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DEFORMATION ENERGY O' A CHARGED DROP. 
III. FURTHER DEYELOPMENTS 

5. 	* 
Wiadyslaw J7 Swiatecki 

:[NTRODUCTION 

A theory of any dynamical process is based on the Hamiltonian 
associated with the system under consideration. For any nuclear 
phenomenon, including nuclear fission, the Hamiltonian is a many-body 
expression with complicated and imperfectly known interparticle forces. 
Some progress in underrstanding nuclear fission may be made by replac-
ing this complicated Hamiltonian with a simple expression, namely that 
belonging to a uniformly charged liquid drop, and studying- -instead of 
the theory of the fission of a nucleus--the theory of the fission of such a 
drop. 

The Hamiltonian of a drop, considered as a dynamical system, 
consists of two parts, the potential and kinetic energies associated with 
a given deformation, H = V + T. A prerequisite for a theory of the 
division of a drop is an adequate knowledge of V and T in the relevant 
regions of the deformation space: 

This paper is an introduction to a discussion of certain aspects 
of the many-dimensional Hmapstf  of the potential energy V, considered 
as a function of the deformation coordinates. Such maps have been 
studied in the past on several occasions. In the course of a more recent 
attempt some unexpected, though elementary, features of the problem 
have come to light, which have suggested the need for a more compre-
hensive approach in the discussion of the disintegration of a charged 
drop. In the present studies such a more general approach will be 
attempted. 

Two features of the potential-energy maps (which are them-
selves functions of the fissionability parameter x, specifying the amount 
of charge on the drop) follow from elementary considerations. First, 
the spherical shape is a configuration of equilibrium and, for x < 1, 

4 	 there exists a potential energy "hollow' 1  corresponding to the stability 
of the spherical shape against all small distortions. •Second, for very 
large distortions, by which we mean configurations of separated frag-. 
ments, there must be a number of potential-energy uvalleys, " each 
valley corresponding to a given number of equal fragments separating 
to large distances. These valteys are discrete in the sense that going 
from one valley to another requires the surmounting of configurations of 
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relatively higher potential energy. For example, in order to convert 
the configuration of two fragments at infinity to a configuration of three 
fragments at infinity one must, in general, go over intermediate con-
figurations of higher energy. This is analogous to the familiar barrier 
(a saddle-point pass) that separates the configuration of one fragment 
(the original sphere) from the configuration of two fragments at infinity. 
The suggested appearance of the potential energy map is then that of 
a number of valleys separated from one another by a number of barriers 
and saddle-point passes. 

The depth of the bottom of a valley below the level of the 
original hollow corresponds to the energy released in the division of 
the drop into the corresponding number of fragments. The number of 
valleys for which energy is released increases with x. The general 
formula for the energy difference betweenn equal fragments at infinity 
and the original drop is 

	

vn 	= (nl/31) + Zx (1 	- 1) , 	 (1) 

	

E ° 	 n 
S 

wh e r e 

x = E °/zE (0) = Z
2/A 

(Z 2/A) 0  

with (Z 2/A) 0 	50 for a nucleus. 

The quantities Ec(°)  and E 	 are the electrostatic and surface 
energies of the original drop. 

'The above energy differences are plotted in Fig. 1 as functions 
• of x for several values of n,A scale of x fromO to 1 is given as well 
as an illustrative scale of Z 2/AJrom 0 to 50. The energy is given in 
units of E 5 ( 0 ) and also in Mev, for a nominal value of E 5 °) equal to 
700 Mev. 

At x = 0 the positive values of AV n  correspond to the energy 
that must be supplied to an uncharged drop to accomplish division. As 
the charge on the drop is increased division into two equal fragments 
begins to release energy, for x >0.35121. Soon after, divisions into 
three and four equal fragments become exothermic, and by the time 
x0.7l is reached (corresponding to nuclei in the neighborhood of 

, uranium) divisions into five, six, seven, eight, and nine fragments 
also release energy. Up to x = 0.61098 (Z 27A = 30.5), division into 
two fragments releases the most energy. Beyond this point and up to 
x = 0.86502 (Z 2/A = 43.3) division into three fragments takes over 
first place and division into two fragments falls to second, third, and 
fourth places. At x = 0.86502 division into four fragments begins to 
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release most energy and continues to do so up to x = 1.11726 
(Z 2/A = 55.9). At x = 1, the critical value at which the sphere first 
becomes unstable against small spheroidal distortions, the placing is: 
4, 5, 3,6, 7,8,2, 9, 10, ... 20. Two is in seventh place. Configurations 
of up to 20 fragments at infinity have energies below the energy of the 
original sphere. 

The amount of energy released does not, of cour se, by itself 
determine the outcome of the complicated dynamical process of an 
actual disintegration of a drop, whether into two, three or more 
fragments, but the following interpretation of the general appearance 
of Fig. 1 has suggested itself. For a low charge on the drop, when 
the surface energy is relatively most important, a division into the 
lowest number of fragments is favored. As the charge is increased 
and economies in the surface energy become less important in relation 
to the release of electrostatic energy, divisions into more and more 
fragments come up for consideration. For some sufficiently high 
charge, when the electrostatic energy release becomes the dominant 
factor, one would eventually arrive at a situation where the drop would 
disintegrate in a violent manner into a large number of fragments (a 
phenomenon that, under suitable conditions, may be observed when a 
condenser is suddenly discharged through a droplet of water). 

In connection with Fig. 1, one may also remark that the 
spherical configuration of a charged drop is an extraordinarily stable 
one in the sense that it remains a local energy minimum long after it 
has ceased to bean absolute minimum(at x?0,35121,  when two 
separated fragments have a lower energy), and when it finally does 
become unstable at x = 1, sufficient charge has been accumulated to 
make, a division into as many as 20 fragments exothermic. This situa-
tion at x = 1 may be contrasted with the conditions for x around 0.4 
when, of the cases shown in Fig. .1, division into two fragments is the 
only one that releases energy. 

A second elementary way of exhibiting the qualitative change 
in the energy relationships of a disintegrating drop as the charge is 
increased from relatively low values towards x = 1 is to plot the energy 
of a drop as a function of aspheroidal distortion. Figure 2 shows the 
deformation energy 1V/E 5 (Q) as a function of the ratio of the major 
axis to the minor axis of spheroid, calculated according to the 
formula 

* 
In practice it is better to use a globule of a conducting liquid susp.en-

chi in an insulating medium of the same specific gravity. I am grateful •  
to Knud Ole son of the Institute of Physics, Aarhus University, Denmark, 
for beautiful demonstrations of such disintegrations. 
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(0) 	= 	
(1-e ) / 	11+ 

sin e ) -1 
	+ 

E 	 \ .e4i 	5 

+ 2x±(1-e2)1/3 	1 	

-l} 	
(2) 

where e = eccentricity = Jl_(a 2/c 2 ) , and a, c = minor and major semi-
axes, respectively. 

The different curves in Fig, 2 refer to different values of x. 
At the lower x values the drop is stable against spheroidal distortions 
of any magnitude, but as x approaches 1 very elongated shapes become 
energetically available. The interpretation again suggests itself that 
with increasing x a transition takes place from conditions governed 
largely by the stabilizing influence of the surface tension towards an 
explosive situation associated with the predominance of the electrostatic 
repulsion. The special stability of the spherical shape is once more 
in evidence in the fact that by the time the barrier against small 
deformations finally vanishes at x = 1, violently distorted shapes--
like the spheroid with an elongation of 10 to 1--are already available 
energetically. 

Returning to the consideration of the energy releases plotted 
in Fig. 1, it would be necessary, strictly speaking, to include in a 
comprehensive account of the fission of a drop a discussion of the role 
played by the different modes of division as soon as they became 
energetically available with increasing x. So long as a new division 
mode is only barely possible there would be some justification in dis-
regarding it in favor of the more exothermic alternatives. As far as 
Fig. 1 is concerned there is, however, little justification at x values 
around 07 to 0.8 for singling out for consideration the division into 
two fragments. There is even less justification for this in the case of 
x close to 1, when divisions into up to 8 fragments release more energy 
than a division into two. In this connection we note also .that the 
geometrical appearance of the saddle-point shape for x greater than 
about 0.75- .-i, e. near spherical for x - 1 and cylinderlike for x —0.75 
(see Fig. 8, ref. 2) - -offers no hint as to the number of fragments into 
which the drop might divide after passage of the saddle in the potential 
energy barrier. In other-words, as far as the saddle-point shape is 
concerned, the drop is not yet committed" on the question of how 
many fragments will be formed. Only as x decreases below about 0.7 
does the saddle-point shape begin to suggest a more and more pro-
nounced commitment to a division into two fragments, in general 
accord with the emergence of a preference for such a division at low 
x values, discussed in connection with Fig. 1 

The conclusion suggested by the above discussion is that drops 
with x values in the neighborhood of 0,7 to 0.8, corresponding to heavy 
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nuclei, should perhaps be regarded as being in a transition region, 
somewhere between the situation where a division into only two frag-
ments might be expected and a region where a more explosive dis-
integration takes over. In particular, Figs. 1 and 2 suggest that at 
x1 the possibility of a rather well-developed situation of the latter 
kind has to be kept in mind. 

Where, precisely, the region of x = 0.7 to 0.8 is located in 
relation to the two limiting situations is a quantitative question, and 
so also is the question as tb the number of fragments that may be 
expected to be produced in a disintegration of a drop with some given 
value of x. For values of x in the neighborhood of 0.5 or higher the 
answer is not obvious on qualitative grounds, and no quantitative in-
vestigations of this problem are available in the published literature. 
There would appear to be at present no justification for confining the 
discussion of the fission of a drop, whose charge approalches the limit 
for the stability of the spherical form, to a consideration of divisions into 
fwo fragments only. Indeed, keeping in mind Fig. 2, it would appear 
that at x '1, when long cylinderlike configurations are accessible, 
several possibilities might be available for reassembling such a cylind-
der into different numbers of fragments. The reassembly could be 
effected by rippling the surface of the cylinder with an appropriate 
number of constrictions and then proceeding with the over-all elonga-
tion. The process might bear some resemblance to the disintegration 
of a jet of liquid into separate droplets, considered in connection with 
fission by Hill and Wheeler, 4 and in connection with jets of water in 
many classical investigations. 

We may note that if we classify the different types of axially 
symmetric ripples superimposed on a spheroidal surface according 
to the number r of nodes that they introduce (i. e., according to a 
quantity related to the average wave length of the ripple), with r an 
even number for reflection symmetric ripples and odd for asymmetric 
ripples, then r = 0 is excluded on account of volume pre servation and 
r=l is excluded if we keep the center of mass fixed. A ripple with r2 
could be taken to correspond to an over-all elongation or contractiOn of 
the spheroid, and if this is adopted the dependence of the energy on a 
distortion of this type would be qualitatively as in Fig. 2. Thenext 

• 	 case, r = 3, introduces a single waist asymmetrically on one side of 
the median plane and this, if carried sufficiently far, divides the drop 
into two unequal fragments. Reversing the sign of the amplitude of the 
ripple would produce the mirror image of the configuration. The case 
r = 4 would lead to one waist at the cenlr (and so to a division into two 
equal fragments) if taken with one sign, or to two waists and three 
fragments (two of'them equal) if taken with the opposite sign. Similarly, 
for any given r, the ripple would tend to produce a reflection- symmetric 
string of fragments, - r or - r + 1 in number, depending on the sign 
of the ripple. Any odd r would tend to produce an asymmetric string 
of (r + i)/z fragments. 
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For sufficiently high values of r the increase in surface 
energy associated with such ripples would make the energies of the 
corresponding shpes excessivelyhigh, so that for any given x one 
would expect the configurations with a relatively small number of 
ripples to be the most easily accessible ones. 

In view of our previous discussion of Figs. 1 and 2 it would 
appear that, except at low values of x, it is necessary to investigate 
the role played by at least a few of the lowest types of ripples. In 
terms of the potential-energy valleys associated with divisions, into 
different numbers of fragments, the possibility would have to be 
investigated that, at x value's not too far below 1, several of these 
valleys might. be  accessible, with the corresponding saddle-point 
passes at energies relatively low or negative with respect to the 
spherical configuration. 

In available studies of the potential-energy surfaces of charged 
drops with x values usually in the neighborhood of 0.75, no evidence 
for the exis,tence of several distinct saddle point passes is apparent 
(except for certain of the results of Frankel and Metropolis, 12  which 
could be considered as providing some indirect evidence). It should 
be borne mmmd, however, that in all existing studies of the problem 
attention was focused on the neighborhood of one definite saddle point, 
namely that associated with the barrier determining the stability of the 
spherical form, and no systematic search for other shapes of equili-. 
brium --especially of a more elongated kind- -has been describe,d in 
the published literature. 

At very low values of x the existence of many discrete 
equilibrium configurations, or saddle-point shapes, is indeed well 
known, a limiting case for x - 0 being axially symmetric configura-
tions of different numbers of equal spherical fragments in contact. 
The energies of these saddle-point shapes are so far known only for 
small x, in which case the first one or two powers in an expansion in 
x are readily calculated. We find, to first order in x, the general 
formula 

LV 

E (0) 	 (n 
2~ 3 (n' -1)+2x - 1 + 

	 + 

+ 	
} +,". 	

' 	 (3) 

The second term in the braces represents the mutual electrostatic 
energy of n tangent spheres. (Compare the discussion of the case 
n2 in Reference 5. ) 

These en.ergies are plotted in Fig. 3, where the 
energy of the conventional saddle-point shape is also shown (see Ref. 2), 

-6- 
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The question of the relation of these families of equilibrium 
shapes to the rippled cylindrical figures conjectured as possible 
saddle-point shapes marking the entrances to the differentvalleys for 
larger values of x will be taken up presently. We conclude this 
introduction with two remarks. 

