond roughly to charge and anomalous magnetlc—

moment densities respect1vely Subst1tut1ng Eqs. (2.5) and (2.6) 1nto (3.-2),

- we Have

SV .1 | 2 sv_2 ™
me )= -, [dm g, (m%) T—— , (3-3)
’ 2T ' - _

Wh1ch shows that in the spectral decomp081t1on of the magnet1c moment the '

contr1but10n of a part1cular mass value rn has a '"range'" ~1/m. Thus the

’llghtest masses that contr1bute to gz(m ) g1ve rise to the longest-range

structure. ‘ ) ‘
A quantity often used to characterize the size of the nucleon is the

. . 6 .
"mean square radius of the anomalous magnetic moment, ' that is

(suppressing the superscripts S and V),.

:,fd;‘ rZﬂ](r:) ‘/Jd?)’f\(r), o (3.4)

Wh1ch is ea51ly shown to be related to the logarithmic der1vat1ve of

Gz(q atq =0; N : ‘ : ‘ L
i - [ dG (q )) . . . :
2. 1 2 . o v
= (3.5)

5(0) ( a®=0 -

— . g(m) g(m) :
rfn = [dm2 2 /[dm ' 2 (3.6) .

Thus the mean square rad1us is related to some average mass in the weight

"‘o\l""

or

functlon gz/m )

1 2 -2
& Tm - s ‘ v _ {(3.7)

a notion which is useful if the spectral distribution is predominantly of one
sign. Actual calculation, as will be seen in Secltion V, shows no tendency -
for g, to osc1lla.te, although it has not been proved that a change of sign is .
1mposs1ble Tak1ng the measured root-mean-square radius of the anomalous
(vector) nucleon magnet1c moment4 one f1nds a correspondmg average mass

of 5mn_, wh1ch, if d1v1ded between two part1c1es, Would g1ve each an average
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total energy of 2.5 m_. This low average energy suggests, as ment1oned
above, that v1rtual K part1cles and baryons play only a small role in the
determination of the anomalous magnet1c moment o '

i.v Because of the compllcated behavior of G (q ): at 1nf1n1ty, one cannot
find a useful connect1on between the second rad1al moment of the charge
distribution and an average v1rtual ‘mass. Going through the same
man1pulat1ons as above but us1ng Eqgs. (2.3) and (2.4) rather than (2.5) and

(2. 6), one finds for the mean square€ radius of the (scalar or vector) charge

the formulas

. , . 5 2
1 2.8 2 =X gy (m7) 5 ‘
L L e (4.1)
" ™
1 zZ.wv_2 & .glv(r‘nz»)A 2 o
6‘ (rp) = Fe 5 "T-— dm (4.2)
(2m_) s

Often the‘Asta’te'm'ent is made that because the lowest-mass intermediate
state, the 1r+, T pair, contributes to the vector charge but not to the scal'a'r
the latter should have a much smaller mean. square radius than the former.
Such reasoning, however, is tacitly based on the assumption that a formula
of the type of (3.7) holds for the charge radius as well as for that of the
magnetic moment Formulas (4. ll) and (4. 2) in themselves imply nothing
about e1ther the relatlve or the absolute magmtudes of the second radial
moments of the scalar and vector charge distributions.

If one w1shes to use the representation (2 7) it still cannot be
concluded that the second moment of the scalar charge is small unless the

v spectral funct1on'g1S is of one sign. In that case, however, the normalization

condition , :
Lo, e VD
Ff "dm? —— =e/2, (4.3)
.+ m
which follows from Eq. (2.1), requires "gls’ V' to be small,
'gl's’ V/e ~ —[13—7 , because as discussed at the end of Sec. I, 2 the region of

integration is so extensive.. Since the strong pion-nucleon interaction

implies fairly large values of 1S’ v for moderate values of its argument,

14
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we conclude that the glvs”V must actually oscillate in 'sigﬁ in order to satisfy
q. (4.3). Thus no useful purpose is achieved by using Eq (2 7) instead
of the more conservative Egs. (2.3) and (2.4). ' '

" The exper1menta1 fact that the scalar and vector second rad1a1
moments of the charge are almost equal of course means that configurations
more complicated than the Trf,"" T pair are important. Why this should not
also be true for the magnetic moment we must say at once we do not’ under—'
stand. It is, however, fbftuﬁate that at ieast part of the prébiem of the
nucleon ele cti‘omagrietic: structure may be tractable.

5. In our present state of knowledge an attempt at a specific evaluation of
the weight functions g1, ZS, V(mz) must be confined to the two-pion contribution,
and even here we have not succeeded in formulating a reliable method of
calculation. We shall show that the two-pion part of the weight function is
proportional to the charge-exchange pion-nucleon scattering amplitude, but

at a negative value for the square of the momentum transfer. An extension

of the physic-al scattering amplitude is thus required, which we attemptAto
carry out by means of dispersion relations combined with L.egendre poly-
nomials. If integrals are -catoff and an expansion is made in inverse powers

of the nucleon mass the results of the static model5 can be reproduced.

. Without a cutoff we are unable to make a definitive calculation, but arguments

will be given to support the belie'f thé.t the local the'oAry, properly evaluated,
will be in agreement with the observatlons

In Section II we discuss and to some extent Justlfy the representations
(2.2) to (2.6). Section III deals W1th general properties of the various
S, V(m ), and.
in Sections IV and V we concentrate on the two-pion intermediate state. In

Section VI our findings are summarized.
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II. The Mass-Spectral Rvepres_enta-'tions-'
9

6 Recently Bogoliubov, Medvedev, and Polivanov and ovthers10 derivea
dispersion relations for meson-nucleon scattering from the causal nature _

of a local-field theory. In this section we shall show that the e1ectromagnet1c
structure factor ;s_atisfies requirements that are a{nalogous_ to’ the..prlopert_le S
of the meson-nucleon scattering amplvitvu._de, We therefore infef that it has |

a spectral.representation similar to the dispe.rsion relations'fof.the A
| scattering amplitude. Our discussion closely follows that in Ref. 9.

