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ABSTRACT

An attempt is made to. account for the group structure of elementary
particles by assuming that they are obtained by eembining a limited number
of ba81c flelds. It is shown that - if the basic fields are all taken to be

fermions, one needs three fiel&s to acecount for the continuous group structure

only, but four fields are necessary if distinct operations for C and P are

to be~inéorporatédvin the scheme. On the other hand, a model with half the
number of independent field components can describe the gr@ﬁ§ structure

correctly if both bosons and fermions are taken as basic fields, their common

' féature in this case being that they are all strange fields. Difficulties

inherent in such Schemes are discussed.

Work performed under the ausPices of the U S Atomic Energy Commisslon

and the Internationsl CooPeration Administratien,

, t, On leave from the University of Istanbul, Turkey.
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(ON THE GROUP STRUCTURE OF ELEMENTARY PARTICLES

Feza Gursey
I. INTRODUCTION

_Net much caﬁ be expected. from a formal scheme for élementary particles
which evades thé“fundamental problemiof interaction, os”no gquantitative
conclusions regcrding.masseé,‘lifetimes and coupling constants can be drawn
from the'model. Howovéf, even a Qualitétive‘and descriptive scheme may be
useful if it accounts for the group structure of particles and throws light
.on some remarkable mathematical facts and emplrically observed rules, such
 as the seemingly limited number of particles, the possible connection between
stfongeoess'and parity;, a sétisféctoiy explanation of the form of weak

interactionsg, the .curious isomorphism between the gauge group of a massless

3

néutral Dirac particle and the group of strong interactions , the absence of
a neutréi particle other than the neutrino associated‘with the u meson, the
possible fourwdiménsional Euclidean symmétry of the baryonapioﬁ.interactions
and partial breakdown of this symmetry in K-meson 1nteractions b One sheunld
also try: to give an answer to the problem of determining the nature and the

number of fundamental fields, if, following Helsenberg,j

7

Goldhaber,6 and
Sakata, all pafticleé are regarded as having a compound structureo

) Thls paper is devoted to the discussion of some examples of spinor
and mixed ﬁfermion + boson) models with a simple (nondegeneratc) vacuum.
Tt is found‘thaf, with’thééé fundamental spinor fields ( 2 1eptoﬁ, 1 baryon),
one maybgccount for ﬁhe group str?cture of the partic}cs_as far as the
‘continuous gauge groups are concerned. One discontinoous group=-for instance,
CP--can also be incorporated. ;Hooever, the model fails to explain the

discontinuous group structure which must comprise two distinct reflection

operations, C an P, that are presumably comserved in strong and electhw
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magnetic interactions° ‘In order to incorporate the latter feature in the
scheme one needs four foﬁr-spinor fields. But then, one meets with the
difficulty of unobserved neﬁ-particles and a greater arbitrariness in the
férmnlation of the intergcfion preblem. _The large number of basic fields
required seems to be a fundamental difficulty associated with such fermion
médelso. B ( |

Bscause of the poor success of the spinor approach, we have also‘

investigéted a mixed model in which boson fields as well as fermion fields

are taken to be basic from the start. This line seems to be more promising.

Indeed, three fundamental fields--namely k:(a 2=-component isosinglet fermion

field); two boson fields, k) and ke.(forming-an-isodoublet complex boson field
k); aﬁd an isosinglet baryoen four-spinor field A ~wsuffice to account boﬁh
for'theMconfinuous‘énd fér the discentinuous_gréup structure of elementary
partiecles. Th; assumption is that the fundamental fields A, k, and A, which
all together have eight components, are éot observable by fhemselve#ubut give
rise to compound states that represent_"elementary" particles. We note

that these fieldé are strange in the sense that they have a spin differénce

of % in ordinary and isotopic spin spaces.

In all the schemes under consideration that are based on the idea of
extending strangeness and isotopic spin té leptons, the status of the p meson
is iil defined, since the problem of finding & natural place for it has ne
easy solution.

