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I. Phenomenological Interpretation of
High Energy Froton-Proton Scattering

INTRODUCTION
In this report we shall attempt to fit the proton-protons scattering data at
3)

32(1)(2) and 350 Mev by the use of static nuclear potentials. This description

is phenomenological and as such may be considered a sequel to the report concerned

with determining the n-p interaction from the scattering data at 40, 90,(4)(5)(6)

and 280 Mev.(7)
The success that was obtained in the n-p system would seem to be sufficient
grounds for expecting that p-p scattering would likewise be interpretable by meaﬁs
of static potentials. In fact we might be tempted to predict the p-p nuclear
potential from our knowledge of the n-p potential aé determined by tﬁe high energy
scattering. This prediction could be made either on the hypothesis that the nuclear
potential is charge independent (i.e. depends only upoh whether the two particles
are in a singlet or triplet spin state), or in terms of an attempt to explain the
saturation of nuclear forces.
If ﬁe were to follow the first assumption (the so-called symmetry hypothesis)
there would be no free parameters entéring the p-p theory, since the results of
the n-p experiments are quite définite. For both singlet and triplet states these
experiments show that there are no (or very small) odd parit& forces. Therefore
on the basis of charge symmetry one might expect that the n-p and p-p scattering
would be quite similar. This is in obvidus disagreement with the experimental
results as is seen in Figure 1.

In order to better understand the prediction of the charge symmetric theory

we must consider in more detail the fundamental differences between n-p and p-p
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scattering. Firstly, for 32 lev protons the coulomb repulsion is dominant in the

‘scattering at angles less than 20°., Between 20° and 40° or 50° the angular varia-

tion is governed by the nuclear-coulomb interference terms., The remaining region
around 90° is vitually the same és for simple nuclear scattering. Secondly, the
p-p system, being compcsed of identical particles obeying the exclusion principle,
has fewer states than the n-p system. Specifically only even parity singlet states
and cdd parity triﬁlet states can be present. Thus scattering occurs only in 18,
BP,lD,BFO,O states;, and the charge symmetric theory predicts the virtual absence
of triplet scattering. The n=-p system, on the contrary, has scattering from both
singlet and triplet even parity states so that a direct comparison must be justi-
fied. In order to learn what part of the complete n-p scattering is singlet scat-
tering we must recall that in order to lead to the low total n-p cross section the
singlet range must be greater than 2x10"1cm, This gives an angular distribution
for the singlet cross section that has an even higher ratio of 5%%2%;% than the
complete scattering from both states, making a direct comparison cf the relative
angular variation of the complete n-p and p-p cros$é section possible in the
region from 50° to 90°. Thus the 32 Mev p-p results show that the charge symmetry )
hypotheéis is untenable,

Alternatively we could attempt to predict the p-p scattering by directing
our attention to the phenomenon of the saturaticn of nuclear forces. The n=-p
experiments rule out the possibility of n-p repulsive forces of anything like the
magnitude required to explain saturation. The low energy experiments show that
the singlet p-p forces are attractive. Thus the only remaining way for the p-p
forces to lead to saturation would be the existence of strong repulsive forces in
fhe triplet state. Since the triplet scattering amplitude is antisymmetric, the
scattering from a central triplet potential is zero at 90°. Hence such repulsive
forces would lead to an angular cross section rising even more rapidly on either .

side of 90° than that predicted by the charge symmetric theory and are conclus-
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ively excluded by the data.

Thus both the hypothesis of the charge independence of nucléar forces and
the possibility of stron repulsive fofces in the triplet p-p state sﬁch as seem
to be required for the saturation of nuclear forces are already disallowed by
the p-p scattering at 32 Mev. The 350 Mev scattering is even more strikingly
anocmalous (cf,'Figure 1). The experiments indicate a nearly spherically symmetric
distribution over the range from 41° to 90° having an absclute magnitude that is
twice the mgximum possible for S wave scattering alone. Since the n-p scattering
at 280 Mev was in good agreement with & non-relativistic potential model it is
difficult to accept this as a relativisiic effect. Again both charge symmetry
and repulsive tripleﬁ forces would lead to scattering stronly peaked at 0° and
180° and an order of ﬁagnitude lower in value at 90° than the observed p-p cross
section, and are conclusively disproved. This scattering is superficially simi-
lar to classical hard sphere scattering. However, since the wavelength of 350
Mev protons is only three or four times shorter than the range of the attractive
region that must surround and include such a sphere in order to explain the low
energy results, the sphere cannot be made large enough to give classical hard
sphere scattering at this energy. This point is discussed in more detail below.

In spite of the surprising divergence of the observed p-p scattering from
that which had been expected previous to the experiments, it has proved poss-
ible to reconcile all the existing data with the scattering predicted from a
static nuclear potential. This model consists of a shallow singlet potential
and a highly singular triplet tensor potential. The main body of this paperl
ié concerned with justifying this model.

In view of the apparently fundamental differences between the expected and

the observed p-p scattering, and the various complicating fictars inthe analysis of
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the data, we have devoted the first part of this report to a more or less quali-
tative discussion .of p=-p scattering. In this section we will give typical results
for various potential models but will not discuss which radial dependence is to be
preferred. Rather we wish to emphasize the salient features in the analysis in
order to furnish a basis for understanding the calculations which follow in Part 2.

PART 1. QUALITATIVE DISCUSSION

It has been shown by many authors that the experiments below 14 Mev are com-
patible with S wave scattering alone(8) and that these experiments have determined
only the scattering length and effective rangeo(g) This indicates that no one of
the radial forms usually assumed is to be preferred. It need hardly be emphasized
that the low energy experiments give little information concerning the interactions
in states of higher angular momentum (especially the P state) other than putting
upper limits on the magnitudes of the interactions in these states.

The n-p experiments at 40 Mev(A)(é) have shown that there is scattering in
the D state and little scattering in the P state, and that the magnitudes of
these interactions could be determined. It was iherefore expected that since
the range of forces for the p-p system is comparable, the scattering would
likewise occur primarily in the S, P and D states.

It was observed immediaéely, as has been pointed out in the experimental
papers,(l)(z) that the data was in good agreement with that predicted by S wave
scattering alone. This is in definite disagreement with the scattering predicted
by the usual potential models. The reason is that the S state interaction com-
pletely specifies the entire singlet iﬁteraction, and in particular the effective
range is so long that the D wave predigted at this energy is incompatible with the
experimental results. (It would of course be possible to choose a potential that

would give only S scattering at 32 Mev, but the effective range of such a potential
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would then be much too short to fit the low energy region,)

If we consider in detail the predictions of the usual models we find that
even for the most cut off potential (the square well) the D phase shift is already
too large (0,77°), and as is to be expected the more long-tailed Yukewa potential
has an even larger D phase shift (1.4%). The adverse effect of such D phase shifts
on the angular distribution can be readily geen by reference to the second panel
of Figure 2, The origin of this effect is destructive interference between S and
D wave scattering in the region around 90°. This interference term is proportional

to sin 65 gin & cos (6Sm6D)P2o (Py(cos 8) = 3/2 cos® @ = 1/2 ) The usual

D
models predict positive values for 68 end &5, so that this term has & minimum
st 90° as is observed in the n-p scattering but not in the p-p case. (Figure 2
a2lso demonsiretes that the coulomb scattering has little effecet in the region
from 50° to 90° and hence cannot alter this conalpsiono)

