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I. Phenomenological Interpretation of 
High Energy Proton~Proton Scattering 

INTRODUCTION 

In this report we shall attempt to fit the proton-protons scattering data at 

32(l)(2) and 350 Mev(3) by the use of static nuclear potentials. This description 

is phenomenological and as such may be considered a sequel to the report concerned 

with determining the n-p interaction from the scattering data at 40, 90, (4)(5)(6) 

and 280 Mev.(?) 

The success that was obtained in the n-p system would seem to be sufficient 

grounds for expecting that p-p scattering would likewise be interprcetable by means 

of static potentials. In fact we might be tempted to predict the p-p nuclear 

potential from our knowledge of the n-p potential as determined by the high energy 

scattering. This prediction could be made either on the hypothesis that the nuclear 

potential is charge independent (i.e. depends only upon whether the two particles 

are in a singlet or triplet spin state), or in terms of an attempt to explain the 

saturation of nuclear forces. 

If we were to follow the first assumption (the so-called symmetry hypothesis) 

there would be no free parameters entering the p-p theory, since the results of 

the n-p experiments are quite definite. For both singlet and triplet states these 

experiments show that there are no (or very small) odd parity forces. Therefore 

on the basis of charge symmetry one might expect that the n-p and p-p scattering 

would be quite similar. This is in obvious disagreement wi~h the experimental 

results as is seen in Figure 1. 

In order to better understand the prediction of the charge symmetric theory 

we must consider in more detail the fundamental differences between n-p and p-p 
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scatt~ring. Firstly, for 32 Mev protons the coulomb repulsion is dominant in the 

scattering at angles less than 20°. Between 20° and 40° or 50° the angular varia-

tion is governed by the nuclear-coulomb interference terms. The remaining region 

around 90° is vitually the same as for simple nuclear scattering. Secondly, the 

p-p system, being composed of identical particles obeying the exclusion principle, 

has fewer states than the n-p system. Specifically only even parity singlet states 

and odd parity triplet states can be present. Thus scattering occurs only in ls, 

3 L J P,-v, F ••• states, and the charge symmetric theory predicts the virtual absence 

of triplet scattering. The n-p system, on the contrary, has scattering from both 

singlet and triplet even parity states so that a direct comparison must be justi-

fied. In order to learn what part of the complete n-p scattering is singlet scat-

tering we must recall that in order to lead to the low total n-p cross section the 

singlet range must be greater than 2xlo-13cm. This gives an angular distribution 

for the singlet cross section that has an even higher ratio of e-(l800) than the 
0"'(190°) 

complete scattering from both states; making a direct comparison of the relative 

angular variation of the complete n-p and p-p cross section possible in the 

region from 50° to 90°. Thus the 32 Mev p-p results show ·that the charge symmetry 

hypothesis is untenable. 

Alternatively we could attempt to predict the p-p scattering by directing 

our- attention to the phenomenon of the saturation of nuclear forces. The n-p 

experiments rule out the possibility of n-p repulsive forces of anything like the 

magnitude required to explain saturation. The low energy experiments show that 

the singlet p-p forces are attractive. Thus the only remaining way for the p-p 

forces to lead to saturation would be the existence of strong repulsive forces in 

the triplet state. Since the triplet scattering amplitude is antisymmetric, the 

scattering from a central triplet potential is zero at 90°. Hence such repulsive 

forces would lead to an angular cross section rising even more rapidly on either 

side of 90° than that predicted by the charge symmetric theory and are conclus-
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ively excluded by the data. 

Thus both the hypothesis of the charge independence of nuclear forces and 

the possibility of stron repulsive forces in the triplet p-p state such as seem 

to be required for the saturation of nuclear forces are.already disallowed by 

the p-p scattering at 32 Mev. The 350 Mev scattering is even more strikingly 

anomalous (cf. Figure 1). The experiments indicate a nearly spherically symmetric 

distribution over the range from 41° to 90° having an absolute magnitude that is 

twice the maximum possible for S wave scattering alone. Since the n-p scattering 

at 280 Mev was in good agreement with a non-relativistic potential model it is 

difficult to accept this as a relativistic effect. Again both charge symmetry 

and repulsive triplet forces would lead to scattering stronly peaked at 0° and 

180° and an order of magnitude lower in value at 90° than the observed p-p cross 

section, and are conclusively disproved. This scattering is superficially simi

lar to classical hard sphere scattering. However, since the wavelength of 350 

Mev protons is only· three or four times shorter than the range of the attractive 

region that must surround and include such a sphere in order to explain the low 

energy results, the sphere cannot be made large enough to give classical hard 

sphere scattering at this energy. This point is di~cussed in more detail below. 

In spite of the surprising divergence of the observed p-p scattering from 

that which had been expected previous to the experiments, it has proved poss

ible to reconcile all the existing data with the scattering predicted from a 

static nuclear potential. This model consists of a shallow singlet potential 

and a highly singular triplet tensor potential. The main body of this paper 

is concerned with justifying this model. 

In view of the apparently fundamental differences between the expected and 

the observed p-p scattering, and the various complicating :fhctars :inthe analysis of 
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the dataj we have devoted the first part of this report to a more or less quali-

tative discussion.of p=p scattering. In this section we will give typical results 

for various potential models but will not discuss which radial dependence is to be 

preferredo Rather we wish to emphasize the salient features in the analysis in 

order to furnish a basis for understanding the calculations which follow in Part 2. 

PART 1. QUALITATIVE DISCUSSION 

It has been shown by many authors that the experiments below 14 Mev are com= 

patible with S wave scattering alone(B) and that these experiments have determined 

only the scattering length and effective rangeo(9) This indicates that no one of 

the radial forms usually assumed is to be preferred. It need hardly be emphasized 

that the low energy experiments give little information concerning the interactions 

in states of higher angular momentum (especially the P state) other than putting 

upper limits on the magnitudes of the interactions in these states. 

The n=p experiments at 40 Mev(4 ) (6) have shown that there is scattering in 

the D state and little scattering in the P state, and .that the magnitudes of 

these interactions could be determined. It was therefore expected that since 

the range of forces for the p-p system is comparabley the scattering would 

likewise occur primarily in the Sj P and D states. 

It was observed immediately, as has been pointed out in the experimental 

papers, (l)(2) that the data was in good agreement with that predicted by S wave 

scattering alone. This is in definite disagreement with the scattering predicted 

by the usual potential models. The reason is that the S state interaction com= 

pletely specifies the entire singlet interaction, and in particular the effective 

range is so long that the D wave predi~ted at this energy is incompatible with the 

experimental results. (It would of course be possible to choose a potential that 

would give only S scattering at 32 Mev 3 but the effective range of such a potential 
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would then be much too short to fit the low energy regiono) 