We shall write the form factor for the emission of a v1rtua1 four- .

vector quantum w1th momentum q (0< ¢ ),

@ E e wes) (60
where the riucleon makes a tran51t10n from the state W1th momentum p,: spin
and isotopic spin s, to the state p', s'; u and u are the usual normalized -
spinors. " The index s- will'-be suppressed where no loss of clarity results.
If the field operator A (x) for the virtual electromagnetic field is introduced
in addition to the nucleon operators J(x) and Y(x), we can consider the
fun'c-t10n in Eq. (6.1)-as an S-matrix element to which the reduction:formulas

can be apphed

Ap's ) f‘_};(p', a;p) u(p, s) = (p's', g _IS | ps)

1 [44 44, -iax Py g + 1 ova

=L [atkatye qu PV (p1s! | TG, () Ng(y0u, s).
(2)
_ o (6.2)

plus a possible local contribution to the integrand when x = V.
Here the currents are .

, . 0S + A i 0s +

i = st, N s". 6.3

LG =1 6R ) O 7 5T () S

In the final step of Eq. (6.2), the causality conditions have been used in

the form
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03, () )2 o) - -y) 20,
T =0, x>y, or (x-y)>0; 2w = 0. xg< ygor (x-y)>0.
| : C(6.4)
We may now define the causal function S(C) and a set of related covariant
functions, | ot -
| . o -ifs—(xty) | |
(p'1T(j, (x), Mg(y)10)'= -ie z Sup ey o (e
- 0j (x) -i 5 pl'(xty) : » : :
g’ " _ (adv) | .. S
Ol sgm 197 Swp YD 3 - 50
0N,{y) -5 plixty) .
. B _ 2 (ret) :
o e 10 < 50 el 629
) :
_ -i 5 pli{xty) Y - L
('l ju0 M0 =-ie =70 S.up. )<x-.Y»>; o s
o i 70 0ey) (+)
(p'1 Ngly) j,610) = sie © S.p ¥ - (6.5¢)

The translation invariance of the field equations assures that the functions

S(l) defined in this way are functions only of the diffe‘rence' x-y. Two use-

ful relations among these functions are

(€) ) _ o« f(adv) (), _ o (ret), . (+) ‘
Suﬁ (%) = Sup -(_X) +S,4 (%) = S, (x) - 8,4 (x) (6.6a)
and »
(ret), o (adv),_, _ o (4 (-) | | -
S.p (x) = S.6 (x) = S, (<) + 8,4 (x). | (A6.6b)

In terms of the F‘ou‘rier transform G(i)(k),
sy = (;_“)4'-. /eik’?cqi)'(k) atk, cWx) =fe‘ikx s x) atx, (6.7)
the form-factor Eq. (6.2) is written

W(p', 8 F (5, qip)u(B, §) = 2nid(pta-p')G,q") (3 p'+a) ulp, s). (6.8)

A e oy
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The 'quéntity of physical interest is this form factor considered as a function
of poéitiye qz'.whenv, EOE - o ST | v
p =p =-M, o : (6.9)

where M is the nucleon mass.,

Because of momentum covnservat"ion {or translation invariance) at - -
‘least one momentum in-addition to 4 must be varied, The representation |
Eq. (6.2) we have constructed is most convenient when p' is held fixed,
‘b,ecr.—_"quse then the dependence on mor_nen_tum fr'é.nsfer is contained en‘firely
in the exponential factor | o ' .

1., '
"Z ip'(x+y)

L . o1
-igx  ipy -i{qt> p'Mx-y) - (6.10)
T s R 0.

e e = e

which has been used to obtain Eq. (6.8). We shall therefor.e use the rest

system of the final nucleon with the following notation:

e’
1

L = (0. M), - : . (6.112)

(Ne, + w), o 1 (6.11b)

e
1

o ‘p'# = (-Ae, E = M +ow). (6.11c)

The condition that P, be a nucleon momentum 1ea-ves‘_ w the only variable

(beside the trivial possibility of rotating e), because \ is determined by

Eqgs. (6.9) and (6.11c) to be
A =M+ w)? - M2]H/2 | (6.12)

7. In order to establish a dispe'rsi‘on relation we should nowvlike'to apply' x

(c) ' ’

(

w. The Fourier integral Eq. (6.7),

1 | - |
- >ip'x -i(} e x -wx,)
G Vzpra) = fe z e o S, tatx,  (70)

unfortunately exists only on part of the real axis,

Cauchy's theorem to GHB %— p'+q) considered as a function of complex

Imw=0, Rew>0 or Rew< -2M, o (7.2)
where '

IIm e > | Im \ . - 3y
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It is necessary to‘detér"mi‘ne, therefore, whether there is‘an analytic’
function which is equal to the mtegral in Eq. {7.1) where that exists, and to
locate its singularities if it can be found. In perturbation theory S( c) (x) and
G(C) (k) - can be exhibited explicitly as polynomials in the momentum

components times simple functions of the invariant squares of the momenta,

so that the analytic continuation can be carried out by inspection.

We shall proceed by establishing a dispersion relation for nonphysical
values of pz, ‘

so that Eq. (6.12) becomes
=M + w? - 7]1/2-, L | (7.5)

We then conject'ui'e that the analytic continuations of the G(i) as a function
of T can be extended to _ o
| r < M%, | | (7.6)
for which they have the requ1red values g1ven by Eq. (7.1) and.its obvious
mod1f1cat1ons ‘

The functions G(i) are the easiest to discuss. By introducing into
Egs. (6.5d) and (6.5e) a complete set of states labeled by the quéntum
number n, w1th the rest-energy M , and the enefgy-momentum vector . .

k (k = —M )we obtain

. ) 1 .
2 ix( 5 p'-k)

s My = LN ;/d‘lk.?,ko 8(k,) 5(1<2+MITL ) e

X <p" lﬁﬁw)l n,k><n,k| ju(b) |o>v  (7.7a)

and

.1 '
> 71x(-2- p'-k)

iy = L nz a*k 2k, 0(k,) B(k"+M,°) e

w

X <p°' | 3,.(0) | nk><nk_lﬁp(0)v ] 0). . (7.7b)
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In view of Eq. (7.4), qz and the momentum X\ are now given by .