The central triplet scattering aiplitude being antisymmetric leads to & cross
section that is zero at 90° , and since there 1s no inturfefeﬁc@ with the singlet
state it can only add to the rise away from 90°, Therelore scattering in this
state will increase the discrepancy between the prédictioms made from the central
force model and the experients, Alternatively we can scc this directly from the
fact that the P scattering is proportionsl to Sinz SPcos2 @, showing that the

cos? @ term must have a positive coefficient, These effects are illustrated in
the third panel of Figure 2,

In order to explain the 32 Mev date, we require & model that would predict
essentially spherically symmetric scattering in the ébsence of the coulomb field.
We hﬁve already seen that central force scattering predictéd by monatonically
decreasing potential models of the usual radial form is in qualitative disagree-
ment with experiment, Conceivebly a more camplicated radiel dependence, such as

& repulsive lip on a square well, could lead to negligible D phase shifts at
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32 Mev. Attempts to build such models have been unsuccessful because they have
effective ranges too short to fit the low energy data. In view of the straight-
forward interpretation of the n-p scattering and the inherent difficulty of using
such a model to fit the 350 Mev data, it did not appear profitable tc pursue such
models any. further.

The remaining alternative, within the framework of the potential picture, is
the pogsibility that the D wave is masked by the scattering from tensor forces in
the triplet state. A favorable result is predicted by the use of the Born approxi-
mati@n:to compute the scattering (cf. Figure 3). (The Born approximation is valid
for the P waves since the centrifugal barrier reduces the effect of the nuclear
potential to a small perturbation.) The scattering computed this way is peaked
at 90° and hence can add to the singlet cross section, which dips at 90°, to give
an almost flat nuclear cross section. When the coulomb effects are included the
resulting angular distribution is quite similar to S wave scattering (cf. Figure 4).
Thus a proper choice of range and depth for the tenscr potential can lead to agree-
ment with the experiments. (An alternative way of understanding why the scattering
can have g finite value at.900 even though it takes place in odd states is that the
tensor force brings about a change in angular momentum, and tesseral harmonics
other than the Legendre polynomials enter into the scattering amplitudeo' We can
then see that the presence of Y%(Q,ﬂ) - oif sin 0 in addition to 19(6,0) = cos ©

leads to terms with a sin® © symmetry which when added to the cos?

8 symmetry
terms in the singlet scattering could lead to a flat nuclear cross section.)

" The 350 Mev data will first be analyzed independently of the 32 Mev data. The
two models so derived will theén be compared‘and reconciled. In order to further
emphasige the anomalous nature of the high energy scattering, we note that if we

assumed (arbitrarily) that there were no interactions in other than S states the

predicted cross section would be spherically symmetric but ten or more times too
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gmall. (Recall that even the maximum possible S wave cross section is only one-
half the measured value.)

To analyze the situation in somewhat more detail we shall first consider the
scattering that would result from the singlet state (since in this state the po-
tential is completely specified by the assumption of a particular radial fofm).
At 350 Mev the Born approximation is valid for central écattering and predicts
the strong forward meximum illustrated in Figure 5. Alternatively we may view
the problem in terms of a partial wave decomposition. Only the even Legendre
polynomials are all 1 at 0° and 180° and alternate in sign at 90° (e.g. P,(90°)=1,
P5(90°)=-.5, P;(90°)=.375...). Scattering by the usual monatonic potential
models predicts that all phase shifts will have the same sign, so that there is
constructive interference ét 0° and 180° and destructive interfefence at 90°,
giving a characteristic peaking of the angular distribution.

In order to obtain a flat cross section it would be necessary to require _
that phase shifts of even parity alternate in sign with increasing ﬂ, resulting
in a singlet cross section peaked at 90°, Then if this cross section were
added to the central triplet cross section (which is.always zero at 90°) a
flat cross section would result. It does not appear possible, however, to
find a singlet potential that will fit'the scattering in the low energy
regioﬁ while at the same time predicting the required alternation in sign
of the high energy phase shifts,

Before turning to the.tensor models we will first consider the so-
called hard sphere scattering which can have the required characteristic
of giving phase shifts of alternating sign. A4t this wavelength of 0.5 x
10-13 em it might appear superficially that a repulsive core in the cen-
tral potential would give the desired result. However, it is found that

when the effective range is fitted the repulsive core cannot extend

more than 0.7 x 10713 cm. Since the repulsive core is then not
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much larger than the wave length of the proton, scattering occurs predominantly
from the surrounding attractive region (which is required in order to give
agreement with the low energy data). Such a model results in scattering in the
high energy region similar to that predicted by more usual forms.

Again we must appeal to the tensor force in order to obtain agreement with
the experimental data. In fact, if we recall that at 32 Mev we needed to add a
triplet cross section that was peaked around 90° in 6rder to mask the minimum in
the singlet scattering we see that the situation at 350 Mlev is very similar. We
can again use the tensor force to obtain agreement, for in Born approximation
scattering depends only on the combinatien kR where k is the wave number and R
the range of the potential. That is, to produce the same scattering at a higher
energy we need only contract the range by a factor that is the square root of
the energy ratio, and adjust the depth to.give the desired absolute magnitude
to.the scattering.

We therefore have indications of a tensor potential at both 32 and 350 Mev,
and need only show that the requirements for the two cases are compatible. As
the energy changes different regions of the potential will play the more dominant
role. For example, at 32 Mev the potential region at distances of the order of 3
to 4 x 10713 cm is most important while at 350 Mev the potential region at dis-
tances of the Qrder of 1 x 1013 cm has become important. By adjusting the range
and depth of a tensor potential of any given radial form the. predictions may be
made to fit the 32 Mev experimentai data. However at 350 Mev the P wave protons
are able to explore the potential in to considerably shorter distances and it is
necessary to have a stron interaction in this region in order to explain the very
high 350 Mev cross section. The tensor scattering calculated for a singular po-
tential in Born approximation as illustrated in Figure 3 illustrates these re-
marks., From the foregoing curves we can also see thal an appreciable fraction of

the 32 Mev s tter ing must be explained in terms of tensor forces if we wish to obtain
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agreement with the high energy data. These curves further show that the tensor
potential would proﬁably have little effect below 10 Mev as the scattering
amounts to less than 1 percent of the total scattering,

PART 2. CALCULATIONS

A, Methods

The singlet scattering from a potential of given radial form depending on
two parameters is completely specified by the scattering length and effective
range, which are determined by the scattering below 10 Mev. The general
method of determining these parameters for a given radial dependence is dis-

(9)

cussed in detail by Blatt and Jackson. The S scatteriﬁg due to the nuclear
potential alone at higher energies was calculated by direct numerical integra-
tion of the radial wave equation giving the S phase shift. The true S. phase
shift (in the presence of the coulomb field) was then obtained by treating the
coulomb field as a perturbation according to the method of Chew and Goldberg-
er.(lo) The corrections amounted to approximately one degree or less. The D
phase shift was calculated in Born approximation considering only the nuclear
forces. (This method was checked by numerical integration in the case of the
Yukawa potential, corrected for the coulomb field as above. The results at

32 Mev: 1.33% for the Born approximation, 1.45° for the exact nuclear calcu-
lation, 1.40° with the coulomb correction were assumed to be a satisfactory
check.) Higher waves than the D were found to be negligible at 32 lev.