Before discussion of a‘few simple schemes a remark is necessary about |
the fairly generally accepted two«Component nature éf thelneﬁtrino° Letfus
introduce a basic leptonic isodoublet which we may tentatively identify‘
with a four»comﬁonent electron € and a four-component neutrino Y . We
may assume that thé mass of the electron vapishes in the limit of electro-

megnetic forces being neglected. In this limit, the concept of isespin

{
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should be applicable and the electron-neutrino system should emerge as an
isodoublet. One objection to this coneeption of the leptonic field (e, V)
might be the two-component nature of the neutrino. The way in which such

a reduction of fhe'available states of the neutrino affects the scheme is a

matter for separate discussion_(Section 2, Scheme A'). Howevef, it is worth

noting that the neutrino is not”the only particle thét behaves like a two-

}component field in weak interactions. Had our experience with electrons been

-limited to the ones produced in decays only, we might be tempted to ascribe

a tWOwcomponent nature to the electron too. The reason this cannot be done
is that the missingIStates of the electrén are actually produced in electro-
magnetic interactions that do not affect the neutrino. In any compound- |
partiecle scheme comprising the electron and the neutrino emong its building
units, neutrinos could be produced not only in weak interactions, but alse
perhaps in véry eﬁergetic collisions of strongly interacting particles. The
nature of neﬁtrinos produced under such conditions might be very different
from that of decay neutrinocs.

II. SCHEMES WITH THREE SPINOR FIELDS (A AND A'). CONTINUOUS GROUPS.

As fundamental fields we take €, V,ada neutral isosinglet baryon

field A. All three are anticommuting four-spinor fields. We use the notation
Vo= ey, o= EQ- v (D)
L 2 5 R 2" 5

for any four;spingr\h Y5 being taken diagenal, so that WL and ,YR are

essentially two-component siainors° Te study the groups involved it is also

useful to introduce the 2 X 2 matrices F and G defined by

Fo= (), ) ¢ = (-0, €p, fo, V), (2)

~where the symbels in the brackets stand for the columns associated with the
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two-component spinors (1). Under a Lorentz transformation, F and G transform

in the same way, both being multiplied to the left by & unimodular 2 x 2 matrix

L (see Ref. 3). Let us also introduce the notation

D T ‘ 5
F = o, F o, _ (3)

for the adjoint matrix, so that ‘FF would be equal to the detefminant'of B
in Ce-number theory. Now we form the Lorentz invariant matrix
. e - TFa . | | | (.LL)

The elements of this matrix are products of the 6peiators € and . at the.
same point° Strictly speaking, such products are not defined in conventional .
field fheory. Ag shown by'Zimmermann,e_to.describe & compound state of the
fields ¥ and @ one should étart from thevtimeaordered product
™y [x], 2 [x' 1) and use a limiting process to definé the product operator
at the pgint corrésponding to the center of mass. Howeyer, fhis procedure
does not alter the symmetry properties of the product function, and in the
following we shall use products of operators to repfesent compound. states.

Two Lorentz-iﬁvariant, commiting rotation groups (which combine in &

foﬁrodimensienal Euclidean rotation group) may now be defined.

F - FR, o G -.¢ | (5-1)
F oo F - ¢ 56Q (5-11)

where | | | .
R=expi 0% and ' Q=expiou (6)

are two unitary, unimedular 2 x 2 mgtrices, T and U are real vectors, ana
the ¢'s denote the Pauli matrices. Under the four-dimensional rotation, e
obeys thg law .

e-»'ﬁe"ql, -' (7)

5o that Tr © & is invariant. We also obtain
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8 - QOR - | . - (8)
o - q ot r. (8')
The elements of the matrix © represent four spin-zero boson fields,
namely
° _ | oot
& = ®R % | @ = €y v
(9)
- : -—)
so that one has
e° -0~ |
0 = o = (10)
and :
_ e° CH
e = . o : (11)
o e° |
If the rotation group (5-I) is regarded as generating the isospin:
group to which it is istorphié, then e°, ot on one hand and ©° , 8 on
the other behave like isospinor bosons. A transformation isomorphic to the
hypercharge (or isofermion) gauge group introduced by'DfEspagnat and Preﬁ.’cki9
is obtained by consideringithe subgroup of (5-II) corresponding to uy ="u2 = 0,
u5-= W, Under this group we have V | )
©-06expio;u o o (12)
or
8 »0° e, of et MY s oo e>5576'lu s (13)
* * =i — ¥ * v v,, T e eiy
(%) 5 ()" ™, () (D) M, 6" -e ™V,
We see that as far as continuous groups are concerned, the operators
o _ .