If we oonsider in detail the predictions of the usual models we find that 

even for the most cut off potential (the square well) the D phase shift is alreaQy 

too large ( Oo 77° L and as is to be expected the more long= tailed Yukawa potential 

has an even larger D phase shirt (lo4°)o The adverse effect of such D phase shifts 

on the angular distribution can be readily seen by reference to the second panel 

of Figure 2o The origin of this effect is destructive interference between S and 

D wave scattering in the region around 90° o 1'his intsri'erence term is proportional 

to sin 6 5 sin 6D cos (~ 8~.Bo)P2 o (P2(cos Q) "' 3/2 cos2 0 = 1/2 ") The usual 

models predict positive values for OS and 6D 9 so that this term has a. minimum 

at 90° as is observed in the n=p scattering but not in the p·~p caseo ( F'i o-ure 2 . b 

also dan.onstrates that the coulomb scattering has little effect in the rog;ioh 

f'rom 50° to 90° and hence cannot alter this conclusiono) . 
The central triplF;>t scatterinf; anpli tude being r.mti syrrunetric leach'; to a cross 

section that is zero at 90° » and since thoro ~::> no intorferen.ec' ,·r:i.th tho ::linGlet 

state it can only add to the rise away from 90°o Therefore scattering in this 

state will increase the discrepancy between the predic-tions made fror<J. the central 

force model nnd the experi:;:·;entso Alternatively we can SO() this directly from the 

f'a.ot that the P scattering is proportional to sin2 cSP cos2 1;;) 0 showing that the 

coa2 Q term must have a positive coefficiento These effects are illustrated in 

the third panel of Figure 2o 

In order to explain the 32 ~~v data 9 we require a model that would predict 

euentially spherically sywnetric scattering in the absence of the coulomb fieldo 

We have already seen that central force scattering predicted by monatonica.lly 

decreasing potential models of the usual radial form is in qualitative disagree-

ment with experimento Conceivably a more complicated radial dependence.$ such as 

a repulsive lip on a square well 9 could lead to negligible D phase shifts at 



32 Mev. Attempts to build such models have been unsuccessful because they have 

effective ranges too short to fit the low energy data. In view of the straight

forward interpretation of the n=p scattering and the inherent dlfficulty of using 

such a model to fit the 350 Mev data, it did not appear profitable to pursue such 

models any_further. 

The remaining alternative, within the framework of the potential picture, is 

the possibility that the D wave is masked by the scattering from tensor forces in 

the triplet state. A favorable result is predicted by the use of the Born approxi

mation to compute the scattering (cf. Figure 3). (The Born approximation is valid 

for the P waves since the centrifugal barrier reduces the effect of the nuclear 

potential to a small perturbation.) The scattering computed this way is peaked 

at 90° and hence can add to the singlet cross section~ which dips at 90°, to give 

an almost flat nuclear cross section. When the coulomb effects are included the 

resulting angular distribution is quite similar to S wave scattering (cf. Figure 4). 

Thus a proper choice of range and depth for the tensor potential can lead to agree

ment with the experimen~s. (An alternative way of understanding why the scattering 

can have a finite value at 90° even though it takes place in odd states is that the 

tensor force brings about a change in angular momentum, and tesseral harmonics 

other than the Legendre polynomials enter into the scattering amplitude. We can 

then see that the presence of Yt(G~¢) = e1¢ sin G in addition to Yl(G,¢) = cos G 

leads to terms with a sin2 G symmetry which when added to the cos2 G symmetry 

terms in the singlet scattering could lead to a flat nuclear cross section.) 

The 350 Mev data will first be analyzed independently of the 32 Mev data. The 

two models so derived will then be compared and reconciled. In order to further 

emphasize the anomalous nature of the high energy scattering, we note that if we 

assumed (arbitrarily) that there were no interactions in other than S states the 

predicted cross section would be spherically symmetrie but ten or more times too 
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small. (Recall that even the maximum possible S wave cross section is only one

half the measured value.) 

To analyze the situation in somewhat more detail we shall first consider the 

scattering that would result from the singlet state (since in this state the po

tential is completely specified by the assumption of a particular radial form). 

At 350 Mev the Born approximation is valid for central scattering and predicts 

the strong forward maximum illustrated in Figure 5. Alternatively we may view 

the problem in terms of a partial wave decompositjon. Only the even Legendre 

polynomials are all 1 at 0° and 180° and alternate in sign at 90° (e.g. P0 (90°)=1, 

P2 (90°)=-.5, P4(90°)=.375 ••• ). Scattering by the usual monatonic potential 

models predicts that all phase shifts will have the same sign, so that there is 

constructive interference at 0° and 180° and destructive interference at 90°, 

giving a characteristic peaking of the angular distribution. 

In order to obtain a flat cross section it would be necessary to require 

that phase shifts of even parity alternate in sign with increasing 1, resulting 

in a singlet cross section peaked at 90°. Then if this cross section were 

added to the central triplet cross section (which is.always zero at 90°) a 

flat cross section would result. It does not appear possible, however, to 

find a singlet potential that will fit the scattering in the low energy 

region while at the same time predicting the required alternation in sign 

of the high energy phase shifts. 

Before turning to the tensor models we will first consider the so

called hard sphere scattering which can have the required characteristic 

of giving phase shifts of alternating sign. At this wavelength of 0.5 x 

lo-13 em it might appear superficially that a repulsive core in the cen

tral potential would give the desired result. However, it is found that 

when the effective range is fitted the repulsive core cannot extend 

more than 0.7 x lo-13 em. Since the repulsive core is then not 



much larger than the wave length of the proton, scatt~ring occurs predominantly 

from the surrounding attractive region (which is required in order to give 

agreement with the low energy data). Such a model results in scattering in the 

high energy region similar to that predicted by more usual forms. 

Again we must appeal to the tensor force in order to obtain agreement with 

the experimental data. In fact, if we recall that at 32 Mev we needed to add a 

triplet cross section that was peaked around 90° in order to mask the minimum in 

the singlet scattering we see that the situation at 350 Mev is very similar. We 

can again use the tensor force to obtain agreement, for in Born approximation 

scattering depends only on the combination kR where k is the wave number and R 

the range of the potential. That is, to produce the same scattering at a higher 

energy we need only contract the range by a factor that is the square root of 

the energy ratio, and adjust the depth to ,.give the desired absolute magnitude 

to the scattering. 

We therefore have indications of a tensor potential at both 32 and 350 Mev, 

and need only show that the requirements for the two cases are compatible. As 

the energy changes different regions of the potential will play the more dominant 

role. For example, at 32 Mev the potential region at distances of the order of 3 

to 4 x lo-13 em is most important while at 350 Mev the potential region at dis

tances of the order of 1 x lo-13 em has become important.· By adjusting the range 

and depth of a tensor potential of any given radial form the. predictions may be 

made to fit the 32.Mev experimental data. However at 350 Mev the P wave protons 

are able to explore the potential in to considerably shorter distances and it is 

necessary to have a stron interaction in this region in order to explain the very 

high 350 Mev cross section. The tensor scattering calculated for a singular po

tential in Born approximation as illustrated in Figure 3 illustrates these re

marks. From the foregoing curves we can also see tha·~ an appreciable fraction of 

the 32 Mev sretter :ing must '00 explained in tenns aftensar forces if we wish to obtain 
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agreement with the high energy data. These curves further show that the tensor 

potential would probably have little effect below 10 Mev as the scattering 

amounts to less than 1 percent of the total scattering. 