As was shown in Part 1, it was not necessary to calculate any odd parity
phase shifts due to central forces, but the tensor scattering was required. This
was calculated using the exact values of the complex phase shifts,gfh@, which
enter into thé tensor scattering. The result was in good agreement with that
prediéted by the Born approximation; There is a slight tendency for the Born

approximation to prediet somewhat largér angular variations than are found in the
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more exact calculations. This can readily be understood in terms of the higher
approximations of the Born approximation for then the scattering amplitude enter-
ing into each successive iteration (or each successive collision) is less well
collimated than that entering the previous iteration, due to the scatﬁering that
occurs, A further small difference between the exact and the Born calculations
occurs in the absolute magnitude, a tensor force taken with a postive sign (i.e.
same sign as for the deuteron) always has less scattering in the exact calcula-
tion while the tensor force taken with a negative sign always has more scatter-
ing. 4 comparison between the exact predictions using the two signé and with the
result of the Born approximation is afforded by reference to Figures 6 and 7.

The phase shifts arising from the coupled states entering the exact calcu-
lations were carried out by iteration (in the manner described in reference 6)
after they had been cast in the form of coupled integral equations. In the case

of the uncoupled states any of the methods usually applicable to central scatter-

‘ ing may be used. We found that the integral variational expression was sufficiently

accurate when the proper component of the plane wave was used as a trial function.
From the relatively small differences shown in Figures 6 and 7, we decided

it was unnecessary to carry ou£ the exact calculations for the nuclear part of

the scattering. This is particularly so because we are able to offsef any

difference in absolute magnitude by choosing a slightly altered tensor depth

(which will be determined only very roughly anyway from the present data)°

One difficulty with using the Born approximation is that the interference

term (cf. Appendix l,.for a derivation of this term) between the nuclear and

ceulomb scattering identically vanishes, while the exact calculations at 32

Mev shgw that the P wave component of the nuclear scattering interferes

appreciably with' the coulomb scattering. We had therefore to compute two

uncoupled phase shifts, ${° and éii , and also iterate the coupled

3P2 + 3F2 state. The iteration process is rather tedious and
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es the magnitudes of the phase shifts were small compared with the uncoupled phase
shifts, we used the WKB approximation to obtain these phase shifts. We shall con-
sider this epproximation in more detail below: If the two independent solutions

of the coupled equations have the asymptotic form

. J
alL/\/alL sin (%x = m% + &lL) s
where L & L or 2J -1 depending upon which is the dominant state, then the nuclear

phase shift may be easily shown to be given by

(5 - &L)mauamel(‘sh 80,25 | (21 <SLJms|SL0ms>aLL sin(83;-5)1)

s218fms 28+1)  <SLJmg|SAOmgs)

o1 (8 +81L)_of oo-1(551 487, )

where now L = 2 = 1 only, and we have set 8"9{1 - a‘IIJL = 1, In the case of the
3P2 + SF’z state we have found that the Born approximation yields all quantities
in this expression with the exception.of § il" with sufficient accuracy. This
we have computed by using the "equivelent central potemtial" (cf. reference 6) in
WKB approximation and then appiying the Born approximation to this potential to

obtain the phase shift, 5%1 is then the sum of two terms one of vhich is identical

with that predicted by the Born approximation applied directly to the coupled

. equations and the other is of the nature of a correction term, and has the velue

A% - 2oy 366 L f[xvt(x)] glz(kx)dx

where we have written the tensor potential,

V() [3(3;°‘f2}§3z°%') - 5?1032] Vﬁ(x.)

and

) = [T 3y )
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This procedure applied to the exponential and Yukawa radial dependences yields
the coefficients of the interference terms within a few percent the coefficients
determined from an exact calculation.

For the 350 Mev scattering the coulomb scattering was neglected and the
singlet. scattering was computed in Born approximation.

B. Results

The singlet cross sections for the square, exponential, and Yukawa models
are shown in Figure 8. In each case the range and depth have been chosen to
agree with Blatt and Jackson's low energy analysis. (The range and depth of
the Yukawa potential and square well were determined indeﬁendently'by Chew and
Goldberger before the results of Blatt and Jackson were available to us and
agree with their assigned limits of error.) These parameters, together with
the S and D phase éhifts at 20 and 32>Mev, are collected in Table 1. Clearly
there are significant differences in the angular distributions predicted by the
various models. However, the magnitude of the D phase shift is always large
enough to yield a curve that has a characteristically different shape than the
experimental results in the region from 50° to 90° and too low in absolute
value at 90°. The principal reason for this is the presence of a Po coeffi-
cient in the nuclear scattering arising from the interference between the S and
the D waves.

The addition of a central P wave does not change the cross section at 90°
as can be seen in Figure 9 where we have indicated the effect of adding positive
and negative P phase shifts to the scattering predicted by the Yukawa model
(which comes closest to fitting the 90° point). Clearly these curves do not
agree with the experimental results, primarily because the nuclear cross section
adds in the region from 50° to 90° (where the coulomb interference can be
neglected).

It is seen from Table 1 that the D phase shift increases as the potential
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becomes more long tailed. Since the D phase shift is too large even for the
square potential we are forced to turn to more complicated radial forms, if we
wish to account for the 32 Mev scattering by central interactions alone. Such a
potential might be expected to be repulsive at long distances and attractive at
short distaﬁceso Accordingly some attempts were made to annul the D wave by
adding a repulsive lip to the square well., They met with little success, and
having regard to the inherent difficulties implicit in such an approach when
applied to attempt an explanation of the 350 Mev results, this approach was
abandoned.

As discussed in Part 1, the effect of adding.tensor force in the purely
nuclear scattering is to produce a more nearly spherically symmetric angular
distribuiiong The depth of the tensor potential and hence the amplitude of the
scattering may be considered arbitrary, and must eventually be chosen to give
agreement with the experimental data. In Figure 10 we have shown the result of
adding the tensor scattering to the singlet state scattering. Clearly, if the
same radial dependence is assumed to hold for both singlet. and triplet states,
approximate agreement may be obtained for the exponential potential with depth
V4=%50 Mev. If we drop the restriction that the singlet and triplet potentials
have the same radial dependence, it is clear that we can obtaiﬁ better agreement,
especially with the photographic data, by using the combination of squére well
for the singlet potential and Yukawa for the triplet (cf. Figure 11). (This
combination utilizes a square well with the constant previously found for the
singlet state and a tensor Yukawa well of range 1.25x10"em and Vi=t 26 Mev.)