5 6+)vbehave like the K-meson field (Ko, K+)° The full rotation group (5-II)
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mixes states of opposite hypercharge and hence is a representation of the

globalQSymmetry group considered by Gell-Mann and Schwinger.h It is seén

to be the three-dimensional generalization of the hypercharge transfdrmation.
Since © and 8T +transform in the same way under the full group (5),

: - . -
we may construct the isovector boson field @ in such a way that we have
. L _
g = %(ee1L - 8t9) - eeT-%TreeT, (1)

It transforms as
o8 - R(GHR (15)
under the isospin group (5-I), but is invariant under (5-II), and in particular
under the hypercharge gréup.> Hence,'as far as continuéus gioups are concerned

7 vehaves like the pion field . |
| | We note thét an isoscalar bosonAfield ¢° can also be defined by
P - zmeet . | (16)
We now combiﬁeAthe‘field é with the four-spinor field A ﬁo introduce
baryons in the scheme. The baryon gauge transformation4is given by-
| A = elPa ,> (17)

For the isofermion baryons N(nucleon)and Z(cascade particle) we can

‘write

= A6 = ? : (18)
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and ,
¥ *
-0 = &} +
=R =R Ag® -Ag®
Pp “r “Ag8 Ag®
The A° and the = (isoboson) baryons may be defined as
A° = A S (20)
or . o |
A° = ag® | (20")
and '
' | T o= AP, (n1,2,3) (21)

where ¢° and ﬁn are defined by Egs. (14) and (16). It may be verified
that the operators introduced;above all'ﬁavé the éoriéct transformation
properties under Lorentz transformations, isotopic spin, charge, and hyper-
charge transformations. ,

Another continﬁous group, the leptonic charge group may be introdﬁcéd

in two different ways:

GZ: € > eize Ty )) ﬁeiz))b B A - A, _ (22)
A ig' ' ,
Gyt e e e L =¢ 'yL s A - A - (23)
R7%R 2 s SR
The group G

y) is general and can help to formulate lepton conservation with
any type of weak interaction. But if it is true that all leptonic weak
interactions are of the (V-A) type, tﬁen only left~handed electrons and
neutrinos enter such interactlons and it.is sufflcient to consider the

group Gz, (Eq. (23)) as definlng the leptonic charge._ Since the " meson
must have the same leptonic charge as’ the electron (evidence from the value

of the Michel parameter in p decay), then we could define the muon operator as

wo= eg® . | . (29)



YCRL=-8290

-9~

But, as discussed in the final section, there is no simple way of
incofporating the muon into such schemes without running into additional
difficulties. |

| Although the operators © and B’ behave like the K and x meson
respectivexy, this identification ﬁould not be satisfactory from a dynamical
standpoint, since these bosons must include fhe operator A becaﬁse of their
strong interactions with baryons. Therefore we introduce the bosons throﬁgh

the definitions

K° _ e
k" ~
R - KA g, . (26)

where 7 denotes the usual adjoint four-spinor ‘
io- oAty . - (2

The scheme Jjust described will be referred to as‘Scheme A.

We obtain a modified version of Schéme A by imposing the Majorana
conditioh:on the neutrino. Since there is a one-to-one correspoﬁdence between
a Majorane neutrino and e two-component neutrino,lo this is equivalent to
reducing the number of the inﬁependent ceﬁponents_of the basic field by two.
‘The scheme thus obtained (Scheme A') involves then»lO components instead of
12. We have | S | |
| Vo= V-, O @)

or

V. o= -0, ;JR* s 9' = g Qf* . (28")

L

reduced. Group (5-I), which gave rise to isorotations, still survives, but

Hence }) énly need be considered. The available continuous groups are
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the group of global symmetry (5~II) is lost. The leptonic charge group (22)
can no ‘longer be defined but (23) is st111 valid. - For the isofefmion boson
operator © we now have

e® = efoe | | " = .JR ’)L ’ (29)
so that the leptonic number z"cah now be used to define hypercharge. We
take u = £'. The conservation of leptonic charge and the conservation of
strangeness (which follows fromAthe conservation of the hypercharge) become
identical. In mesonic decays 6f hyperons there are 1o leptons involved, but
the leptonic charge changes by one. In léptqnic decays, leptons”are conserved
~as well éévstrangenesso A consequence would be to allow ﬁ_decay only wiﬁhin
a charge multiplet. The B decay of the Ao, for examﬁle, is ferbidden. This
is an example of a model in which strangeness and parity are not necessarily
consérved simaltaneously. It is interesting to note phe resémblance of this
model to the one proposed by Konuma, Nakamura, and_Umezawall in which the

"neutrino charge" is identified with strangeness.