2 2

o2 = MZ +2Mw.- . )\= [(M-{- w) ; 7]1/2 : B B (7.8)

vs./h'ence follovc}s :
JIm e | > | Im M| J (79)

~ for all values of w, real and complex. The Fourier transforms at the Value

| %P‘+q can therefore be obtained as

G . ;_— p'tq)z G

(+) o, 2.2
p‘ﬁ (w, T) = 2mi ;Zwe(-w) o(q +Mn+)

mp

x (p' lﬁﬁ’w)] nt, qy(nt, q 3, (0] 0y  (7.10)
and , o ' 4 L
GHB(-)(é—qu) = ,Guﬁ(') (@, T2 }r; 2E0(E) s(p2+M_ %)
X (|3, (0] np>< - p| Ng(0)] 07, . (@

where we have introduced notation to indicate the functional dependence on
w, T and to distinguish the sets of states n + that contribute to G(i)-
respectively.

Since j (0) is a vector operator, its matrix element
<n+ ql ] (O)I 0\ vanishes unless the state n+ contains at least two pseudo-
scalar mesons; hence the lowest-energy 1ntermed1ate state has M at Zrn_n_

and the function G( )(w,'r) vanishes over a large part of the real axis,

(+)

—M +T —4m-’r'r‘2

L (7.12)

GlJ-ﬁ

(w, 7):= 0, - q‘2 > —4mﬁ2 or w> wo(’r) =

In particilar, G(+) vanishes in the ''physical' region w> 0 where the
qﬁantum'is really emitted (E > M). Similarly, the matrix element
<n—, pl (—]B(O) l 0 > vanishes unless the state n- contains at least one
nucleon and a meson, M > M + mw) so that we have

GHB(')(w, =0, p>-(M tmy)? or T< (M +mp) (7.13)
Since the inequality is alwa;)rs satisfied in the region (7.6) in which we are

interested, the function G( will not be considered further.
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From Eq. (6.6) we may now infer the corresponding relations among

i

the Fourier transforms,

Gyp' r 1 = G ") =6, B0 wreg 0
and |

- ‘ : & (

Gup " e - qm(adv)(w,v)‘; G w<agm. (115

8. To construct the ana.lytic gbntinuation of the retarded and advanced _
functions we must exploit their space-time b.ehavior, Eq. (6.4). To avoid .
the branch points at A = 0 in the 1ntegral representat1ons Eq. (7.1), we |
shall treat the forms symmetr1zed and antlsymmetrlzed in the sense of the
vector €, ‘

- 5>1pX 10.)X0 -3 .
(e.’ O)G“B(ret)(w’ 'T) :[e 2 e - (COS A g._ﬁ’ )\L sin A\ E. i{,)

(8.1)
« SM.p(ret)((x) d4x,

(ret)

which are even functions of \. Because S {x) restricts the integration ,‘to
the future light cone, these functions are analytic in the region
| Im w > | Im \ | - | (8.2a)
. . , S ‘
Im »>0 ' S (8.2b)

in view of Eq. (7.9). The functions

. 1 . ¢ N ) ’ :
' -5 ip'x  iwx s
(e’ O)Gp‘ﬁ(adv) (Q), T) => ]e 2 . e A 0 (COS )\ S‘. ﬁ’ _1_ .sin )\. E- i)

A
8.3
X Sp‘p(adv)(x)d % (8:3)
are analyt1c in the region = : S .
Imo < - IIm Y |  (8.4a)
or » | - |
Im w< 0 ‘ ' . (8.4b)

because t_hé integration extends only over the past light cone.
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Furthermore, Eq. (7.14) states that on part of the.real axis .

w>wy (1) . .q8.5)
the causal advanced and retarded functions are equal; they are, therefore, -
the same analytic function (e,0) & G p(oo 'T) , regular in the ent1re complex
. plane with a branch point at _ _

w = wy (7) ' " (86).
and a cut from there to 1nf1n1ty, we shall take the cut along the negat1ve real
axis.. A retarded function is obtained by approaching the cut from the upper
half plane and an advanced or causal function by approachmg from the lower
half plane ' ' ' ' S ' ‘ '

'Since the d1scont1nu1ty in G on the cut is known from Eq (7.15), we
» canapply_the Cauchy theorem to the function (e )G (w)/w if this function
approaches zero for large values of w. In accordance with the discussion
in Section I, 2, we assume that th1s is the case, ‘and that (e )Gf( ). may not
approach zero. The resultmg d1spers1on relation or spectral representatmn

is

Gpﬁ(m’ T) = - o (o7 0) do' +° GHF—” (0, 1),

. T®© C -
| | Cw>0. (8.7)
It follows from covariance arguments that the function |

(e )G approaches zero for large values of w if (e)G(w)/w does. The

spectral representat1on for that function is therefore

: () (o) (+) ,
'(0)~ Yooy =0 1 “o G mp (o, T) EPR b o
G (W, T) = dw', w>0. +(8.8)
»B - am . w-w ' | .
9. We shall now assume that Eqs. (8.7) and (8.8) hold for ' »
7 =M% (9.1)

The possibility of such an analytic continuation has been proved rigorously 10

only for the case in which the meson and nucleon masses satisfy the inequality
o m_> (J2-1) M o

We believe that this restriction is a result of the method used for the proof

and that it will be Temoved when further progress is made in the study of this

problem.
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- We may therefore write the épectral representations for the éven
and odd form factors (e, O)F, which differ from the functions (e, O)E} only
by the constant final nucleﬁn spinor. It is still more useful first to
decompose the form factor into the four real scalar functions described in

the introduction,

F 0% aip) = iy, [6, %% + 56, VP
¥ Guvq,‘v[GZ(,S)_(qZ) * 73G2(V)(q?)] T (9-2)
and to do the same for G(+) R

