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INDIVIDUAL PARTICLE MOTION
AND THE EFFECT OF SCATTERING
IN AN AXIALLY SYMMETRIC MAGNETIC FIELD

A. Garren,” R. J. Riddell, * L. Smith, *
G. Bing, T L. R, Henrich,t T. G. Northrop, t and J. E. Roberts?

MAR 1958
1. INTRODUCTION

The possibility of confining charged particles with magnetic "mirrors"
has long been recognized. A mirror field is one having axial symmetry and
increasing in magnitude axially away from a central region in which the parti-
cles are to be contained. Heretofore the likelihood of confinement has been
based on the approximate invariance of the magnetic moment (current of parti-
cle in the circular orbit X area of orbit) as described by Alfven.! If the mag-
netic moment of a particle with given energy is too small, the particle escapes
axially through the mirror. The moment can become small because it is not
a rigorous constant of the motion, or because of scattering of the particle by
others. Both these effects have been studied, the first by analytic and numer-
ical methods, the second by numerical solution of the Fokker-Planck equation.

II. PARTICLE CONTAINMENT IN ABSENCE OF COLLISIONS

Under what conditions would a particle that makes no collisions re-
main indefinitely in a mirror field? Before trying to answer this question we
give the vector potential used in our numerical orbit calculations,

LBQ ’ . '
Aglr, 2) = = [£ - a con L 1, (p)] = Byip, L)/p ,
Ar = Az =0,

where o is a constant, L = distance between mirrors, p = 2wr/L, { = 2%z/L,
Bp is the magnetic fleld at p = 0, { = x/2. This is a static, axial-symmetric,
curl-free field with mirrors at { = -w and v. Further, for the two known rig-
orous constants of the motion we use the dimensionless parameters

V = 2nv/lugL) and Pg = 4nlpg/(mwgl?), where v is the speed, py the canonical
angular momentum in conventional units, and wy = eBg/mc.

’Radinticn Laboratory, University of California, Berkeley, California.
7Radiatiou Laboratory, University of California, Livermore, California.
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One notes that the motion in the (p, {) plane is given by a Hamiltonian
from which 9 has been eliminated: v

\p"'pe

2
H=%(sz+2?‘z)+%( >=§V2=const.
where Py = (1/@Ndp/dt), and Pp = (1A gKdL/dt). Certain classes of particles
remain indefinitely in the mirror field given by A, above. All orbits for which
Py is sufficiently negative (these encircle the axis) are rigorously contgined.
In that case the effective potential for the (p,{) motion, 1/2[(4 - Pg)/p]4, is
such that the equipotentials less than or equal to the total particle energy are
closed curves, with the poteatial less on the inside. For particles not encir-
cling the axis, the potential surface is an open-ended trough with a flat bottom;
therefore for most such particles we cannot make as strong a statement about
containment as we can for those encircling the axis. However, for a denumer-
ably infinite set of orbits not encircling the axis, one can demonstrate rigorous
confinement by invoking the symmetry properties of the field and the equations
of motion,

Since P, and V are constants of the motion and since the field has
axial symmetry, one needs only three independent variables to describe the
motion. For the present purpose we use the set ({, Py, Pg) to describe a
point P in phase space. Remembering that ¢ and hence H is symmetric in §,
one can gee that the canonical equations of motion in the (p, L) space are in-
variant with respect to the transformations T and R:

T: L -, P p;-.-pg. PP-Q-PP; t - -t

. , > L, - 0, - '. -DP; -
R $ L e~p Pg P‘ Pp p t-t

These transformations when applied to all the phase points P of a
given trajectory @ generate respectively two other real trajectories, TS, the
time-reversed trajectory, and RO, the one reflected in the median (i.e.,

{ = 0) plane. One can show that there is a countably infinite number of tra-
Jectories for which © = TO = RO, and that these trajectories have the property
of being periodic, and consequently of being permanently contained. Any such
periodic trajectory may be recognized by the fact that it contains two special
points: Po = ({, 0, 0) and Py = (0, P;. 0).

