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I. INTRODUCTION 

The possibility of confining charged particle, with magnetic "mirror." 
has long been recoguied. A mirror field is one having axial symmetry and 
Increasing in magnitude axially away from a central region In which the parti-
cles are to be contained. Heretofore the likelihood of confinement has been 
based on the approximate Invariance of the magnetic moment (current of parti- 
cle in the circular orbit X area of orbit) as described by Aliven. 1  If the mag-
netic moment of a particle with given energy is too small, the particle escapes 
axially through the mirror. The moment can become small because it is not 
a. rigorous constant of the motion, or because of scattering of the particle by 
others. Both these effects have been studied, the first by analytic and nurner-
ical methods, the second by numerical solution of the Fokker-Planck equation. 

II. PARTiCLE CONTAINMENT IN ABSENCE OF COLLISIONS 

Under what condition, would a particle that makes no collisions re- 
main indefinitely In a mirror field? Before trying to answer this question we 
give the vector potential used in our numerical orbit calculations, 

LB0  
A9(r, a) = 	- is cop C I (p)j a B0 4p, r,)/p 

Ar = As = 0 

where a is a constant, L = distance between mirrors, p = Zwr/L 	Zirz/L, 
B 0  I. the magnetic field at p = 0, , = /2. This I. a static, axial-symmetric, 
curl-free field with mirrors at , = — andy. Further, for the two known rig-
orous constants of the motion we use the dimensionless parameters 
V = 21cvA0L) and Pg x 4lr2p9/(mw0L2), whore v is the speed, pg the canonical 
angular momentum in conventional units, and w0 a eB0/mc. 

*RadiaItton Laboratory, University of California, Berkeley, California. 
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One notes that the motion in the (p, ) plane is given by a Hamiltonian 
from which 0 has been eliminated: 

H 	(P 2  + P 2 ) + 	
- 

' V2  = conat. 

where P0  = ( l/jRdp/dt). and P = (lMoXd/dt). Certain classes of particles 
remain Cndefinitely in the mirror field given by A 9  above. All orbits for which 
P9 is sufficiently negative (these encircle the axis) are rigorously contined. 
In that case the effective potential for the (p. ) motion, l/Z(( - P)/p)', is 
such that the equipotentials less than or equal to the total particle energy are 
closed curves, with the potential lees on the inside. For particles not encir-
cling the axis, the potential surface is an open-ended trough with a flat bottom; 
therefore for most such particles we cannot make as strong a statement about 
containment as we can for those encircling the axis. However, for a denumer-
ably infinite set of orbits not encircling the axis, one can demonstrate rigorous 
confinement by invoking the symmetry properties of the field and the equations 
of motion. 

Since P9  and V are constants of the motion and since the field has 
axial symmetry, one needs only three independent variables to describe the 
motion. For the present purpose we use the set (, P, P 0) to describe a 
point P in phase apace. Remembering that and hence H ía symmetric in 
one can See that the canonical equations of motion in the (p, ) space are in-
viriant with respect to the transformations T and R: 

T: 	 p-.p, 	P -. -P, 	P *_P; 	t-.-t 

R: 	
-'-, 	

p-.p, 	P --P, 	P -'P; 	t-.t 

These transformations when applied to all the phase points P of a 
given trajectory 9 generate respectively two other real trajectories. TO the 
time-reversed trajectory, and RO, the one reflected in the median (I. e., 

= 0) plane. One can show that there is a. countably Infinite number of tra-
jectories for which 0 = TO = Re, and that these trajectories have the property 
of being periodic, and consequently of being permanently contained. Any such 
periodic trajectory may be recognised by the fact that it contains two special 
points: P0  = ( c,, 0, 0) and P 1  = (0 P, 0). 

Unfortunately the trajectories that satisfy none of the above criteria 
for rigorous containment are of great practical importance. Belief in their 
containment has usually been based on the alleged approximate constancy of 
the magnetic moment, or "adiabatic invariant", S = 	x I2 /B 3 . Our first 
numerical computations examined the behavior of S for single transits between 
reflections. We found that for orbit sizes of interest its variations are dii-
turbivigly large. Characteristically S oscillates about a fixed value with the 
particle rotation frequency until the particle crosses the median plane, near 
which S suffers a large transient change. Subsequently, 3 oscUlates about a 
new mean value; A.T. the residual chang. in 3 between successive reflection., 
depónds on the various parameters that define the orbit. Some of these de-
pendences are indicated by Figs. 1-3. Perhaps most interesting is the de-
pendence on veocity (Fig. 3); one can well approximate IAJ/3 by a function of 
the form ae b1Y.Z, 3 
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We have carried out certain analyses which predict qualitatively the 
observed dependence. of AJIJ. To lowest order in the radius of gyration, a, we 
obtain, by a variation-of-parameter, approach (see Fig. 1 for definition of the 
unit vectors), 

dJ _Zav 2 ('V'). %c01+, 

where 4(0 = 	ca cit + 4(0), 4(0) = phase of particle about its circle of gyration 

at t = 0 (a = O$ v is the component of velocity parallel to L and w = eB/mc. 
If the motion as given by constant .7 is substituted into the right-hand aide of 
the equation we can integrate and obtain 