PART 2. CALCULATIONS 

A. Methods 

The singlet scattering from a potential of given radial form depending on 

two parameters is completely specified by the scattering length and effective 

range, which are determined by the scattering below 10 Mev. The general 

method of determining these parameters for a given radial dependence is dis

cussed in detail by Blatt and Jackson. (9) The S scattering due to the nuclear 

potential alone at higher energies was calculated by direct numerical integr·a-

tion of the radial wave equation giving the S phase shift. The true S·phase 

shift (in the presence of the coulomb field) was then obtained by treating the 

coulomb field as a perturbation according to the method of Chew and Goldberg

er. (lO) The corrections amounted to approximately one degree or less. The D 

phase shift was calculated in Born approximation considering only the nuclear 

forces. (This method was checked by numerical integration in the case of the 

Yukawa potential, corrected for the coulomb field as above. The results at 

32 Mev: 1.33° for the Born approximation, 1.45° for the exact nuclear calcu

lation, 1.40° with the coulomb correction were assumed to be a satisfactory 

check.) Higher waves than the D were found to be negligible at 32 Mev. 

As was shown in Part 1, it was not necessary to calculate any odd parity 

phase shifts due to central forces, but the tensor scattering was required. This 

was calculated using the exact values of the complex phase shifts, ~jms, which 

enter into the tensor scattering. The result was in good agreement with that 

predicted by the Born approximation. There is a slight tendency for the Born 

approximation to predict somewhat larger angular variations than are found in the 
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more exact calculations. This can readily be understood in terms of the higher 

approximations of the Born approximation for then the scattering amplitude enter

ing into each successive iteration (or each successive collision) is less.well 

collimated than that entering the previous iteration, due to the scattering that 

occurs. A further small difference between the exact and the Born calculations 

occurs in the absolute magnitude, a tensor force taken with a postive sign (i.e. 

same sign as for the deuteron) always has less scattering in the exact calcula-

tion while the tensor force taken with a negative sign always has more scatter-

ing. A comparison between the exact predictions using the two signs and with the 

result of the Born approximation is afforded by reference to Figures 6 and 7. 

The phase shifts arising from the coupled states entering the exact calcu-

lations were carried out by iteration (in the manner described in reference 6) 

a~ter they had been cast in the form of coupled integral equations. In the case 

of the uncoupled states any of the methods usually applicable to central scatter-

ing may be used. We found that the integral variational expression was sufficiently 

accurate when the proper component of the plane wave was used as a trial function. 

From the relatively small differences shown in Figures 6 and 7, we decided 

it was unnecessary to carry out the exact calculations for the nuclear part of 

the scattering. This is particularly so because we are able to offset any 

difference in absolute magnitude by choosing a slightly altered tensor depth 

(which will be determined only very roughly anyway from the present data). 

One difficulty with using the Born approximation is that the interference 

term (cf. Appendix 1, for a derivation of this term) between the nuclear and 

coulomb scattering identically vanishes, while the exact calculations at 32 

Mev show that the P wave component of the nuclear scattering interferes 

appreciably wit~'the coulomb scattering. We had therefore to compute two 

uncoupled phase shifts, ~~0 and ~i~ ~ and also iterate the coupled 

3P2 + 
3F2 state. The iteration process is rather tedious and 
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as the ma.gni tudes of the phase shif'1a were small compared with the uncoupled phase 

shifts 0 we used the WKB approximation to obtain these phase shiftse 1Ve shall con-

sider this approximation in more detail bel~v: If the ~vo independent solutions 

of the coupled equations have the asymptotic for.m 

where L s ~ or 2J = 1 depending upon which is the dominant state, then the nuclear 

phase shif't may be easily shown to be given by 

i(cSJ = t.I_) J J i(cS'i.t ~J ) . 2L+l:) <sLJms ISLOms) J J J 
e21oi.ma s e u.. OLL r~av.atte =or.L +21 2t+l) <StimsjSJlOms)al.L sin(b.u-8u) 

e=i(<\{ +S'h.Lai1a~-i(Sh_ ~ft) 

where now L ,. 2J = 1 only9 and we have set ai,IL "" aiL "" lo In the oase of the 

3 3 
P2 + F2 state we have found that the Born approximation yields all quantities 

in this expression with the exception.of 8 i1 s vnth sufficient accuracyo This 

we have computed by using the "equivalent central potential" (of' o reference 6) in 

WKB approximation and then applying the Born approximation to this potential to 

obtain the phase shifto . c5 ~l is then the sum of tvfo tenns one of >i-lich is identical 

with that predicted by the Born approxLnation applied directly to the coupled 

. equations and the other is of the nature of a correction term 9 and has the value 

where we have written the tensor potentials 

and 

.. 
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This procedure applied to the exponential and Yukawa radial dependences yields 

the coefficients of the interference terms within a few percent the coefficients 

determined from an exact calculation. 

For the 350 Mev scattering the coulomb scattering was neglected and the 

singlet. scattering was computed in Born approximation. 

B. Results 

The singlet cross sections for the square, exponential, and Yukawa models 

are shown in Figure 8. In each case the range and depth have been chosen to 

agree with Blatt and Jackson 1 s low energy analysis. (The range and depth of 

the Yukawa potential and square well were determined independently by Chew and 

Goldberger before the results of Blatt and Jackson were available to us and 

agree with their assigned limits of error.) These parameters, together with 

the S and D phase shifts at 20 and 32 Mev, .are collected in Table 1. Clearly 

there are significant differences in the angular distributions predicted by the 

various models. However, the magnitude of the D phase shift is always large 

enough to yield a curv~ that has a characteristically different shape than the 

experimental results in the region from 50° to 90° and too low in absolute 

value at 90°. The principal reason for this is the presence of a P2 coeffi

cient in the nuclear scattering arising from the interference between the S and 

the D waves. 

The addition of a central P wave does not change the cross section at 90° 

as can be seen in Figure 9 where we have indicated the effect of adding positive 

and negative P phase shifts to the scattering predicted by the Yukawa model' 

(which comes closest to fitting the 90° point). Clearly these curves do not 

agree with the experimental results, primarily because the nuclear cross section 

adds in the region from 50° to 90° (where the coulomb interference can be 

neglected) • 

It is seen from Table 1 that the D phase shift increases as the potential 



~14-

becomes more long tailed. Since the D phase shift is too large even for the 

square potential we are forced to turn to more complicated radial forms, if we 

wish to account for the 32 Mev scattering by central interactions alone. Such a 

potential might be expected to be repulsive at long djstances and attractive at 

short distances. Accordingly some attempts were made to annul the D wave by 

adding a repulsive lip to the square well. They met with little success, and 

having regard to the inherent difficulties implicit in such an approach when 

applied to attempt an explanation of the 350 Mev results, this approach was 

abandoned. 

As discussed in Part lj) the effect of adding tensor force in the purely 

nuclear scattering is to produce a more nearly spherically symmetric angular 

distribution. The depth of the tensor potential and hence the amplitude of the 

scattering may be considered arbitrary, and must eventually be chosen to give 

agreement with the experimental data. In Figure 10 we have shown the result of 

adding the tensor scattering to the singlet state scattering. Clearly, if the 

same radial dependence is assumed to hold for both singlet. and triplet states, 

approximat·e agreement may be obtained for the exponential potential with depth 

Vt:i50 Mev. If we drop the restriction that the singlet and triplet potentials 

have the same radial dependence, it is clear that we can obtain better agreement, 

especially with the photographic data, by using the combination of square well 

for the singlet potential and Yukawa for the triplet (cf. Figure 11). (This 

combination utilizes a square well with the constant previously found for the 

singlet state and a tensor Yukawa well of range 1.25xl0~13cm and Vt=! 26 Mev.) 

