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Liquid Sodium Pump for the Purification of Inert Atmospheres 
Russell K. Edwards; Raleigh L. McKisson·, and LeRoy A. Bromley 

Radiation Laboratory and Department of Chemistry 
University of California, Berkeley, California 

September 28, 195.0 

Abstract 
To maintain inert gas 11dry-boxes 11 free of water, oxygen and other 

.oxidizing gases a liquid sodium pump and contacting tray have been 

dev'3loped. The dry-box gas is circulated over str.eams of molten 

sodium. 

With this apparatus it is easy to obtain and maintain an atmosphere 

whose reactivity is less than the best vacuums obtainable in which 

comp~rable manipulations may be accomplished. 
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Liquid Sodium Purnp·for the Purification of Inert Atmospheres. 

Russell K. Edwards, Raleigh L. McKisson 9 and LeRoy A. Bromley. 
Radiation Laboratory and Department of Chemistry 

University of California, Berkeley, California 
September 28, 1950 

Research requiring the use of inert atmospheres of very high 

purity has necessitated the development of a scavenging device capable 

1 2 
of removing traces of oxygen and water vapor from a closed system ' • 

In the work cited and in similiar work being conducted in this labora-

tory, certain handling and sampling operations are required to be 

carried out on very reactive metals and alloys. The usual technique 

of sweeping the working chamber - the dry-bo~ - with inert gas proved 

to be inadequate because of desorption of gases from newly admitted 

working equipment, and from all interior equipment. Further, if the 

dry-box has not been in operation for some period of time, desorption 

takes place slowly, and the sweeping technique required large quantities 

of high-purity inert gases. Thus, considerable expense is incurred by 

this procedure. 

The: use of molten sodium or of sodiurn-potassiutn alloy (liquid at 

.room temperature) as "getting" agents within the dry~box was adopted 

since these rapidly remove both oxygen and water vapor. 

The early hopes that a continually clean reactive metallic surface 

might be achieved due to the sinking of the solid oxides and hydroxides, 

whose densities are greater than those of the liquid metals 9 proved to 

be unfounded. Instead, the oxide material floats, forming a very tena-

cious surface film which greatly slows down the 11 getting 11 .Process. It 

was found that continual hand=skimming of the oxide surface did provide 

a surface which was active enough to achieve a usable atmosphere within 

about six hours, starting with an atmosphere of high purity attained by 
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' d l sweep~ng proce ures • Purity was qualitatively judged by the fact that 

the liquid metallic surface would remain bright for as long as five 

minutes$ but if very little external air is admitted to the dry-box 

the immediate formation of an oxide film is easily observed. 

To eliminate the tedious hand process 9 an apparatus consisting of 

a pump and contacting tray was constructed (Fig. 1.). This unit was 

designed to sit in a container of the liquid metal and to pump the metal 

up the central tube from which it spilled onto the tray. The intent was 

that the flow of metal would carry off the· oxide and hydroxide being 

formed 9 thus leaving a constantly clean active surface in the tray. A 

fan circulates the atmosphere and directs its flow onto the contacting 

tray. 

This apparatus worked very wel~ after the dry-box atmosphere became 

reasonably pure but the tenacity of the film formed in the usual start-

ing atmospheres was such that the film remained on the metal surface 

in the tray and required skimming until the atmosphere improved. This 

unit was used with both the sodium=potassium alloy at room temperature 

and with molten sodium at 150cc. The use of the latter was more satis-

factory in that the film formed was less tenacious. 

A second apparatus is shown in Fig. 2. It consists of a gear pump 

which circulates the liquid metal and delivers it from a goose-neck 

delivery tube. A fan blows the atmosphere over the resulting standing 

stream of metal and due to the high velocity of the stream, the oxide-

h;y'droxide film is carried away nicely even in very impure atmospheres. 

Th~s device 9 however~ was unsatisfactory due principally to the forma-

tion of such quantities of froth that actual spilling over occurred, 

and due also to binding in the gear pump 9 caused presumably by carry-

through of solid particles. 
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The most satisfactory apparatus (Fig. 3.) consists of a vertical 

helical pump which discharges streams of molten sodium onto a downward 

sloping contacting tray. The helical- pump element gives the discharged 

sodium a tangential component which is sufficient to rotate the dis-

charge wier. This gives twelve streams of liquid sodium rotating in a 

spoke-like fashion and with sufficient velocity to remain free from 

visible oxide film. This unit operates satisfactorily when starting, 

and atmospheres have been attained in which drops of molten sodium have 

remained bright without visible oxide coating for as long as a half 

hour. 

The simple qualitative test for atmosphere purity mentioned above 

was augmented by the use of the dew-point apparatus shown in Fig. 4. 

