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.ABSTRACT 

An attempt is made to account for the group structure of: elementary 

particles by assuming that they are obtained by combining a limited number 

of basic fields. It is shown that if the basic fields are all taken to be 

fermions, one needs three fields to account for the continuous group structure 

only, but four fields are necessary if distinct operations for C and P are 

to be incorporated in the scheme o On the other hand, a model with half the 

number of independent field components can describe the group structure 

correctly if both bosons and fermions are taken as basic fields, their common 

feature in this case being that they are all strange fields. Difficulties 

inherent in such schemes are discussed. 

* Work performed under the auspices of the U.S. Atomic Energy Commission 

and the International Cooperation Administration. 

+ On leave from the University of Istanbul, Turkey. 

· 9 At Brookhaven National Laboratory, Upton, N. Y. for a portion of this work. 
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ON THE GROW STRUCTURE OF ELEMENTARY PARTICLES 

Feza Giirsey 

I. INTRODUCTION 

.·Not much can be expected from a formal scheme for elementary particles 

which evades the :fundamental problem of' interaction, as.no quantitative 

conclusions regarding masses, lifetimes and coupling constants can be drawn 

f'rom the model. However7 even a qualitative and descriptive scheme may be 

use:ful if' it accounts for the group structure of' particles and throws light 

on some remarkable mathematical facts and empirically observed rules, such 

as the seemingly limited number of particles, the possible connection between 

strangeness and pari ty
1

, a satisfactory explanation of the form of' weak 

interactions2, the curious isomorphism. between the gauge group of' a massless 

neutral Dirac particl~ and the group of strong interactions3, the absence of 

a neutral particle other than the neutrino associated with the 1J. meson, the 

possible four=dimensional Euclidean symmetry of the baryon-pion interactions 

.. 4 
and partial breakdown of this symmetry in K=meson interactions. One should 

also try to give an answer to the problem of determining the nature and the 

number of fundamental fields, if', following Heisenberg, 5 Goldhaber, 6 and 

Sakata, 7 all particles are regarded as having a compound structure. 

This paper is devoted to the discussion of some examples of spin~r 

and mixed {fermion + boson) models with a simple (nondegenerate) vacuum. 

·It is found that, with three :fundamental spinor fields ( 2 lepton, 1 baryon), 

one may account for the group structure of' the particles as far as the 
. ' . . . ~ 

continuous gauge groups are concerned. One discontinuous group-=f'or instance, 

CP--can also be incorporated •. However, the model fails to explain the 

discontinuous group structure which must comprise two distinct reflection 

operations, C an P, that are presumably conserved in strong and electro-
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magnetic interactions. In order to incorporate the latter feature in the 

scheme one needs four four-spinor fields. But then, one meets with the 

difficulty of unobserved new particles and a greater arbitrariness in the 

formulation of the interaction problem. The large number of basic fields 

required seems to be a fundamental difficulty associated with such fermion 

models. 

Because of the poor success of the spinor approach, we have also 

investigated a mixed model in which boson fields as well as fermion fields 

are taken to be basic from the start. This line seems to be more promising. 

Indeed, three fundamental fields~-namely X {a 2-component isosinglet fermion 

field); two boson fields, k1 and k2 (forming an isodoublet complex boson field 

k); and an isosinglet baryon four-spinor field A --suffice to account both 

for the continuous and for the discontinuous group structure of elementary 

particles. The assumption is that the :fundamental fields X, k, and A, which 

all together have eight components, are not observable by themselves but give 

rise to compound states that represent "elementary'' particles •. We note 

that these fields are strange in the sense that they have a spin difference 

of ~ in ordinary and isotopic spin spaces. 

In all the schemes under consideration that are based on the idea of 

extending strangeness and isotopic spin to leptons, the status of the ~ meson 

is ill defined, since the problem of finding a natural place for it has no 

easy solution. 