As was remarked in Part 1 tensor scattering at 32 Mev is only able to ex

plore the tail of the potential, &~d consequ~ntly there is little uniqueness to 

the radial form which can be established from the 32 Mev data. To illustrate this 

we may consider the Born approximation. In this approximation the triplet differential 
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cross section (considering only the nuclear part) is proportional to 

o-(G) ,_., [c 2 ( g ) + c 2 ( n - g) + c (g) c ( n - g)] 

where 00 

C(Q) = ~ 1 Vt (L)g2 (Kr) rdr 
h K 0 R IJ 

K = 2k sin Q 
2 

Plots proportional to C{G) are shown in Figure 12 as a function of 

a(2kR sin ~) where ~ has been adjusted such that each model predicts almost the 

same scattering at 32 Mev. (Recall that the Yukawa potential witp R = 1.25 x 

lo-13 em gave a good fit to the data when combined with a shallow singlet po-

tential.) From these plots we find that the following ranges are practically 

equivalent with respect to the 32 Mev scattering: R=3.8xlo-13cm(square), 

R=l.Oxlo:-13cm (exponential), R=l.25x.lo-13cm (Yukawa), R=2.0xlo-13cm2 

(exp(-r/R)/(r/R)2). 

In the plots of C(Q) we have chosen the scale of the abscissa such that 

~(2kR sin ~)=1 for 9=90° with a k corresponding to 32 Mev. For other angles we 

move up and down the abscissa according_to sin~ (e.g., to obtain the value for 

C(l80°) at 32 Mev read the ordinate for an abscissa 1:2). The 90° point at other 

energies can be readily located as it is given at an abscissa which is the 

square root of the ratio of that energy to 32 Mev. Thus to obtain the value of 

C (90°) at 350 Mev read the ordinate at an abscissa of J ~~0 • 3 .30. 

As the energy increases a large difference in scattering occurs between the 

various models. The more shallow potentials give less scattering relat~ve to 

that at 32 Mev. From the predictions of the various models for the singlet state 

it seems reasonable to allow approximately one-third of the nuclear scattering at 

32 Mev to be of tensor origin. This gives a tensor cross section at 32 Mev which 

is comparable to the 350 Mev cross section in magnitude. We therefore see that 

the Yukawa and other even less concentrated (i.e., shallower) potentials do not 

predict a sufficiently high cross section at 350 Mev. It is therefore necessary 

to use the singular potential (i)~· The results for the complete cross section 



at 350 Mev are compared in Figure l3o In order to indicate the eaaentie.l features 

of the singular model 11 w~ again examine the curves in Figure 12o Clearoly a 1qua.re 

well of range 4 x 10 ... 13 
cm1. gives scattering ot the correct form to t1t the 32 Mev 

data11 while i> square well of range l x lo-13 em gi vea 360 M.ev scattering a.ppron ... 

mating to that predicted by the singular modelo Thus by combining the shallow 

long rewge &quare well w1 th a deep ahort range square well (whioh will not be 

explored by 32 Mev P wave protons) scattering approximating to that predicted by 

the singular model can be obtainedo 

Co ~Ymffi!!X of Results 

We have shaw:n th.a.t the 32 Mev data oa.n be fitted by means ot two combination• 

of central and tensor forceo These are: lo The radial dependence ifi chosen tho 

same for the central and tensor potentialo The bast fit is then with an exponential 

:radial dependence of range Oo 7 x lo~l3 om and wt th a tensor depth of + 50 Mev~~ Thin -
model fits the counter data better than the photor;raphic datao 2o Tha radial de ... 

pondence is singular for the tensor potential and shallow and cut off for the 

central potentialo 'Xhe best fit is with a singlet square well of range 2o6 x 10""13 

om and with either a Vt exp(=r/R)/(r/R) radial dependence (with~~ lo3 x 10=13 am 

and Vt •!, 26 Mev) or with a more singular potentb.l Vt exp( ... r/R)/(r/R)2 with 

R • 2o0 x lo=l3 em and Vt • ·.+ 22 M:evo 'l'heae oombinations give better fita to 'th• 

photographic datao 

To fit the 350 1Jev data we have shown that a very singular tellSor force muat 

be used0 suoh as the exp(-r/R)/(r/R)2
o The esaant1al feature is that there must 

be a strong interaction in regions lese than 00 5 x 10=13 ~o 

The best fit of the combined data is therefore obtained by using the singular 

potential so adjusted that approximately one-third of tha nuclear scattering at 

32 Mev is accountable to tensor aoatteringo 
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It it clear that the present data are not sufficiently extensive to permit 

very precise specification 'ot the radial tor.ms~ however 9 in the foregoing summary 

we have tried to emphasize the salient features of each modelo 

COllCLUSIONS I 

We have shown that it ia possible to fit all the present p-p data by meaaa ot 

a shallow central potential for the singlet states and a singular tensor potential 

tor th~ triplet stateso 

Clui te apart from the potmial models as&\Ded9 however 9 even the most casual 

comparison of the p=p data at 32 !'11eT with the n ... p data at 40 Mev and9 espocially9 

a comparison of the 340 Mev p=p data with the 280 Mev n~p data sham~ that nuclear 

scattering is charge dependento In particul~rll there is definite evidence in the 

n=p scattering data that large tensor scattering does not occur in the cdd pari't;y 

It is possible that the radial dependences found necessary for p=p scattering 

would be acceptable tor the r..-p scattering even though the exchange behavior is 

differento A definite statement regarding this must await detailed calculations 9 

howevero 

Finally we must take notice of the fact that no large repulsive forces have 

shown up in either the n~p or the p-p system of sufficient magnitude to account 

tor nuclear saturation if saturation is to be predicted from two body for~elo In 
.. 

both oases they would have been very easily detected 0 independent of the potential 

model assumedo 
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APPENDIX I 

The triplet cross section is given by 

(lA) 

where 

~
,..-ia.~n sin2f' 

R = ~ "' 
2i sin2 _a 

2 

"¥ (a 8 {6) are the normalized tesseral harmonics and 8~ms are the customary 

(complex) phase shirts that occur in tensor sca.ttering (defined here in the 

presence of the Coulomb field)~ 

In Equation (lA) the term involving !'R\2 is just the usual triplet Coulomb 

scattering and the terms L N *N are the usual nuclear scatterlngo The re-
t.~. t.l. !rL 

maining terms represent the interference between nuclear and Coulomb scattering. 

In our calculations of the tensor scattering the Coulomb modification of' 

the nuclear phase shift was neglected as the expected order of magnitude of 

this modification was very small compared to the P phase shifts., Further the 

nuclear...Coulomb interference terms were calcuJ.ated only for the P wave part 

of the nuclear scattering., These terms can then be written 

(2A) 

9Pl (cos a) to• al cos p~(l . oo oo 1 . 1~ ..J.:I: 1 2*1 20) 
~ 2 =. - Sl.n o;, coso ~3nn sl co:sbl +sBl *9Bl 

2k s2 c2 9 1 



where 
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~ Ill a 2n s2 .. 2(C1],-~) 

~1 • a }Jl c2 + 2(6j,-d
0

) 

s2 • sht2 o/2 

c2 • coa2 0/2 

Ats • Re(e 21 &{ms - 1) 

B{ms .. Im( 8 2io\••. ) 
(2A) reduces to the expression given by Go Dreit~ Co Kittel, and II. r.r. Thaxton, 

Physical Revielv-~9 255 9 (1940) when the coupling between the 
3
P2 a.nd 

3
F2 

scattering is negleotedo 



~21= 

APPENDIX II 

The energy dependence of the foregoing tensor model of the proton-proton 

interaction has been investigated below 32 Mev. The angular distribution pre-

dieted by this model at 20 Mev is giiren in Figure 14 in comparison with pure 

S wave scattering and singlet scattering without the tensor force •. Clearly the 

tensor model is closer to agreement with S wave scattering than at 32 Mev where 

this model and S wave scattering could not be distinguished by the experiments. 