Unfortunately the trajectories that satisfy none of the above criteria
for rigorous containment are of great practical importance. Belief in their
containment has usually been based on the alleged approximate constancy of
the magnetic moment, or "adiabatic invariant, J= |v xBI2/B3. Our first
numerical computations examined the behavior of J for single transits between
reflections, We found that for orbit sizes of interest its variations are dis-
turbingly large. Characteriastically J oscillates about a fixed value with the
particle rotation frequency until the particle crosses the median plane, near
which J suffers a large transient change. Subsequently, J oscillates about a
new mean value; AJ, the residual change in J between successive reflections,
depénds on the various parameters that define the orbit, Some of these de-
pendences are indicated by Figs. 1-3. Perhaps moat interesting is the de-
pendence on chity (Fig. 3); one can well approximate AJ/J by a function of
the form ae~ 2,3

-2-
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We have carried out certain analyses which predict qualitatively the
observed dependences of AJ/J. To lowest order in the radius of gyration, a, we
obtain, by a variation-of-parameters approach (see Fig. 1 for definition of the
unit vectors),

4~ 2 ,» - -
a%=-?.a.v” (eb'Vea)' €, cos $,

t .
where é(t) = S wdt + $(0), H0) = phase of particle about its circle of gyration

att=0(s = 09. v, is the component of velocity parallel to B, and w = eB/mc.
1f the motion as given by constant J is subatituted into the right-hand side of
the equation we can integrate and obtain

Adlzg), 4 7O s VB Ty o\ BoB
Y s . ﬁfﬂf dz cos ﬂt(!))*---ﬁ-—— Kl -B—é-lin ] B-T.
0 4
This expression yields the observed sinusoidal dependence on the phase §0),

the characteristic transient near { = 0, and, within a factor of two, the mag-
aitude of AJ/J per reflection.

, In addition to the above information, however, one would like to know
the cumulative effect of mnany traversals of the machine. For example, one
might expect that in multiple passages J would change as in a random walk, or
in a regular fashion, perhaps merely oscillating so that the particle would be
effectively bound. To investigate this question, orbits were computed for which
the particle made many reflections.

' As mentioned carlier, three variables suffice to describe the orbits.
Let us now use ({, 8, x), where (see Fig. 1) 5 and x are the spherical angles
of the velocity vector:

6= cos} P;/'V . X®3w/2 L= tan~} gPP/(Pe - ).

We have followed a variety of orbits with digital computers for many traversals
of the median plane, in one case about forty. Most of these were for a = 0.2,

V =0.4, Pg= 0.1, which corresponds to orbits with diameters about 1/10 of

the distance between mirrors. At each traversal of the median plane we plotted
§ or w-5, whichever was smaller, vs . This plot, for the choice of parameters
above, is shown in Fig. 4, with § plotted radially and ¥ azimuthally, both in
degrees. (Note that the origin of Fig. 4 is at § = 50°,)

The orbits fall into two main classes, which may tentatively be called
stable and unstable. The ''stable" orbits intersect the median plane in points
that may easily be joined by emooth curves. Each curve is designated by a
capital letter, and the points for successive traversals of each orbit are aum-
bered. There are two types of stable ordbits, viz.: B,C, M; and L, J, N, P,

The "unstable" orbits are not shown in Fig. 4--they all lie in the

cross-hatched area. Successive points on these ordbits skip about in a rather
erratic way, and in two cases were followed long enough to see the particles

.3_
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escape through the ends. All the "unstable' orbits were inside (i.e., have
smaller § than) L, the innermost circumpolar curve.