ITI. SCHEMES A AND A'.
DIFFICULTIES ASSOCIATED WITH THE DISCONTINUOUS GROUP STRUCTURE

We first consider Scheme A. ILet us introduce the parity operation

for the four-component neutrino-electron system:

: Pﬂz eL - eR H | '))L "" "VR 3 (30)

and the parity operation for the baryon field,

P Ay ,—) Ap o v (31)
From Eqs. (9) and (10) we see that under P, the boson matrix 6 transforms
in the following way,

P, 8 - -0l | . (32)
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Further, Eqs. (5) and (8') show that the roles of the trensformation (5-I) and

(5-I1) are eXcﬁaﬁged under Pz. In particular the hypercharge and the third

-éomponent of the isqtdpic spin are also exchanged. Therefore; at this stage

we note that parity-conserving interactions that are invariant under the

isorotations around the third axis must also be invariant under hypercharge

transformations. In other words, strangenéss and the third component of the
isotopic spin must be conserved simultaneously in ordef to be compatible with
parity conservation in this modél. The groups (5-I) and (5<II) do not commute

separately with parity. However, the group obtéined by téking R=@=B in

' Eq. (7) does commute with parity. Under this group we have

(Jp &) = (Jp eB (o ) = (Yo B
‘ _ _ -

and

so that the right and the left fields behave in a symmetrical way. The

leptonic group G, (22) elso commutes with the parity operation, so that the

. charge gauge group whiéh is a product of Gz with a subgroup of (33) also

commates with parity. This means that the electromagnetic interaction of the

electron, which is éharge gauge invariant, is also invariant under parity, as
it should bé° Leptonié decays for which the group Gz, ié ?alid destroy thé
parity invariance.

v We now turn to the question of parity censervation in strong
interactions, To do this, we note that the boson fields ® are not parity

eigenstates. From the definition (9) and the law (32) we have explicitly
Py 80 - (), o - (&) , |
: (34)

- * s — O
8~ - -(6"), 8% o o(e9) .
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Now, according to Eq. (14) the explicit expféssions for the components of the’

isovector field E are
Ps = 3 Le" o - (P 4 e’(_e“)*~ef(e+)*] ; |
g =g -10, = - (e - e‘_’(g‘s)* , T ()
A A Y A A COMIRC I COM

which are seen not to be parity eigenstates. The expreésion

g = 11-(9\97 + ;eT.e - 8ts - &8t o (36)

would be a parity eigenstate, but then would not be an isotopic spin vec£6r° .
It would only be a vector with respect to the tfansformations (33) under which
© transforms like a vector. It follows that an interactionvterm involving

the field’ ;; and the baryons cannot be\invariant under isorotations and parity
at the sa;me-time° This is because the only rotation groups availab1é»(%=I and
II) that cén serve to définé the isogroup and the hypercharge group do not
commute,wifh périty, and the only rotation group that cpmmutes with parity

namely (33), cannot be used to define a boson that is an isospinor. On the

other hand the operation CP is

o ooy V" o & |
EA S A N A T~ A R A
R ~ "% ”r> | 7 "% Yr> g 2 =% Ay
or, using the matrices F and G defined by (2) and the definition (3),
we have
=T i

* _ _ -— 1- :
F - 9, F = E O . G - -9, G = =G O

so that from (4) we obtain

FGg - +<;2F'r 6* 0. = ('F'G)* :
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or : _
% '
cpP: . 8 - 6 . ‘ : _ (38)

There CP correéponds to thé opera@ion of complex conjugation for the field 6.
It also switches the sign of the hypercharge. The field _E? now is an eig3n~
state of CP. Thé transformation

e - 8T, | (29)
which is induced by CP followed by a special four-dimensional rotation (7)
defined by _ | ’

F » 10,F , | G-»icgc", (ko)
commites with the full four-dimensional group (_7)° Hence if strong interactions
have giobal symnetry, invarience uhder (39) wiilﬂimply invariance under CP.