First, there exists at the present time no theory of the 
fission of an idealized liquid drop, not even as regards the broadest 
qualitative features. Second, there would appear to be more t s t ruc _ 
ture in the problem than is implied by conventional presentations, 
essentially because of the possibilitr that a drop with a charge 
approaching the critical value for the instability of the spherical con-
figuration might have to be regarded as being in a transitional region 
of charge values, on the way towards a type of disintegration more 
drastic than a simple division into two parts. 

QUALITATIVE CONSIDERATIONS 

In this section we attempt to gain insight into the general 
features of the potential-energy map relevant to the disintegration of 
a charged drop by way of elongated, axially symmetric configurations. 
We make use of qualitative arguments, supplemented by the fragmen-
tary quantitative results available at present. These are mostly for 
rather small distortions of the drop (the region of the potential-energy 
hoiiowaround the spherical configuration and the associated barrier 
and saddle-point shape) and for very large distortions.(the valleys 
corresponding to separated fragments). In the intermediate region 
we have available the family of spheroidal shapes whose energies are 
known exactly, and which we shall use as a backbone in our attempt 
to elucidate the qualitative features of the intermediate region, in 
particular the way in which the valleys at large distortions somehow 
come together and then are joined to the conventional saddle-point 
pass leading out of the spherical configuration. We would like to 
stress at the outset that this problem is still unsolved, and the 
speculations described in this section are in no sense implied to con.-
stitute a solution; the answers to the many questions involved will be 
provided only by a satisfactory quantitative treatment. 

In order to plot the potential energy of a distorting drop an 
infinitely many-dimensional map would be required. We shall 
attempt to illustrate our discussion of the potential energy of axially 
and reflection- symmetric shapes by sketches in two dimensions, 
usin.g two corditates labeled 	and a4 . The origin, Ha 	0 
and Ha4It = 0, j 	taken to correspond to the spherical shape, and for 
small values of these parameters they maybe interpreted quantitatively 
as the coefficients of P 2  and P4  in an expansion of the surface of the 
drop in Legendre polynominals. For larger distortions only a quali-
tative correspond.érxe with the Legendre polynomials is implied, and 
for very large distortions, when separate fragments are beginning to 
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form, thes.e cordinates should be imagined as going over into some 
suitable set capable of describing such shapes. 

A spheroid of a given eccentricity when expanded in Legendre 
polynomials defines a certain set of coefficients a2, a4, ... , and the 
family of spheroidal distortions of increasing elongation would appear 
as a curve in the a 2 , a4  diagram as indicated in Fig. 4. The energy of 
a drop with x < 1 iflstorting along this curve increases for small 
elongations and may then go through a maximum, followed by a 
minimum, if the value of x is sufficiently close to 1 (see Fig. 2). In 
any case, for a sufficiently large elongation the total energy is an 
increasing function of the elongation, corresponding to the fact that 
the electrostatic repulsion tending to increase the elongation is finally 
exceeded by the oosing tendency of the surface tension. 

In order to proceed with the division, one of several courses 
is open to the system: introduction of one or more constrictions in 
the spheroid decreases the surface tension around the perimeter of 
the neck or necks, and if the constrictions are sufficiently deep the 
surface tension is unable to withstand the electrostatic repulsion, 
further elongation of the system is possible, and the drop can proceed 
towards division into a number of fragments. In other words, as the 
constriction or constrictions are deepened the initially positive grad-
ient of the energy with respect to elongation (i.e., the tendency for 
the spheroid to contract) changes sign and gives place to a negative 
gradient (tendency to increase the elongation). 

In order to translate the above physical considerations into 
a qualitative potential energy map in the "a 2 ', "a4 ' diagram, consider 
first the case when just one constriction is introduced halfway across 
the spheroid. This corresponds to moving away from the "curve of 
spheroids" in Fig. 4. More specifically, it follows from the geometry 
of distortions of the type of P 2  and P4  that the motion is in a general 
direction of decreasing a4 11  and increasing Hat, " i. e. , into a region 
below and to the right of the curve of spheroids in Fig. 4. If this 
deviation is continued sufficiently far the total energy should become 
a .decreasing function of the over-all elongation, corresponding to the 
breaking up of the drop into two separating fragments. We have 
indicated this in Figs. 4 and 5 by sketching in, below the curve of 
spheroids, a valley presumed to lead to the two-fragment valley 
known to be present at large distortions. 

Consider now the case in which the amount of "a" is in-
creased, i. e.-, one moves away from the curve of spheroids in an 
upward direction. Geometrically this corresponds to introducing two 
constrictions situated symmetrically on either side of the median 
plane of the spheroid. If this distortion is carried far enough the 
energy should again become a d.ecreasing function of the elongation and 
the system should be able to divide into three fragments. We have 
indicated this by sketching in the three-fragment valley in the upper 
part of Figs. 4 and 5. 
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Proceeding to greater:elongations and introducing a larger 
number of constrictions, we could similarly sketch in the valleys lead-
ing to divisions into four or more fragments, although there would be 
need for more than two dimensions in the plots of the maps. In Fig. 5 
we have made an attempt to indicate the four-fragment valley by imagin-
ing part of the diagram to refer to deviations from the line of spheroids 
in a new dimension. 

The over-all picture implied by these considerations is of a 
number of valleys, corresponding to disintegrations into different 
numbers of fragments, clustering around the locus of elongated, 
cylinderlike shapes along which the drop is still undecided as to how 
many fragments will be produced. 

The low regions in Fig. 5 are shown separated from one an-
other by regions of high potential energy, so that the crossing from 
one valley to another involves passage over a saddle in the energy. 
Three such saddle points appear in Fig. 5, separating the configuration 
of one fragment from that of two, two from three, three from four. 
Thus the least energy necessary to convert a configuration of one frag-
ment into two fragments at infinity would be the threshold energy cor-
responding to the conventional saddle point A, whereas the least energy 
for conversion of two fragments into three would be the energy of the 
saddle point B, and so on. The geometrical appearance of the saddle-
point shape A is known for x ,.0.6 (Fig. 8 in Ref. 2). It represents a 
balance between the tendency for further elongation and the tendency to 
return to the spherical shape. According to our qualitative discussion 
we would expect the saddle-point shape B to be in the general form of 
an elongated figure with two necks, the amount of necking and the 
proportions of the figure being adjusted so that thereis a balance be-
tween the tendency of the drop to disintegrate further into either two 
or three fragments and the tendency for the system to return to the 
spherical shape. Similarly the saddle-point shapes marking the en-
trances to the n...fragment valleys would be expected to be in the gen-
eral form of rippled cylindrical figures with proportions adjusted to 
ensure an (unsta$le) equilibrium with respect to different types of dis-
integration as well as with respect to a return to a spherical shape. 

As regards the dependence of these saddle point shapes on x, 
it has usually been assumed that, for x << 1, the saddle-point shape A 
goes over into the configuration of two equal tangent spheres. More 
generally we might expect that since the disruptive tendency of the 
electrostatic repulsicn decreases with decreasing x, the necking in for 
any one of the rippled saddle-point shapes would have to be carried 
further, as x decreased, before a balance could be achieved between 
the surface tension and the electrostatic repulsion. 

The above qualitative features are indeed exhibited by the 
familiar saddite-point shpes forx; << 1 mentioned in the Introduction, 
and we shall eventually assume that the rippled cylindrical figures of 

-9- 	 - 
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equilibrium introduced in Fig. 5 go over with decreasing x into these 
configurations of spherical fragmentsjoined by small neck.s. At pres-
ent this has not, however, been established by actual calculations over 
the intermediate values of x. (In particular the relation of the conven-
tional threshold for x - 1 to the threshold associated with n . 2 for 
x << 1 has not been established). 

In order to gain some further insight into the possible appear-
ance of these less familiar saddle-point shapes with many necks we may 
note that the family of an infinite number of spherical fragments in con-
tact is als.o a limiting member of the family of axially symmetric sur-
faces of constant total curvature, familiar in the theory of soap films. 
(See, for example, Ref. 6. ) These surfaces, the "unduloids ", may be 
generated by the curve traced out by a focus of an ellipse imagined to 
be rolling along the axis of symmetry. The configuration of tangent 
spheres in çontac,t results when the ellipse is made to degenerate into 
a straight line joining its foci. It is further shown in the above reference 
that the longitudinal tension that a liquid surface in the form of an. 
unduloid is capable of supporting is proportional to the s.qthre.' the mimr axis of 
the ellipse. In an elongated charged figure in the general form of an 
unduloid, the longitudinal terision due to the electrostatic reputsion 
would be greatest in the middle and would fall off towards the tips. This 
suggests that a qualitative picture of the rippled saddle-point shapes 
discussed previously is perhaps provided by a figure traced out by a 
focus of an ellipse imagined to be rolling on the axis of symmetry, the 
ellipse becoming gradually slimmer as The ends are approached and 
degenerating finally into a .straight line when . tracing out the tips of the 
figure. 

Concerning an estimate of the threshold energies ass.ociated 
with the above saddle-point shapes, we may add the following remarks 
to the formula for x << 1 given in the Introduction (Eq. (3)). The 
approximation represented by that equation and plotted as the straight 
lines in Fig. 3 corresponds to assuming the saddle-point shapes to be 
strings of equal tangent spheres and increasing the charge on them 
withoutallowing the shapes to adjust themselves under the influence of 
the electrostatic repulsion. An estimate of the effect of a readjustment 
was made by a calculation to the next order in the expansion in powers 
of x, using a crude variation method in which the shape was assumed to 
be in the form of spherical fragments joined by small cylindrical necks 
and the total energy was made stationary with respect to the radii of 
the fragments as well as the radii and lengths of the necks. The effect 
of the readjustment was to lower the thresholds, as indicated by the 
last term in the resulting expansions in the cases for n = 2 and n = 3: 

LV2 	
2 

1 	. 	0 .259921 - O,215l12x - O.219x *..,.. 
E 

S 	
(4) 

AV 	
2 

_____ 
____ = 0,442250 - 0370792x - 0.213k + . 
E 0, 

5 
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- 	For n = 2. the deformation energy is plotted .inFig. 6 as a 
function of the two available parameters, the separation between the 
fragments (or, equivalently, the length I of the neck) and the radius 
r of the neck. The saddle occurs when the length of the neck is equal 
to its diameter, which, in units of the radius of the original spherical 
drop, is given by 

(5/6) z/3 
0 	0 

A departure from the saddle shape in the sense of an increased 
and a decreased r lead.s to the two-fragment valley, whereas a decrease 

of . and an increase of r would make the fragments coalesce and lead 
back to the spherical shape (see Fig. 6), 

For n = 3 the saddle configuration occurs when the radius of 
the inner fragment exceeds very slightly the radius of the outer ones: 

inner  - outer 	
= (35/432)32/3 Y. +." 

and the connecting necks have lenth equal to diameter, as before, 
(but with 2r/R 0  equal to (25/54)3"I 3x). Departures from the saddle 
shap.e could lead to one, two, or three fragments. 

The small-x approximations to the thresholds (Eq. (4)) are 
shown in Fig. 3. 

For larger values of x no calculations of the thresholds in 
question are available for n >2. In so far as the saddle point shapes 
may be in the general neighborhood of elongated cylinderlike configur-
ations, estimates of the energies of such configurations are of interest. 
In Fig. 7 the energies of spheroids of various eccentricities (the same 
as in Fig. 2) are plotted against x and the trends are compared with 
the trends in the thresholds for x << 1. In Fig. 8 a similar comparison 
is made for estimated energies of cylinders with hemispherical ends. 

The above estimates are quite inadequate to answer quantitat-
ively the important question of the relative order of the threshold 
energies for any given value of x, except when x is small. It would 
seem, however, that with increasing x one or more of the thresholds 
for n > 2 might cross and fall below the conventional threshold (n = 2) \  
paralleling perhaps in a general way the crossings that occur in the 
plot of the relative energy releases in Fig. ], since both Fig i. and 
Figs. 7 and 8 reflect the tendency towards divisions into more and 
more fra.gments with increasing x. With reference to the map in Fig. 5 
this would appear as an over-all sinking of the energies of the moie 
elongated configurations represented by the central and upper-right-
hand portions of Fig. 5. As a result of this sinking the energies of one 
or more of the saddle points B, C, ... could fall below the level of the 
conventional saddle point A. A situation of special interest would occur 

-11- 
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if one or more of these crossings of thresholds took place before x 
reached the value 1. In that case a drop distorted away from the spher-
ical shape to just beyond the first threshold A would still not be 
committed energetically to a division along the two-fragment valley, 
but would have available a choice of several valleys, the number of 
possibilities depending on how many of the other saddle points lay at 
energies below that of A. In such circumstances the process of 
fission of a drop would have to be regarded as of a higher order of 
complexity, in the sense of involving the competition between several 
distinct modes of disintegration. 

With decreasing x the energies of the relatively more elongated 
shapes would increase relatively more rapidly than the energy in the 
immediate neighborhood of the spherical configuration and the elongated 
saddle shapes would successively exceed the energy of A and the 
associated n-fragment valleys would, one by one, cease to be available 
(at least a.s far as low-energy disintegrations are concerned in which 
only just enough energy is provided to overcome the threshold A). In 
this way the qualitative circumstances of disintegrating drops would 
experience an abrupt change every time an intersection occurred 
between .two threshold curves in a plot against x of the type attempted 
in Figs. 3, 7, and 8. Below some critical value of x where the last 
such intersection .ocurred, the two-fragment valley would presumably 
be the only available one. 

When the potential-energy map is translated back into physi-
cal considerations, the situation implied is as follows. The possibility 
of a division of a drop into a given number of fragments should be 
regarded as being governed by the magnitude of the elongation of a 
cylinderlike configuration which is accessible for a given charge on 
the drop and at a given energy. Up to a certain value of the charge, 
configurations sufficiently elongated to make the introduction of two 
waists favorable are not accessible (at energies corresponding to the 
conventional threshold). A drop elongated to beyond the conventional 
saddle point has then no alternative but to introduce one waist and 
divide intwo. 