Before discussion of a few simple schemes a remark is necessary about 

the fairly generally accepted two-component nature of the neutrino. Let us 

introduce a basic leptonic isodo,ublet which we may tentatively identify 

with a four ... component electron E and a four-component neutrino V • We 

may assume that the mass of the electron vanishes in the limit of electro ... 

magnetic forces being neglected. In this limit, the concept of isospin 
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should be applicable and the electron=neutrino system should emerge as an 

isodoubleto One objection to this conception of the leptonic field (e, Y) 

might be the two-component nature of the neutrino. The way in which such 

a reduction of the available states of the neutrino affects the scheme is a 

matter for separate discussion (Section 2, Scheme A1 ). However, it is worth 

noting that the neutrino is not the only particle that behaves like a two-

component field in weak interactions. Had our experience with electrons been 

limited to the ones produced in decays only, we might be tempted to ascribe 

a two=component nature to the electron too. The reason this cannot be done 

is that the missing states of the electron are actually produced in electro-

magnetic interactions that do not affect the neutrinoo In any compound~ 

particle scheme comprising the electron and the neutrino among its builqing 

units, neutrinos could be produced not only in weak interactions, but also 

perhaps in very energetic collisions of strongly interacting particles. The 

nature of neutrinos produced under such conditions might be very different 

from that of decay neutrinos. 

IL SCHEMES WITH THREE SPINOR FIELDS (A AND A' ) • CONTINUOUS GROUPS. 

As fundamental fields we take e, Y, and. a neutral isosinglet baryon 

field A. All three are anticonmruting four-spinor fields. We use the notation 

' 
1 '* = - (1 = R 2 

( 1) 

for any four-spincr ~ r
5 

being taken diagonal, so that vL and vR are 

essentially two-component spinors. T0 study the groups involved it is also 

useful to introduce the 2 x 2 matrices F and G 

F = G = 

defined by 

* ( -io2 e R' icr2 (2) 

where the symbols in the brackets stand for the columns associated with the 
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two-component spinors (1). Under a Lorentz transformation, F and G transform 

in the same way, both being multiplied to the left by a unimodular 2 x 2 matrix 

L (see Ref. 3). Let us also introduce the notation 

( 3) 

for the adjoint matrix, so that FF would be equal to the determinant of F 

in c .. number theory. Now we form the Lorentz invariant matrix 

9 = F G (4) 

The elements of this matrix are products of the operators € and ~ at the. 

same point. Strictly speaking, such products are not defined in conventional 

field theory. 
e 

As shown by Zimmermann, to describe a compound state of the 

fields v and ¢ one should start from the time-ordered product 

T('lt' [x J, ¢ (x'] ) and use a limiting process to define the product operator 

at the point corresponding to the center of mass. However, this procedure 

does not alter the symmetry properties of the product function, and in the 

followi~g we shall use products of operators to represent compound states. 

Two Lorentz-invariant, coaimlting rotation groups (which combine in a 

fotir-dimensional Euclidean rotation group) may now be defined. 

where 

F -+ F R 

F -+ F 

-+ ..,.+ 
R = exp i O•t and 

(5-I) 

(5;.,II) 

-+-+ Q = exp i o.u ( 6) 

are two unitary, unimodular 2 x 2 matrices, t and it are real vectors, and 

the a's denote the Pauli matrices. Under the four-dimensional rotation, e 

obeys the law 

(7) 

so that Tr 9 9 is invariant. We also obtain 



. ,. 

·~ 

q 

•,. 

.... / UCRL-8290 

-6-

(8) 

and 

et -+ Q, et R • (8') 

The elements of the matrix e represent four spin-zero boson fields, 

namely 

<;/ = €tR ,)L ' 
(9) 

eo = ..;tR YL ' 

so that one has 

co -e- ) 
e = -e+ ~ e 

and 

(10) 

( e
0 ::) e = 

e+ 
(11) 

If the rotation group (5-I) is regarded as generating the isospin 

group to which it is isomorphic, then 0 + -o -e , e on one hand and e , e on 

the other behave like isospinor bosons. ·A trans~or.mation isomorphic to the 

hypercharge (or isofermion) gauge group introduced by D 'Espagnat and Prentki9 

is obtained by considering the subgroup of (5-II) corresponding to u1 = u 2 = o, 

u3 = u. 

or 

Under this group we have 

e-+e exp i 0'3 u 

0 0 iu e+-+ e+ iu eo e -+ e e 
' 

e 
' 

( o)* ( o)* -iu e -+ e e . , (-.)* (~)* iu eo -+9 e, 

(12) 

-+eo -iu e '· ( 13) 

We see that as far as continuous groups are concerned, the operators 

(e0
, e+) behave like the K-meson field (K0

, K+). The fUll rotation group (5-II) 
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mixes states of opposite hypercharge and hence is a representation of the 
~ 4 

global-symmetry group considered by Gell-Mann and Schwinger. It is seen 

to be .the three-dimens.ional generalization of the hypercharge transformation. 