ZO)____ 
- 

da co. $(t(a)) a B 

B 0B 

J çl - r-. .tn 
 0 
	) B Z  

This expression yields the observed sinusoidal dependence on the phase 4(0), 
the characteristic transient near = 0, and, within a factor of two, the mag-
nitude of J/J per reflection. 

in additIon to the above information, however, one would like to know 
the cumulative effect of many traversals of the machine. For example, one 
might expect that in multiple passages .7 would change as In a random walk, or 
in a regular fashion 1  perhaps merely oscillating so that the particle would be 
effectively bound. To Investigate this question, orbits were computed for which 
the particle made many reflections. 

As mentioned earlier, three variables suffice to describe the orbits. 
Let us now use (4. 6. x), where (see Fig. 1) 5 and x are the spherical angles 
of the velocity rector: 

5icoe 1 P/V, X3w/2-Xtan'PP/(P 9 -I). 

We have followed a variety of orbits with digital computers for many traversals 
of the median plane, in one case about forty. Most of these were for a = 0.2, 
V = 0.4. P9 = 0. 1, which corresponds to orbits with diameters about 1/10 of 
the distance between mirrors. At each traversal of the median plane we plotted 
6 or w-5, whichever was smaller, vs x. This plot, for the choice of parameters 
above, to shown in Fig. 4, with 6 plotted radially and x asimuthally, both in 
degrees. (Note that the origin of Fig. 4 1. at 6 = 500.) 

The orbit, fail into two main classes, which may tentatively be called 
stable and unstable. The "stable' orbits intersect the median plane In points 
that may easily be joined by smooth curves. Each curve is designated by a 
capital letter, and the points for successive traversals of each orbit are num-
bered. There are two types of stable orbits, viz.: B. C. M; and L. J. N. P. 

The "unstable" orbits are not shown in Fig. 4--they all lie In the 
cross-hatched area. Successive points on these orbits skip about in a rather 
erratic way, and in two cases were followed long enough to see the particles 
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escape through the ends. AU the "unstable" orbits were inside (I. e., have 
smaller 6 than) L. the innermost circumpolar curve. 

Inside L there appear to be stable islands such as B. C. These are 
the regions surrounding the intersection with the median plane of the simplest 
kind of periodic orbits, namely those which always traverse the median plane 
at x = w, and two values of 6; 	and 1r.6g,. Weëall these intersections fixed 
pqnts. For example, the one at the center of the B. C system belongs to an 
orbit that makes exactly four turns between transits through the median plane. 
A similar system represented by orbit M surrounds the fixed point belonging 
to the orbit that makes three turns between transits. Two orbits belonging to 
fixed points and one periodic orbit intersecting the median plane in threediittnct 
points are shown in Etg. 5, where we regard(x, 6) and(, n-8)aa one point. 

One is tempted to infer that these smooth curves represent the inter-
section with the median plane of two-dimensional surfaces in the (, 6,  x) or 
(, P. P) space, which are invariant in the sense that all particles on one of 
them at one time remain on it forever. It may be shown that if such surfaces 
really exist they have the same symmetry properties as do the periodic orbits 
discussed above. All our data seem to be at least consistent with the existence 
of such surfaces. 

If curve L of Fig. 4 really is the intersection of an invariant surface 
with the C 0 plane, then Q is rigorously true that all orbits outside it (i. 5. 

with larger 6) are permanently contained. Hence we may tentatively identify 
curve L as the effective loss cone for V = 0.4. P0 = 0. 1. It has an average 6 
of about 65, whicbmay be compared to the value predicted if one assumes the 
constancy of . which is 550 . 

We have studied to. some extent the variations with V and P9. As might 
be expected from the strong dependence of A2/J on V discussed previously, the 
loss cone definid by the curves corresponding to curve L of Fig. 4 also varies, 
as shown in Table I in which 6mtn  is the average value of 6 for the innermost 
"stable" curve, and 4max  is the value of L at reflection for the corresponding 
orbit. 

Table I 

Effective loss cone defined by 6min.  as a function of 
V and P9. 