Gug_) (0, M%) = -2i u_(p',s) {iyu g, P -a®)+ 7, g'1(fiv)'(_".q2)]

+0,, 4 [gz(s)(-q?‘) + 75 gz(v)(-qz)] }ooo9.3)

pv v
e s v . (s,v) . - .
It is clear that each of the functions g, 2 is related to the analytic
continuation of the corresponding : G1 Z(S; V) in the same way as

(s, V)

G'(+) is related to G(C), Then the g1 > are real functions as a

consequence of the Riemann-Schwarz ''principle of reflection. "

Each of the two functions G'ls’ v

has a spectral representation of
the form Eq. (8.7), in which we may set (Eq. (7.8)) |
2 2
w_z-Zng/I’ w’=-;—r_]M— ' : 0 (9.4)
to obtain Eqs. (2.3) and (2.4). The functions q.,GZS’ v satisfy a
representation of the form (8.8), while qOGZS’ satisfy one of the
form (8.9) with [qOGZS’ V]q =0

leads to Eq. (2.5) and (2.6) after the change of variables in - Eq. (9.4).

= 0; both give the same result, which
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III. General Properties of Intermediate -State Contributions

10. Having obtained the spectral represeritatio}n for the form factors, we
- now focus our attention on the_four.weight functions ' .

S,V 2 . B r - L
gy 5 (m). oy

As already observed, these functions contain a sum of terms corresponding”

to the possible intermediate states in Formula (7.10); thus for each g,.

g =,g(2") + g(ﬁrr), + . - + g(ZK) +. . F g(nﬁ) + (10.2)
Each of these partial weight functions g, vanishes for value of m'2 less than
(m ) , where m, is the sum of the rest masses of the particles inthe state
i. As argued in the introduction, a particular g; therefore contributes to
the nucleon structure only within radii of the order of the Compton wave -
length associated with the mass m.. Thus it is appropriate to concentrate
on the functions g; correspondlng to the low-mass 1ntermed1ate states, in
order to discuss the outer regions of the nucleon in conf1gura.t1on space.

The lightest stateé are those containing only pioné. . Our first

observation:aboﬁt these is

.S

g(n}f) =0 if n is even (10.3)

and
v
&(nm)

This fact may be demonstrated by observing that the photon couples through

=0 if n is odd. ©(10.4)

an interaction that is odd under charge conjugation, so that the intermediate

state must be odd under charge conjugation. Since under this operation’

mesons of Types 1 and 3 (coupléd to nucleons with Ty and 7‘3) are unchanged,

while mesons of Type 2 (coupled with.:rz-) change sign, we conclude that the

number of Type 2 must be odd. To make the total charge zero, then, the

number of Type 1 must also be odd. Thus, in the absorption of the charged

mesons by the nucleon, one extra 7,7, appears which boils down to the
appearance of-onefr3. The entire process is then proportional to T, OT 1
according as the number of neutral mesons is even or odd, i.e., according

as the total number of mesoné is even or odd.

&
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We thus h;al\'/.e'w ’ o
: A S "‘*"‘S'+

& T 8am TEem T TEak) ot 8mp :
& 82m T Bam T TEak) T TEam)Ve L. (10.5)

" If the charge cdntributi'o'n from the three-pion intermediate state =
were of the same magnitude as that of the two-pion state, one might have
an explanation for the difference in second radial moments between the
proton and neutron charge distributions. There is no visible reason, of
course, why the three-pion c.ofxfiguration should contribute substantially
to the charge density and not at the same time to the magnetic moment.
However, this same statement can be made in our current state of knowledge
about any possible source of isotopic scalar charge, so that the three-pion
state must be regafded as a bossible céﬁdidate to supply the needed scalar
charge. At the present time we know of no sensible way to estimate even
the sign of the three-pion contribution. On one side a closed nucleon loop
is required to couple this system to the electromagnetic field and on the
other side a nonphysical matrix element for the p'i'ocess N
3m >N+ N (or m+ N - 27+ N) is involved. |

Concerning the heavier (nonpionic) intermediate states evén less
can be said. One point of interest,' however, is the observation that the

S, V(mz') from the nucleon-anti-

contribution to tl}"le"' weight functions 81,2
nucleon state is given by the product of nucleon electromagnetic structure
factors themselves, evaluated at q2 = -mz, and nucleon-antinucleon elastic
scattering ampiitudes in the physical region. There seems no reason to

think that this (NN) contribution should be even remotely ‘approxirﬁated by
setting gZS’ V(-mz) = 0, "gis’-v(, -mz)é;l/z,'“e:.ahd using the Born approximation for
nucleon-antinucleon scattering, the procedure equivalent to the standard

perturbation calculations.” This point is discussed further in Section VI.
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IV. Formulation of the Two-Pion Contr1but1on

11. The contribution. to the nucleon electromagnetlc structure from ‘the
two-meson 1ntermed1ate state will be calculated in the next ‘two sect1ons
The reasons for concentratmg on this part of the process are: (1) it is the
only part for which at present anythmg like a calculation is feas1b1e, 2y
there is reason to hope, .as explained in tvhellntr,oductron-; that the two-meson
contribution dominates the magnetic moment. |

- For an intermediate state consisting of mesons. of four-momenta
q; and .qz_with.isotopic spin indices j and k, we have for the spectral-

distribution function, Eq. (7.10),

Tt zT JLk (217)3 Jd qld qz 5(q1+q2 * Q) <P |ﬂ(0)| aq] q2k> u(p)

X ><q~13', q'zk\ jp(Oil 0 ) .. o | (11.1)