As the charge is increased, however, there will come a 
point at which the drop may continue its elongation beyond the con-
ventional saddle point without introducing a waist (and so committing 
itself to a division in t)Ed in this way reach a cylindérlike con-
figuration long enough to make the introduction of two waists 
favorable. In these circumstances two alternatives are open to a 
dividing drop: after the initial elongation away from the spherical 
shape the drop may either begin to neck in at relatively moderate 
elongations towards a dumb-bell configuration, or it may go on with 
the elongation andthen neck in along two waists towards a three-frag-
ment configuration. At higher charges (or, for a given charge, at 
higher energies) the alternative of still greater elongations, at which 
the introduction of three• or more necks is favorable, would become 
accessible. 
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We note here a characteristic difference between the above 
considerations and the classical discussion of the disintegration of an 
uncharged (or slightly charged) cylinder of liquid into separate drop-
lets. In the latter case the cylinder is unstable against 6ripples whose 
wave length exceeds the circumference of the cylinder, but the con-
figurations of disintegrated fragments are not associated with discrete 
potential-energy valleys. The only true energy minimum is that 
associated with the configuration in which all the liquid is reassembled 
into a single sphere and the energy of any other configuration, like 
that of two fragments, may be decreased continuously towards this 
minimum (by the transfer of material from one fragment to the other). 
The observed disintegration .of a cylinder or jet of water into a more 
or less characteristic number of droplets per unit length of je.t is the 
result of dynamical aspects of the situation, involving the competi-
tion between the increasing instability against ripples of increasing 
wave length and the increasing inertia involved in the reassembly into 
large drops (consult Ref. 6). On the other hand, in the case of a 
sufficiently charged drop, there exist definite potential- energy 
valleys associated with diviions into two, three, or more fragments 
(Fig. 1), and, apart from dynamical considerations, the potential 
energy its.elf already shows preferences for divisions into certain 
numbers of fragments. The more complex structure of the potential 
energy map shown in Fig. 5, exhibiting several valleys  and thresholds, 
is associated with the presence of a charge on the drop. 

In Figs. 9(a), 9(b), and 9(c) an attempt is made to illustrate 
the conditions on the two sides of a critical x value at which there 
occurs a crbs sing between two threshold- energy curves. For pur-
poses of illustration we have assumed that the crossing takes place 
at a value x 1  less than unity between the thresholds for n = 2 and n = 3. 
(This couldibe the last crossing to occur with decreasing x, 

In Fig. 9(a), representing the case for x >x 1 , both the two-
and three-fragment valleys are energetically available and an actual 
disintegration of a drop would involve a competition between two 
modes, one associated with the two-fragment valley an.,d the other with 
the three-fragment valley. In this connection it may be noted that the 
fact that the deforming drop has entered the three-fragment valley 
does not necessarily mean that the final result of the disintegration 
will be three fragments. For this to be the case one would have to 
e.nsure, in addition, that after entering the three-fragment valley by 
way of some two-necked saddle-point shape B, the deformation pro-
ceed in a manner sufficiently symmetric as regards the further 
necking in of the two constrictions to lead to a breaking off of both 
end fragments. If this condition were not satisfied the result would 
still be two fragments, in general unequal in size. It might be that 
an actual division into three fragments would begin to occur with 
appreciable probability only for x values significantly in excess of the 
minimum value where the three-fragment valley first became ener-
getically available, i, e, , only after the energetic advantages of a 
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division into three fragments had been able to assert themselves ma 
sufficiently decisive manner. In a range of x values only moderately 
in excess of the minimum, the conditions for a sufficiently simultan-
eous breaking off of the two necks might be satisfied but rarely, and 
after the severance of one .neck the remainder of the drop, repre- 
senting a system with a smaller ratio of electrostatic to surface energy, 
might fail to complete division, thus remaining as a single relatively 
large fragment. (For example, if a fraction k of a drop with a uni-
form charge corresponding to a value x is broken off, the remainder 
is characterized by a new x value given by (1-k) x. . With x = 0,75 
and k = 1/3, this would give x new = 0,5, As suggested by Fig, 8 of 
Ref. 2, the distortion necessarro carry such a fragment over the 
barrier against further division is considerable, and in cases where 
the necking in was less advanced the fragment would in general re-
main undivided, (Compare the similar discussiOn inRef. 4) The 
possibility should be kept in mind that, in effect, the competition 
between the two-fragment valley and the three-fragment valley might 
be, under certain circumstances, a competition between a symmetric 
and an asymmetric division mode. 

Similarly, divisions that make use of the n = 4, 5, 6, 
valleys need not necessarily lead to disintegrations into 'four, five, 
six, ... fragments, but could produce a variety of results, depending 
on the value of x and the dynamic aspects of the process. (This is not 
to say that each mode would not be associated with more or less 
characteristic features that would distinguish.it  from divisions pro-
ceeding by way of other valleys. ) The probability of an actual divisiOn 
into three or more fragments would be expected to increase with x. 

Returning to Figs. 9(a) to (c), we note the sudden qualitative 
change in the conditions governing the disintegration of the drop as x 
falls below x 1 . Whereas.for x > x, the disintegration would be the 
result of a competition between two qualitatively different modes, for 
x < x 1  the system is suddenly forced on energetic grounds to go 
entirely by way of the two-fragment valley, at least in cases in which 
only just enough energy is available to carry it over the first saddle. 
poinjA. (With increasing energy the characteristics of a competition 
would reappear when .the threshold B was exceeded. ) 

The possible occurrence of such discontinuous changes even 
within the framework of a classical model of an idealized drop is a 
feature which should, perhaps, be taken as an indication of the rich-
ness of hitherto unexplored phenomena that may be revealed in a 
thorough quantitative study of the oscillations and disintegration of a 
charged liquid drop. 

The foregoing discussion of the potential-energy map has been 
confined to elongated, axially symmetric shapes. We shall not attempt 
to discuss systematically the more general cases, but we may note 
that there certainly exist many other shapes of equilibrium of a 
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charged drop. Examples that suggest then%selves are oblate and ring-
shaped configurations; families of equilibrium shapes that degenerate 
into the sphere at the higher x values, at which  the sphere loses 
stability against distortions proportional to the higher spherical har-
monics (some of these may be related to the shapes we have dis-
cussed); configurations in the form of a thick spherical shell with a 
hollow center (see Ref. 11); andnomaidally sm•metric shapes,of 
which a limiting form for x - 0 would be 2  for example, a set of three 
equal tangent spheres with triangular symmetry, joined by small 
necks. 

One special class of equilibrium shapes whose existence may 
be of some significance, at least for questions of 'principle, consists 
of numbers of unequal, separated spherical fragments. For two 
equal fragments at infinity the total energy is always stationary with 
re spe ct to changes in all parameters specifying the configuration, 
including a change in the relative size of the fragments. If the charge 
is sufficiently high (x > 1/5) there exists, in addition, a configuration 
of two unequal fragments whose energy is stationary, being a maximum 
with respect to a change of relative size. The significance of these 
new addle-point configurations is in part related to the definition of 
the conventional threshold energy as the least energy necessary to 

.divide a drop in two. It is clear that to divide a drop into very un-
equal parts requires only a small amount of energy, unrelated to the 
conventional threshold. In fact, for a vanishingly small fragment, 
this energy becomes equal to the surface energy of the new droplet 
formed, the change in the electrostatic energy being of higher order 
in the droplet size. As the new fragment increases and the release 
of electrostatic energy compensates the increase in the surface, the 
total energy of two such fragments at infinite separation goes through 
a maximum and then decreases towards the negative value associated 
with, the energy release in a division into equal parts. The energy at 
the maximum - - the threshold associated with the new saddle-point 
shape' mentioned above -- is the least energy required to divide a. 
drop into comparable parts by a sequence of configurations in whic,h 
a very long and thin filament, of negliibIe energy, is first emitted 
and then matter is transferred along this filament to a spherical 
swelling at its far end. The threshold for this type of division is com-
pared with the conventional threshold in Fig. 10. For x < 0,724 a 
drop could be divided into two comparable fragments using less energy 
than the conventional threshold energy. 

4* 1  
The existence of a maximum in a plot of the energy of two 

sufficiently charged fragments against the ratio of their sizes sug-
gests the possible existence of yet another family of equilibrium 
configurations. For two fragments not at infinity but at some finite 
separation; their energy is modified by their mutual interaction. An 
example is the familiar case of (unequal) tangent spheres whose 
energy .Ior different values of x has been plotted in Fig, 9  of Ref. 12, 
As before, and essentially for the same reasons, there exists, for 
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a sufficinetly high charge (x > 3/5), a maximum in the energy for Un- 
equal fragments, as well as a minimum for equal fragments. These 

• 	 configurations however, are no longer equilibirum shapes, because the• 
energy is not stationary with respect to a separation of the fragments 
under the influence of the electrostatic repulsion. On the other hand, 
if a pair of fragments is brought into still more intimate contact by 
establishing, a neck of matter between them -- i. e,, deforming the 
system towards the configuration of an undifferentiated'drop -- the 
electrostatic repulsion may be overcome by the surface tension, and 
the fragments, instead of separating, coalesce. This suggests that 
starting with any given ratio of sizes of fragments the energy would 
possess a maximum as a function of a separation coordinate for some 
intermediate degree of differentiation of the fragments. (This is 
essentially the same as saying that in the course of the removal of some 
given amount of matter from a charged drop the potential energy will, 
in general, go through a maximum, ) Since, as we saw, there may 
exist a maximum also with respect to relative fragment size, the ques-
tion arises as to the existence, for not-too-small values of x, of an 
asymmetric figure of equilibirum adjusted in such a way that its energy 
is stationary (a maximum) both with respect to a change in the degree 
of differentiation of the fragments and with respect to achange in their 
relative sizes. 

This possibility has been examined by studying the energy of 
two unequal spheres connected by a cylindrical neck of length . and 
radius r. When the charge on the drop is low (x << 1) the neck is 
small and its electrostatic energy and volume are of higher order than 
its linear dimensions and its surface area. In this approximation the 
deformation energy of the system in units of E 5 (°' is given by 

AV 	
= (U 	+ w2/31)  + Zx(U5/3 + w'-i + 

E 
S 

5 	TJW 	 5 	UW + ' 
	1'13+h/3 - Zx 

	
(U 113  + w 113 ) 2 	o + 

irr 	 /r21 

i 
where U and W are the fractional volumes of the two fragments (U+W1), 
The first term contains the surfac.e energy of the fragment, the second 
the electrostatic energy of touching spheres, the third gives the decrease 
of the electrostatic energy-when the fragments move apart through a 
distance i, and the last term is the surface energy change due to the 

- . 	 neck. 	 . 

For U = W the above expression may be made stationary for 
any value of x by a suitable choice of I (2r). The associated shape is 
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then an estimatç of the symmetric saddle-point shape for x << 1, as 
discussed previously. 

At the point x = x 1 , where 

x 1  = (-12 + 18 f')/35 = 0.384452, 

there occurs a "point of bifurcation, " and for x >x there exist, in 
addition to the symmetric one, two reflected asymmetric configurations 
of equilibrium. The degree of asymmetry of these configurations in-
creases with increasing x in a manner characteristic of such bifuràations, 
namely proportionally at first to 	 A few illustrations of these 
shapes are given in Fig. 11 and their energies are plotted in Fig. 10, 

The value x 	0.38 is an estimate, based on a method approx 
imately valid for x 

1 

< 1, of the point at which the conventional symmetric 
saddle-point shape becomes stable against asymmetry: above this 
value it is "flanked" on either side by an asymmetric shape of equilib-
rium of higher energy. Conversely, with decreasing x the two "peaks" 
at asymmetric configurations come together and stability of the symmet-
ric saddle against a symmetry is lost at x - 0.38, (Compare the trend 
with x in the stability against asymmetry of the conventional saddle-
point shape for x - 1, plotted in Fig. 16. 

The significance of these asymmetric equilibrium shapes has 
not been investigated, but since they represent a maximum in the energy 
as regards fragment ratio, they would appear to be associated with 
particularly unfavored modes of disintegration: for still more asymmet-. 
nc divisions, like the emission of a small droplet, less energy would 
be required because the division is then altogether less drastic. For 
more symmetric divisions better use can be made of the electrostatic 
repulsion to help the system over the barrier. The above asymmetric 
shapes of equilibrium might play a role in a ciscussion of the .competi 
tion between the many different modes in which an excited drop may 
dissipate its energy, ranging from the emission of small droplets to 
more conventional types of fission. Our discussion suggests that, ex-
cept for small values of x, intermediate modes of disintegration mi'ght 
be expected to be less favorable than either extreme. 

The existence of still further configurations of equilibrium of 
a charged drop, associated with bifurcations along the other families 
of rippled saddle-point shapes, is suggested by the possibility of ad-
justing the relative sizes of three or more unequal fragments in such a 
way that the total energy becomes stationary. The problem exhibits 
many formal analogies with the classical discussions of the forms of 
equilibrium of rotating liquid masses, associated with the names of 
Poincar, Darwin, Jeans, Liapounoff, and others. (See, for 
example, Ref. 13). 
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The above speculations are intended to underline the fact that 
the discovery, classification, and evaluation of the shapes of equilib-
rium of a charged drop are at present outstanding unsolved problems 
in the theoryof the disintegration of a liquid drop. 