V 	P8 6mtn 6adiabatic max 

0.2 	+0.1 550 550 
0.4 	+0.1 65 55 
06 	+01 ~80 55 
0.4 	+0.4 65 55 

We also examined one rigorously bound orbit (P9 <0). It gave a curve similar 
to type P in Fig. 4. 
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To what extent is it legitimate to infer permanent stability from these 
results? In a rigorous sense we can conclude nothing because we have made 
plot, of the points (6, x)  for only a finite number of successive transits of the 
median plane. We have attempted, however, to give some practical measure 
of our uncertainty by comparison with multiple Coulomb scattering, as follows: 
we ran two orbits, sjarting at 4=0 from the same value of x  and from values 
of 6 differing by 10" degree. By plotting 6 vs x for the two cases on a greatly 
expanded scale of 6, we found that the 6 values of one orbit remained consist-
ently greater than those of the other for corresponding x values for about twenty 
traversals of the median plane, after which the points became interspersed. 
Hence we concluded that the apparent departure from one of the invariant sur - 
Laces is of the order of 	degree for twenty traneits, which in the case studied 
corresponded to a total distance of about twenty-five times the distance between 
mirrors. While we do not know what part, if any, of this effect is real, and 
what part results from errors in the machine calculation, the difference is 
practically unimportant so long as multiple Coulomb scattering dominates. 
Scattering leads to a mean-square deflection in a distance S.? 

72\ 	_. x io-19  nS/W2 \ /sec. 

where n is the number of particles per cc, W is the energy in key, and S is the 
distance traveled (in this case S 25 I.); we conclude that any possible intrinsic 
instabilities of particles are of no concern, at least for this particular V. so 
lon8 a. J(O9.  is greater than 	x .w/150, or so long as we have 
nL/W 2  Z x 101. 

We studied two slightly less idealized fields which were asymmetric 
about the median plane. One type gave smooth curves (like P. Fig. 4) but with 
a splitting of the odd- and even-numbered traversals of the median plane. The 
other type did not give smooth curves. The points scattered in a manner sug-
gestive of unstable motion. Thue the effect of magnetic-field imperfections 
on the particle containment requires further study. 

W. EFFECT OF COLLISIONS ON CONTAINMENT 

Through successive Coulomb colliaions with other ions the 6 of a given 
ion eventually becomes so small that the particle is in the effective loss cone 
and escapes through a mirror. Even if curves of type L of Fig. 4 are the 
intersections of invariant surfaces with the & 0 plane, this scattering loss 
constitutes an intrinsic limitation on mirror geometry. To study this loss 
we have solved the Tokker-Planck equation numerically with several simpli-
fying assumptions: we have considered only ton-ion collisions in a spatially 
uniform, asimuthally symmetric, neutral plasma in a uniform magnetic field. 
the fact that electrons may scatter out through the mirrors at a different rate 
than the ions to produce an electric field is neglected. The mirror effect is 
represented by a critical 6 n 6. below which particles are assumed to be 
lost immediately. This 6c  is assumed independent of V, with the justification 
that the results are insensitive to &. 

With these assumptions, the equation to be solved j8 
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+ 	__ 

= (V )C oll . = - 

; ?;j. [fAvJ] 1 	
(&vJ ,&Vk~]  

where 

F =.( 	 (AV,)'d3v'tv'iu.)uivi. 

(AvJ&vk),  d3v'f(v) dia(u, 

u 	' - I, the relative velcity of the colliding particles. r 4iffereutial scat 
tering cross section, d2 = 801414 angle element, and 4v3 C change in velocity of 
the particle due to the collision. Here (P'i/m)(8f/8v). (-eB/mc)(af/84) a 0. 
where 4 is the azimuthal angle of the velocity vector about the magnetic field B . 

The Folker-Planck equation is to be solved with the boundary condi-
tionf= 0 for 0, &6C  andn 	 The tndependentvartables thatwUl 
be used are the dimensionless quantities 

IA=coo 
6, X = v/v0 . r= t-2.(4!e4/m2 ). n (b 1 tb0 ) 

V0 

v0 Is a characteristic velocity whose meaning will be apparent in each problem; 
b1/b0 = ratio of maximum to minimum impactparameter; no = initial number 
of ions/crA 3 ; .(4y1e4/m2 ) In(b1/b0) 12 X 1O (cm 6/$ec 4). 

To simplify the Fokker-Planck equation an approximate separation of 
variables can be made if one assumes that the aver.ge  relative velocity is in-
dependent of . Then, if we write f(, v, t) (no/ye') U(X, t)M(). the Fokker-
Planck equation becomes 

(i-)4-Z)L+AM0 
dp 

OU :2 1 8 208 2U 1 808U A O 4iU 	
ax2 	- 	

+ 
zx3  ! 