The second factor of the integrand, i.e., the matrix elem_eht describing the
- disappearance of the photon with the creation of a pion pair, may on the -

basis of invariance considerations be written

-ie

4

<q13qzk\ jrx(O)\ 0 = —" Ay qZ)p(é_]l k2 = 9 5k1)
o .. hog @y |

X F [(q1+q2) SE - (11.2)
Here F [(q1 + qZ) ] is. a form factor associated with the one-photon, two-
. meson vertex, normalized to unity for zéro argument. This function for
positive argument describes the electromagnetic structure of the pion in the
same sense as the functionslGl’ ZS’._-VI describe the nucleon, and in principle
could be measured directly by electron-pion elastic scattering. In
practice we shall be forced to set Fn_ equal to unity ('point pion" |
approximation) since there is at present no understanding, either experimental
or theoretical, of the pion structure. However, this approx1mat1on may be
postponed until the very end of the calculation, since F_(-m ) appears simply

as a multiplicative factor in the weight functions gz_n(m )..
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The other factor in the integrand of Eg. (vll'.l) is related to-the .
mes.on_-‘nucleon scattering amplitude. . Explicitly, if the amplitude for
scattering a meson in the state q by a nuclebn in the state p,. leading to
a meson q' and a nucleon p', is denoted by _<.p',q' ‘ T‘ P, q> , .then we
have A . C
<p' )ﬁ(o)_lqrj'~, q2k>u_(p)"=‘ <pfl-qzk| le bi._,qu> : oo (11.3)
Of course, Wrifing -9, fory the final pion énergyomo’fheritum implies an
extension of the scatter1ng amphtude to a nonphys1ca1 region. This ex-

tension will occupy Section III, 14,

Using the notation introduced by Chew, Goldberger, Low, and

Nat‘nbu,lz'a :
(P's-ak|T| p, q11> J‘I_ (u(p) KAH)(W ,a%)
wy W
+1\(Q B (w? )>6 +( A w 2,q)+1yQB( )(W qz))l k,'r]J )

_ (11.4)
: 1 - 1 . 2 2
where -q = (q1 + qZ)’ Q= > (qlf qz’), P = > {(p+p'), and W== (P +Q)",
we may carry out the isotopic-spin sum in Eq. (11.1) to obtain

27 e .4 4 L. 5 2. 5 2 2.
12T 1, ) -, 73/01 a; d%a, 8(d,+a,*+q) Blaf + m_2)8(q,” + m_°)

X zlag-ay), [A“(WZ,q"")ei,y)\oxB"”(wZ,q?‘)JF"(qZ). | (11.5)

The three-dimensional integrals over q and qz have been increased to four
dimensions by adding the mass-shell delta functions. It can be seen that

only positive frequencies contribute.
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12 It should be noted that in Eq. -(ll.S)AOnly the charge-exchange

vs‘cat.tering amplitudes occur: and that-the contribution, as expected, -is."only.

to the isotopic vectbr":p.art of the nucleon electrotmagnetic structure.
Introducing q and: Q in place of ql' and q, and then performing the integration

over d q, \‘ave obtain , _ |
> 2 1 202
I (2“)(p p) = 4—3—27’3 d06<( q+Q) m, >6<(2-q—Q) +mw>

X Q [‘ hw?, 4% -wxo,\_B‘ W, q )]F,,(q )

_ S L : (12.1)
T'he next task is to relate Formula (12.1) to the scalar weight functions

€1, 2(2m) Vim?%). Clearly we are to make the identification m? = -q%, and by

standard invariance arguments we' find.

gl(z“-) (m.“) = Ivbio.(rm ) + B’»l(m )+M ‘B‘.:lz(vmz)] f;-z Fﬁ(-mz)v, . (12.2)
gz(z%)v(mz) = ‘lz“(mz)v - %‘Mﬁ:z(m"z)] 4%2 F_(-m%), (12.3)
_Wherej‘

a(-q%) = -fd‘%Q 8(@%+4 o° +m_ %) 8(2q,0,) (B0 m%) Al wE, o%), (2.4)

sl(-q2>x=fd‘*oo<oz+§ a*+ m %) 5(2q,0,) [{&a?-(m@ /ZPZ:,B'(—)(WZ, a%)

| , | (12.5)
B,(-ad = [a *asa +éq2+m ’) 8(240) [(P a®-3(pa)?)/2(p )]B“’(wz,qz)-
| ,‘ | (12.6)
If we recall :
| P® = -M% - ¢%/4 (12.7)

it is clear that these integrals indeed depend only on the singl,e scalar qz.
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13. In order to exp101t these results the pion- -nucleon scattermg amphtude

is needed in a ‘nonphysical region, in partlcular in a region where the

'Square ‘of the momentum transfer q‘2 is negat1ve The var1ab1e W -(P+Q)

also takes on nonphysmal values, but the d1spers1on relatlons permit us to
extend the scattering amphtude to values of W2 anywhere in the complex

plane. It is the technique of extension to negative q2 that is our particular

bproblem here.

Actually, forvqZ less than -4M2, the matrix element we are concerned
with can be identified with the physical amplitude for the process

m+w >N+ N. Inthe future this identification may turn out to be useful,

- but at the momeént the only good theoretlcal approach we have to pion- -nucleon

matrix elements derives from the promlnence of the(3/2 3/2) state
scattering resonance. Any calculation attempted now has to be based on-

pion-nucleon scattering rather than on pionnpion production of a nucleon

- pair. This conclusion is reinforced by the empirical fact, emphasized in

the introdﬁction that the "average' value of m2 in the magnetic-moment
weight function g5 (m ) is less than M so that we may hope not to have

to be concerned with values of (-q ) m2 that are greater than 4M I
the _h1gh-_v1rtual-mass region turns out to be crucial in und\ersztand1ng the
nucleon magnetic moment, our motivation for concentrating. on the two-pion
contribution w111 be lost.

So Iong as one works w1th Feynman d1agrams, i, €., with a perturbation
evaluation of the pion-nucleon matrix element, there is no ‘problem about
continuing tornegat—ive values of qz; the functional dependence is explicit.