As was remarked in Part 1 tensor scattering at 32 Mev is only able to ex-
plore the tail of the potential, and consequently there is liftle uniqueness to
the radial form which can be established from the 32 Mev dafag To illustrate this

we may consider the Born approximation, In this approximation the triplet differential
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cross section (considering only the nuclear part) is proportional to
(0)~{c?(6) + c*(n - 8) + C(8) C(n - 0)]

where " (o'} f
) = —— Vi [ K 3 K = 2k sin —
c(e) Tox A t (R)g2 (Kr) rar 2k sin

Plots proportional to C(®) are shown in Figure 12 as a function of
a(2kR sin %) where a has been adjusted such that each model predicts almost tﬁe
same scattering at 32 Mev. (Recall that the Yukawa potential with R = 1.25 x
10713 em gave a good fit to the data when combined with a shallow singlet po-
tential.) From these plots we find that the following ranges are practically
equivalent with respect to the 32 Mev scattering: R=3.8x10'13cm(square),
R=1.0x10"cm (exponential), R=1.25x10"12cm (Yukawa), R=2.0x10-13cm?
(exp(-r/R)/(r/R)?). 7

In the plots of C(0) we have chosen the scale of the abscissa such that
a(2kR éin g)ﬁl for €=90° with a k corresponding to 32 Mev. For other angles we
move up and down the abscissa according<to sin g (e.g., to obtain the value for
C(180°) at 32 Mev read the ordinate for an abscissa V2). The 90° point at other
energies can be readily located as it is given at an abscissa which is the
squere root of the ratio of that energy to 32 Mev. Thus to obtain the vaiue of
€ (90°) at 350 Mev read the ordinate at an abscissa °fvf§%§:' 3.30.

As the energy increases a large difference in scattering occurs between the
various models. The mcre shallow potentials give iess scattering relative to
that at 32 Mev. From the predictions of the various models for the singlet state
it seems reasonable to allow approximately one-third of the nuclear scattering at
32 Mev to be of tensor origin., This gives a tensor cross section at 32 Mev which
is comparable to the 350 Mev cross section in magnitude. We therefore see that
the Yukawe and other even less concentrated (i.e., shallower) potentials do not
predict a sufficiently high cross section at 350 Mev, It is therefore necessary

-r/R

to use the singular potential Q;_§—° The results for the complete cross section

R



~16e

at 350 Mev are compared in Figure 13. In order to indicate the essentiel features
of the singular model, we again examine the curves in Figure 12, Clearly a square

well of range 4 x 10733

om gives socattering of the correct form %o f£it the 32 Mev
data, while & square well of yrange 1 x 1013 em gives 360 liev goattering epproxi-
mating to thet predicted by the simgular model. Thus by combining the shallow
long renge square well with a deep short range square well (which will not be

' explored hy 32 Mev P wave protons) scattering appr’oximating.to that predicted by

the singular model can be obtained.

C, Summary of Results

~ We have shown that the 32 Mev data oan be fitted by means of two cambinations
of central and tensor force. These are: 1. The radial dependencé is chosen the
seme for the contral .and tensor potential. The best fit is then with an exponentiel
radial dependence of range 0.7 x 10~13 am and mtfx a tensor depth of + 50 Mev, Thia
model fits the counter data betier than the photographic data, 2, The radial dee
pendence is singular for the tensor potential aud shallow and cut off for the
central potential. The best fit is with a singlet square well of range 2.6 x 10"15
ocm and with e1’cher 8V, exp(=r/R)/(r/R) radial dependence (with R = 1.3 x 10°1% om
and Vy = + 26 1fev) or with a more singular potential Vi exp(mr/R)/(I‘/R)?‘ with
R = 2,0 x 10~15 cm and V, =.+ 22 Mev. These combinations give better fits to ‘the
photographic data,

To 4t the 350 Mev data we have shown that a very singular tensor force must
be used, such as the exp(mr/R)/(z“/R)z The essential feature is that there must
be 8 strong interaction in regions less than 005 x 10°7° am

The best fit of the combined data ia therefore obtained by using the singular
potential so adjusted that approximately one-third of the nucleer scatiering at

52 Mev is accountable to tensor scattering,



',_,11’“79

It is clear that the present data are not sufficiently extensive to permit
very precise specification of the radial forms; however, in the foregoing sumary

we have tried to emphasize the salient features of each model,

CONCLUSIONS
Wo have shown that it is possible to fit all the present p-p date by means of

a shallow central potential for the singlet states end a singular tensor potential
for the triplet states,

Quite apart froﬁ the potemtiel models assumed, however, even the most casual
comparison of the p-p data at 32 liev with the n-p data at 40 Mev and, especially,
& comparison of the 340 lMev p-p data with the 280 lMev n-p data shows that nuclear
geattering is charge dependent. In particular, there is definite cvidence in the
n-p scattering data that large tensor scattering does not occur in the cdd parity

states,

It is possible that the radial dependenceé found necessary fér p=p socattering
would be acceptable for the n-p scattering even though the exchange behavior is
different, A definite statement regarding this must awaeit detailed calculations,
however, _

Finally we must take notice of the fact that no large repulsive forces have
shown up in either the n-p or the p=p system of sufficient magnitude to ascount
for nuclear saturation if saturation is to be predicted from two body forces., In
both casss they would have been veryveasily detected, independent of the potenfihl

model a&ssumed,
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APPENDIX I
The triplet eross section is given by
do

1 - _
- %—_S(ﬂﬁlzﬁRNo*kaoR* thN’“N) (14)

where

R & <@¥iaﬁn sinzg- e=laln 0052% >
S 2

sin? -% cosz

| S0an > <5 LImg S fum 41> (eZiéiIms-1>'§bf( e,8)

JS?L Van(ze1) 621 (0=o ks pom,

a = ez/kv

- o -1_a
ojg/wc’ostanll-htan ms&,o,*tan a

_YE' (egﬁ) are the normalized tesseral harmonics and 53?’3 are the customary
(complex) phese shifts that occur in tensor scattering (defined here in the
presence of the Coulomb field),

In Eq@tion (1A) the term involving I'Rlz is just the usual triplet Coulomb
scattering and the terms Z N *N are the uvsual nuclear scattering, The re-
meining terms represent th: interference between nuclear and Coulomb scattering,

In our calculations of the tensor scettering the Coulomb modification of
the nuclear phase shift wes neglected as the expected order of magnitude of |
this modification was very small compared to fbhe P phase shifts, Turther the
nuclear-Coulomb interference terms were caloulated only for the P wave part
of the nuclear scattering, These terms can then be written

9Py (cos 6) [sin « sin B , &
1 1. 1 <1 29%° .1 . 28 198 190
Zkz l:s‘ (22 3 sin 1 *3 sin 1 H‘S"Al - "§Al ) |

oP. (cos 6) !'ccs @, GCos ﬁﬂ ; 14 & .