Therefore the deviations from S wave scattering should be negligible at lower 

energies. The value of K calculated from the cross section at 90° is plotted in 

Figure 15 in comparison with Blatt and Jacksonns best shape independent approxi

mation(9) and central force models. The agreement in shape between our curve and 

that for a Yukawa S wave again demonstrates the pseudo-S character of the tensor 

model at lower energies. The points determined by Bruce Cork (C) confirm this 

prediction, which is not surprising as any smooth curve tangent to the straight 

line at low energies and passing through the experimentally determined point at 

32 Mev would pass close to those points. 
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The experimental points in Figure 15 are~ 

May and Powell, Froc. Roy. Soc. Al2Q, 170 (1947) 
Meagher, PhD Thesis, Univ. of Ill. 
Dearnley, Oxley, and Perry, Phys. Rev. 73, 1290 (1948) 
Wilson and Creutz, Phys. Rev. 71, 337 (1947) . 
Wilson, Phys. Rev. 71, 384 (1947) 
Wright, Private communication 
Wilson, Lofgren, Richardson, Wright, Shankland, Phys. Rev. 72, 1131 (1947) 
Rouvinajl Private communication 
Panofksy and Filmore, Phys. Rev., July l, 1950 
RichmanJ> Cork and Johnston~ Phys. Rev.jl July 1, 1<;50 
Cork, Private communication 
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TABLE 1 

Singlet phase shifts at 32 Mev for various radial forms adjusted 

to fit the low energy scattering. 

Ph~ee Shift 
Model R S D 

r <R 
13.273 Mev 2.615 x lo-13 em 

r>R 

108.27 Mev .7088 x lo=l3 em 

49.350 Mev 1.1417 x lo=l3 em 
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FIGURE CAPTIONS 

Figure lo Comparison of n-p and p=p scattering data. 

Figure 2. Effects of S, D, and P waves on 32 Mev scattering. The upper 

set of curves give the nuclear scattering. The lower set in~ 

elude the effects of coulomb forces. 

Figure 3. Tensor scattering from a singular potential at various energieso 

The energies in Mev are given parametrically on the curves. 

Figure 4, Effect of adding tensor scattering to the singlet scattering 

Figure 5. 

Figure 6. 

at 32 Mev. A. Nuclear scattering. B. Scattering including 

the effects of coulomb forces. The tensor scattering is that 

from a potential of exponential radial dependence {R = .71 x 

=13 10 ern, Vt = + 50 Mev). 

Singlet scattering at 350 Mev as predicted for a potential 

having Yukawa radial dependence. 

Comparison of exact and Born calculations for tensor force 

scattering et 32 Mev from a potential of Yukawa radial 

dependence (R = 1.25 x lo=l3 ern). 

Figure 7. Comparison of exact and Born calculations for tensor force 

scattering at 350 Mev"frorn a potential of Yukawa radial 

dependence (R = 1.25 x lo-13 em). 

Figure 8. Singlet scattering at 32 Mev from potentials with various radial 

forms adjusted to fit the low energy scattering. Data taken 

from reference 2 {31.8 Mev). 

Figure 9. P wave scattering added to the singlet scattering predicted by 

the Yukawa potential at 32 Mev. 

Figure 10. Total scattering at 32 Mev by singlet and triplet tensor 

potentials of the same radial form. (The singlet potentials 

have range and depth adjusted to fit the Jow energy scattering.) 

A. Square B. Exponential C. Yukawa. 
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Figure 11. Singlet plus triplet tensor scattering at 32 Mev. The singlet 

potential is a square well (R = 2.615 x lo-13 em, Vc = 13.273 

Mev), and the tensor potential is a Yukawa potential (R = 1.25 

x lo-13 em, Vt = + 26 Mev). The experimental points are takan 

from reference (1) (at 29.4 Mev) and have been reduced in mag

nitude by 5 percent. 

Figure 12. Born tensor scattering amplitude for various potentials. The 

abscissa scale has been adjusted so that all potentials will 

give the same angular distribution at 32 Mev as the Yukawa 

potential with R = 1. 25 x lo-13 em for a suitable choice of 

depth. 

Figure 13. Complete cross section at 350 Mev for various tensor models 

adjusted to fit the 32 Mev data. The legend shows the tensor 

model used. Data taken from reference (3). 
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II o The Production of Mesons 
By Protons on Deuterons 

INTRODUCTION 

The purpose of this paper is to attempt to predict the energy and angular 

distribution of mesons resulting from the bombardment of deuterium by 345 Mev 

protons, under the assumption that the cross section for the production of 

mesons in two nucleon collisions is knowno Alternatively, since neutron sources 

of sufficient energy for the study of the production of mesons in n-p collisions 

are not readily available, this analysis can offer a method for learning some-

thing of this cross sectiono The production of mesons in proton~proton collisions 

is being investigated experimentally by Richman, Wilcox, Whitehead, Cartwright, 

and V. Petersonfl)Keith Brueckner has conducted a theoretical investigation of 

the problem in the light of these experiments. (2) 

The general method of attacking the problem was suggested to me by Professor 

Chew, in analogy with an approach he is using in the study of n~d inelastic 

scatteringo (J) It rests upon two assumptions, of which the first is probably 

justified, while the second is open to considerable question. The first assump-

tion is that the production takes place in a time so short compared to the period 

of the deuteron that the impulse approximation may be used. Since for the inci-

dent proton v/c = o682, the time for it to cross a meson compton wavelength is 

only 2 percent of the deuteron period. Hence it seems reasonable to assume that 

the problem can be treated in terms of the production of mesons by two nucleons, 

one of which has the momentum distribution of a particle in the deuteron, while 

the third particle simply carries off the complementary momentum without other-

wise entering the reaction. The general examination of the errors made in im= 

pulse approximations of this type is to be discussed in a forthcoming paper by 

Professor·s Wick and Chew. 

• 
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The more dubious assumption is that the particles which produce the meson 

do not then interact with the third particle except in so far as the exclusion 

principle limits the states available to them. This is essentially the same 

approximation as the neglect of double scattering off alternate particles in the 

inelastic scattering of nucleons by deuterons. In the latter problem one of the 

three particles must have a large momentum relative to a pair of particles that 

are interacting strongly. As Professor Chew has shown, this allows a straight

forward treatment in terms of two body interactions. When a meson is formed, 

however, it is quite possible for all three nucleons to have comparable momenta, 

so that exact treatment would require a solutionof the three body problem. 

Still, it can be argued that the situation is not so desparate as to in

validate the method used below. Firstly, when the three momenta are comparable, 

the exclusion principle causes a compensating reduction in the cross section. A 

further limitation occurs in that the phase space available to the three particles 

in this energy region (i.e. the region of high meson energy) is small. Outside 

this region the effect is smnll. In fact if the third particle has a relative 

energy of 40 Mev or greater, as is true on the average for most of the distribu

tion except the high energy tail already discussed, its cross section at the 

average distance from the two interacting particles (4 or 5 wavelengths at this 

energy) covers less than-6 percent of the solid angle into which these particles 

may go. Moreover, the interaction between the twp particles which produce the 

meson can be taken into account to the same extent as was done by Brueckner. 