It is then possible to introduce CP/iﬁvariéncé in the gtrong interactions,
unlike separate C and P invariance.“ !

Since Scheme A' 1is a special case of Scheme A, the same'difficulties )
' alsé arise in this case in addition to new difficulties resultiﬁg from the
‘lower symmetry of the model with respect to P. fhis need not be discussed
here. |

We note that it is possible to define an operation that transforms

right=handed baryons into left-handed ones, neamely

P'y - e » V¢, Vo €, A o Ay (41)

Under this operation we have

o" - -(e7) , g o° - % . (42)
We can therefore have simultaneous conservation of strangeness, P', and
isotopic spin (since P' commutes with the isospin as defined in this model).
We may be tempted to call P' +the parity operation, since it is the parity

operation for the baryons. But as far as leptons are concerned it is the G
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conjugation12 and it cannot be regarded as parity since it is not conserved
in electromagnetic‘iﬁteractions.

We have shown that the Scheme A, which accounts for the transformation
propertles of particles under continuous groups, leaves no freedom for the
definition of a parity operation distinct from CP which would be conserved

"both in strong and in electromagnetic interactions.

Iv. SCHEMES WITH FOUR FOUR-SPINOR FIEIDS (B AND C).
We.start with Scheme B, in which the fundamehtal fieids are 5,12;
A, and an isosinglet neuﬁfal lepton‘fieid e ; all four-spinor field;s°
Since separation into.leftnhanded ahd right-handed fields plays no special
role in the definition of continuous groups in this model, we use the usual
féuraspinor formalism instead of 2 x 2 matrices, the bar denoting the adjoint.
_ four»spinof in the sense of the definition in (27). |

We now redefine the isefermion boson fiel& ® as

Il
]

® Ye = Ype * ")LPL? ® ° = érR B * €'y e
(43)
The parity operation now is
P: € —>7‘0€ y ))—-arou),. e—a»‘roe, A - Ty A,
f " (k)
and leaves © invariant. Thus 6 1is a scalar field. We could equally well

define a pseudoscalar 6 by replaclng P by 75 e .
We introduce the isovector boson field ¢ and the 1soscalar ﬁo by
60 ) .
0 — : ot - ' ’
¢ -+ Qe = : + (e 9 ) y (h's)
e )
- P :
where 6 = (e*) .
We now keep the definitions (20') and (21) so that we have

X - A, 2R, (46)
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and redefine the baryons N and: Z as follows:
_ *
p = A6 = - ae® "
| | ) (1)
n = Ae° s o = = A6

The K (scalar for instance) and 7 (pseudoscalar) mesons may be defined

as
— o -
K° = Tre KW = AAe : o (48)

—
7

in%A;B’. | - (49)

The continuous groups are _
' - : .
Y, € - (¥, ’e)ei Iﬂ?, A - e A, e _’leiue’
(50)
where (Y , €) means the 4 x 2 matrix the columms of which are the four;
spinors Y and €. The vector f?'stands for the parameters of the isospin
group and b and u‘.are respectively the parameters corresponding to the
baryeon number and the hypercharge° The lepton gauge group can still be
introduced by (22) or (23), assuming © invariant under this transformation.
For the muon we can stillitake the provisional definition (24).
The discontinuous groups are P, givey by (hh),‘andﬁthé charge~
conjugation operator -
C: € - € s Y - Vc', @ - @c 5 A - A° .
| (51)
The Racah parity is a special case of the hypercharge gauge group and is

given by
PR:/' g - if , € - e , ARy N U (52)
This scheme leads to the same results as the conventional theory of

elementary particles, giving no deeper relationship between strangeness and
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parity. However, it does give a basis to the isomorphism between the Pauli
group and the isogroup of strongly interacting particles. Indeed, in the
_ nonelectromagnetic approximation, the equations for the free electron and

the neutrino are

ruaual=o, Y. d € = 0 '-_(55)

Now, the fouf%spinors

vy, | -loy e
X = and t = | - (54)