1 1 1 . goo oo 1. § 51 1.2¢1_20

= = — $1n cosb =—sin cos *'Bl*"Bl )
a® | s? o? _]<9 % 1 TEER %1 9% YR17S




where “1 =a in 8. 2(0y-1,)

c® - coszl 9/2
Ai’ms = Re(eas'lms - 1)
B‘{ms = Im( 0218‘?‘8. )
(2A) reduces to the expression given by G, Breit, €. Kittel, and . M, Thaxton,
Physical Review 57, 255, (1940) when the coupling between the SPZ' and 'SFZ

scattering is negleoted.
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APPENDIX II

The energy dependence of the foregoing tensor model of the proton-proton
interaction has been investigated below 32 Mev. The angular distribution pre-
dicted by this model at 20 Mev is given in Figure 14 in comperison with pure
S wave scattering and singlet scabtering without the tensor force.. Clearly the
tensor model is closer to agreement with S wave scattering than at 32 Mev where
this model and S wave scattering could not be distinguished by the experiments.
Therefore the deviations from S wave scatte;ing should be negligible at lower
energies. The value of K calculated from the cross section at 90° is plotted in
Figure 15 in comparison with Blatt and Jackson's best shape independent approxi-
mation(g) end central force models. The agreement in shape between our curve and
that for a Yukawa S wave again demonstrates the pseudo-3S character of the tensor
model at lower energies. The points determined by Bruce Cork (C) confirm this
prediction, which 1s not surprising as any smooth curve tangent to the straight
line at low energies and passing through the experimentally determined point at

32 Mev would pass close to those points.

The experimental points in Figure 15 are:

MP May and Powell, Proc. Roy. Soc. 4190, 170 (1947)

M Meagher, PhD Thesis, Univ, of I1l,

DOP Dearnley, Oxley, and Perry, Phys. Rev. 73, 1290 (1948)
We Wilson and Creutz, Phys. Rev. 71, 337 (1947) .

Wi Wilson, Phys. Rev., 71, 384 (1947)

Wr Wright, Private communication

WLRWS Wilson, Lofgren, Richardson, Wright, Shankland, Phys. Rev. 72, 1131 (1947)
R Rouvinsa,Private communication

PF Panofksy and Filmore, Phys. Rev., July 1, 1950

RCJ Richman, Cork and Johnston, Phys. Rev., July 1, 1550
¥ Cork, Private communication
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TABLE 1
Singlet phase shifts at 32 Mev for various radial forms adjusted

to fit the low energy scattering.

_Fhage Shift -
Model Ve R s D
Vo r<R K '
o3 13.273 Mev 2,615 x 10713 em  41.99° 770°
R 0 r>R ' :
Vo(R)= Voo™ 108.27 Mev 7088 x 10713 om  47.54° 1.20°
Ve T/R -
Vo(E)s 5 — 49350 Mev 11417 x 107 em  51.15° 1.40°

r/R
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FIGURE CAPTIONS

Comparison of n-p and p-p scattering data.

Effects of S, D, and P waves on 32 Mev scattering. The upper
set of curves give the nuclear scattering. The lower set in=-
clude the effects of coulomb forces.

Tensor scattering from a singular potential at variocus enei‘gies°
The energies in Mev are given parametrically on the curves,
Effect of adding tensor scattering to the singlet scattering

at 32 Mev., A. Nuclear scattering. B. Scattering including
the effects of coulomb forces. The tensor scattering is that
from a potential of exponential radial dependence (R = .71 x
10712 em, Vi = 1+ 50 dev).

Singlet scattering at 350 Mev as predicted for a potential
having Yukawa radial dependence,

Comparison of exact and Born cslculations for tensor force
scattering ot 32 Mev from a potential of Yukawa radisl
dependence (R = 1.25 x 10713 cm).

Comparison of exact and Born calculations for tensor force
scattering at 350 Mev from a potential of Yukawa radial
dependence (R = 1.25 x 10713 cm).

Singlet scattering at 32 Mev from potentials with various radial

forms adjusted te fit the low energy scattering. Data taken

" from reference 2 (31.8 liev).

P wave scattering added to the singlet scattering predicted by
the Yukawa potential at 32 Mev.

Total scattering at 32 Mev by singlet and triplet tensor
potentials of the same radial form. (The singlet potentials
have range and depth adjusted to fit the-Jow energy scattering.)

A, Square B., Exponential C. Yukawa.



Figure 11.

Figure 12.

Figure 13.

-25-
Singlet plus triplet tensor scattering at 32 Mev. The singlet
potential is a square well (R = 2.615 x 10713 cm, V, = 13.273
Mev), and the tensor potential is a Yukawa potential (R = 1.25
x 10-13 cm, Vi = * 26 Mev). The experimental points are taken
from reference (1) (at 29.4 Mev) and have been reduced in mag-
nitude by 5 percent,
Born tensor scattering amplitude for various potentials. The
abscissa scale has been adjusted so that all potentials will
give the same angular distribution at 32 Mev as the Yukawa
potential with R = 1.25 x 10713 ¢m for a suitabie choice of
depth.
Complete cross section at 350 Mev for various tensof models
adjusted to fit the 32 Mev data. The legend shows the tensor

model used. Data taken from reference (3).
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I1. The Prcduction of Mesons
By Protons on Deuterons

INTRODUCTION

The purpose of this paper is to attempt to predict the energy and angular
distribution of mesons resulting from the bombardment of deuterium by 345 Mev
protons, under the assumption that the cross section for the production of
mesons in two nucleon collisioﬁs is known. Alternatively, since neutron sources
of sufficient energy for the study of the production of mesons in n-p collisions
are not readily available, this analysis can offer a method for learning some-
thing of this cross section. The production of mesons in proton=proton'collisions
is being investigated experimentally by Richman, Wileox, Whitehead, Cartwright,
and V. Petersonél)Keith Brueckner has conducted a theoretical investigation of
the problem in the light of these experiments.(z)

The general method of attacking the problem was suggested to me by Professor
_Chew, in analogy with an approach he is using in the study of n-d inelastiec
scatteringo(B) It rests upon two assumptions, of which the first is probably
justified, while the second is open to considerable question. The first assump-
tion is that the production takes place in a time so short compared to the period

of the deuteron that the impulse approximation may be used. Since for the inei-
deﬁt proton v/c = .682, the time for it to cross a meson compton wavelength is
only 2 percent of the deuteron periéda Hence it seems reasonable to assume that
the problem can be treated in terms of the production of mesons by twe nucleons,
one of which has the momentum distribution of a particle in the deuteron, while
the third particle simply carries off the complementary momentum without other-
wise entering the reaction. The general examination of the errors made in im-
pulse approximations of this type is to be discussed in a forthcoming paper by

]

Professors Wick and Chew.
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The more dubious assumption is that the particles which produce the mesoﬂ ‘.
do not then interact with the third particle except in so far as the exclusion
principle limits the states available to them. This is essentially the same
approximation as the neglect of double scattering off alternate particles in the
inelastic scattering of nucleons by deuterons. In the latter problem one of the
three particles must have a large momentum relative to a pair of particles that
are interacting strongly. As Professor Chew has shown, this allows a straight-
forward treatment in terms of two body interactions. When a meson is formed,
however, it is quite possible for all three nucleons to have comparable momenta,
so that exact treatment would require a solutionof the three body problem,

Still, it can be argued that the situation is not so desparate as to in-
validate the method used below. Firstly, when the three momenta are comparable,
the exclusion principle causes a compensating reduction in the cross section. A
further limitation occurs in that the phase space available to the three particles
in this energy region (i.e. the region of high meson energy) is small. Outside
this region the effect is small., In fact if the third particle has a relative
energy of 40 Mev or greater, as is true on the average for most of the distribu-
tion except the high energy tail alreadyvdiscussed, its cross section at the
average distance from the.iwo interacting particles (4 or 5 wavelengths at this
energy) covers less‘than;é percéht of the solid angle into which these pa;ticles
may go. Moreover, the interacﬁion between the twp particles which produg; the
meson can be takeq into account to the same extent as was done by Bruecknér.
This interaction completely alters the two nucleon distribution both in magnitude
and shape; it increases the magnitude of the p-d cross section by a correspond-
ing amount but has much less influence on the shape. Thus the results given
below should be at least qualitatively correct, except possibly for the high

energy tail, Clearly this method ignores the possibility of the formation of a
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triton, but the results indicate that this process should be separable experimen-
tally from the main body of the distribution.