Since 9 and e·t transform in the same way under the full group (5), 
-+ 

we may construct the isovector boson field ¢ in su.ch a way that we have 

.! ( e et - e t e) 
2 

It transforms as 

= e et - .! Tr e et . 
2 

(14) 

(15) 

under the isospin group (5-I), but is invariant under (5-II), and in particular 

under the hypercharge group. Hence, as far as continuous groups are concerned 

; behaves like the pion field ;:?. 

We note that an isoscalar boson field ~ can also be defined by 

rt,O 1 Tr + 
)U = 2 ee (16) 

We now combine.the field e with the four-spinor field A to introduce 

baryons in the scheme. The baryon gauge transformation is given by· 

write 

(17) 

For the isofermion baryons N(nucleon)and ~(cascade particle) we can 

_o 
-L 

-
- L 

(18) 
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and 

~at= (19) 

The A 0 and the Z ( isoboson) baryons may be defined as 

(20) 

or 

(20') 

and 

.·~ =A¢ ' n · n (n=l,2, 3) (21) 

where ~ and ¢ are defined by Eqs. (14) and (16). It may be verified 
n 

that the operators introduced.above all have the correct transformation 

properties under Lorentz transformations, isotopic spin, charge, and hyper-

charge transformations. 

Another continuous group, the leptonic charge group may be introduced 

in two different ways: 

G t: 
it y ~ eit Y A A (,22) € .~e E ' ' 