¥* .
io,€p R

transform in the same way as >) and € under Lorentz transformations and

satisfy the same zero-mass Dirac equation

Y, 3, x =0, r,9 ¢ =0 . | (55)

B Rop
These equations are invariant under the simultaneous Pauli transformatj.cnsl5
_ o c - ' - c 2 2 :
X - aX +b75x, £ - at +b75C (fa(-+ﬁ|=lL
| o \ (56)

But this transformation is eqﬁivalent to the isogroup‘in Eq. (50) which,
accéfding'to the.model, induces the isotopic rotations of strongly interacting
particles. -Therefore, in this model there is still a strong connection
Between the Pauli invariance of zero-mass spinor fields and the isotopicimJ
spin invériance of baryons and mesons. The introduction of the @ field
to pro?ide the hypercharge group is, on the other hand, an unsatisfactory
feature of the scheme. For the muon we now have another possibility, namely
o= pe, | - (57)

which of course does not exclude a neutral muon defined by

WO o= e . | (58)
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In this'scheme'\c and P . caﬁ be conserved simultaneously with isospin
and strangeﬁess, although ﬁhis is noi a necessary consequence of the scheme.
-Séheme C:

Before leaving thelépipor schemes we note briefly a more symmetrical-
looking séheme ﬁith four four=-spinors, which runs into difficulty with the
conservation of parity in interactions involving strange particles. The
fundamentai fields are €, y » P, n, and the definitons of Scheme A are kept
for thé e fieldb, The baryon and the hypercharge transforﬁatioﬁs are now

defined as

b: ()), €) - (7); €) P (P: n) - e (P) n) ’ ' (59)

G
Gy (»L,e)_,w,e) , O eR)-»eiu(QR,e) (60)
(2, n) - ey, n)
Thereforé'under Gu. we haye
G, e o &MU e*{ > ot e, - (61)

) . L
° (p 8 =no”) : (isosinglet),

™
i

N |

st = pe° (1sotriplet) ,

= = ne | | / (62)
: *

E.0 - AO eO

(isodoublet)

15}
i

=
>}
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The mesons are defined as
7 = 1% Ts P s x = i E'YS n I G ' T n)
- S - - E - R
(63)
xt = A°p , ¥ = P . o (6Y)

It can now be shown that the parity difficulties associated with Scheme A are
‘now limited to interactions involving strange particles. In this scheme,
¢ and P would be conserved in electromsgnetic and pionic strong ihteractions,

but would be viclated by the K-meson interactions.

V. A MODEL WITH MIXED FERMION AND BOSON FIEIDS (SCHEME D).

We have seen that in a puré spinor model at least fourvfoursspinor
fields are required in order to give the continuous gauge groups as well as
C and P separafely,’sovthat the basic field has 16 components. Moreover,
because of the different nature of the fields involved, thefé'is & great
arbitrariness in formulating the interaction Lagrangian in terms of the bésic
field. Therefore it is desirable to have a model with a smaller number of
fundamental fields at the price of sacrificing their common spinor charscter.

Such an example is now given.

Scheme D (Three Two-Spinor, Two Scalar Fields).

The basic fields are taken to be

1 1 3 1
A A v Mg o= , k = :
M Ao By ko
(65)
Here A, Ars and Ay are two-spinors, whereas the components of k are

scalars, one being neutral and the other positively charged. We further
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assume that M A and A are scalar in isotopic spin space while k
’ _

L 2
is an isotopic spinor. We shall often combine Ap and A, into the four-

spinor

A= L \ (66)
Ag

and- use the fOuraspinor notation. _We note that each basic field‘is‘chosen to
have different spins in the ofdinary and isotopic spin spaces, so that in a
sense they are all strange fields. All together we now have eight coﬁponents
- ==that is, half the number ef,coﬁponents in model B.