The whole point of the approach adopted here, however, is to avoid the
pertnrbation method; and the most obvious alternati\)e is the method already
used with some success in the d_isper;s_ion relations for nonforward scattering;
where nonphysical values of q2 also occur--that is, an extension by means

of Legendre polynomlals o '

It 1s clear that a polynomial expansion cannot be valid for indefinitely
hlgh values of Iq |.  In fact, as p01nted out by Symanzik, the possibility of
meson-meson scattemng implies that strictly speak1ng the expansion will not
converge for Iq > 4m 2, a condition which excludes our entire range of

integration. However, there is reason to th1nk that meson-meson scattering
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is weak and that for practical purposes the Legendre expans1on may be
used for lq l <4 M2 We shall make this optlmlstlc assumpt1on here,
thereby allowmg a crude calculatmn of g2 (m ) in the low- mass region. »

' 14, Let us start with the conventional scattering d1spers1on relat1ons in

the form used by Chew, Goldberger, Low, and Nambu l?a
- 2, 1. (% 2 2 1 o |
A(_)(W ., q ) = T_r'/ dwl Im A(-)(W ", q ){ - 72\‘ _ - ) 2}’
| (M+m_)* WITHPHY - WHTHP-Q)T)
' ' (14.1)
)2 2 2 1 1
B( )(W »q )zgr[' > —> + 7 )
M~ +HP+Q) M +(P-Q) |
- (14.2)

o

(M+m )7 B

where- g, 2 is the rationalized and renOrmalized Yukawa coupling constant.

As emphasized by these authors, the forms (14.1) and (14.2) correspond to
the most optimistic assumptmn possible about the behavior of the amplitudes
as W2 approaches infinity.. There is, however, some experimental evidence
‘to’support the optimistic assumption for chai'geeexchange scattering, the
case with which we are dealing here. 13 We note for future reference that
the Born approximation; i.e., néglect of A( -) and of the integral contribution
to B( ) in the calculation of the welght functions Eqs. (12.2) to (12.6), is
equivalent to including in the nucleon form féCtOr only the lowest-order
perturbation-theory contributioo to the meson current effects.

The only place iﬁ Eqgs. (14.1) and (14.2) where the dependence on .
q2 is not explicit is in the imaginary parts of A( ) and B( )y in the dlsper51on
integrals. It is here that the polynomial expansion is needed. According

to.Chew et-al., 12a these imaginary parts may be expressed in terms of-

(-)

 partial-wave  ''total'' charge-exchange cross sections g g+ for states’

with parity (-l)'e +1 and total angular momentum £ * 1/2,
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: ' (14.3)
| > (-)g () o
W-M;-1 i - -
EM— o Pyt ["zu, ot }

Here E is the nucleon energy and k the relative pion=nucleon momentum
in"the barycentric system, while PE (x) are derivatives of Legendre polya
nomials of the cosine ‘x of the scattermg angle,
x=1-9 | ) (14.4)
‘ : ' Zk ’

which exhibit the dependence on q..

Our intention, of course, is to use experimental information about
the total cross sections for the first few partial waves in pion-nucleon

scattering to effect an approximate evaluation of Eq. (14.3) and thus of

‘Egs. (14.1) and.(14.2)_. Any single partial-wave contribution can then be

extended to negative values of _qz. The difficulty, as explained above, is
that the series in £ does not converge for large lqzlu

15, In evaluating the quantities a(mz), ﬁl(mz), and 52(m3) as given by _
Formulas (12.4) to (12.6), we may use the representations (14.1) and (14.2)
to carry out the integration over Q, because they g1ve the dependence on

W and thus on Q. One obtains inverse trlgonometrlc functions of a'variable

VE .
) 2q_4g
2 2 T 'n
(4 | -
y(W'™,m7) = > (15.1)

where

(15.2)

The functions are

oy 2 2 T 1 -1
U = —_ - - {
Ia(_Wv, , +m”) = > [1 5 tan y], (15.3)
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. 2 . N
- 2, 2, _ m Yx -1 1, -1
I W', +m") = —  — tan - — (l-=tan , - 15.4) _
g, W em®) = [ y- o (e _y)]_ S |
Lt . .
i 2, 2y . =W ™ -1 3 01 -1 : ' .
9n.
‘and the final formulas for the spectral functions are '
' 2 e 2 2 2 2 2 2 2
m )= — . F (-m I, M, tm M I, (M, +m
-8 (ZTI’)( ) 4-rr2 .‘rr( ) gr[pl( ¥ : BZ( )
o oy u
+ Tl.r.J aw'? (M1 A W 2 cm?) (W' 2 +m?)
(M+m_)2 @
+ Bl (W' Sm?) (1, (W2, +m®)
+ MO (w"2,+m2)> . (15.6)
By
A 2 - 2 M 2 2 2
..ym )= — F (-m - I M, -m
g (‘2.")( ) 411-2 ,n.( . ) 78, 62( )
| m - P4 -
+ }T_f aw'? =;—Im-A(_)(W'"Z, -mz)Ia(W"Z,-er'Z)
(M+m )% | ,
M (-)yun 2 2 L2, 21~
- Im B WS -m ), (W' +m
(15.7) ;

‘This is as far as one can carry the calculation without making approximations. -
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V. Attempted Eivaluati'on of the Two-Pion Contribution

16. Several different kinds of approximations may be distinguished. First
one may take advantage of the dominance of the.(3/2,3/2) resonance in
(15.6) and (15.7) ‘to treat W'-M as small compared with M, this being
the approach which has had considerable success in theoretical discussions
of pion-nucleon seatteringlga and photopion production. IZb Of course for
making pract1ca1 use of the polynomlal expans1ons it is also necessary that
mz‘.— =q2 be small==an unfortunate requirement, since for calculation of the
e»lectr\o_ma,g{net;c form factors an 1ntegral over all values of mZ is involved.
Nevertheless, it rr)ay be of interest to see how the weight functions
g(2 )(m ) behzeve for small m2 theréfore we tentatively neglect all terms
of order l/M and assume Iq I sufficiently small that the polynomial

expansmns are well approx1mated by keeplng only S and P waves.. Formula

(14.3) then becomes . o , S
: > .