This interaction completely alters the two nucleon distribution both in magnitude 

and shape; it increases the magnitude of the p-d cross section by a correspond

ing amount but has much less influence on the shape. Thus the results given 

below should be at least qualitatively correct, except possibly for the high 

energy tail. Qlearly this method ignores the possibility of the formation of a 
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triton, but the results indicate that this process should be separable experimen-

tally from the main body of the distribution. 

DERIVATION OF THE SCATTERING MATRIX 

The formal statement of the above assumptions and derivation of the scatter

ing matrix will be carried out in terms of the R matrix notation. (3 ) The assump-

tion that the two nucleon cross section is known can be stated as knowledge of 

appropriate two particle R matrices. These are then combined with the assumption 

that the third particle influences the re&ction only by giving a deuteron momentum 

distribution to one of the interaction particles at some time previous to the 

production of the meson, to give an R matrix for the problem at hand. 

In order to clarify the notation, I shall consider the two particle case 

briefly. Let the momentum and spin variables of the incident proton and struck 

neutron be denoted by ~0 and ~n respectively, the final neutron variables by el 

and ~2 , and the positive meson variables by~+. Then R~P' which describes the 

• 
transformation of a proton ~ 0 and a neutron gn into two neutrons ~1 and ~2 and a 

positive meson T)+, may be wrltten (I£ 1 ;2"1+ IR~p !~o~n). Momentum conservation may 

be factored out giving 

(1) 

where the spin and momentum variables of the nucleons have been explicitly intro-

duced. Note that this separation restricts us to treating the nucleons non-

relativistically throughout (except that the incident proton may be treated 

relativistically in calculating the energy and momentum available for the reac-

tion; the treatment of the final nucleons can be shown to be a good approxima-

tion). The cross section for the production of positive mesons in an n-p colli-

sion is then to be written 

2 41 ~ 

d + 2vr I + I o(E E E -E -E ) .JTh_ _4g_ ~np = hvo rnp 1+ 2+ q o n (2n)3 (2n)3 (2) 
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where k' ~ l/2(kl-k2) and all other variables in r~p are to be expressed in terms 

of k', q (and k0 ) by means of momentum conservation. That is, formally, r~p 

appears in the cross section in the same way as a matrix element for the transi-

' tion calculated in Born approximation; this analogy is useful in practice. In 

fact, the whole calculation is formally equivalent to a second order perturbation 

calculation assuming that the nuclear forces and meson production arise from 

separate interaction terms in the Hamiltonian and that the corresponding second 

order calculation for the two particle case gives the correct answer. 

In terms of this notation the (unsymmetrized) R matrices for the deuteron 

problem under our assumptions may be written, for negatives: 

(3) 

and for positives: 

(4) 

where y~0 (;b) is the incident plane wave ~~0 ~~ , Jt'ln(;n!;p) is the deuteron function 

ever coordinate system is chosen. These two equations onctain the formal state-

ment of the assumptions (a) that the third particle influences the production of 

the meson only through giving to the struck particle a deuteron momentum distribu-

tion at some time previous to the collision, and (b) that the three nucleons go 

directly into the final state 'e1 "E2 'e3 without further interaction not contained in 

t + the two nucleon Rpn and Rpp· According to the argument given in the introduction 

the interaction thus included should contain most of the influence of forces 
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between the particles in the final state. (3) is to be antisymmetrized in the 

three final neutrons ~1 ~2 ~3, and (4) in the two final neutrons; the correspond-

ing r matrices are then to be squared, averaged over the initial proton and 

deuteron spin states, and summed over the final spin states. Note that the phase 

in the production of positives can be determined only from a specific meson 

theory so that the results will be uncertain by the amount of the interference 

term if empirical R matrices are used. The cross section is then given by 

where the variables appearing in rpd and in the density of final statesff are to 

be interpreted in terms of the new momentum conservation condition 
..... ... ..... ....... ... ..... .... ~ .... -+ 

kl+k2+k3+q~ko~2kc = 0 that arises from integrating the original~(kl+k2+q-ko-kn) 
.... -+ 

over kn and kp• 

Positive mesons can also be formed with the final nucleons coming off as a 

neutron and a deuteron instead of as two neutrons and a proton. According t.o the 

approximation being used here, this process will occur mainly when the positive 

meson is produced off the proton in the deuteron. This is the same process as that 

considered by Brueckner in proton~proton collisions, and can be included by cal-

culating 

(5) 

Clearly this term is incoherent with processes that lead to one proton and two 

neutrons. The alternative case when one of the two neutrons produced in the n-p 

collision picks up the original proton in the deuteron is neglected in this 

approximation. (3), (4), and (5) are the formal solution of the problem posed; 

given the R matrices for the production of mesons .in two nucleon collisions, 

which except for phase may be learned empirically, they en~ble us to calculate 

• 
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the production of mesons by proton~deuteron collisions under the assumptions (a) 

and (b) above, and subject to the uncertainty in the sign and magnitude of the 

coefficient of the interference term in the production of positives introduced by 

the unknown phase ei(~pn-~pp). 

RESULTS 

The calculation of the phase space integrals and the matrix elements is 

discussed in the Appendix. Clearly (3), (4).,. and (5) imply a much more detailed 

knowledge of the production process than is at present available, so that simpli-

fying assumptions have been introduced. These are general features found to hold 

for the four mesons theories considered by Brueckner, namely scalar, vector, and 

pseduoscalar with pseudoscalar and pseudovector coupling. These are (a) that the 

two particle matrix elements depend at most on the initial spins of the particles, 

the final spins and relative momenta, and the meson variables, and (b) that when 

the two final particles are identical, the final state is a singlet spin state. 

These restrictions arise from neglecting terms of order v/c of the meson velocity 

in the center of mass system. This is not a particularly ggod approximation, but 

leads to results capable of explaining the observed positive meson production, so 

will be used here as a semi-empirical result. 

Under these restrictions, the transition rate for the production of negative 

mesons in p~d collisions is given by 

wpd = ~n f'f x ~ ~IMpn ( lk1-k2 1 ;n-) l 2g~(k3+kc) 
- Mpn (I k1-k2l ~~~-)*Mpn (I k2-k3l; rf) g0* (k3+kc) go (kl +kc) 

+ IMj;n (I k2':"k3 I, Yf) j2g~(kl+kc) 

- M:Pn(lk2-k31~n-)*Mpn{lk3-kll~~-)g~(kl+kc)g0 (k2+kc) 
+ [Mj)n(lkJ-kll;rn 1 2g~(k2+kc) 
- Mpn(lk3-k1l ~rC)*Mpn( I k1-k2l~if)g~(k2+kc) g0 (kJ+k0 )} 

(6) 
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where Mpn is the two nucleon matrix element for the production of negatives and 

g0 is the momentum aplitude in the deuteron. The three positive terms give the 

distribution that would be produced in an n-p collision where the neutron had the 

momentum distribution in the deuteron. The negative terms are a correction 

taking account of those states which are excluded by the presence of the third 

particle. The assumption that Mpn is a constant gives the phase space for the 

problem less the exclusion principle correction. The meson distribution in the 

forward direction under this assumption is plotted in Figure 1 to the same scale 

as the production of negative mesons in n-p collisions under the same assumption. 