QUANTITATIVE TECHNIQUES 

In this part we report some progress towards a quantitative 
treatment of the problem of a dividing drop. The technique used was 
an expansion of the shape of the drop about a spheroid, .described with 
the aid of prolate spheroidal coordinates, and the calculation of quan- 
tities of interest in powers of the deviation from the spheroid. (Consult 
Refs. 2, 3, 7, and 8 for such expansions, ) Depending on the number of 
terms retained and the rate of convergence of the expansions, this 
method should enable one to investigate quantitatively a: more or less 
extensive neighborhood of the curve of spheroids in Fig. 5. Such 
expansions have proved to be accurate in the neighborhood of the saddle 
point A, for a range of x values, and if they turn out to be adequate also 
in the neighborhood of the other saddle points a quantitative treatment 
of the essential stages in the disintegration of a drop may be feasible 
along these lines 

It has been found possible to derive general formulae for ob-
taining expansions of the surfac.e and electrostatic energies of a dis-. 
torted spheroid of any eccentricity for a general distortion described 
by an arbitrary number of spheroidal harmonics and to any order in the 
distortion. We shall summariz,e some of the results obtained, keeping 
in mind applications of expansions of this type also to aspects of the 
problem other than the potential-energy maps. (For example, the 
study of the dynamics of the disintegration. ) We shall present, there-
fore, not only the final formulae for the potential energies but also an 
outline of the tech.nitues used in these nth- order expansions, as well as 
some tables of coefficients, which, being associated with geometrical 
aspects of a distorted spheroid, would be useful also in more general 
applications. 

1. Volume and Center of Mass of a Distorted Spheroid. 

The shape of the axially symmetric drop will be specified in 
prolate spheroidal coordinates 	, r, 4 (see Refs, 2, 9) by giving ii 
as a function of , 

CO 

74) = o [1 + n 	= 	+ 	) = 0 [1 + 8(01. 

The case i() = 110 corresponds to a spheroid of eccentricity e 	110 1 , 
whose major and minor semi-axes will be denoted by c and a The 
volume V 0  (4/3) ia 2c will be taken equal to the volume (4/3)1TRO 3  of 
a sphere of radius R 0 . The relation. of 	, , ep to cylindrical polar 
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coordinates p Z, 4) is 

	

2 1 2 	1 
p 	

l) 

z =k11, 

The constant k is half the distance between the foci; k = ec = 	- a 2  
The lengths of three orthogonal displacements associated with small 
changes d, drh d4) are givenbyh 1d, h2dr h3 d4), where 

• 	 t;z 	2'\I 

/2 z\ -  
h - 

2 	2 	) 
• 	 \11-1/ 

• 	
2 	-- 	 322 

h3 = p = k(l_)2(11 _l)2 ; 	h 1 h 2h 3  = k (ii 	). 

The change in volume associated with the distortion 	() is 

1 	 Zir 

oV= J dJ 	d11J d4)h 1 h 2h 3  

	

-1 1 110 	0 

	

2wk 3 .110 3  - 	d 

Integrals of the type 

f 5rd 

will Occur frequently; we introduce the expansions 
00 

; 	
= 2i+ 1 f PÔrd 

For r = 0: 	
(0) = 1 	 = 0 for i > 0. - 	 Co 	

1 

For r = 1: 	
(1) 

C. 	-U. 
1 	 1 
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The coefficients c+1)  can be generated from a recurrence 
relation obtained as follows: 

	

c.+1) = 2+1 	dp.Sr. 5 = 	 d P 

• 	

c n (r)  P) 	

( 

 

C'O

UP ) 

2i+1 	
(i

. 	• c (r) 
mn)a 

	

2 	 mn 
m n 

1 

	

where (imn) 	( d P.P P , 	(seeRef. 2) and the sums 

	

) 	
1 rn 

are over all nonvanishing combinations of (imn). 

The tabulation of the coefficients c. 	, defining the expansion 

	

of the rth power of 	
00 

aPfl  
n0 

is a purely algebraic problem which can be carried out, once and for 
all, nependently of the particular application contemplated. Tables i, 
of cir1  are given later. 

We note the following results: 

	

1 	
• 

r . 	 2 	(r) 

	

.- 	c. 

-1
00  

r 
 ( aP) 	

= 	
212+1 

jb.P. 	d = 	 (ijk)a.b.c. 

00 

* 	 -1 	
/ 	0 	Jj 	i, j,k=O 

Using these relations, we find for the relative change in volume, 5v/v 0 , 
where V 0 = (413) ir R0 3  = (4/3)Trk3(fl03 - no) the exact expression 
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2. 
ÔV 	-2 	(1) 2 	-2 	(1) 	(2) 	(3) 

= 	2 	
n0  ) c 0  - - n0 C 2  + 3c 0  + c 0 	= 

0 	no _i 

	

00 	 2 	 00 

E a. 
2-1 	2 	22 

(l-e ) 	i(3-e )a 0  - - e a 2  + 	 + 

	

0 	 p,q,r0 

(pqr) apa.qar} 

The special case in which the spheroid degenerates into ,a 
sphere corresponds to taking the limit e-'O, k n0 - R 0  

The z coordinate of the center of mass of the.distorted shape 
.isgivenby 

1 	TJ O+ A Zir 

-l. 	
ddndh 1 h 2h 3  z 

1 	 Zir 

d dq d4 h 1 h 2h 3  

The denominator is the distorted volume V = V 0  + ÔV; 
evaluation of the numerator leads to the result 

Vz R4 	(l_ e 2 )_ 4/ 3  {( c1 W +c1(2) + 	+c 1 > - 

2 3 . (1) 	6 	(1)3 	(2) 	3 	(2) 
e (--c. 1 	+--c 3 	+-1-c 1 	+ --c 3 	) 

2. The Surface Energy 	. 	 . 

The surface area of the distorted drop is given by 

A 	 (h1d )2 + (h 2 dn) 2  h3d = 	 . 

=_1 	cO 

2k2 	

l d 

J( ,22)[2l+(l2)(dn/d)2] = 

2R02 (1e2)2/3 	d J(x2e22)(x2e2±y) 
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where 	 . . 

x-1+6, 
110 

Z (daY 
y 

Considering the integrand as a function of x and y and expand-
ing in a Taylor series about the point x 1, y = 0 we find. 

A = 	
(le2)2/3 	

j 
d 	

6 	 a 

-1 	n0 s0 	
&X 8y 

(x2-e22) (x2eZ+y) 	

x1 
y= 0  

Introducing the expansions 
00 

	

y s 	 d 	P() 

00 

I an+s 	
= 	 s) 

x8y 	 . 	 i=0 
x1 

•y=O 

we may write 	 - 	----------------  

B 	
A 	1 (1e2r2/3 	

n s 1  
.4irR. 	 . 	 n0 	s0 

00 

LL 	(ijk) c 	d. 	Ck(n s) 
i,j,k=0 

(r+1) 	 (r) 
The coefficients d 	may be calculated in terms of d 

	

i 	
. 

by means of the recurrence relation 

d.(r+1) 	Zi+l 	 (imn) d 	
d (r) 

i 	 2 	 m 	n 
m n 
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For r = 0: d 	=1, 	d ° 	= 0 	for i >0 
0 	 i 

(1) 
In order to find d 	we proceed as fpllows: 

d 	
= 	21+1 	

d 	P1 	(z 	

) 

o) 

.Now we have 

dP, 

7dT= 
(2i-1) P1 1  + (2i-5) P 3  + 	down to P0  if i odd or 

to 3P 1  if i even 

• 	- (a 	+ a 2  + a4  + 	)P0  + 3(a2  + a4  + a6 + 
)P+ 

+5(a 3 +a5 +a7 +.)P2 + 	... 

CO 

= T BP 
= mm 

m =0 

where 

•B 	= (2m+l)(4 	+ a 	+ a 	+ 
m 	 m+1 	m+3 	m+5 

• 	 also 

2 
• 	(14 dô 	 2 	n 

a.(1_ 	 a. 
n(n+1) 

• 
d 

l 
2n+1 

00 

X(P 	-P 	)= 	A P 
n-i 	n+i 	 n 	ri 

n0 

where 

A 
= (n-l)n 	 (n+i)(n+2) 

n 
a 	+ 

Zn-i 	n-i 	•2n+3. 

• 	 • 	Hence the starting values d 1 	for use in the recurrence re- 

lation for d (r+l)  are found from 

d (1) = 	2i+i 	
(imn) B 	A 

i 	2 	 mn 
rn 	n 
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The coefficients Ck' 
S) 

are obtained as f011ows: 

(x - e 2 ) Z  (xe2+y) 	

= { 	

F (x, z) 	 = 
ax 	

x1 	
8x •& 	 J xi 

y O 	 z=B 2  

=IF i nsj 
x1 
zB 2  

where 

2 
z1-e +y, 

2 	2 	7 	2 	 2  F =(x -1+a)(x -1+z).=(x -1)
2 
 +(x

2 
 -1)(a 

2 
 +z)+a  2, 

with 

a = (1-2 2) e  

2 1  
B = (l-e )2 

F 	denotes the nth derivative with respect to x and the sth 
derivative nxkilh respect to z. 

Recurrence relations for the successive derivatives of F are 
obtained by differentiating F 2 , equal to G, say. By equating the differ-
ent powers of x and z in the Taylor expansions of G and F . F we obtain 
the following relation between the differential coefficients of F and G: 

G 	
k 	

Fk,I rn, n .: k-rn, 	-n 
k! F 	- 	L 	m! (k-rn)! n! (. -n)! 

m0 n0 

On the left the G 	are simple coefficients of which only a
kg  

• 	 few (with the lowest kand)differ from zero Thus, at x = 1, z = B 2 , 
we find 

Ga2B 2 , 	 G40 24, 

= 2(a 2 
	2 
+B ) , 	 = a 2, 

G 20  = 8 + 2(a+B 2 ), 	 G 11  = 2 

G 30 =24, 	 G 21 2 . 
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All other Gk I vanish. 

The right-hand side of Eq. (5) may be regarded as providing 
a relation between F times the highest occuring derivative of F and the 
lower derivatives, assumed known. In this way the successive 
derivatives of F are readily generated. 

For example, in an expansion to third order in the coefficients 
the six quatities F, F 10 , F 20, F30 , F01 , F 11  have to be calculated 

t a x = 1, z = B . We find 

FBa, 

F 10  = B 
l a + 

F 20  = (B- B 3 ) a + (B + 2B) a' + (-B)a 3  

F 30  = (-3B 3  + 3B 5 )a + (6B 	- 3B 3 )a 	+ (-3B - 3B) 

+ (3B)a 5  

F 01 = 

F 1 -B 1 	-3 	i 	-1 	-1 a+B 	a 

Making use of the expansions 

r = (1e22)2 	

=

Dk(r) 

where D (r) 
 are coefficients for which recurrence relations are given 

in Ref. 	we find 

c 	(0,0) - 	BD (1) 

= 
BD'+BDk') 

ck 	
0) = 	(B 	1-B3) Dk' 	+ (B+2B 1) Dk 	

1) + 
ck )  = 	(3B 3 +3B S )Dk (1)  ± (6B 1 3B 3 )Dk ) 	+(3B3B 1 )D 3 )+ 

(3B) Dk5) 

c 	(0, 1) - 	
B 1  D (1) 

1) = 	- 	B 3 Dk (')  + 	BDk(')  

The higher-order terms are obtained in a similar manner. 
In this way all the coefficients entering the expansionfor the relative 
surface area (or the relative surface energy B) may be calculated by 
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means of recurrence relations for which'generai formulae are available 
for any eccentricity and any distortion specified by 

6 = 	aP 

3. The Electrostatic Energy 

The electrostatic energy of a distorted spheroid is given by 

	

1 	2jr 	 1 	Th± 

 
Ec 	p2 J 	

o 	
J 	d d d h1h2h3 	ii 

d dqc # 0  h1he2h 	1 3  

where PPI is the distance between the points (, r,  4) and  (, ti', 4L 
Here A,stands for i6() and 

If the distorted shape is considered as made up of two parts, 
the spheroid and the distortion, we may decompose Ec  into three terms: 

E =.E 	 +E 	 +E. 
c 	spheroid 	distortion 	interaction 

where 	 - 

	

E 	 v spheroid 	2 	 spheroid, 
spheroid 

	

E 	 = i p 	I 	v distortion 	2 	 distortion 
distortion 

• 	 • 	E 
i 	 .=p 	( nteractio.n 	 spheroid, 

distortion 

where v 
spheroid  , vdistortion are the electrostatic potentials produced 

by the parts indicated. 

We shall derive a general formula for E,  using a method out-

lined by N. Mudd in Ref. 10, according to which the potential of a 
finite di5tortion (in regions of space outside the distortion itself) may 
be represented as a superposition of the potentials due to a series of 
suitable surface charges. 

The potential due to a finite distortion L is 
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1 	27 	110+ 	 /h! h° h'\ 

Vdit = p [ 
d'  J' 	d4 	f 	di 

 (\ 
	PP,3

) .  

-1 	0 

Expanding the integrand ma Taylor series and integrating 
term by term, we find 

Vdit = 	
[ 

d' d 	:0[ 	d11t 

00
h11)P 	

{
8p

( 3 
 ) }= 

1 	Zir 	

rIu=110 

Co 

= p f 	dd 	
(6)P±l 	 (hllh'2h'3\ 

-i

(p±1 	 _ 	ppt 

11= 110 

Mtiddls method consists in interchanging the order of integra-
tion with respect to (, 4) and the differentiations with respect to rj' 

0+1p 	1 	Zir 	 (.r)P+lhfl 

Vdit_ 	(+flT 	P f [ 
h 1 dhI 3 d0 	 (6) 

0 	
a11 	

-1 0 
TV _ 110 

In so far as this interchange is justified (this question has 
not been studied adequately) the potential vdt  has now been expressed 

as a sum from p = 0 to infinity of 10 	/(p+l)! times the pth derivative 

with respect. to r, evaluated at T11 
= 	

of the potential of a series of 

surface charges equal to p(6)P  h' 2 , distributed on a spheroid given 
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by ii' = constant. 