(=) e ' (-) (-) 2Mo' (-) (-)

ImA .(W__.r, )zk, +3 - : g -0 N
" T [GS TPy ( Zk@j F [GPI/Z 73/2 }

- SR ‘ ' ‘ o (16.1)
m B w2, g%~ [GP’P(_) “p H} D (16.2)
' 1/2 3/2 - o

where o' = W! - M.

Furthermore, in view of the uncertainties involved it seems legitimate"
to set all partial cross sections for pion-nucleon scattering, except that for
the (3/2,3/2) state, equal to zero and to approximate the latter by a delta
function. From the effective-range appr’oach14 one may relate integrals

. over the (3/2,3/2) resonance to the value of the coupling constant g"rz, viz.,

1 2M - (-) _ 4
= = O ~ "9 &8

2 L2 R -
T 'k .p3/2 _ .5(W_ -(Mtow)) ),_ | (16.3)

r

where wr is the resonance energy (m = zfn'ﬁ), ' In this vway we approximately

evaluate the 1ntegrals over dW' 2 in Eqs. (15.6) and (15.7) to find
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5 2 : 2+_ 2 : vy :
A" 2, ef Ay T 4 w_r Ay -1 Mg @
g (mi)x -, — (= +z| ———  tan — - — (16.5)
2(2m) "7 T2 T 127 T 9L 2 Y e g )y |
T A o o
where o, w2 s

In Egs. (16. 4) and (16.5) only terms of lowest order in l/M have been kept

in order to achieve simple formulas and to fac1l1tate compar1son w1th the cut—

off: model The first terms in the large brackets are due to the nucleon poles -

~and are seen to be substant1ally larger than the contr1but1on from the (3/2 3/2

resonance.

. The general-form of these approximate (no-recoil, low=m2):expressions

1
is similar to results obtained by several authors using the cutoff model. 5,15

In that model one finds for the electromagnetlc structure factor the lowest-
order perturba.tlon result plus relatively small corrections proportional to
integrals over charge-exchange scattering cross sections. For the magnetic
moment it is the ’spinaflip.cross section that occurs, while for the charge it
is the non-spin-flip, the same forms obtained here. If our expressions (16.4)
and (_16.5) are cut off at m N(ZM) , numerical results close to those of the
cut -off model emerge. | ‘

Because of the approximations made, the results (16.4) and (16.5)
- have incorrect asymptotic behavior. : Instead of vanishing at infinity,v

2 2 . ‘ 2, .
gl(zn)(m )/m approaches.a constant while gz(z‘")(mu ) increases as m. As

explained already, it is not easy to remedy this defect because the polynomial

expressions _(14. 3) and (14.4) are inappropriate for asymptotic, considerations,

' and so long as the behavior at infinity is wrong we cannot calculate the -

- electromagnetic structure factors without cutting off. For pion-nucleon
scatteringlza and photopion productionlz_b it was possible, by use of the
spectr’al=representation approach to local-field theory, to reproduce the
essent1al results of the cut- off model once the pos1t1on of the (3/2, 3/2)
resonance was known It was not necessary to.introduce a cutoff expl1c1tly
- We have not been able to do the same here, and we 1nfer that the cut -off
model is correspondingly less reliable for descrlbrng the nucleon electro-
magnetic structure than it.is for phenomena involving real pions of low

energy.,
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17. It is interesting to note, however, that 'irx‘"thé"“l‘;bw;-frizvi'eg"‘ibn our results
(16.4) and (16.5) aré fairly well represented by making the' Born approximation
to the scattering amplitude, i.e.; keeping oniy the rational term in Eq. (14. 2)
which comes from the: single -nucleon iﬁterfnedié.te state. For example, at
the empirically determined ‘"average" m (see Eq. (3.7)) the contrlbutlon

to the magnetic moment arising from the integral over the (3/2, 3/2
resonance is only ~17%, according to Eq. (16.5). "Once we recognize this
simplifying fact, it is easily possible to evaluate the magnetic-moment

form factor with no further approx1mat10ns other than treating the m meson :
as a po1nt charge. As stated earlier, the result ig~ precisely equ1va1ent to
lowest-order perturbation theory. ' ' S '

It may seem remarkable that a perturb‘ation result can be anywhere
near the f;‘uth', ‘since it is well kr"i_ovwn that the perturbation calculation of '
pion-nucleon scattering is grossly misleading. The main troxib‘lefor'
scattering, however, occurs for the non-charge-exchange amplitude, where
the S-wave part' is overestimated by an order of magnitude. The g
approximation to the charge-exchange‘amplitﬁde, on the oth’er hand, is
not too'bad at low energies even in the physical region and, in-the no‘nAp‘hysica'.l
region required here, is relatively more accurate because one is closer to
the pole at W = M than to the (3/2,3/2) resonance. In the immediate 'ne_igh?"
borhood of the pole, of course, the perturbation result is exact. The

welg,ht functions we obtaln now without the neglect of nucleon recoil are

2 2Mm2 a, 2 '
ef 2 1 -1 .
1 m 2 ma {Yo Yo Yol ,
s ' v
2 -
- TPZ— tan—ly‘o': - i (1—-1—(_ tan-lya;l
4q : Yo Yo -
n
and '
3 2 N
2 M7q .
A\ f -1 3 1 -1
g, (2m) = _e__2 ___31‘_ tan”" yo -2 (l-="tan” y_)¢ (17.2)
: m mq Yo Yo ,
™ n : ' :
where now
2q_q_- o .
Yo = r—z—ﬁ - 2 - ' {17.3)
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One is tempted to assume that the We1ght functions g1 Z(m ). are everywhere
reasonably well represented by this approximation and proceed to an.
evaluation Q_f the structure factors. The anomalous (vector) nucleon magnetic
momeﬁt obte.ined‘ from Eq. (17.1 v)‘_‘is 15 e/Z'M., .quite h,ear,::the experimental
value 1.84 e/ZM, »althrough t'h_e- clo'ee agreement must _be fortuitous because
the mean square radiﬁs of the magnetic moment, similarly. calculated, is.
only about half the expefimental.value. Nevertheless we may regard the
pertufbetion result as giving a qualitative _anvd perhaps a semiquantitative
representation of gz(m ). , '