The general character of this distribution persists when the forces between the 

two interacting nucleons in their final state are taken into account. 

The experimental results on the production of positive mesons in proton

proton collisions(l) is clearly incompatible with the assumption that the matrix 

element is a constant. Brueckner has shown that the discrepancy can be removed 

by taking into account the interaction of the nucleons after the production of 

the meson. Essentially this is found to introduce into the R matrix a factor 

K0/(af+~) 1/2 if the final state is a triplet, and 0.876 Ko/{a~+~) 1/2 if the 

final state is a singlet. (a2 = M~~ where E is the binding energy of the 

deuteron or of the virtual singlet level for triplet and singlet states respec-
-+ 1 ~ ~ 

tively, kr = 2(kik2) is the relative momentum of the final nucleons, and K0 is 

the inverse Compton wavelength of the meson !J.c/h). Since under our assumptions 

the final state in the production of negatives is a singlet, the result (relative 

to the two nucleon product ion) is the same for all four theories and is given in 

Figure 2. The chief effect upon the deuteron spectrum (outside of the change in· 

magnitude) of taking this effect into account is to shift,the peak of the dis-

tribution from 40 Mev to 60 Me~. Coulomb forces between the two protons in the 

final state might be expected to wipe out the sharp peak i:1 the two particle 



-48-

distribution, but sihce little area is included under the peak, the smoothed out 

deuteron distribution should be little effected by this correction. Further, as 

is well known from p-p scattering,so that this result should be relatively trust-

worthy. In particulcar it is not subject to the interference correction that 

appears in the production of positive mesons~ 

The production of positives is more complicated in that a deuteron may 

appear as one of the final particles,_ that the final state may be singlet, trip

let, or a mixture depending upon the theory, and that positives produced off the 

neutron may interfere with positives produced off the proton with an undetermined 

phase. The general formula for the case of a deuteron appearing as a final 

particle has already been given; the calculation is straighforward and leads 

to the result given in the Appendix. For the rest of the cross section the 

transition probability is 

+ 2n (1 + ( 12 +) 12 2 ( ) wpd = t;"ff Mpn lkl-k2 , 1\ go kJ+kc 

· + ~~p( lk1-k3I~"Y\) l 2g~(k2+kc) 
+IMPP<Ik2-kJI~~+)I2g~(kl+kc) 
-Mpp(lkl-kJI~+)*Mpp(lk2-kJ l~n+)g~(k2+kc)g0 (kl+kc) 

+Acos(.&pn-dpp)Mpn( lkl-k21~rt)'*g~(kJ+kc) [Mpp(lkl-kJI~n+)g0 (k2+kc) 
+M~p(lk2-kJI~~+)]g0 (kl+kc) } (7) 

where Acos ~depends upon the theory. Note that for equal p-n and p-p matrix 

elements the exclusion correction is one-third the correction in the case of 

negatives. This is a specific example of a general argument given by Chew and 

Steinberger( 5) to show that the exclusion correction will increase the positive 

negative ratio for the production of positive mesons in complex nuclei. 

For the final state a singlet spin state (scalar or vector mesons, A = 1), 
• 

under the usual assumption that the n-p and p-p scattering lengths are equal, 
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the production of positives can also be obtained from Figure 2. Curve 

II times the ratio of n-p ~ Tt + to n-p-+ n- matrix elem~nts (squared) 

gives the production off the neutron. Twice Curve II (since either 

proton can give a positive) times the square of the ratio of p-p--n+ 

to n-p--+rt+ matrix elements gives the production off the proton. The 

exclusion correction is the same as that taking II into III times the 

p-p to n-p ratio (squared). Under the assumption that both ratios are 

one the positive-negative ratio at 60 Mev in the forward direction is 

3.84 .! .84. The uncertainty is due to the interference correction, 

which is of the same general form as the exclusion correction. The 

distribution is plotted in Figure 3. 

For the final state a triplet (pseudoscalar theory with pseudo

vector coupling or 2/3 of the time with pseudoscalar coupling) the 

cross section is greatly increased by the possibility of the formation 

of a deuteron in the final state. The production off the proton is 

much the same as when the final state is a singlet, but the case when 

a deuteron appears as one of the final particles has comparable cross 

·section. The comparison of these two parts of the cross section is 

given in Figure 4. Note that the value of the measured p-d cross 

section relative to the cross section me~sured for the production of 

positives in p-p collisions will depend critically upon the energy 

resolution of the apparatus used in the latter experiment. (The ratio 

of the deuteron peak to the peak of the continuum distribution is 

given by 4n Ed/AE where Ed is the binding energy of the deuteron and 

AE is the energy resolution.) The_ .production off the neutron still 

leads to two neutrons in a singlet state, so the interference term 

can be smaller. The total cross section (again assu~ing n-p and p-p 
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matrix element ratios equal to one, and neglecting interference) is 

plotted in Figure 5. The positive to negative ratio in the forward 

direction at 60 Mev is 8.22 ! .84. This large increase in the positive

negative ratio when the final state is a triplet is, of course, due to 

the added cross section resulting from the formation of a deuteron. It 

is clearly much larger than the uncertainty due to the inteference term. 

Hence, if the matrix element for p-n production were known to be 

approximately equal to that for p-p production, the experimental value 

for this positive-negative ratio would determine fairly clearly whether 

or not the formation of a deuteron occurs appreciably in p-p meson 

production. Conversely, if the formation of a deuteron could be demon

strated in p-p production, this ratio could give a fair idea of the 

ratio of p~n to p-p matrix elements (assuming the p-n matrix element 

·symmetric between positive and negative meson production). 
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APPENDIX 

A. Calculation of the Matrix Elements 

The general expression (3) is pecialized by the assumption that 

~p depends only on ~1, ~2, (kl-k2)2, and T\ in the final state, ~0 
and~n in the initial state, and is antisyrnmetric in ~1 and ~2 • 

Performing the integrations, antisymmetrizing in the final three 

protons, and taking out the delta function giving momentum conserva-

tion gives 

rpd = L:,(a-1 ~ lkl-k21
2Y\ lrnp looon)Xn<o-n~)go(k;+kc) 

o-n 

-(o'lO) lk1-k3l
2t'C riipiO"'oaf1YXn(crn0"2)go(k2+kc) 

-(~3a-21k3-k212~-~r~PI~~n)Xn(crnat)go{kl+kc) (8) 

Since we are only interested in the meson distribution, the result will 

be integrated over all nucleon momenta; hence the matrix element that 

will appear in the cross section may be written 

lrj)dl 2 = ~! x ~ x 3 ~ g~(k3+k0)F*(Ik1-k2 1~1\-)Xn(o-~O))(o·icr'2 lr~Plcr--0~)* 
<Yocr-n<rn 1D · 
crl ~<rj . 

x {<~1~21rnpl~ocrn)Xu(cr'n~3)F(Ikl-k2 1~n~)go(k3+kc) 
- 2(~3~21r~pto-0crn)Xn(~nifl)F(Ik3-k21~~)g0 (kl+kc~ 

(9) 
where (as is the case in the theories considered by Brueckner) the 

· momentum dependence can be factored out as F (I ki -kj 1~'1'(), the } ! is the 

phase space factor for three identical particles, and the 1/6 comes 

from the average over the six initial spin states. Since 
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the diagonal term reduces to 

~g~(k3+kc) x ~ 2: IF( lk1-k2 l~1(") (0'1~ lr~pl ~o~n)1 2 

<JoO"'n 
6"'1 ()"'2 

= ~g~{k3 +kc) l~p( I k1-k2 1~rC) 12 (11) 

i.e. simply to 1/2 the matrix element (squared) for negative production 

in p-n collisions times the momentum distribution in the deuteron. This 

is the term to be expected for direct production off the neutron. (The 

1/2 occurs in the two particle case also as the phase space factor for 

two identical particles.) Similarly the spin sum for the exclusion 

correction gives 

(12) 

so that the exclusion correction is 100 percent when the three final 

particles all have the same momenta, as it should be. Combining these 

and including the cyclic permutations of 1, 2,3 gives the result (6) ·. 

already quoted. The matrix element for positives, (7), is obtained in 

the same way. Here, however, no simplification such as the final state 

being always a singlet occurs and different theories can give different 

results for the coefficient of the interference term Acos(dpn-~p). 