The general formulae for the internal or external potentials 

(< or v>)  at a point i , 4 due to any surface distribution of charge a 
on a spheroid defined by il= are given in Ref. 9. (Ch. 5, Problem 
8). For example, 

< (, , ) = 	 MPm
mn 

v 	 ()Pm() co 	 (7) 

n0 m0 

where 

M 	(1)m(25)kl(2+l) [

]2 	
m() 

 [ 

cos m 	a h 1 h 3d d 

Here P m
, 
 Qm are the associated Legendre polynomials of the first 

and second kind, respectively. In our case the surface charges are in 
the form 

00 

u=ph2 	cnPn(), 

so that we have 
00 

h 1 h 3  a = pk3  (
0

2 	 c P() 

Re-expanding, we may write 
00 

h 1 h 3  a 	pk3 	 X (, c) P 

n 

	() 

where the expansion coefficients Xn  are related to the c through 

u-l)n 	 Z 	1 	2 	n(n+1) 
Xn 

	1 

	

(, c) 	- (2 3,,),(2 n -_TT c2 + 
	 (2n-l)(2n+3)-J c - 

(n+l) (n+2) 
(Zn+3)tzn+5) c+2 	 (7a) 

Substitution inEq. (7) gives 
00 

v<  (, ) = 4pk 	P) 	P()Q( 0 )X(, c) 
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Applying this result to (6), we find for the inside potential of 
a finite distortion the expressibn 

00 

	

v < 	(, 	= 4Tr 	
(p+l) 	

P() 	Wnp (io) Pn 1  
dist 	 p0 	 n0 

	

where 	
TIO p -  lap 

= 	
Q () X (,c+1)) 

• 	 11 =11O 

Similarly the outside potential of a surface charge 

00 

ph 	 cP 
2 	L 	nfl 

0 

on a spheroid TI O  is 
00 

v >  (, ) = 4 pk2 P n 
	Qn (1) Ph0) X  (, c) 

and the outside potential of a finite distoition is 

00 	 00 

V 	 ' 	= 4iipk2i02 	
(p+l)1 	

P() 	U("0) 	n0Q(n) 

where 

TIO 
 p-28p 

= 	
•p 	

• Ph) X (,
TJ 

Mudds method gives the potential both inside and outside the 
distortion, but as one crosses into the distortion there is a discon-
tinuity in the second and higher derivatives of the potential, so that 
the formulae derived above do not apply for points within the distortion. 
In order to overcome this limitation we make use of the fact that if, 
instead of considering the distortion by itself, we consider it simul-
taneously with the spheroid, then there is no discontinuity in any 
derivative of the total potential (i, e., that due to spheroid plus djs-
tortion) when crossing from the inside of the spheroid into the dis-
tortion in regions wheréthe new surface is outside the old, and sum-
ilarly there is no discontinuity when crossing from outside the 
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spheroid into the distortion in regions where the new surface is inside 
the old. Hence the appropriate expression for the total potential may 
be carried over into the region of the distortion and then, by subtraction 
of the potential due to the spheroid (known everywhere), the potential 
inside the distortion may be obtained. 

Consider in particular the case when the new surface is 
entirely outside the spheroid. Then we have 

v dist 	 dist 
(at points within distortion = v 	(dist) 

= v 	 (dist) - v 	(dist) 
new shape 	 sph 

= v 
sph + dist 	 sph 

(dist) - v 	(dist) 

= v 	 (dist) - v > (dist) sph + dist 	 sph 

The first term in the last line means that the expression for 
the:total potential appropriate to the inside of the spheroid may be 
used also in the region of the distortion, since there is no discontinuity 
across the surface of the spheroid. Finally we obtain 

Vdit (dist) = v h(dlst) + v < d. 	(thst) - v > h (dist) 

In this way we have expressed the unknown vdS  (dist) in 

terms of 
'ist' 

 which is available. Using the above relation, we find 

Edit + E t 
 = dit 	

(v<h + 	- vh) + Vh]dist 

< 	> 	< 
= 'thst 	(vh + V sph 	 t) + Vdi 	] . 	 (8) 

The inside and outside potentials due to a uniformly charged 
spheroid are obtained by an integration over contiibutions due to 
spheroidal shells of charge ill to r + 	The result can be written 

vSPh 	 pk2 	P() Ln  h0  
o  

V s h (fly ) = 4pk 2 	 P() ' K 

• where 	 Ti 0  
L = Q(ii) f P(i) X() d' + P() J 	Q(11)X(11)dTi 

1 	 Ti 
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11 0  
K 	Q(T) jP(r) X () dzll  

With 

X 0 (i1)=11 	-•- 

X2 (i)=- 	, 

X(i) = 0 fbr n > 2. 

Evaluation of the integrals gives 

1 	3 	 12 	12 L0 =JIho - h o) Q0 (TI 0 ) 	1 0 	-11 

1 	3 	 ,l 	2 	1 	2 L2 = 	1 0 	1 lO ) - TIO 	+ [_ 	fl() - 

1 	3 	 2 (i 	-ri0)Q0(t10)] 11 

L 	=0, 
n>2 

K 0  = . 1 - (TI O 3 - r) Q0  (ri) 

1 	3 K2  = - - 
	 z (11) 

K 	=0. n>2 

Note also the expression 

(v 	+ Vh) = 4 pk2 L0 P 	) G 	( 10 1) 

where 
G = n 	(K n  +L n ), 

2  

The e1ectostatic energy of the spheroid may be obtained by 
an integral over v sph, with the result 

Eh = E0 	(h 	- 11o)h1/3 Qo(11o) , E °  = - 	rr 2 p 2 R0 5  
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With (v<  + 
1.
v> ) and v< 	available we now substitute sph 	sph. 	dist 

in Eq. (8) -  and carry out the final integration over the distortion, using 
for the second time the trick of expanding the integrand in a Taylor 
series, interchanging the order of integrations and differentiations, and 
integrating term by term (after havin.g first replaced 

n Gn 	by. 	P Xn  (, G) according to 

• 	Eq. (7a)): 

f 2 
1 	< 	> 

p 	•- (v 	+v 	. sph 	sph 
dit 

	

12-it 	
2 	

2 • 	
= p f f 

dd4 	 di1h 1 h 2h 3 	4irpk 	• n 	Qn 1 O 11) = 
•i 0 	 10 	 0 

1 	 4 

= 8-ir 2 p 2k5  f d. 	 X (;G) = 

110 -1

00 

= 8 2 p2k5 	I d 	 - 	

{ 1

0 'ax (1  G)}  

11 = 10 

= 82p2k5105 	
(p+1 	 2n+1 c+) 

11  

• Proceeding similarly, we obtain 

	

di't 	
= -p [ 
	

dd 	 diih 1 h2h3 41rpk 2 10 2  

p0 	
(T) 	o 	

w(n0) n (1) = 
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= 2p2k505 f f dd 	
p,q=O 	

(p+1)(q+1) 

00 

q-2q 
TIO  

W(n0) 	
q 	

X(, 
.(q+l)) 

 P() 
m0 	 71 

00 	 00 	 00 	 71=1 
2 2 5 5 Z Z 	 2 	w 	

0 
4ir 	k n0  	(p+i)! (q+1) 	L 	2n+1 	ip o nq boL 

pO q0 	 n0 

Expressing all energies in units of the electrostatic energy of 

the sphere, E 	 and using k = R0/(n03_n0)h/3, we obtain the final 
result 

3  
B = E° 	

(ee1)1 	Q 0 (e) + 

+ 15 (1.e2)5/3 	
(p+1) 	2n+1 

00  

c n P)T np ( 
e l) 

+ 	(1-e) 	II cO 	(p+l)(q+1)! 	 zç 1
npq 

where 	 r 
I aX(1,G) 

T np (T1o) = 110 

11= 710 

Z npq (no) =  {TIO P 
	a 	 x (1c ( P +1) )Q( fl )} 

{n2 	X(n,c)Ph 

•11= 110 

The above formula, which, when worked out, gives a power 
expansion in the coefficients a. 0 , a, a, ... , was, obtained by use of 
Eq. $), derived on the assumption that the distortion is entirely out-
side the spheroid. This means that, in the first place, the formula 
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is justified only in a part of the deformation space of thea n t s, namely 
the part where a.o satisfies a certain inequality aj > f(a1, a2, ... 
ensuring the required condition. If the total electrostatic energy, 
considered as a function of a0, has no singularities in the neighborhood 
in question, the same power expansion holds also for other small 
distortions, even when the new surface does intersect the old. It has 
been verified explicitly that assuming the new surface to be entirely 
inside the old and using the resulting formula, 

Edist + Eint  = P 	[(vPh + sph 
 + V s t I 

dist 

leads to the same power expansion for Ec  as before, but the validity 
of the formula has not been verified explicitly in the case in which the 
old and new surfaces intersect. The problem of the range of validity 
of the above expansions requires further analysis. 

4. Expansions About a Sphere 

By taking the limit 71 0 	we obtain expansions about the 
spherical shape: 

2 00 

a 	 1 Z Z7 

	

3a0+ 	
n+1 + - 	 L 	(pqr) apaar 

n-U 	 p,q,r-0 

V = 	 + 	 cj. 

In the case of the surface area the expression 

' 

	

F 	2 	 F(xz) 

	

n,s 	n 	s 
ax 8z 

z1 
zB 2  

becomes 

	

F 	 x NFT 1+z 	= 

	

n,s 	.n 	S xaz 
x1 
z1 

	

- 	

. 	

- 

	

L. .L 	.. (s factors) 	(2-2s)(2-2s-1) 

(n factors), 

Hence we have 
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B 	 T 	7 	7 	(s factors) 	(2-2s.)(2-2s-1) 	(n factors$ 

n0 s=0 

In reducing the formulae for the electrostatic energy we make 
use of the following limiting expressions for r - oo 

	

(Zn)! 	n 
n 	n 	2 

2(n!) 

	

_ 2 
n 
 (n!)  2 
	

-n-1 

	

(Zn+1)! 	11  

which lead to 

1 	3-1. 	1 	2 	1 	2
TIO G0 _ - 
	

r 	+ - 1O -  1-2 11  

G/G0  - 0 for n > 0. 

We find further 

X(, c (q+l)
) 	¶12 (q 1) 

X(i, G) - Ti G 

Hence only the term with n = 0 survives in the sum over Tnp(Ilo): 

T0(10) 	

{0P4 . 

	

(1 	
+ 	¶10212-12-11 

= -s-, -- 	, - 2, -2 for p = 0, 1, 2, 3, 4 respectively, 

0 for p > 4. 

The expression Z npq  (10) tends to 
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p-i & 	2 	(p+i) 2(n) 2 	-n-1 
10 	- 	1 C 	

(Zn+l)! 	
fT1=i0 

q-2 	2 	(q+1) 	(2n)! 	n 
10 	 flc 	 11 

- 	 11=10 

(p+l) 	(q+1) 	I c n 	c n 	 ____ 	
n+2 ____ -n+i = 	 x 	 y 2n+l 	 q 	 p [ax 	ay 

xy1 

Hence the formula for the electrostatic energy reduces to 

E 	
_.• ([) 	5 	(2) 	5 	(3) 	5 	(4) 	•i 	(5) 	• 

F (0) 	
1 + 5c 0 	+ •- c 0 	- . c 0  - 	c 0 	- . C o 	+ 

C • 	 oO 	 00 

c (P+l)c (q+l) 

+ 	
(p+l)!(q+l)! 	o 	(2n+1 2  

X (n+2)(n+l) ... (q factors) 	(-n+1)(-n)" (p factors). 

So far the most extensive applications of the general formulae 
have been made to the study of the energy in the neighborhood of the 
spherical shape. We shall present the results of an expansion in which 
the distortion was specified by 

R(0) 	X' R0  [1 + 	an P (cos 9)] = X' R 0 (i+6), 

where n = 0 is not included in the sum, and K is a scale factor provi-
ding an alternative way of preserving the volume. It is given by 

= (V0  + 6V)/V 0  , where V 0  + ÔV is the volume of the shape 

R0  (1+6) 

The energies were worked out to the sixth order in a small 
quantity u, the different coefficients an  being regarded as of different 
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orders in u, according to the following scheme: a 1  of order u 2, a 2  and 
a3  of order u, a4  and a ç  of order u 2 . This choice was designed so 
that terms contrituting fo an expansion of the conventional threshold 
energy to sixth order in the quantity (1-x) would be retained automat-
ically. Terms involving aA, which are also required for this purpose, 
were included later, as well as certain terms in a 7 . In this connection 
we should like to hote that our criticism in Ref. 2 of Nossoff's state-
ment that a 2  is of order (1-x) was incorrect. 

5. The Coefficients c 	and d 

The coefficients c, specifying the expansion of the pth 
power of 5, would occur in any problem where distorted spheres or 
spheroids were used, and they are given, therefore, as fully as they are 
available. The calculations were made with six decimals, all of which 
are reproduced, although rounding off erors affect. the last digit. The 
selection of the terms retained is based,broadly speaking, on the 
scheme explained above. The coefficients are: 

ForpO 

c 0 1, all other cs equal to zero. 

For p 1 

= 0, c 1  = a 1 , C 2  = a2 , c 3  = a 3 , C. 	a4, c 5  = a5  

Forpi 

= 0.333333a 1 2  + 0.200000a + 0,142857a 3 2  + O.111l1la4 2 + 

+ O,090909a 5 2 . 

c 1  = 0.800000a 1 a2  + 0514286a2 a 3  + 0,380952a 3 a4  + 0.303030aa 5 . 

c 2  = 0666667a 1 2  + O.857143a 1 a 3  + O.285714a 2 2  + 0.57 1429a 2 a4  + 

+ O,190476a3 2  ± O.432901a 3 a 5  + O.144300a4 2  + 0.116550a 5 2. 