Assuming the same to be true for gl( ), one may use Eq (17.2)
to estlmate the mean square radius of the vector-charge cloud (Eq. (4.2)).
The result for (r ) is 0.24 mw—Z’ which agrees with the measured value4’
within the fairly large experimental uncerta1nt1es It should be remarked
that these results for the vector charge and magnetic—moment_stru_cture
obtained from the local theory, using only the Born approximation to the.
meson—nueleon scattering amplitude, are not very different from those
‘given by the cut-off model in the same appr‘oximation (both being in
reasonable agreement with experlment) That is to say, the effect of nucleon
recoil in the Born contrlbutlon introduces a natural '"cutoff'' in the neigh-
borhood of 'rn2 (ZM) Presumably if a correct mehod for handling the
scattering corrections cou_ld be formulated a natural cutoff ‘would appear

there also.

L

s
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VI. Summai‘y and Dis’cussion'

18. The reader may at this point feel that the authors have perpetrated a
fraud, cloaking nothing more than old-fashioned perturbation theory in a
vast clbud of words and "e(;:luations. " To refute this impréssion let us review
what has been accomplished, starting with the problem of the magnetic-
moment structure, which is much clearer than that of the charge.

We began with the observation that in thé framework of the spectral
representation the observed qualitative properties of the anomalous nucleon
magnetic mioment suggest that it is due principally to the two-pion intermédiate’
state. We then attemp‘t'ed'a Calculatibh of this contribution and had to deal
with the problem of extendmg the meson-nucleon scattering amplitude into

the region of negative squared momentum transfer. However, it was found

that for small values of m2 = —qZ the main part of the weight function
gz(\g“) (m )‘:Was due to the nucleon pole in the pion-nucleon scattering '

amplitude, wh1ch depends only on the renormalized Yukawa coupling constant
and which can be extended without difficulty. Thus it seems reasonable to -
ignore the scattering corrections and use only the nucleon pole in order to
gain a rough idea of the content of the local theory. When this is done one
finds a magnitude for the static anomalous moment and a ''size" which are
in semiquantitative agreement with the observations. Our conclusion from
this result is that a correct calculation based on the local theory may very |
well yield complete agreement with experiment. The fact that the practical
estimate finally carried out here is equivalent to a piece of lowest-order
perturbation theory is irrélevant to the validity of this estimate. |

It has of course not been shown that more complicated intermediate
states fail to contribute appreciably to the magnetic moment. Here we are
unablé even to‘m'a..ke an estimate until some understanding has been developed
of the matrix elements coupling these states on one side to the electromagnetic .
field and on the other side to'the nucleon. We feel, however, that because
there are no general properties of local-field theory requiring peculiar
behavior of the magnetic spectral distribution for large masses, it is
plausible that the higher-mass states make ‘only's'fnall' contributions.

The particular high-mass intermediate state that has discredited

local-field theory in the magnetic moment pr.oblefn' is the NN system,

whose contribution when evaluated by perturbation theory is of the same
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order of magnitude as that of the two-pion state and which contains a large
incorrect isotopic scalar part. ‘The reader may ’well ask why he should
disbelieve perturbatlon theory for the NN state when he is asked to accept
it for the 211' conf1gurat10n The s1tuat10ns in, these two cases, ‘however,

are qu1te d1fferent because in the former the relevant scatter1ng matrix
element (N +N->N+ N ) is to be evaluated in the physical region and there
is no reason to th1nk it is even remotely approximated by the second- order
Born approx1mat10n - This approximation is known to be totally misleading
even for nucleon nucleon scattering, and in the nucleon-antinucleon
problem the 1nf1uence of annihilation processes on elastic scattering is
enormous. Furthermore the NN . contrlbutlon to the magnetic moment

S,V

involves the nucleon structure factors G . » which we know are

1,2
important but wh1ch are ignored in the perturbatlon calculat1on The

corresponding p1on structure factor F. - Wthh occurs in the 2w contr1but1on,

may be 1mportant but there is no ev1dence to this effect. In fact, the
observed p10n nucleon scatterlng suggests that nucleon closed- loop
contr1but1ons are small, L7 and if the same is true in our problem here the
po1nt plon approx1mat10n will be a good one. _ i

19 'I'he s1tuat10n with regard to the charge. structure of the nucleon is
not nearly so clear, but we feel that in this case also one should not con-
clude that local field theory is 1ncapable of ever explaining the known
facts We do not claim to foresee the probable mechanism of explanation
as has been done for the magnetic moment, but we have emphasized a
fundamental dlfference between the charge and the magnetlc -moment
spectral d1str1but10ns which opens the door to anomalous behavior for the

charge structure In part1cular the falrly large 'charge radius' observed

for the proton4 does not 1mply that the two- p10n state is the main contributor.

It is quite p0551b1e that an isotopic scalar part, approximately equal in
magnltude to the vector part, will be forthcom1ng from some higher- mass
state to produce the requ1red small charge radius for the neutron.
A final .comment may be in order regarding the proton "radius"
as determlned by cons1derat1ons of hyperfine structure in hydrogen. 18 This
""radius' can be shown to depend sens1t1vely on the asymptotic behavior of

the structure factor, and the conclusion that its value is incompatible with
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the electron-proton scattering radius follows only if both 'Gi (qz) and Gz(qz)
* behave in a simple way for large qz"."' Thus, if our conjecture is correct
that GZ behaves in a peculiar way at"l'zirg'e momentum transfetrs the small
value of the hyperfine-structure 'radius' may very well emerge from the

local theory.

Y
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