B. Phase Space Integrations 

The canonical variables picked were r, the internal coordinate of 

the deuteron, y, the distance between the incident proton and the 

center of mass of the deuteron, and x~ the center of mass coordinate 

for the three particles. The momenta conjugate to these coordinates 
~ 1~--+ ~~ 4 1 ~........ . 2 

are kr = 2 (k2-kJ·) with m = zu, ky = 3 (2kl-k2-kJ), with m = 3M, and 
~ 14 ~ .... kx = 3 (k1+k2+k3) with m =3M. Hence the·energy in the final state is 
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h2J;c~ +Jb2k2 + t2~ + E 
M 4M 6M q 

where Eq is the total meson energy (J.L2c4 + c2!i2q2) 1/2, and the initial 

energy is T0 - Ed were T0 is the kinetic energy of the incident proton 

and Ed the binding energy of the deuteron. T0 must be calculated 
~ 

relativistically (and k 0 ), but the final nucleons may be treated as 

non-relativistic even in the laboratory system without making much 

error in the meson distribution. For the two particle case, however, 

the distribution must be calculated in the center of mass system where 

the final nucleons can be treated non-relativistically and then trans

. . dEf 2ii21§: 
formed relativistically to the laboratory system. S~ce dk = M 

r 

the density of final states is 

~ -+ ... 
1 dkr ~ dq 

ff = dEf (2n )3 ('2;)J (2n )3 ? (13) 

• ~ ~ -+ 
Conservation of momentum requlres that kx+q = k0 , so that the conserva-

tion of energy equatior. may be solved for kr in terms of ky and known 

quantities independent of the nucleon angles (the reason for this choice 

of variables) giving 

(14) 

For a constant matrix element the diagonal term leads to the integral 

( 2 _ _AL ffM J g-i«dkz 2 f_1dM · 8wa.N2 
Jffgo(kl) - (2w)J o 21J.2(21T)J 8n -1(2;)3 (a.2+~~+k§+~xkyMy)2 

(15) 
J,....Bn-a.N~2 

where the deuteron momentum amplitude has been taken to be ~2+k2 • 

The calculation has also been carried through for the more reasonable 

deuteron wave function (e-a.r -e-Pr)/r with ~~~ = 6. The only important 
-u.r 

difference this makes over the wave function-·e ___ is that N2 changes 
r 
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from one to 6(6+1)/(6-1)2 = 1.68. The angular integration is elementary 

leading to the result 

3 I'Y2 
where we have introduced the dimensionless quantities a2 = 4 g and 

(16) 

2 1 ~ b = ~ g and x is dimensionless. The branch points at the two ends 

of the path of integration allow this integral to be converted into a 

contour integral and evaluated by residues giving 

and 

(l+a2-b2)] l/2 + b v(l+a2-b2) +4a2b2 + 

2-/2 ab 

fffg~(kl) = 

dq f3MN2a. {A[J(G•A2-B2) 
2 

+.{,A2n2- (G+//-B2)] tB[ J(G+A2-B2) 2 +4A 2B2+ (G+A2-B2)]' J 
(2n )3 h2 2..J2 AB (18) J 

3 2 1 ~ . 
where A2 = 

4 
~ , B2 = 

12 2 
, G = g 2 and K0 is the meson inverse 

Ko ho Ko 

Compton wave length. This reduces to the corresponding result for the 

two particle distribution as the binding energy goes to zero, and to 

zero as the binding energy becomes infinite. The exclusion principle 

correction reduces to 

f
-~ ~1 kxt1x K2 lo a2+(Koy+kr)2 

dq 3MN2a K0 ~~ J Ka 2 0 ga.2+ (K0 y-kr) 2 
-- xdx dy ----~=---=-"---
(2n )3 2nh2 kx 0 1 !x_~ a2+K~2+~ 

3 k 0 2 

(19) 

(where k? = ~ - x}~~hich ~as evaluated numerically. The diagonal term 
\ K~ 3 

integral that occurs when the forces between the particles in the final 

state are taken into account differs only by the factor K~(etf+~) in 

the final integration so that this integral may again be done by 

residues giving 
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- _g_ VMN2a.K~ X 

- (2n )3 h2 [(G+A2-B2+A1_) 2 + 4A2 B2J 

r 2 2 ")[A[ J(G+A2-B2) 2+4A2B2-(G+A2-B2)J~+B (V(G+A2-B2)2.+4A2B2+ (G+A2-B2)] ~j 
(G+A -B +Ar {;\ 

2'12 AB 

+ ~ r [ /(G+A 2_32/ +4A2Js2- (G+A 2_32)} Lr J (G+A 2_32) 
2 

+4A 232+ (G+ A 2_32)] ~] 

- AiJG-;Af} (20) 

. a2 <tf. 
where Af = ~ or U2 depending upon whether the final state is a singlet 

Ko Ko 

or a triplet. The corresponding exclusion principle correction was not 

calculated because of mathematical difficulties, but was estimated to be 

approximately the same percent of the diagonal term at the same meson 

energy as the corresponding correction for the constant matrix element 

case, since the general form of the diagonal term was so little altered 

by the inclusion of the interaction between the two final particles. 

When one of the final particles is a deuteron the energy conserva-

tion condition becomes 

while the momentum conservation condition remains unaltered, so that 

the density of final states is 

where (21) 

The angular integration is elementary, giving 
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(22) 

Tbe ratio of matrix elements for the two particle case is given by 

Brueckner as 

(23) 

so that this result can be immediately rela~ed to our previous formulae. 

,, 
J, 
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FIGURE CAPTIONS 

All curves are the cross section for meson production as a function of 

meson energy in the forward direction for 345 Mev protons incident. 

The reactions to which the cruves refer are given on the figures. p-n 

and p-p matrix elements are assumed equal. The absolute value is left 

arbitrary as it depends upon the strength of the coupling of the meson 

field to the nucleons, but relative normalization is correct. The 

following assumptions apply to the indicated figures: 

Figure 1. Production of negative mesons; constant matrix element. 

Figure 2. 

Figure 3. 

Figtire 4. 

Figure 5. 

Production of negative mesons; singlet final state •. 

Production of positive mesons and negatiye mesons; singlet 

final state; interference term neglected • 

Production of positives off the proton; triplet final state. 

Production of positives and negatives; triplet final state 

when the final particles in the two particle interaction are 

not identical. 
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