For four-spinor fields we use the notatians (l), (27), and (66)

For two-spinor fields _§' we deflne

(67)

A
g:j’.gg‘,

where the star denotes complex conjugation as usual. If & isva twé~épinor
 of the first kind, then 2 is a two-spinor of the second kind (see Ref. 8).
Further, as in (59) if ¥ and @ are two four-spinors, by the notation

(¥, ) we mean the 4 x 2 matrix the columms of which are respectively the

!

four-spinors ¥ and @, so that we have

| w9
oA oo P}
(% Q) = = (68)
| W % 5 0
Yy Oy

Similarly, (&, YI) is & 2 x 2 matrix, the ®lumns of which are the two-spinors
& and Yl as in (2) |

We now propose the view that the basic fields cannot be observed by
themselves owing to their strong 1nteractlons,_and thgt they tend to form

compound states which correspond to elementary pa,rtieleé° Considering
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provisionally the muon as the charged member of a doublet; and choeosing a

scalar K, we define the scheme by the following operatofs;

(8)  (Jp &) = Ak,

() (e, m) = Akl

(cj ' A°4 =“_A i k‘ ,

@ x = K rg A kf'?k ,
(&) (W u®) = Ak kK,

The continuous groups.are given by
GL (proper Lorentz group): )
A

where I 1is a unimodular 2 x 2 matrix.

G, (baryon group):

A—>eibA, A= A, k -» K .

Gia(isospin group):

k - Rk, Y A > A

. A
())R) G'R) = )\’kT)
e At
(22,2) = ax ,
E = Ak-r’?k.)
K = A A k,

2

where R is unitary and unimodular as in (6) so that it has the form

-
R=exp (1 ¢1)
G, (hypercharge group):
kK - e % , A oo A,

G (rs group for leptons):

iw

A oo e, A - A, k

‘A - A .

- [e) A

(69)

(70)

(71)

(72)

(75)

(74)
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G, (Y5 group for baryons):

A - e , A - A, k - k. (73)

These are the continuous groups available. The charge gauge group is

& comblnation of G and Gy, so that we have

. , 3
G (charge group): »
4 1+ 0
k - e 2 k p S W A > A . (76)
We shall expect GL’ Gb’ and Gq to be always valid. Strong interactions are
assumed to have additional invariance under Gf~ and Gﬁa The groups Gw dnd
@_. are expected to play a role in weak interactions only.

8
| We now consider the discontinuous groups.
P (parity):
A .
Ao N, A = r A, k - k . (77)

C (charge conjugation):

) *
S A - A%, k - k . (78)

By combining these and by using R(Q) defined as a special isorotation of

180° around the second axis, we can also define

) A . . . c *
CP: Ao, A= Ty A, k -k, (79)
. ¢ ' A\
' A ¢ A :
GP: T N A s v AT, k - k . (81)

To C and P we may add another reflection operation

VYL(mifror_operation):

A=A, A - A, k -

=

. (82)
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strong and electromagnetic iﬁferaétions are presumed to conserve C and P
separately, ﬁhile _CP remains valid for weak interactions. The mirror
operation 3h2 , which changes leptoné into antileptons, K mesons into
anti K's and exchanges the nucleon and the cascade particles, while not
affecting the remaining(particles, is n&tvkhowﬁ to play‘an important part
in the formulation of interactions, although it may be reléted to globsal
symmetry. | |

Finally we note the feollowing discontinuous groups, which are special

cases of the continucus groups:
{

PR (Racah's parity) is a special case of Gu:

A oA, A = A, k - -ik . (83)

OP; (mass reversal) is a special case of G, eand G,

A —;»1)% s A - i'?r5 A, k- k. (84)
Their preoduct is |
PR@m: l. }\,—»ix," Ao i A, kK - -ik. (85)
PR is expected to be conserved in strong interactienslu_and Oem in weak
'interéctions°15

If both Gw and qav'are assumed to be valid in weak interactions
we obtain the same weak interactions as in the Feymman-Gell Mann schemé,e
provided the neutral leptons A\, v)&, and MOL are regarded as physically
undistinguishable. This is also eqpivalent ﬁe postulating invariance under
(84%). However, if both the Racah parity andvthe mass reversal are assumed
to be conserved in Fermi interactions, then, as in Scheme A, we ﬁéuld observe

B decay only within a charge multiplet. This seems to be supported by recent

experiments.
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VI. CONCLUDING REMARKS