1.200000a 1 a2  + 0,888889a1a4  + 0.533334a 2 a 3  + 0.606061a2 a 5  + 

+ 0.363637a3 a4  + 0.279720a4a 5  

c 4  1.142857a 1 a3  + 0.909091a 1 a 5  + 0.514286a 2 2  + 0.519481a 2a4  * 

+ 0.233766a 3 2  + 0.359640a 3 a 5  + 0.16 1838a4 2  + 0.125874a 5 2 . 	- 
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c 5 
	

1.111111a 1 a4  + 0.952381ai3  + 0.512820cta5  + 0.439560a3 a4  + 

+ 0.307692ct4a 5 . 

c 6 	1.090909a 1 a5  + 0.909091a 2 a4  + 0.432901a 3 2  + 0.424242a 3 a 5  + 

+ 0.202020a4 2  + O.1426O2c 5  

c 7  = 0.88 11Z0a 2 a5  + 0.815852 3 a4  . 

c 8 	0.783217ci 3 a5 . 

For p = 3 

c0 O . 400000 a1 Z a2  + 0.514286a 1 a 2 a 3  + O,380952a 1 a 3 ct 4  + O.303030a 1 ct4a 5  + 

+ 0.057143a 2 3  + 0.171429a2 2 a4  + 0.114286a 2 a 3 2  + 0,259740a 2 ct 3 a 5  + 

+ 0,086580a24 2 	 a + 0.069930 2 a 5 2  + 0.O779ZZi3 2  a 	 a4  + 0.119880 a 3 a4a 5  + 

+ 0.017982ct 43  + 0.041958a4a 5 2 . 

0.942857a 1 a2 2  + 0,657143a 1 a 3 2  ± 0.514286a 2 2 a 3  + 0.737663a 2 a3 a4  + 

+0.233766a 2 2 a 5  + 0,093506a 3 3  + 0,269730a 3 2 a5  + 0.685714aiaa4  + 

+0.506493cLa 4 2 . 

= 1.57 1429a 1 2a 2  + 1.714286a 1 a 2 a3  + 1,229438a 1 a 3 a4  + 0,779221a 1 a 2 a 5  + 

+ 0.428571a + 0.792208a 2 a 3 2  + 0.595738a2 a42  + 0.480520a 2 a 5 2  + 

+ 0.467533a2a4  + 0.679321a 2 a 3 a 5  + 0,49150932a4  + 

+ 0.749251a 3 a4 a. 5 . 

c 3 	1.53333 3a 1 2 a 3  + 1,200000a 1 a 	± 1.721213a 1 a 2 a4  + 0,654546a 1 a 3 2  + 

+ 1.258742a 1 a 3 a 5  + 1.109092 a2 2 a3  + 1,376224a 2 a 3 a4  + 
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+ 1.048951act4ã 5  + 0.475524u 2 2 a 5  +0337063a 3 3  + 0419580a32a5  + 

+ O . 678322 3a4 Z + O 	a 534348 3 c 5 2  a.   

c4 = Z.212988a 1 a 2 a 3  + 0280520a 2 3  + LO7Z328a2 2 a4  + 0.884716a 2 a 3 2  + 

+ i.348652a 2 a3 a 5  + O.87Z1Z8 2 a4  

c 5  = O . 857143a12 Z + 0989011a 1 a3 2  + O.4753a2a3 + L057143a 2 2 a 5  + 

+ 1.648352aa3ct4  + 0.219780a 3 3  + 0.839689a 3 2 a 5  

c 6 	 ct 1.55844Za2 ct 3  + 0233767a 2 3  + 0,701299a 2 ct 4  + 0649351a 2 a 3  + 

+ 1.588387a 2 a3 a 5  + 0.595875a 2 a4  

c 7  = O.6Z937Zaa 3  + O.185109a3 3 . 

c 8  = 0.559441 2 a3 2 . 

For p = 4 

c0 = O6Z8572a 1 2a 2 2  + O438O95a 1 2 a 3 2  + O685714a1a2Za3  + 

+ 0.983550a 1 a2 a 3 a4  + 0.311688a 1 a2  a s  +0.124675a 1 a3  + 

+ 0.359640a 1 a3 2 a 5  + 0085714a 2 4  + 0.316883a 2 2 a 3 2  + 

+ 0.238295a 2 2 a4 2  + 0.192268a 2 2 a 5 2  + 0124676a 2 3 a4  + 

+ 0.271728a 2 2 a 3 a 5  + 0393207a2a32cL4  + 0599401a2 a 3 a 4a 5  + 

+ O.048152a 3 4  + 0.079920a 3 3 a 5  + 0.193806a 3 2 a4 2  + 0.152671cL32a5 

c 1  O.654546a2 3 a 3  + O.496304a2 a 3 3  + O.914285a 1 a 2 3  + 1.433767a 1 a 2 2 a4  

c 2  3.272729a 1 a 2 2 a3  + 0.827173a 1 a 3 3  + 0259741a 2 4  + 0815186a 2 3 a4  + 

+ L186814a 2 a 3. + 1.678322a2 2 a 3 a 5  + 1.870131a 2 a 3 2 a4  + 

+ O.151848a 3 4  + O5O3O26a 3 3 a 5  

Mil 



UCRL-3991 

c 3  = 1.527273a 1 a2  + 3474128aiaa32 ± 1.107693a2a3.+ 2 ;618184a 2 a3a4

11  
+ O.783l7a 3 a 5  + O.850350a 2 a 3 3  + 2.1127lla23Za5  + O675278a3 3 a4 , 

c 4  = O.366833a 2 4  + l.68fl18a2 2 a3 2  ± 0.217053a 3 4 . 

c 5 
	

1.230770a 2 3 a 3  + l.106658a2 u 3 3 . 

c 6  0187013a24+ 1,503439a22a32 	 a + O.225795 3 4 . 

Forp5 

c 0  1.090910a 1 a2 3 a3  + 0.827173a 1 a 2 a3 3  + 0.051948a2 5  + 0203796a2 4 a4  + 

+ 0.395605a 2 3 a 3 2  + 0.559441ct 2 3 a 3 a 5  + 0.935065a 2 2 a 3 2 a4  + 

+ O.151848a 2 a3 4  + O5O3OZ6a2 a 3 3 a 5  + O.120585a3 4a4 . 

c 1  = 0 to the required order in u, 

c 2  0.264735u 2 5  + 1 . 894773 cL 3  a 32 + 0.767762ct 2 a3 4 . 

c 3  = 1.326341a 2 4a+ Z.l49734aa 3 3  + 0.180742a3 5 . 

The coefficients 	specifying the expansion of the pth power of 

(1- 2 )(d6/d) 2  are given below, again with a selection of terms based 
on the usixth_orderht  expansion discussed previously. 

For p = 0 

d 0  = 1 , all other ds equal to zero. 

Forpl 

d 0  = 0.666667a 1 2  + 1.200000a 2 2  + 1.714286a 3 2  + 2.222222a4 2 + 

+ 2.727273a 5 2 . 

d 1  = 2400000a 1 a2  + 4.114285a. 2 a 3  + 5.714285a 3 cL 4  + 7.272727a4a 5 . 
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d = 3.428572a 1 a + 0.857142a 2 2  + 5.714285a 2 ct 4  + 1.714286a3 2 + 

+ 7.792208a 3 a5  - O.666667a 1 2  + 2.453101a4 2  + 3.146853a 5 2 . 

d 3 = 4.444446a 1 a4  + 1.600001a 2 a 3  + 7.272729a2a5  + 3.636363a3 a4  - 

- 2.400000a 1 a2  + 5.314686a4a 5 , 

= 5.454547a1a 5  + 1.558441a 2 cL4  + O467532a 3 2  + 3.956 044a 3 a 5  - 

- 3.428572a 1 a3  + 1.618382a42 - 2.057142a 2 2  + 2.517482a 5 2 '.. 

d 5  1.538462a 2 a5  + 0.4395606 3 ã4  - 4.444445a 1 a4  + 3.076922a4a 5  - 

- 5.714285a 2 a. 3 . 

d6  = -5.454549a 1 a 5  - 0,202020a4 2  7.272728 2 a4  + 1.283423a 5 2  - 

-3.896105a 3 2 . 

d7 - 8.811190a2 a 5  - 9.790209u3 a4 . 

d 8  = - 11.748256a 3 a5 . 

For p = 2 

d0  = 4.114285a 1 2 a 2 2  + 5.485716a 1 2 a 3 2  + 2.057142a 2 4  + 13.464933a 2 2 a 3 2  + 

+ 16.303695a 2 2 a42  + 19420581ci2 2 a 5 2  + 4.718483a 3 4  + 

1 	
+ 28.771222a 3 2 a4 2  + 33.002302a 3 2 a5 2  + 8.228568a 1 a 2 2 a 3  + 

+ 19.948055a 1 a 2 a3 a4 + 25,318681ct 2 c& 3 2 a4  + 57542450a 2 a3 a4a 5 + 

+ 1.994806a 1 a3 3  + 11.508496a 1 a3 2 a 5  + 1,246751a2 3 a4  + 

+ 2.589410a 2 2a 3 a 5  + 5.754246a 3 3 a 5  - 7.480518a 1 a 2 2 a 5 . 

El 

-41- 



UCRL-3991 

d 1  = 15,709085a 2 3 a 3  + 26239368 2 a 3 3  

d 2  = 18.701302a 1 a 2 2& + l.870127a 2 4  + 14865133a 2 3 a4  +25894O98a2 2 a3 2  + 

+ 38841177a2 2 a3 a 5  + 16.879128a 1 a 3 3  + 92.067936a 2 a3 2 a4  + 

+8.055944a3 4  + 47.049420a 3 3 a 5 . 

d 3  = 0402796a 2 3 a 3  + ZZl5385Oa3a5  + 322Z377la22a3a4 - 698l816Q 1 a 2 3  + 

+ 128895O8a 2a 3 3  + 75.346808a2 a 3 2 a 5  + 2969641Za 3 3 a4  - 

-c:L61187a 1 a 2a 3 2 , 

d4  = - 18.643756a 2 2  u 3 2  - 4.790408a 2 4  + 0.426489a 3 4  

d 5  -22.153836 2 3  a 3  - 32 	a a O2O693 23 2  a  

d6 	 2 3 	 3  = -35.642471a 2 a 2  - l48ZZO88ã 4  - O.748051a 2 4 , 

Forp3 

d 0  = 3.884112a 26  +62145826a 2 4a 3 2  + 104.185712a 2 2a 3 4  + 

+ 15315209a 3 6 . 

6, The Electrostatic, and.. Surface Energies 

TheeectrOstatic and surface energies as well as the scale 
factor X 3  were first calculated for the shape R0 (l+ô). The energies 

-i 
of the volume-preserving,shape ) R(l+5) were then found by 

multiplying by the scaling factors X and X 	respectively. 

The result was 

B 	E /E (0) = 

1.000000 - 0200000a2- O.204081a 3 2  - 0,185186a42  - 

-O.165289cL 5 2  + O,133333a 1 2 a 2  - O.l95919aiaa3 - O.272108a 1 a 3 a4  - 

-0.275483a 1 a4a 5  - 0038095 a 2 3  - 0.171430a22a4 - O.l25l71a2a3-.- 
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-O.335075a23a 5  - O.115440a2 a4 2  - 0.103835a2a52 - O . 11131 3 2 4  - 

-0.194610 u 3 a4 a 5  - 0.029970a43 * 0,076287a45 2  +0,601358a 1 2 2 2  + 

+ 0.397278a 1 2a 3 2  + 0.440816a 1 a2 2 3  + 0.418193a  1 a 2 a3 a4  - 

- 0.046551a 1 a2 2 a 5  + 0.035622a 1 a3 3  + 0.082156a 1 a3 2 a 5  + 0.208163a 24  + 

+ 0, 534345a23 2  + 0,383651a 2 2  a 4 2  + 0.305995a 2 2a 5 2  + 0.032652a 2 3 a4  + 

+ 0 . 030342a2 2 	,3 a3a5 + O11275a 2 a 3 2 ct4 .+ 0,374710a2 a 3 a4a 5  + 

+ 0 166812a 3 4  + 0 036620a 3 3 a 5  + 0 419291a 3 2 a4 2  + 0 318544a3Za52 + 

+ 0,445944a 1 a2 3 a3  + 0.397171a 1 a 2 a3  + 00465082  + 0.208406a 2 4a4  + 

+ 0271293 2 3 a 2  + 0451810a 2 3  a a35  + 0,554265a 2 2 a3 2 a4  + 

+0147106a2 a 3 4  + 0.425058a2a 3 3 a 5  + 0,129865a 3 4a4  - 0,182764a 26  - 

0827188a24ci32 - 0.750764a2a34 - 0,197173a 3 6  + 

(10) 

B =E/E ° = 

1.000000 + 0.400000a2+ 0.714286a 3 2  + i.000000a4 2  LZ7272a 5 2  - 

- 0 342858a 1 a2 a 3  - 0 038095a 2 3  - 0 114Z86a2c4 - 0 076 191 a3 Z - 

- 6.173160a 2   a3 a 5  - 0 051948a 3 2 ct4  - 0 266667a 1 2 ct 2  - 0.253968a 1  3  aa4  - 

.0,2020, 20a 1 a4 ci 5  - 0057720a2a42 - 0046620a 25 2  - 0079920a 3 a4a 5  - 

-0.. 11988a43  - 0.027972t4a 5 2  - 0.647619a 1 2 a 2 2 	1.066668a 1 2 a3 2  - 

- 0.377143a 2 4  

- 0.773483a 3 4  

- 2.493507a 1 a2  

- Z.025974a2a32 

- 4.009101a 3 2 a4 2  

a3 a.4  - 3.164835a 

- 2.482406a 2 2 a4 2  - 2.973027a 2 a 5. 2  

- 4.592820a 3 2 a 5 2  - 1.028571a 1 a2 2 a3  

2 
? a3 a4  - 7.192806a 2 a 3 a4a 5  - 
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- 0.249351a 1 a3 3  - l.438562a1a32a5 - 0.155844a 2 3 a4  - 0.323676a 2 2 a3 a 5  - 