Inside L there appear to be stable islands such as B, C. These are

the regions surrounding the intersection with the median plane of the simplest
kind of periodic orbits, namely those which always traverse the median plane
at x = v, and two values of 6: 5y and #-8p. We call these intersections fixed

oints. For example, the one at the center of the B, C system belongs to an
orbit that makes exactly four turns between transits through the median plane.
A similar system represented by orbit M surrounds the fixed point belonging
to the orbit that makes three turns between transits. Two orbits belonging to
fixed points and one periodic orbit intersecting the median plane in three distinct
points are shown in Fig. 5, where we regard(x, §) and(x, v-58)as one point.

, One is tempted to infer that these smooth curves represent the inter-
section with the median plane of two-dimensional surfaces in the (3, 5, x) or

(§, Py, Pp) space, which are invariant in the sense that all particles on one of

them at one time remain on it forever. It may be shown that if such surfaces

really exist they have the same symmetry properties as do the periodic orbits

discussed above. All our data seem to be at least consistent with the existence

of such surfaces.

If curve L of Fig. 4 really is the intersection of an invariant surface
with the { = 0 plane, then it is rigorously true that all orbits outside it (i.e.,
with larger §) are permanently contained. Hence we may tentatively identify
curve L as the effective loss cone for V= 0.4, Pg=0.1. It has an average &
of about 659, which:may be compared to the value predicted if one assumes the
constancy of p, which is 559,

We have studied to some extent the variations with V and Pg. As might
be expected from the strong dependence of AJ/J on V discussed previously, the
loss cone defined by the curves corresponding to curve L of Fig. 4 also varies,
as shown in Table I in which 8y, is the average value of § for the innermost
"nt:ble" curve, and { ... is the value of { at reflection for the corresponding
orbit.

Table I
ey
Effective loss cone defined by &, as a function of

V and Pg.

v Py 8 nin Sadiabatic  Pmax
0.2 +0.1 ~ 550 55° ~
0.4 +0.1 ~65 55 ~u/2
0.6 +0.1 ~80 55 ~ /4
0.4 +0.4

~65 58 ~u/2

We aleo examined one rigorously bound orbit (Pg < 0). It gave a curve similar
to type P in Fig. 4.
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To what extent is it legitimate to infer permanent stability from these
results? In a rigorous sense we can conclude nothing because we have made
plots of the points (5, x) for only a finite number of successive transits of the
median plane. We have atternpted, however, to give some practical measure
of our uncertainty by comparison with multiple Coulomb scattering, as {ollows:
we ran two orbits, starting at {=0 from the same value of X and from values
of § differing by 10~° degree. By plotting & vs x for the two cases on a greatly
expanded scale of §, we found that the § values of one orbit remained consist-
ently greater than those of the other for corresponding x values for about twenty
traversals of the median plane, after which the points became interspersed.
Hence we concluded that the apparent departure from one of the invariant sur-
faces is of the order of 10-3 degree for twenty traneits, which in the case studied
corresponded to a total distance of about twenty-five times the distance between
mirrors. While we do not know what part, if any, of this effect is real, and
what part results from errors in the machine calculation, the difference is
practically unimportant so long as multiple Coulomb scattering dominates.
Scattering leads to a mean-square deflection in a distance S, 7

(0% yoc. ~6 %1071 ng/w?

where n is the number of particles per cc, W is the energy in kev, and S is the
distance traveled (in this case 8 ~25 L); we conclude that any possible intrinsic
instabilities of particles are of no concern, at least for this particular V, so
long as & ZGZS. is greater than 10-3 x /150, or so long as we have

aL/w2 22 x 107,

We studied two slightly leas idealized fields which were asymmetric
about the median plane. One type gave smooth curves (like P, Fig. 4) but with
a splitting of the odd- and even-numbered traversals of the median plane. The
other type did not give amooth curves. The points scattered in 2 manner sug-
gestive of unstable motion. Thus the effect of magnetic-field imperfections
on the particle containment requires further study. _