Fron the preceding discussioh it éppears that if one insists on a
pure spinor model, then 8 16-component basic field (Scheme B) seems to be
nécesséry in order to account for separate,conservaiion of é and P in
strong and electromagnetic interactions. Howeﬁér, three spinor fields would
be sufficient‘in & scheme in which the only reflection 6peration wbuld be CP
(Sch.eme-A)° Scheme B necessitates the introduction of a field f’I whose
~only role‘is to save parity conservation. besides introducing the.hypercharge
into the scheme. bA l6-component spinor mbdel which tries to.do away with
such an extra field and attempts to defive stranéeness from symmetry
properties of the basic isodoublets (Scheme C) is also confronted with the
difficulty of coﬁserving parity in sfrong intéractions invelving strange
particles. If we relax the requirement of a spinor model and take the view
that & basic field with a minimuminumber of c¢omponents compatible with the
observed group structure of elementary particles has more chance of |
corresponding to nature, then, thevhighly economicél but less symmetrical
Scheme D with eight components shoﬁld be preferred. But %he mixed model,
unlike the spinor models, does #et relate isospin rotations to the Pauli
invariance of zero=-mass Dirac fiéldso Both strangeness and isospin are
intfoduced as basic concepts and no attempt is made to connect them with
thg group properties of spinor fields.

Some of the difficulties inherént in the schemes under discussion
can be noted.

a. Occurrence of New Particles.

o/
The baryons and spin-zeroc mesons seem to form a fairly closed system
'(except for the possibility of an isoscalar pion). But as no such closure

property is apparent.for leptons and spin-one particles, any scheme that
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purports to unify elementary particles by a group theoretical classification

is bound to offer the possibility of defining new particles that will giﬁe

. a more symmetrical structure to the scheme. One is then forced to explain

away the extra particles by assuming that they have very short life-times
owing to the nature of the fundamental interactions.

b. The Meson.

If the isotopic-spin conceﬁt is extended to the leptons, as it is in
all such schemes, then, there are three possibilities for the muén° It may
be a'chargéd singlet, the chaiéed component of an isodpublet, or the charged
component of aﬁ isotriplet. Noﬂé of these assumptions 1s satiéfactoryo In
the first case, if one admits the possibility of charged isosinglets, then
there is no reason to eliminate.baryons that hgve the same property. ‘in the
second and third cases we are forced to admit a neutral muon (uo) into the
scheme. The only other way out is to regard the maon as a.heévy‘electrén.
Then we are confronted withvthe problem of the‘large mass of the muon and

the nonoccurrence of B decay for the n and K mesons.

'ca Thé Photon.

The photoﬁ is a massless, neutral, spin-one particle. Again if one
| .
constructs such a particle operator from spinor operators, one is led to
consider also charged spiheéne particles (Schwinger's erarticlés), for which
there is no experimental evidence. Anothérbproblem is to explain'why electro;

magnetic interactions necessarily destroy full isospin invariance.

d. Parity and Strangéness°

Many authors have envisaged the possibility of a,connection between
strangeness and parity which seem to be conserved or viblated'simultaneously'
wherever strangeness is defined; although mathematically the two quantum

numbers are unrelated. If one were to extend the notion of strangeness to
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leptons, it would be attractive to do it in such a way as to.have strangeness
violéted'in gll, including leptonic, decays. Such a comﬁon selection rule for
all weak interactions would help ﬁo-understand their universal character
(common A-V structure, approximately equal coupling constants); None of the
schemes surﬁeyed above givesvsﬁch a selection rule. The noncénservation of

¢ and P seems to be the oﬂly féature common to all weak‘in’ceractiohso To take
an.example, in Scheme D strangeness is conserved in the B decay of nucleons,
but not conserved in the mesonic decay of hyperons, while in both cases parity

is violated.n: Therefore the scheme makes a sharp distinction between

Jeptonic and nonleptonic decays, giving no connection between strangeness and

parity. Such a connection is alseo absent in Scheme B, vhereas & strong
connection of the wrong kind appears in Schemes A and C.

e, Relative Parities of Different Fields.

Withiﬁ an émbiguity due to superselection rules16 the relative
parities of fields can.be defined. For instance, the relative parity of the
pion and the nucleon system is odd. Experiments are under way to determine
the rélative parity of the nucleon and the (AO, K) system. In the above
schemes there is freedom to change the relative périty of the particles,
which should be determined in a unique Qay in a successful theory of elementary

particles.

This discussion leads to the inevitable conclusion that no satisfactory
scheme for elementary particles has been discovered yet.
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