- 0.719281a3 3 5  + 0935065a1a22a5 + 2,06377a 1 a2 3 a3  + 

+ 2.875068a 1 a 2 ct3 3  + 0.101126a 2 5  + 0.633047a 24a4 + 1.313444a 2 3 a 3 2  + 

+ 2.264404 a 2 3 a35  + 5.214100a 2 a 3 2 a4  + 0.841368aa 3 4  + 

+ 4.266212a 2 a3 3 a5  + 1,057591a 4a4 + 0.309053a 2 6  + 3,414835a 2 4a 3 2  + 

+ 5.424081a 2 2 a 3 4  + 1.001962a 3 6  + 

(li) 

The center of mass of the shape undergoing the distortion may.  
• 	 be held fixed at the origin by making a 1  a suitable function of the other 

a's, in such a way that the expression for z, given by Eq. (9)  is equal. 

to zero Working within the Usixth_orderhl  approximation, the following 
• 	expression for a 1  was used: 

• 	 = - 0771429a2 a 3  + 0.411429a22a3 - 0.093506a 3 3  - 0.57 1428a 3  a4  :+ 

+ 0.069996a 2 3 a 3  + 0.495071a2a33 - 0.051950a 2 a 3 a4  0.454545a4d 5  

- 0.233766a 2 2 a 5  - 0,269730a 3 2 a 5  + 

Substitution of this expression in Eqs. (10) and (11) resulted 
in the following formulae: 

B c 	

1.000000 -.0.200000a2 2  - 0.204081a 3 2  - 0,185186a42 - 0,165289a 5 2  - 

- 0.038095a23 - 0.171430a 2 2 a4  - 0.125171a 2 a 3 2  - 0.335075a2 a 3 a 5  -• 

• 	 - 

 

0.115440a2a42 - 0.103835a 2 a 5 2  - 0.111317a3 2 a4  - 

0.194610 3 a4a 5  0.029970a43 - 0.076287cL 	+ 0.208163a 2 4  + 

+.0.685483a2 2 a3 2  + 0.383651a 2 2 a4 2  + 0.305995a 2 2 5 2  + 
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+ 0 . 03265. 2 a 3  cL 4 + O.030342a 2 2 a 3 a 5  + O.633141aa32a4  + 

+ O.676Z8Oat3a4a5  + 0.166812a 3 4  + O,036620a 3 3 a 5  + 

+ 0.74781a3 2 a4 2  0.318544a 3 2 a 5 2  + 0.046508a 2 5  + 0.208406a 2 4 a4  - 

- O.070025a 2 3 a3 2  +  0 .533520a 2 3 a 3 a 5  - 0 .004460a2 2 a3 2 a4  + 

+ 0.137946a 2 4  + 0.414526a23 3 a 5  +0.134953a 3 4 4  

- 

 0.182764a 26  0.730318a 2 a 3 2  - O.9Z5O53 2 2 a3 4  - O.200504a 3 6  + 

(1Z) 

B 
S 

= 1. 0000 00 + 0.400000a 2 2  + 0.714286a 3 2  + 1,000000a4 2  + 

+ 1.272727a52 - 0.038095a 2 3  - 0.l14286a2 2 c 4  - 0,076191a2 a 3 2  - 

- 0.173160a 2 a3 a 5  - 0.05772•0a2a42 
- 

O.046620a 2 a 5 2  - 0.051948a 3 2 a4  - 

- 0.079920a 3 a4a 5  - 0.011988a4 3  0.027972a4a52 
- 0 . 377143 a 4  

1.76i483a 2 2a 3 2  -Z482406a 2 2a4 2 - Z,973027a2a52 - 0.155844a 2 3 a4  

• 	

- 	
23676a 2 2 a 3 a5  - Z,77Z998a 2 a 3 a4  - 6.881118a2 a 3 c 4a 5  - 

0.77348a 3 4 - 0,719281a33a5 - 3..863977a32a42 
- 4.592820a 3 2 a 5 2  ± 

• 	 + 0,101126a 5  + 0.63304a 4a + l.807157a3a2  + 1,6Z3216a 2 3 a3 a 2 	 2  4 	 3 5  ~ 

+ 7,40367a2 2 a 3 2 a4  + 1.06 5784a 2 a 3 4  + 5.468440a 2 a 3 3 ci 5  + l.223825a3 4a4  + 

+ 0.309053a 26  + 1,1S9778a 4a 3 2  + 2,356,770a 2 2 a3 4  + L025278a3 6  + 

(13) 

In comparing the coefficients Of the terms up to fourth order 
in a with the explicit formula of Ref. 3, an error was found in Nossoffs 
formula for B in the term resulting from the condition of a fixed cenlr 
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of mass (the term in a aI a 	, discussed in Ref. 2). 
m in +1

a 
 n n +1 

- 	 Nossoff's expression (Ref. 2) 

00 

- 	 + 45 	
(n+1) (m+1) 	

a a 	a a 	+ 
m, n2 (2m+1)(2m+3)(2n+1)2(2n+3) m m+1 n n+1 

should be replaced by 

00 

rn+l 	•. (n+1)(4n 2 -n-6) +90 	/ 	 a,a 	aa 	+... 
2m+12m+3 	 2 	2 in m+1 n n+l 

	

in, n=2 	 (2n+1) (2n+3) 

• 	After this.correction all the coefficients up to fourth order are 
consistent, as regards both B  and B 5  (except for rounding off errors 
in the last decimal) 

3 	
Additional terms involving a6  and a , considered as of order 

u , were evaluated directly by use of Nossofs (correc1d) formula 
(The center of mass is therefore fixed, and a 1  does not appear), The 
•result was 

:Bc 	Eq. (12) 

- 0.147928a6 2  0,306616a2 a4a6  - 0.022131a2 3 a6  - 

-.133333ä 7 2  - 0..155522a3 2 a6 	O171483a 3 a 5 a6  - O.279720d3 4  aa7  - 

- 0.277685a 7  - 0.066478a 2 2 a3 a7  - 0,003226a 2 a3 2 a6  - 0.084465a 2 a 7 2  - 

- 0.058923a4 t7 2  + 0.185206a 2 2 a7 2  + ,.• 

 
• 	B 5 Eq. (13) 	+ 

+ 1.538461a6  - 0.139860a2 a4a6  + 0.503496a 2 3 a6  + 

•+ 

 

1.800000a 7 2  - 0666600 3 2 a6  - 0.065268a 3 a 5 a6  - 0.108780a 3 a4a7  - 

J0.117482a2 a5 a7  + 2.013986a 2 2 a 3 a7  + 0.000000a 2 a 3 2 6  

- 0.033786a 2 a7 2  0.019641a4a72 - 3.985256a 2 2 a7 2  + 
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• 	The above formulae, together with Nossoffs foüi'th-brder 
expressions, provide a fairly comprehensive desription of the energy 
of a slightly distorted drop possessing axial symmetry. Only a 
fraction of the information contained in them has been explored. In 
the following sections we present some of the results of applications 
that have been made. 

7. Small ymm.etric Distortions 

Cpnfining ourselves to symmetric distortions, we 
the total ,deformaion energy in units of E 5 ( 0 ), given by (B 5 -l) + 
+ 2X(Bc_1)  as 

(0.000000 4- 0.40O00uci 
2• 
 (-0.114285 4- 0,076190i1)a 	+ 

sym 	 2 	 2 

+ (0.039183 - 0.416326u)a 2 4  + (- 0.457144 + 0.342858ü)a 2 2 a4  + 

+ (0.629630 + 0.370370ü)a 4 2  +(0.194142 - 0,093016u)a 2 5  + 

+ 0090538 - 0,065306)a 2 3 a4  + .0.288600 + 0.230880u)a 2a4 2 ' ± 

+ (-0.056475 + 0.365528u)a26  + (1.049859 - 0.46812u)a 2 4a4  + 

+ (-1.715102 - 0.767304u)a 2 2 a4 2  + (-0.071928 + 0.059940u)a 43  + 

+ (0.459233 + 0.044263u)a 2 3 a6  + (1.242604 ± 0.29585u) 6 2  + 

+ (-0. 753093 + 0.613233u)a 2 a4a6  + 
(16) 

Here u stands for l-x, 

The above function of a, a4 , and a6  is stationary for several 

distinct sets of the three variables (in addition to a 2  = a4  a6 = 0). 

For x values in the range 0,7 to 0.1, however, all but one of the sets 
occur at distortions so large that the expansion, is not expected to be 
reliable, and it is not known whether any significance is to be 
attached to those saddle points. 

The family of the conventional saddle-point shapes which 
• include's the sphere for u = 0 may be studied by solving the system of 

equations 
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---=0 	 =0 
3ct 2 	 ' 	 8a4  

in successive orders of u. The result is 

0 
3 

2.333333u - 1.22617Ou 2  +9.499768u 3  - 8.050944u4  

4)sp  = 1.976474u 2  - 1.695026u3  + 17.741912u4  + ,,. 	 (16a) 

6 ' sp = - 0.949967u + ... . 

Substitution in Eq. (16) gives the expansion to order (1-x) 6  of 
the threshold energy, 

= 0.725926u3  - 0 330239u4  + 1.920798115 - 0.212537u 6  + ... 	(17) 

No coefficient in this expression would be affected by the 
inclusion of further terms in the expansion of the deformation energy 
in powers of a 

n 

Because of the cancellation of large terms there is a loss of 
accuracy, especially in the last term, which may amont to several 
units in the fourth decimal place in the coefficient of u 

The saddle-point shapes, as calculated in four orders of approxi- 
mation forx = 0.7, are compared in Figs. 12(a), (b)" (c), (d) with the 
shape calculated in Ref. 2. Figure 13 shows a comparisoti of the 
trends with x in the radius vectors of these shapes at angles of 00,  40 
and 90°. 

• 	In Fig. 14 the sixth-order expansion for the threshold energy 
is compared with previbus calculations. 

The above results, which give the energy and location of the 
saddle point as a function of x, may be modified to yield the energy of 
a dropwith a fixed x, distorted anywhere along the family of saddle-
point shapes as specified, for example, byEq. (16a), or by the shapes 
in Fig. 8 of Ref, 2. Let us label this se4uence by a parameter t, equal 
to the value of 1-x at which the shape in question is a saddle-point 
shape (compare.Ref. 4). Let the quantities (B 5 -i) and (Bc_i),  con- 

sidered as functions of t, be denoted by f(t) and g(t) 1  respectively. 
Then the deformation energy (always in units of E 5 0 )) of a drop 

carrying a charge corresponding to a value x (=1-u) and deformed to 
a shape specified by t is a function of u and t which we shall write as 

(u,t): 

SUM 
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(u, t) = f(t) + Zxg(t) 

	

= f(.t) + 2g(t) 	Zug(t). 

Taking u = t corresponds to selecting. a seqience of saddle-
point configurations, whose energy 

	

(u, u) 	f(u) + 2(1-u)g(u) 	F(u) 	 (18) 

is a function that gives the threshold for a given u, and to which an 
approximation is provided, for example, by Eq (17) 

As outlined in Ref. 2, the functions f and g may be derived 
from the key function F as follows. At the saddle point the energy is 
stationary with respect to all displacements, so thatwe ha.ve 

tat) 
\ jtu 

i. e, 
P(u) + 2g 9 (u) - 2ug'(u) 	0. 	' 

On the other hand it follows from Eq. (18) that 

F(u) f(u) + 2g(u) - 2g(u) - 2ug(u) 

Combining these equations, we find 

g(u) = - 	F(u) . 

With g available, f follows from Eq; (18): 

f(u) = F(u) + F°(u.) - uF(u) . 

The relative electrostatic energy along the t—family of shapes 

	

is then found to be given by 	 ' 

B 	1+g(t) 	1-1.088889 t 2  + 0.660478 t 3  - 4.801995 t4  + 0.6376 11 t 5  + 

• and the relative surface energy is 

B = 11(t) = 1+2 177778 t2 - 2.772808 t 3  + 10 594707 t4  - 8.958414 t 5  + 

• 	+ 1.062685 t6  + .. 

The total deformation energy for any u, t can now be written 

	

entirely in terms of F and its derivative: 	' 	 • 

	

(u, t) 	F(t) + (u-t)F(t). 	 • 
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We verify that the derivative 

(u, t) 	
(u-t)F"(t) 

at 

vanishes for u = t. 

The second derivative of the energy with respect to t is 

= - F(t) + (u-t)F!(t). 

- 	For a saddle-point shape this becomes -F"(u), where 

4.355556u - 3.962868u 2  + 38,415960 	- 6376110u4  + 

It follows that for an x value at which the threshold function 
F(u) is concave upwards a t-type distortion away from the saddle point 
is towards decreasing energies, but when F(u) is convex, a t-typ€ dis-
tortion is towards increasing energies. The former situation occurs 
when x is close to 1; the latter is exemplified, for example, in the 
limiting case of x << 1, discussed earlier. At anx•value where there 
is a point of inflexion in F, a t-type distortion correspondsto moving 
away from the saddle point along an equipotential. 

Limited studies of the neighborhood of the family of saddle-
point shapes were made, as regards both symmetric and asymmetric 
distortions. For small symmetric deviations we may write the 
additional distortion energy - 

	
as sp 

- 	
x 2  + by 2  + cz 2  + 2dy + Zexz + Zfxy, 

sp 

where 

'sp 
xa2 -a2  

y 
sp 

= 

sp za6 -a6  

and a, b, c, d, e, and f are functions of u. 

The expression for - 
	

may be thought of as an equation 

of a family of equipotential surfaces of second degree For u close to 
0 they are families Of hyperboloids centered at the point x y z = 0. 

A change of coordinates, 
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x = kx + ly + mz, 

y = ux + vy + wz, 

px + qy + rz, 

maybe used to transform to principal axes, so that - 
	

becomes
sp 

- a sp , 
	X 2x 2 +X4y+ 6z' 2 . 