Although analysis was not made~ one can assume that the partial pressure 

of oxygen will certainly be no more than factor of 15 larger than that 

of water vapor. It will probably be very much less, because of adsorbed 

water on equipment admitted to the dry-boxe 

The procedure for starting the scavenging process after a period 

of inoperation consisted of sweeping the dry-box with a volume of 

helium followed by two volumes of argon. The helium enters at the top 

and causes a downward displacement, then the argon enters at the bottom 

and causes an upward displacement; a total of 21 ft.J of gases are used 

in the sweeping operation. A slight pressure above atmospheric is 

maintained at all times within the dry box so that any leakage will be 

out rather than into the box~ After two hours operation of the scaven-

ger (Fig. 3.) 9 the water vapor pressure is reduced to about 0.5 mm. 

Hg, and after eight hours it is about 0.05 mm. Hg. The minimum pressure 

measured corresponded to a dew point of =100°C. or about lo-5 mm. Hg, 
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.which was att,ained after five days of continuous operationo It should 

be recognized that the initial rates are very sensitive tc the history 

of the dry= box when not in use o If one starts with a dry=box -v,rhich has 

been left open to air~ swee;ps out as described above~ and begins 

scavenging 9 the apparant rate cf purification is slowo However 9 if 

one has obtained a good atmosphere 2 and has only admitted a piece of 

equipment through the port system9 then purification can· be achieved 

in about two hourso 

It is of interest to compare the rat,es of oxidation of a reactive 

metal in a v-acuum and in a dry=·boxo It can be asstm1ed that the rate of 

absorptior!. at the surface of the• metal is instantaneous: for both cases. 

Therefore 9 the rate of~ reaction is determined 'by the rate at which 

reactive material reaches. the sur·f'aceo ))r;, a vacu1JII1 9 this rate is 

measured by.the number of molecules passing through a unit area per 

unit time.? in the dr-y=box~ this rate is determined by the rate of dif-

fusion of the reactive molecules: through the inert moleculeso The 

former calculation fo1.lo~ri·s from the kinetic thaory of' gases o' since in 

a dynamic vacuum the leak rate is equal to the pumping rate 9 and the 

mole fraction of deleterious material will usually be near Oo2o The 

latter calculation depends upon a knowledge of the Hfilm thickness"~ 
I, 

Heat transfer correlation:e:'+ can be utilized here .9 and for limits one 

can take continuous motion of' one fto/seco across a one inch cylinder~ 

and the motion resulting from natural convection for a temperature 

difference of lCi!Fo over a horizontal plateo These film thicknesses 

which should represent a reasonable minimum and maximu..11 are Ool inch 

and CL25 inch respectivelyo 'I'he effective diffusivity is taken at 
• 0 ) 

2' . 2 
Oo8.3 fto /hro or Oo2l c:mo /seco Table I shows the results of the 
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Table I 

llt = 1 °'F. over Horiz. Plate 

Dew v.p. Assumed Rate 
Equiv.~,_ 

Point H2o. Pres. of Oxygen . mol. Vacuum 
oc. atm. atm. 2 atmo em. sec. 

0 6.0xlo~3 -2 9.0xl0 7.8xlo=7 6.5xlo=6 

~25 
=4 6.6xl0 9.9xlo-3 8.7xlo-8 7.2xlo=7 

~50 4.0xlo-5 6.oxlo-4 5.lxlo-9 4 • .3xl0-8 

=75 
. -6 l.2xl0 L8xlo-5 l.6xlo-10 l.3xl0-9 

' l • .3xlCJ8 l.95xlo-7 · 1. ?xlo-·12 l.4xlo-11 -100 

* Total pressure (20% o~gen plus water vapor assumed). 

"\ . . .. 

v = 1 ft./sec. over 1'1 cylinder 

Rate Equiv." 
. mol •. Vacuum,~ 

2 atm. em. sec. 

J.lxlo-6 2.6xlo=5 

3 .4xlo-7 2.9xlo-6 

2.0xlo-8 l.?xlo-7 

6.2xlo-10 5·.lxlo=9 

6.8xl0;;;12 5.7xlo-11 

c: 
0 

~·~ 
0' I 
<» 
-.J 
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calculations outlined above, with an assumed oxygen to water vapor 'ratio 

of 15 in the dry-box. A lower ratio would make the.dry-box be even 

better relative to the vacuum chamber~ 

From Table I, one may conclude that there is a factor of about 104 

more deleterious material present in a dry-box than total.pressure in 

the vacuum chamber which gives an equal rate of attack. lt would be 

virtually impossible to man~pulate objects in a vacuum of 10-7 atm• 

(0.1 micron Hg), and, since a dew point of -50°C. is easily attain~d,. 

the dry-box offers great advantages to work requiring inert atmospheres 

and ease of manipulation. Further, since dew points of -100°C. have 

been attained, the dry-box can surpass even the highest vacuum with res-

pect to preventing oxidation of highly reactive materials. 
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