II. EFFECT OF COLLISIONS ON CONTAINMENT

Through successive Coulomb collisions with other ions the § of a given
ion eventually becomes 8o small that the particle is in the effective loss cone
and escapes through a mirror. Even if curves of type L of Fig. 4 are the
intersections of invariant surfaces with the { = 0 plane, this scattering loss
constitutes an intrinsic limitation on mirror geometry. To study this loss
we have solved the Fokker-Planck equation numerically with several simpli-
fying assumptions: we have considered only ion-ion collisions in a spatially
uniform, asimuthally symmetric, neutral plasma in a uniform magnetic field.
The fact that electrons may scatter out through the mirrors at a different rate
than the ions to produce an electric field is neglected. The mirror effect is
repregented by a critical § s §., below which particles are assumed to be
lost immediately. This &, is assumed independent of V, with the justification
that the results are insensitive to §..

With these assumptions, the equation to be solved is8

~Be
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=2

g_‘:’_M:(Bi) =.a[ }1, 82 [ /nii ok
AP B\ R | o) AT HMJAV%'

where

P =27 xBy. (AJ>;'§d3v'av")jdﬂa(u.mm\-’ ,

(aviav®)= Jadviavd) [ ano(u, auaviav®

u =_\-v°' - ;‘. the relative velocity of the colliding partigcles, ¢ = 'differential scat-
tering cross section, d2 = solid angle element, and v} = change in velocity of
the particle due to the collision. Here (FJ/m)9£/8v)) = (-eB/mc)(31/3¢4) = 0,
where ¢ is the azimuthal angle of the velocity vector about the magnetic field B.

_ The Fokker-Planck equation ig to be solved with the boundary coundi-
tlonf=0for 05856 . andw- 6o <56 Z w. The independent variables that will
be used are the dimensionless quantities .

L
wEcos b, X=vivy, T=t—2(4ve?/m?)tn(b,/b,);
0 Ty lam /%

0

vg is a characteristic velocity whose meaning will be apparent in each problem;
by /bg = ratio of maxirpum to minimum impact parameter; ng = initial number
of tons /em3; (4ned/m?) n (by/by) = 1.2 X 1012 (cmb/sec?).

To simplify the Fokkor-Planck equation an approximate separation of
variables can be made if one assumes that ﬁxe-aver.%ge relative velocity {8 in-
dependent of p. Then, if we write flp, v,t) = (no/vg ) ULX, t)M{), the Fokker-
Plaunck equation becomes

2 .
‘ 2, 4" M dM
{1 -un") - 2H - +AM=0
o ‘dz dp
2

b3

8%G 8y 5G U pG

8U .2 1 JiN

55 -« 41U j—y — -~ 3y t ey U =0
- oT 5xC 03C X2 DX UK ,y3 BX
A : :

where the ratio of the average relative velocity to vp, is

QX 7) = (1 /ngvg) [, v, 0)| T - T &%,

a quantity assumed independent of p. The 2U2 term should be 2U2M(p); the
approximation M{(u) = 1 was made to achieve separation of the u variable.
. The effect of these approximations can be scen by comparison with more exact
calculatione described below. The Legendre equation for M is to be solved -
subject to the boundary conditions M(2p ) = 0 and M(u) = M(-~u). Figures 6, 7,
and 8 show numerical solutions U(X, 7) corresponding to the eigenvalue A; A is
related to p. approximately by A = -1/log oll - p.cz) for the most slowly de-
caying ("normal") mode. It can be seen that the losa rate is very insensitive
to 5.
b
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The above approximate method of solving the Fokker-Planck equation
was also used with a steady-source term added representing particles injected
at an energy Wy and normal mode in u. The resulting distributions in X at
steady state are shown in ¥Fig. 9. For X > 1 the curves are well fitted by the
Maxwellian form exp (-aX2). Since we have a < 1 for both values of 6., the
mean energy of the actual distribution is greater than Wg. the injection energy.
Numerical ingegratiog ﬂivea }he number of particles/cm
n=2,23xX10" D(Wy N1/2 ¢m-3, where Wg = injected energy in kilovolts,
J = number of particles injected/cm> sec, D= 3.14 X 105 for e = 0.949, and
1.67 X 10° for puc = 0.833. From these numbers a quantity n of importance in
the power economy of a mirror machine may be derived. If 4 = thermonuclear
reaction energy/kinetic energy of the injected particles, we have for pure deu-
terium,