The eigenvalue.s X 2 , X4,k 
6 
 are found.by solving the determinant 

a-X 	 f 	 e 

f 	 b - X 
	

IJ 

e 	 d 	 c-X 

They may be used to study the stiffness" of the saddle-point 
shapes. against the distortions corresponding to displacements along 
the principal axes whose orientations in a 2 , a4, a6  space, as given by 

the direction cosines kim, uvw, pqr, may be found by standard methods. 
Theusüal procedure of solving to successive powers in u gave the 
following expansions: 

= - 0.399995u - 0,476892u 2  + 6.830759u3  + 4,221224u4  + 

0.629630 - 0.303030u - 7.064607u 2  + 

= 1.242604 + 

The functions X 2 .and X4  are plotted in Fig. 15. 

8. Asymmetric Distortions 

Consider the energy associated with an asymmetric distortion 
specified by a 1 , a 3 , a 5, a7  around the symmetric saddle-point shape. 

For small distortions the problem again reduces to the study of 
equipotential surfaces of second degree, this time in four dimensions 
and with four principal axes. Along one of these axes, the one assoc-
iated with a shift of the center of mass without intrinsic change of 
shape, the energy is found to be constant. The equipotential surfaces 
are therefore four-dimensional cylinders with three-dimensional 
cross sections in the form of ellipsoids or hypero1oids. (For x = 1 
the axis of the cylinders is the a 1  axis. For x < 1 the axis points in 

some general direction in a 1 , a3 , a5 , a7  space. The constancy of the' 
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energy along this axis would be exact in a many-dimerional space 
with all the a 1 's displayed; in a limited subspace like the one we are 

considering the constancy holds only up to a certain order in u). 

Instead of studying the equipotential surfaces in four din en-
sion.s we may restrict ourselves to a study of a suitable section of the 
cylinder by a three-dimensional hyperplane in four dimensions. Two 
cases are considered. Inthe first the plane is taken at right angles 
to the axis of the cylinder, so as to contain the remaining three prin- 
cipal axes. The stiffness of the system against distortions along these 
principal axes may then be studied as before. 

The second case corresponds to studying a section of the 
four-dimensional cylinder by a hyperplane so oriented that points with-
in this plane correspond to distortions that leave the center of mass of 
the drop at the origin. Contrary to what was expected, the normal to 
this plane does not coincide with the direction of the axis of the four-
dimensional cylinder (representing pure shifts of the center of mass), 
except in the case x = 1, when the saddle-point shape is a sphere. As x 
deáreases below 1 the two directions diverge at a rate proportional at 
first to (1-x). The ellipsoidal or hyperboloidal families of three-
dimensional surfaces defined by the new section of the cylinder are 
therefore not identical with the previously mentioned family containing 
the principal axes. 

We illustrate the second case first. It may be verified that 
taking a section of the four-dimerional cylinder by the u cons tant_ 
cehter-of-mass plane U  and then projecting the resulting three-dimen-
sional figures from the space defined by the section onto the three-
dimensional space of the a3 , a 5 , and a7  coordinates corresponds, 

alebraicälly, to using the expressions for the deformation energy in 
wiich a 1  has.been eliminated by the center-of-mass condition (Eqs. (14) 

and (15)). The result may be written 

- 	
= aa 3 2  + ba5 2  + ca7 2  + Zda5 a7  + Zea3 a7  +2fa35  

where a, b, c, d, e, f are functions of u (different from the functions of 
Section 7). IJiagonalization of this expression led to the following 
expansion for the eigenvalue X 3  (which belongs to a3  in the sense that 

it reduces to the coefficient of a 3 2  in the limit u - 0): 

= 0.306122 - 0,353739u - 3,206288u 2  +,442375u3  - 

- (3,837496)u4  + 

This result is plotted in Fig. 16. The last.term is not the 

exact coefficient of u 4, because one of the ccmbinations of a Is 

necessary for its evaluation was not available, - 
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As an illustration of the more direct procedure, in which the 
diagonalization is carried out without the elimination of a 1 , we present 

the results of a more restricted calculation in whicha 6  and a7  were 
not included, and the expression 

2 
- 	= aa 1  + ba3  + ca 5  + 2da3 a 5  + 2e a 1 a5  + 2fa 1 a3  

was brought to principal axes. The functions a, b, c, d, e, f (not 
the same as before) are given explicitly by 

a =0.0 + 0.Ou + 2.4000.00u 2 	 ,.. 

b = 0306 122 - 0,353739u - 4.770074u + 9,009821u 3  + 37,569611u4  + ., 

c = 0.942149 - 0.262770u - 12.415024u 2  + ... 

d = 0,0 - 0.983864u + 0.119320u + 2.218091u 3  + 

e = 0.0 + 0.Ou + 1.547881u 2  + 

f = 0,0 - 0.857142u - 0.28 1225u 2  + 10.455021u 3  + 

The eigenvalues •X, 	were found to be given by 

2 
= 0.0 +0.Ou +0,Ou 

= 0.306122 - 0.353739u - 3,892004u 2  + 13.944823u3  + 6.586599u4  

= 0.942 149 - 0262770u - 10.893095u 2 . 

Some of the higher-order terms in the above expressions 
would be affected by the inclusion of further combinations of a's in 
the energy expansions. 

In the space of a 1 , a 39  a
5  the orientation of the "pure center-

of-mass shift" axis was found to be specified to lowest order in u, by 
the following unnormalized directio.n cosines 	(1.0, 2.800000u, 0.0u). 
This is the direction along which the energy is constant; it may be 
verified directly, by a purely geometrical re-expansion of the symmet-
ric shape about an axially displaced origin, that this is indeed the 
direction of an over-all center-of-mass shift. 

The unnormalized direction cosines of the normal to the 
"constant-center-of-mass plane" are given to lowest order in u, by 
(1.0, 1.800000u, 0.0u). 

The above examples are meant as illustrations of the methods 
that may be used in a systematic mapping of the potential energy, of a 
charged drop. As regards quantitative results it would seem that for 
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x values below about x = 0.8 expansions about spheroids rather than 
spheres are necessary. In the case of th.e threshold energy, however, 
the sixth-order expansion in (l-x) would appear to be remarkably 
accurate down to x = 07 or perhaps even lower. This may be 
associated with the fact that the threshold energy, unlike the other 
quantities for which power expansions have been considered, is 
invariant with respect to the choice of distortion coordinates, and its 
rate of convergence in an expansion in powers (1-x) is governed by 
the criterion (1-x) << 1, rather than by the related but not identical 
criterion a << 1 n 
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APPENDIX 

1 
Some of the coefficients (pqr) P 

p 
P P r  d 	supple- 

q 

menting the more restricted table of Ref. 2 are given below. 

(156) 	= 12/143 (457) 	= 560/21879 

(167) 	= 14/195 (477) 	= 4536/230945 

(178) 	= 16/255 

(556) 	= 160/7293 

(277) 	= 112/3315 (558) 	= 980/46189 

(279) 	= 72/1615 (5, 5, 10) = 1512/46189 

(567) 	= 840/46189 

(347) 70/1287 (578) 	= 720/46189 

(356) 	= 14/429 (5, 7, 	10) = 	1540/96577 

(358) 	= 112/2431 (5, 7, 	12) = 	4752/185725 

(367) 	= 336/12155 

(378) 	= 504/20995 

10) = 	80/2261 
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Fig. 1. The energy released in the division of a drop into n equal 
parts, as function of the fissionability parameter x.• 

-57- 



I ,  

U 

> 

( 

tJCRL-3991 

c:a 

Fig. 2. The deformation energy for spheroidal distortions as function 
of the ratio of axes, for different valueq of x. The unit of energy 

• 	 in this and the following figures is 	the surface energy of 
the  undistorted drop. 
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CONVENTIONAL THRESHOLD 
FOR (l-X)<<i 

x 

Fig. 3. The energies of families of saddle-point shapes for x << 1 and 
the energy of the conventional threshold for x - 1. The dotted 
lines correspond to the first-order approximation, the dot-dash 
curves correspond to an estimate of the second-order approximation. 

-59- 



UCRL-3991 

a4  

Fig. 4. An attempt to illustrate schematically the relation of, the 
potential-energy valleys associated with divisions into different 
numbers of fragments to the locus of spheroidal distortions in 
the space of deformation coordinates specifying the shape of 
the drop. 
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Fig\. . A schematic map of several potential-energy valleys separated 
from one another and from the, hollow around the spherical con-
figuration by saddle points A, B, C. The map corresponds to the 
case when the energies of the saddles are in the order E(A) < E(B) < 
•E(C). The dashed line represents the locus of spheroidal distortions. 
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Fig, 6. The deformation energy of the symmetrical configuration of 
two equal spherical fragments connected by a small cylindrical 
neck of length I and radius r, plotted as function of r/R 0  and 

where R0  is the radius of the original sphere. An .expres- 

• sion valid approximately for x << .1 was used, with the value 
x = 0.384 inserted in the equation. The saddle point is indicated 
by an arrow and the directions leading to the one- and two-frag-
ment valleys are shown. 
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L 

Fig. 7. Threshold energies for x << 1 and the deformation energies of 
spheroids with various ratios of semi-axes, c: a, plotted as 
functions of x. 	 - 

-63- 



UCRL- 3991 

JL 

I.c.) 	I 	I 	I 	I 	I 	I 	I1.0 

4o0  

05 - 	 6.98 	 - 0.5 

	

453 	 - 

7.18 

4.72 

I 	I 	I 	I 	I 	I 	I 

Fig. 8. Threshold energies for x << 1 and the estimated deformation 
energies of cylinders with hemispherical .ends, for different ratios 
of the semi-axes, c: a. The surface energies are exact but the 
elecrostatic energies of the cylinders were estimated by replacing 
them with strings of 2, 4, 6, 8, 10, or 12 tangent spheres with the 
same volume and the same over-all length 2c, (Hence the sequence 
of fractional ratios c: a. 

) 
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• 	 .. . :. . 

I 

a 2  

Fig. 9. Three maps showing schematically the relations between the 
• 	two- and three- fragment valleys for different values ct.x. In 

(a) the threshold B is higher than A, E(B) >E(A), and low-energy 
fission must proceed by way of the two-fragment valley. In (b) 
E(B) = E(A) and in (c) E(B) < E(A), and a competition between 
the two valleys would be involved. 
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- 	 0 

• Fig. 10. Theenergies of two symmetric and two asymmetric families 
of equilibrium shapes (in units of E5't0))  plotted as functions of x. 
The line AG refers to two eual spherica.l fragments at infinity 
(compare Fig. 1). Beyond the point of bifurcation at x = 1/5 two 

• 

	

	 unequal fragments at infinity also have an energy stationary with 
respect to all deformations - this energy is shown by the curve 

0 	 EF. The curve ABC is the conventional threshold (interpolated on 
the assumption that the curve for x - 1 goes over into the curve 
for n 2 when x << 1). Beyond the estimated point of bifurcation 
at x 	0.38 an asymmetric configuration of equilibrium with energy 

• 	giYen by the curve D appears, The curves EF and BC intersect 
atx0.724. 	 •..) 
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(0) 00 .X= 0.100 

(b) 

 
X= 0.384 

(C) 	 X: 0.474 

(d) C~O X: 0.601 

Fig, 11. Configurations of equilibrium estimated by making the energy 
stationary for a restricted family of shapes consisting of two 
spheres joined by a cylindrical neck. A further approximation was 
the use of an expression for the energy that is valid only when the 
.neckis small. The cases (a) and (b) refer to the symmetric saddle 
point shapes. Beyond x —0.38 asymmetric equilibrium shapes 
illustrated by (c) and (d), appear. The energies of the shapes(a), 
(b), (c), (d) are given by the curve AD in Fig. 10. 
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• 	... 

Fig. 12. The conventional saddle-point shape for x 0.7, as calculated 
in four approximations using an expansion about the spherical 
shape. The circles refer to the saddle-point shape calculated in 
Ref. 2, based on expansions about spheroids. The last figure s  (d), 
is not the exact result to fourth order in (1-x): with the avail-
able expansion coefficients, a.P and ctP could be calculated to 

order (1-x) 4 , but aP only to order (l-x) 3  and aP was not in-

cluded at all, although it would be of order  
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.Fig. 13. The radius vectors of saddle-point shapes (in units of R 0 ) 

plotted against x for 0 = 0 0 ,  40 0 ,.  900. The four sets of curves 
labeled I, II, III, IV' refer to calculations to order (l-x), 

23 	 4 
(1-x) , (l-x) and (l-x) , but the last one suffers from the 
limitations mentioned under Fig, 10. The points on the right are 
from expansions about spheroids, Ref. 2. 
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Fig. 14. The energy of the conventional threshold (in units of 	and 
3 

divided by (l-x) ), plotted against x. The four curves labeled 
I, II, III, and IT correspond to expansions for the threshold to 

34 	5 	 6 order (l-x) , (1-x) , (1-x) , and (l-x) 	The coefficients of all 
terms, including the last, are exact. The circles are from Ref. 
2; in the range of x values from 0,6 to 1.0 they differ from the 
fifth- or sixth-order curves by less than 1 4%. 
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Fig. 15. The stiffnesses X and X of the conventional saddle-point 

shape against distortions along two of the principal axes in a 2 , 

a4, a6  space, plotted against x in different orders of approximation: 

to.first, second, third, and fourth powers of (l-) in the case of 
and to the first and second pQwers of (l-x) in the, case of 

a 
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Fig. 16. The stiffness of the conventional saddle-point shape associated 
with a distortion along a principal axis in a 3 , a5 , a7  space (see 

text for a more precise definition of 	The same remarks as 

in the legend to Fig. 13 apply to the four orders of approximation 
labeled by I, II, III, and IV'. 
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