DERIVATION OF THE SCATTERING MATRIX

The formal statement of the above assumptions and derivation of the scatter-

(3)

ing matrix will be carried out in terms of the R matrix notation. The assump-
tion that the two nucleon cross section is known can be stated as knowledge of
appropriate two particle R matrices. These are then combined with the assumption
that the third particle influences the reaction only by giving a deuteron momentum
distribution to one of the interaction particles at some time previous to the
production of the meson, to give an R matrix for the problem at hand.

In order to clarify the notation, I shall consider the two particle case
briefly. Let the momentum and spin variables of the incident proton and struck
neutron be denoted by €, and %, respectively, the final neutron variables by &
and &5, and the positive meson variables by . Then_R;p, which describes the
transformation of a proton £, ;nd a neutron E, into two neutrons £; and &, and a
positive mesén n*, may be written (ElEgﬂ+|Rﬁp!EoEn). Momentum conservation may

be factored out giving

+ > > -
. > P > > kl“k' - ke k
(iligﬁ+lRﬁpfﬁoin) = é\kl*k2+q“ko’hn)< 2 20102qlr;pl-°2 n°b°h> (1)

where the spin and momentum variables of the nucleons have.been explicitly intro-
duced. Note that this separation restricts us to treating the nucleons non-
relativistically throughout (except that the incident proton may be treated
relativistically in calculating the energy and momentum available for the reac-
tion; the treatment of the final nuclecns can be shown to be a good approxima-
tion). The cross section for the production of positive mesons in an n-p colli-

sion is then to.be written

20 .+ (2 dk'  dq
dof = &0 |p* |“8(E1+Eo+E ~Ey-E,) 25— G4 (2)
np hv np 1752 5q ™o n (2n)3 (Zﬂ)3

o)
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np

q (and ko) by means of momentum conservation. That is, formally, rﬂp

whére-ff = 1/2(¥1-K5) and all other variables in r)_ are to be expressed in terms

of K',
appears in the cross section in the same way as a matrix element for the transi-
tion calculated in Born approximatioh; this analogy is useful in practice. In
fact, the whole calculation is formally equivalenﬁ to a second order perturbation
calculation assuming that the nuclear forces and meson production arise from
separate interaction terms in the Hamiltonian and that the corresponding second
order calculation for the two particle case gives the correct answer.

In terms of this notation the (unsymmetrized) R matrices for the deuteron

problem under our assumptions may be written, for negatives:

o n~p

and forvﬁbéitives:

(E{n)ién)53(p)n+ IR;dIEO‘ED) = Z {eiénp(gl,52n+ IR;plaoEn)éEpﬁj
2pE1%2

R eiéPP(E£B)E§P) “fIR;p'aoEn)éEnéz} x yb(EnEp)ﬁgo(Eé) (4)

where‘wgo(éé) is the incident plane wave égoéé > ¥p(Enkp) 1s the deuteron function
> - '

k "k e 2 e - . -
n2 %)é(kn+kp—2kc), and 2ke is the momentum of the deuteron in what-

Xp(enop) go(

ever cpordinate system is chosen. These two equations onctain the formal state-
ment of the assumptions (a) that the third‘particle influences the production of
the meson only through giving to the struck particle a deuteron momentum distribu-
tion at some time previocus to the collision, and (b) that the three nucleons go
directly into the final state %1%,¥3 without further interaction not contained in
the two nucleon R;n and R;p, According to the argument given in the introduction

the interaction thus included should contain most of the influence of forces
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between the particles in the final state. (3) is to be antisymmetrized in the
three final neutrons £1%,%;, and (4) in the two final neutrons; the correspond-
ing r matrices are then to be squafed, averaged over the initial proton and
deuteron spin states, and éummed over the final spin states. Note that the phase
in the production of positives can be determined only from a specific meson.
theory so that the results will be unéertain by the amount of the interference

term if empirical R matrices are used. The cross section is then given by

o . .
dopg = JﬁTo lrpdl é(El+E2+E3+Eq—EO—ED)(Df

where the variables appearing in Tpd and in the density of final statesp¢ are to

be interpreted in terms of the new momentum conservation condition

L T T S . . 4 - -

ky+kotkytq-k -2k, = O that srises from integrating the original S (Ky+ky+q-Ko-kp)
over in and Epo

Positive mesons can also be formed with the final nucleons cbming off as a
neutron and a deuteron instead of as two neutrons and a proton. According to the
approximation being used here, this process will occur mainly when the positive
meson is produced off the proton in the deuteron. This is the same process as that
considered by Brueckner in proton-proton collisions, and can be included by cal-

culating

(8 %" R;§d>[ £ tp) = E'EZ%(ED.T\“ Epe®] 8otp)os 1 * Vo (Bn%) Me (53) (5)
o'n

Clearly this term is incoherent with prodesseé that lead to one proton and two
neutrons. The alternative case when one of the two neutrons produced in the n;p
collision picks up the original proton in the deuteron is neglected in this
approximation. (3), (4), and (5) are the formal solution of the problem posed;
given the R matrices for the production of mesons in two nucleon collisions,

which except for phase may be learned empirically, they enable us to calculate
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the production of mesons by proton=-deuteron collisions under the assumptions (a)
and (b) above, and subject to the uncertainty in the sign and magnitude of the
coefficient of the interference term in the production of positives introduced by
the unknown phase ei(épn'épp).
RESULTS

The calculation of the phase space integrals and the matrix elements is
discussed in the Appendix. Clearly (3), (4), and (5) imply a much more detailed
knowledge'of the production process than is at present available, so that simpli-
fying assumptions have been introduced. These are general features found to hold
for the four mesons theories considered by Brueckner, namely scalar, vector, and
pseduoscalar with pseudoscalar and pseudovector coupling. These are (a) that the
two particle matrix elements depend at most on the initial spins of the particles,
the final spins and relative momenta, and the meson variables, and (b) that when
the two final particles are identical, the final state is a singlet spin state.
These restrictions arise from neglecting terms of order v/c of the meson velocity
in the center of mass system. This is not a particularly ggod approximétion, but
leads to results capable of explaining the observed positive meson production, so
will be used here as a semi-empirical result.

Under these restrictions, the transition rate for the production of negative

mesons in p-d collisions is given by

Wog = anpr X % {W5n<lk1—kgl,n ) 1262 (ky+k,)
Mﬁn(!kl"k2|s“ )*Mpn ( |k2-k3|,ﬂ )gg* (k3+ke)go (ky+ke)
|M£,n(|k2=.-k3| ) |2g§(k1+kc)
pn(|k2-k3| ") *Mpn ( |k3-k; | N )go(k1+kc)go(k2+k ) (6)
M5 (113 -k 1277) | %62 (kepieg)

Mg Ikg-ky | 317 wiipn (11 kp 3 (ko) 8o (3o )

+

1

+
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where M;n is the two nucleon matrix element for the production of negatives and
go is the momentum aplitudevin the deuteron. The three positive terms give the
distribution that would be produced in.an n-p collision where the neutron had the
momentum distribution in the deuteron. The negative terms are a correcticn
taking account of those states which are excluded by the preseﬁce of the third
particle. The assumption that Mgn is a constant gives the phase space for the
problem‘less the exclusion principle correction. The meson distribution in the
forward direction under this assumption is plotted in Figure 1 to the same scale
as the production of negative mesons in n-p collisions under the same assumption.
The general character of this distribution persis@s when the forces between the
two interacting nucleons in their final state aréitaken into account.