2———0
n"o vw
n = —gy—2= p 2297 x 101 P (T wo%w ,
0 r

where W, = the energy in kilovolts released per fusion, and OV is the mean
fusion cross section times velocity. For a D + T mixture the above expression
for n should be divided by two. Table Il gives % at two values of 6. for pure
deuterium and a deuterfum-tritium mixture. It can be seen that scattering
loss presents a severe problem for the economical operation of devices based
on containment by mirrors.

Table I

Values of n, the ratio of thermonuclear reaction energy to kinetic energy of
injected particles, under various conditions. :

n for deuterium nfor 50% D +50% T

W, (10 Mev/reaction) (15 Mev/reaction)

(kilovolts) 6 = 45° 6 = 1822 5 = 45° 5 = 18%2¢
C [ »4 L »] C

50 0.026 0. 140 0.58 2.2

100 0.078 0.32 0.76 2.8
200 0.206 0.80 0.92 3.4
400 0.48 1.84 1.10 4.2

A more elaborate numerical solution of the Fokker-Planck equation
has been obtained without the simplifying assumptions that made the equation
separable. Figures 10 and 11 show the devel%pment in time of the same initial
distribution as in Fig. 6, f(, X, 0) ~e-10(X-1)c[} . ¢-3.6(pc-1u!)]. This
initial 4 dependence is an approximate fit to the slowest "normal"’ mode, de-
scribed above. Comparison with Fig. 6 shows that the normal-mode approx-
imations lead to too high a loas rate by about 25%. From Figs. 10 and 11 it
can be seen that the angular distribution remains approximately constant as
particles are lost, while the velocity distribution tends slowly towards a Max-
wellian one at high velocities. Low-energy particles are quickly scattered
out because of the u-4 dependence of the Coulomb cross gection, the result
being a distribution that {s deficient in low velocities compared with a Max-
welllan. Note the increase in XZ with . The self-collision time, defined
by Spitzer10 as

-7-
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_ 1 |
t, = m?(sk'r)’/z/(a X 0.714 7 ne? tn bl/b&.

where T is the temperature, corresponds to T = 0.“7..«&' .

The fraction N of the original number of particies left after time v
in the normal-mode case is given in Table IIl. In the third column is given

a number « defined by (1/N(72)) - (1/N(7})) = « (T - T{). This is the integrated
form of a2 binary-collision loss mechanism over a time interval 7y to 7,. From
the fact that x becomes constant one can see that the process is of the form
{dN/dT) = (-«N2) at large 7. With & = 2. 64 the definition of 7 gives the time in
seconds for one-half the original particles to be lost: t3 = 4.2 X 1010 wg3/2 ng-1

seconds. |
Table HI

Fraction N of particles left after time 7 for
"normal-mode' case.

4 ' N ' -_x-

0.0000 ~ 1.000 aee-
0.0014 0.997 2.12
0.0057 0.988 2.09
0.0173 0.961 2.41
0.0625 0.864 2.63
0.1395 | 0.734 2.64

Calculations are in progress with initial distributions which are sharply
peaked about p = 0. Thermonuclear reaction rates ¢rv are also being calcu- _
lated as a function of 7 for these peaked distributions and for those of Fig. 10.

-8«
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~ Fig. 2.. An example of the change in the adiabatic

invariant as a fu’nc‘tiqn of the phase ‘with which
the particle passes through. the median plane.
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U(X,e0) (ARBITRARY UNITS)

Fig. 9. Steady-state distribution functions with a
source of particles for two values of &..
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Fig. .10, Development in time of an initial distri-
bution function by direct numerical integration
of the Fokker-Planck equation, as a function of
speed.
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