U 0 

where the ratio of the average relative velocity to v0, is 

O(X,1)(1/nvo)$f(t.v'.t)I' -v 	
3 

td v,  

a quantity assumed independent of I A. The ZU term should be 2U 2 M(4; the 
approximation M() 1 was made to achieve separation of the p. variable. 
The effect of these approximations can be seen by comparisofl with more exact 
calculations described below. The Legendre equation for M is to be solved 
subject to the boundary conditions M(*p.) z 0 and M(p) z M(-p.). Figures 6, 7, 
and 8 show numerical solution' U( X, r) corresponding to the eigenvalue A; A is 
related to p. approximately by A = - 1/log 10  (1 - p.) for the most slowly de-
caying ("normal") mode. It can be seen that the loss rate is very insensitive 
to 

-6- 



UCRL.8076 

The above approximate method of solving the Fokker-Planck equation 
was also used with a steady-source term added representing particles injected 
at an energy W0 and normal mode in p. The resulting distributions in X at 
steady state are shown In Wig. 9. For X > 1 the curves are well fitted by the 
Maxwellian form exp (XZ). Since we have a < 1 for both values of 64:.  the 
mean energy of the actual dltribution is greater than W0, the injection energy. 
Numerical inegratior jives he number of particlee/cm 
n 2.23 X l0 D(W0'I' 3)112 cm 3, where W0 = injected energy in kilovolt.. 
I numbr of particles injected/cm' sec, D = 3. 14 x 10 5  for P. 0.949. and 
1.67 X 10' for ttc  = 0.833. From these numbers a quantity i of importance in 
the power economy of a mirror machine may be derived. If q * thermonuclear 
reaction energy/kinetic energy of the injected particles, we have for pure den-
terium, 

nW  r 	r 	(2.23) X 1014 D2 - 
r' W0W 

where Wr a the energy In kilovolts released per 
fuaion cross section times velocity. For a D + 
for 'i  should be divided by two. Table II gives 
deuterium and a deuterium-tritium mixture. It 
lose presents a severe problem for the econorni 
on containment by mirrors. 

fusion, and orv is the mean 
T mixture the above expression 
at two values of S c  for pure 
can be seen that scattering 
cal operation of devices based 

Table II 

Values of i, the ratio of thermonuclear reaction energy to kinetic energy of 
injected particles, under various conditions. 

r for deuterium 	 r for 50% D + 50% T 
WO 	 10 MevJreactiozij 	 (15 Mev/reaction) 

(kilovolts) 	6 	450 	6 	18°22' 	 6_ 45° 	6. 	l8°22' 
C 

50 
100 
200 
400 

0.026 
0.078 
0.206 
0.48 

0.140 
0.32 
0.80 
1.84 

0.58 
0.76 
0.92 
1.10 

2.2 
2.8 
3.4 
4.2 

A more elaborate numerical solution of the Fokker-Planck equation 
has been obtained without the simplifying assumptions that made the equation 
separable. Figures 10 and ii show the develqpment in time of the same initial 
distribution as in Fig. 6, f(p,X0) elO(X1)'fi - e3.6(t.&c-Ip. This 
initial p dependence is an approximate fit to the slowest 'norma1 mode, de-
scribed above. Comparison with Fig. 6 shows that the normal-mode approx-
imations lead to too high a loss rate by about 25%. From Figs. 10 and lilt 
can be seen that the angular distribution remains approximately constant as 
particles are lost, while the velocity distribution tends slowly towards a Max-
wellian one at high velocities. Low-energy particles are quickly scattered 
out because of the u 4  dependence of the Coulomb cross section, the result 
being a distribution that I. deficient in low velocities compared with a Max-
well Ian. Note the increase in W with r. The self-collision time', defined 
by Spitzer' 0  as 
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m(3kfl'2/(8 x 0.714 ne4  fn 

where T is the temperature, corresponds to r 

The fraction N of the original number of particles left alter time r 
in the normal-mode case is given In Table ZU. In the third column is given 
a number it defined by (l/N(r2)) - (1/N(r1)) = IC (r -  Tj). This is the integrated 
form of a binary-collision loss mechanism over a time interval r 1  to er,. From 
the fact that becomee.cônstant one can see that the process Is of the form 
(dN/dr) = (- ICN2 ) at large i. With r. = 2. 64 the definition of r gives the timp in 
seconds for one-half the original particles to be lost: ti = 4. 2 X 1010 W03/2 j 1 
seconds. 	 2 

Table III 

Fraction N of particles left after time 'v for 
"normal-mode" case. 

N 

0.0000 1.000 
0.0014 0.997 2.12 
0.0057 0.988 2.09 
0.0173 0.961 2.41 
0.0625 0.864 2.63 
0.1395 	. 0.734 . 	 2.64 

Calculations are in progress with initial distributions which are sharply 
peaked about p = 0. Thermonuclear reaction rates 7—ry are also being calcu-
lated as a function of 1 for tbee peaked distributions and for those of Fig. 10. 
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• Fig. 2.. An example of the change In, the adiabatic 
invariant as a function of the phse with which 
the particle passes. through. the median plane. 
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