The experimental results on the production of positive mesons in proton-
proton collisions(l) is clearly incompatible with the assumption that the matrix
element is a constant. Brueckner has shown that the discrepancy can be removed
by taking into account the interaction of the nucleons after the production of
the meson. Essentially this is found to introduce intc the R matrix a factor

1/2

1/2 .
Ko/(a%+k§) / if the final state is a triplet, and 0.876 Ko/(a§+k§) if the

final state is a singlet. (a2 = Mﬁ% where € is the binding energy of the
deuteron or of the virtual singlet level for triplet and singlet states respec-
tively,.ir = %(Ei§2) is the relative momentum of the final nucleons, and K, is
the inverse Compton wavelength of the meson pc/h); Since under our assumptions
the final state in the production of negatives is a singlet, the result (relative
to the two nucleon production) is the same for all four theories and is given in
Figure 2. The chief effect upon the deuteron spectrum (outside of the change in-l
magnitude) of taking this effect into account is to shift ,the peak of the dis;

tribution from 40 Mev to 60 Mey. Coulomb forces between the two protons in the

final state might be expected to wipe out the sharp peak ia the two pariicle
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distribution, but since little area is included under the peak, the smoothed out

deuteron distribution should be little effected by this correction. Further, aé

‘is well known from p-p scattering,fs6 that this result should be relatively trust-

worthy. In particulcar it is not subject to the interference correction that
appears in the production of positive mesons.

The production of positives is more complicated in that a deuteron may
eppear as one of the final particles, that the finallstate may be singlet, trip-
let, or é mixture depending upon the theory, and that positives produced off the
neutron may interfere with positives produced off the proton with an undetermined
phase. The general formula for the case of a deuteron appearing as a final
particle has already been given; the calculation is straighforward and leads
to the result given in the Appendix. For the rest of the cross section the

transition probability is

D :f%ﬂf{l Mz (1 -k 1517 %e2 (150,
U ey =iy 1210) ] 2B vk,
+|M§p(|k2-k3|?Tf)|2g%(k1+kc)
-M;p(lkl-k3|?1F)*Mpp(lk2-k3I?rr)gg(k2+k¢)go(k1+kc) :
+4cos (8 pn-Spp)Mpn ( [k1-k2 1200)*g8 (k3+k,) [Mf;p“kl'kB |’2“+)go(k2+kc)

Aipp(la-ky 131) |goliaske) | ()

where Acos & depends upon the theory. Note that for equal p-n and p-p matrix
elements the exclusion correction is one-third the correction in the case of
negatives. This is a specific example of a general argument given by Chew and
Steinberger(s) to show that the exclusion correction will increase the positive
negative ratio for the productioh of positive mesons in complex nuclei.

For the final state a singlet spin state (scalar or vector mesons, A= 1),

under the usual assumption that the n-p and p-p scattering lengths are equal,
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the production of positives can also be obtained from Figure 2. Curve
II times the ratio of n-p—n* to n-p —n~ matrix elements (squared)
gives the production off the'néutron. Twice Curve II (since either
proton can give a positive) times the square of the ratio of p-p'—*ﬂ+
to n-p——->11+ matrix elements gives the production off the proton. The
exclusion correction is the same as that taking II into III times the
p-p to n-p ratio (squared). Under the assumption that both ratios are
one the positive-negative ratio at 60 Mev in the forward direction is
3.84 + .84. The uncertainty is due to the interference correction,

which is of the same general form as the exclusion correction. The‘

distribution is plotted in Figure 3.

For the final state a triplet (pseudoscalar theory with pseudo-
vector coupling or 2/3 of the time with pseudoscalar coupling) the
eross section.is greatly increaséd by the possibility of the formation
of & deuteron in the final state. The production off the proton is
much the same as when the final state is a singlet, but the case when

a deuteron appears as one of the final particles has comparable cross

~section., The comparison of these two parts of the cross section is

given in Figure 4. Note that the value of the measured p-d cross
séction relative to the cross section measured for the production of
positives in p-p collisions will depend critically upon the energy
resolution of the apparatus used in the latter expériment. (The ratio

of the deuteron peak to the peak of the continuum distribution is

given by 4n Ed/AE where Eq is the binding energy of the deuteron and

AE is the energy resolution.) Théﬁproaﬁction off the neutron still
leads to two neutrons in a singlet state, so the interference term

can be smaller. The total cross section (again assuming n-p and p-p
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matrix element ratios equal to one, and neglecting interference) is
plotted in Figure 5. The positive to negative ratio in the forward
direction at 60 Mev is 8.22 * .84. This large increase in the positive-
negative ratio when the final state is a triplet is, of course, due to
the added cross sebtion resulting from the formation of a deuteron. It
is clearly much larger than the uncertainty due to the inteference term.
Hence, if the matrix element for p-n production were known to be
approximately equal to that for p-p production, the experimental value
for this positive-negative ratio would determine fairly clearly whether
or not the formation of a deuteron occurs appreciably in p~p meson
production. Conversely, if the formation of a deuteron could be demon-
strated in p-p production, this ratio could give a fair idea of the
ratio of p-n to p-p matrix elements (assuming the p-n matrix element

symmetric between positive and negative meson production).
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APPENDIX

A. Calculation of the Matrix Elements

The general expression (3) is pecialized by the assumption that
Rgp depends only on &7, o, (kl-k2)2, and'nf in the final state, So

¢ and o, in the initial state, and is antisymmetric in oy and &2.

Performing the integrations, antisymmetrizing in the final three
protons, and taking out the delta function giving momentum conserva-
tion gives

rpd =2 (570, |k1-k2|21-\- Irap 196 90)% (553) g (k3 +k,)
(o8
n

-(075% Ikp -k 1217 rrploamn ) XD (630%) go (kotke)

Since we are only interested in the meson distribution, the result will
be integrated over all nucleon momenta; hence the matrix element that

will appear in the cross section may be written

Irpal? = 3 x Ex 3 20 bk Fx (Iky-ky P 0 (0003) (519 Il opah )
) So%n°n'D
1%

x { (51 rap o755 p (5 P [y 1270) g (i)
- 2(5%3 I 1560 X (S50 )F (13- 5 ) g (ky o))
| (9)

where (as is the case in the theories considered by Brueckner) the
- momentum dependence can be factored out as F(Iki—kjngf), the %! is the
phase space factor for three identical particles, and the 1/6 comes

from the average over the six initial spin states., Since

>y (oqes W op,03) =2dmen (10)
D,G§
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the diagonal term reduces to
1 1 2 - - 2
285 (k3+ke) x 72 [F(lky=ky 150) (0995 [rppl ogon)]
Ooln .

= 58303 k,) M 1y -k 210) 2 (11)

i.e. simply to 1/2 the matrix element (squared) for negative production
in p-n collisions times the momentum distribution in the deuteron. This
is the term to be expected for direct production off the neutron. (The
1/2 occurs in the two particle case also as the phase space factor for
two identical particles.) Similariy the spin sum for the exclusion

correction gives
Lo% (1c3+k,, ) g e+l )M, (11 =Ko 1) A0) MU ( ficy-keg 12)) (12)
28o\K37 K/ 8o\ K T X /My 1-k21)5 pn k3 1,M

so that the exclusion correction is 100 percent when the three final
particles all have the same momenta, as it should be. Combining éhese
and including the cyclic permutations of 1,2,3 gives the result (@)%*:'
already quoted. The matrix element for}bositives, (7), is obtained in
the same way. Here, however, no simplification such as the final state
being always a singlet oécurs and different theories can give different
results for the coefficient of the interference term Acos(épn-ébp).
B. Phase Space Integrations

The canonical variasbles picked were r, the internal coordinate of
the deuteron, ¥y, the distance between the incident proton énd the
center of mass of the deuﬁeron; and x, the cenfer of mass coordinate
for the three particles. The momenta conjugate to these coordinates
are Kp = 3(ko-k3) with m = 2, ky = ;’(2;1—1_;2-—1:3), with m = 2, and

- — - = :
ky = %(k1+k2+k3) with m = 3M. Hence the ‘energy in the final state is
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B2 hA2 b2
M 4M 6l q

where Eq is the total meson energy (uRc4 + c2h2q2)l/2, and the initial
energy is T, - Eg were T, is the kinetic energy of the incident proton
and Eg the binding energy of the deuteron. T, must be calculated
relativistically (and ﬁo), but the final nucleons may be treated as
non-relativistic even in the laboratory system without making much
error in the meson distribution. For the two particle case, however,
the distribution must be calculateé in the center of mass system where
the final nucleons can be treated non-relativistically and then trans-
formed relativistically to the laboratory system. Since g§§-= EE;EZ
the density of final states is

1 dkr dky dg M doy dky dq o
=G ol )3 @3 " E2E Gn)d )3 an)? - .(33)

'Cbnservation of momentum requires that.fx¥a = §§, so that the conserva-
tion of energy equatior may be solved for k, in terms of ky and known
quantities independent of the nucleon angles (the reason for this choice

of vsriables) giving

21 'b2 -~ = .
kp = nfmo-md-mq-z—<ko-q>2-%h2ky = gl (14)

For a constant matrix element the diagonal term leads to the integral

a 4 \/ 21241 1o, é
JPeed ) - Z%:)—’T J;g - g'%kvkydkysﬂz [ oy 8nall

o 2h2(2n)’ 1 (2n) (a2+%k§+k§+§'kxkyMy) 2
| (15)
. J8naN?
where the deuteron momentum amplitude has been taken to be w2+k2

The calculation has also been carried through for the more reasonable

deuteron wave function (e~%T-e"PT)/r with g/a = 6. The only important
-Gr
difference this makes over the wave function i is that N< changes
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from one to 6(6+1)/(6-1)2 = 1.68. The angular integration is elementary

leading to the result

e B2 (F _ Vx(1-x) dx
3 w2 ), @2+ 22w T R (16)

where we have introduced the dimensionless quantities al =

1 k2
B2 = 5 X

prlr and x is dimensionless. The branch points at the two ends

W

2
g

of the path of integration allow this integral to be converted into a

contour integral and evaluated by residues giving

ﬂ‘a[JQl+a2-b2)2+4a2b2 - (1+a2-b2ﬂ /2, b Lkl+a2 bR) +4a2b2 + (1+a?- b‘?)]l/2

2J§ ab (17) -
and
f Pred(iy) =
5 1 . 1
T w2 A‘[\/(G+A2-B2) +4A2132-(G+A2-B2)] 2+B[\/(G+A2-B2) +4A°%B2+ (G+A2-B2)]7_
(2n)2 02 202 4B (18)

2 2 :
2.3a g2 1 X _ 8 i
where A A-EE-, B 12 12 s G Kg and K, is the meson inverse

Compton wave length. This reduces to the corresponding result for the
two particle distribution as the binding energy goes to zero, and to
zero as the binding energy becomes infinite. The exclusion principle

correction reduces to
a2+(Koy+kr)2

l kX+ 5%
5 K 1o,
dg A%y Ko Jr "o+ (Koy-kp)?
(2n)3 21rh2 ky G2+Kgy2+k%

(19)

2
kr 4
(where -1;2- =G - x\\l,which was evaluated numerically., The diagonal term

integral that occurs when the forces between the particles in the final
state are taken into account differs only by the factor K%/(a§+k§) in

the final integretion so that this integral may again be done by

residues giving



~55-

f Pred (kK2

1 2
ag+ (ky-k3)

_ 49 (B3i2ax3 .
(2n)3 12 [(G+42-B2+42)2 + 442 B2]

(G+A2 B2+A2)[A[JU3+A2-B2)2+4A2B2—(G+A2-B21}2+B[VQG+A2-B2)2+4A2B2+(G+A2-B2)]2
T 2V2 4B

R 1
‘T [B[\/(G+A2-B2)2+AA2B2-(G+A2—B2)] 2-A[V(c+42-B2) *+442B2+ (G+42-52)] 2]

- 4{G+a% (20)
a2

2 .
n or-%%—depending upon whether the final state is a singlet
) ]

where A% =

or a triplet. The corresponding exclusion principle correction‘was not
calculated because of mathematical difficulties, but was estimated tp be
approximately the same percent 6f the diagonal term at the same meson
energy as the corresponding correction for the constant matrix element
case, since the general form of the diagonal term was so little altered
by the inclusion of the interaction between the two final particles.
When one of the final particles is a deuteron the energy conserva-

tion condition becomes

Ef =T,

_bg hAg
- " Ea

GM
while the momentum conservation condition remains unaltered, so that

the density of final states is

-

2M do d 2
y q , .
Fr = k  wh k =—\/ 2 21
f 3h2 Y (2")3 (2")3 where ) y v r__3 g+at ( )

The angular integration is elementary, giving
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JoayeB) 4 [(G+82-B2+42)?+44282 2 (22)

The ratio of matrix elements for the two particle case is given by

Brueckner as

(23)

2 N
Mp 2 _ (2ﬂ)3|1%ﬁ K0| - 420
M Na2+ k2 ) k2.

so that this result can be immediately related to our previous formulae.
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FIGURE CAPTIONS

All curves are the cross section for meson production as a function of

meson energy in the forward direction for 345 Mev protons incident.

The reactions to which the cruves refer are given on the figures. p-n

and p-p matrix elements are assumed equal. The absolute value is left

arbitrary as it depends upon the strength of the coupling of the meson

field to the nucleons, but relative normalization is correct. The

following assumptions apply to the indicated figures:

Figure 1.
Figure 2.

Figure 3.

Figure 4.

Figure 5.

Production of negative mesons; constant matrix element.
Production of negative mesons; singlet final state.
Production of positive mesons and negative mesons; singlet
final state; interference term neglected.

Production of positives off the proton; triplet final state.
Production of positives and negatives; triplet final state
when the final particles in the two particle interaction are

not identical.
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