~ 

' 
it' it 1 

(23) G t, : ~ ~e €L ' VL ~ e ~L ' A ~ A 

~~~ ' .JR ~ YR 

The group Gt is general and can help to formulate lepton conservation with 

a:ny type of weak interaction. But if. it is true that all leptonic weak. 

interactions are of the (V-A) type, then only left-handed electrons and 

neutrinos enter such interactions ~d it is sufficient to consider the 

group Gt' (Eq. (23)) as defining the leptonic charge. Since the J.L- meson 

must have the same leptonic charge as the electron (evidence from the value 

of the Michel parameter in J.L decay), then we could define the muon operator as 

E "'o J.L = >'-' (29) 
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But, as discussed in the final section, there is no simple way of 

1ncorp0rating the muon into such schemes without running into additional 

difficulties. 

Although the operators e and ¢ behave like the K and ~ meson 

respectively, this identification would not be satisfactory from a dynamical 

standp0int, since these bosons must include the operator A because of their 

strong interactions with baryonso Therefore we introduce the bosons through 

the definitions 

(~) = A A 
' 

(25) 

-+ -+ 
~ =I A .A ¢ 

' 
(26) 

where A denotes the usual adjoint four~spinor 

(27) 

The scheme just described will be referred to as Scheme Ao 

We obtain a modified version of Scheme A by imposing the Majorana 

condition on the neutrinoo Since there is a one=to-one correspondence between 

a Majorana neutrino and a two-component neutrino, 10 this is equivalent to 

reducing the number of the independent components of the basic field by two. 

The scheme thus obtained (Scheme A1
) involves then 10 components instead of 

12. We have 

or 

'))L = ,JR = ))* 
L 

(28) 

Hence ~L only need be considered. The available continuous groups are 

reduced. Group (5~I), which gave rise to isorotations, still survives3 but 
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the group of global symmetry (5-II) is lost. The leptonic charge group (22) 

can no longer be defined but (23) is still valid. For the isofermion boson 

operator a we now have 

0 t a = € R €L ' (29) 

so that the leptonic number £' can now be used to define hypercharge. We 

take u = £'. The conservation of leptonic charge and the conservation of 

strangeness (which follows from the conservation of the hypercharge) become 

identical. In mesonic decays of hyperons there are no leptons involved, but 

the leptonic charge changes by one. In leptonic decays, leptons are conserved 

as well as strangeness. A consequence would be to allow ~ decay only within 

a charge multiplet. 
0 . 

The ~ decay of the A , for example, is forbidden. This 

is an example of a model in which strangeness and parity are not necessarily 

conserved simultaneously. It iS interesting to note the resemblance of this 

. 11 
model to the one proposed by Konuma, Nakamura, and Umezawa in which the 

"neutrino charge" is identified with strangeness. 

III. SCHEMES A AND A' • 

DIFFICULTIES ASSOCIATED WITH THE DISCONTINUOUS GROUP STRUCTURE 

We first consider Scheme A. Let us introduce the parity operation 

for the four=component neutrinomelectron system~ 

(30) 

and the parity operation for the baryon field, 

(31) 

From Eqs. (9) and (10) we see that under P£ the boson matrix a transforms 

in the following way, 

(32) 
• 
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Further, Eqs. (5) and (8') show that the roles of the transformation (5-I) and 

(5-II) are exchanged under P2• In particular the hypercharge and the third 

component of the isotopic spin are also exchanged. Therefore, at this stage 

we note that parity-conserving interactions that are invariant under the 

isorotations around the third .axis must also be invariant under hypercharge 

transformations. In other words, strangeness and the third component of the 

isotopic spin must be conserved simultaneously in order to be compatible with 

parity conservation in this modeL The groups (5-+) and (5 .. II) do not commute 

separately with parity. Hawever, the group obtained by taking R = Q = B in 

Eq. (7) does commute with parity. Under this group we have 

( .YL, E:L) -+ ( ..)L' € )B 
L ' ( .,) R' ~) -+ (yR' ER)B 

(33) 

and 
e -+ Be B 

' 
so that the right and the left fields behave in a symmetrical way. The 

leptonic group Gt (22) also commutes With the parity operation, so that the 

charge gauge group which is a product of Gt with a subgroup of (33) also 

commutes with parity. This Eeans that the electromagnetic interaction of the 

electron, which is charge gauge invariant, is also invariant under parity, as 

it should be. Leptonic decays for which the group G2 , is valid destroy the 

parity invariance. 

We now turn to the question of parity conservation in strong 

interactions. To do this, we note that the boson fields e are not parity 

eigenstates. From the definition (9) and the law ( 32) we have explicitly 

p t: eo -+ (eo)* 
' 

e+ -+ -(e ... )* ; 

(34) 
- -(e+)* eo -* e -+ ' -+ -(eo) 

\. 
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Now, according to Eq. (14) the explicit expressions for the components of the 

isovector field ¢ are· 

' 
( 35) 

which are seen not to be parity eigenstates. The expression 

-+ -+ 1 ( t .... -t - - -t a·¢' = 4 e e + er e - e e - e e ) (36) 

would be a parity eigenstate, but then would not be an isotopic spin vector. 

It would only be a vector with respect to the transformations (33) under which 

e transforms like a vector. It follows that an interaction term involving 
-+ 

the field ¢ and the baryons cannot be. invariant under isorotations and parity 

at the same time. This is because the only rotation SrOUps available (~-I and 

II) that can serve to define the isogroup and the hypercharge group do not 

commute with parity, and the only rotation group that commutes with parity 

namely (33), cannot be used to define a boson that is an isospinor. On the 

other hand the operation CP is 

.;L v * * * CP: -+ (12 L ' ~ -+ 02 ~ ' AL -+ 02 AL ' 

YR -)R*' .)R *, * (37) 
-+ -a2 ~ -+ -a ~ -+ -a "R ' 2 .2 

or, using the matrices F and G defined by (2) and the definition (3), 

we have 

, 

so that from (4) we obtain 

F G -+ +a
2 

Ft Gt a
2 

= (F G)* 
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(;8) 

There CP corresponds to the operation of complex conjugation for the field e. 

It also switches the sign of the hypercharge. The field ~ now is an eigen-

state of CP. The transformation 

e ~ at ' (39) 

which is induced by CP followed by a special four-dimensional rotation ( 7) -

defined by 

(40) 

commutes with the full four-dimensional group (7). Hence if strong interactions 

have global synnnetry, invariance under (39) will imply invariance under CP. 

It is then possible to introduce CP ,invariance in the strong interactions, 

unlike separate C and P invariance. 
J 

Since Scheme A' is a special case of Scheme A, the same difficulties 

also arise in this case in addition to new difficulties resulting from the 

lower symmetry of the model with respect to P. This need not be discussed 

here. 

We note that it is possible to define an operation tbat transforms 

rtght-handed baryons into left-handed ones, namely 

P': ' ' 

Under this operation we have 

e+ ~ -(e-)* 
' 

We can therefore have simultaneous conservation of strangeness, P' 
' 

(41) 

(42) 

and 

isotopic spin (since P' commutes with the isospin as defined in this model). 
I 

We may be tempted. to call P' the parity operation, since it is the parity 

operation for the baryons. But as far as leptons are concerned it is the G 
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conjugation12 and it cannot be regarded as parity since it is not conserved 

in electromagnetic ·interactions. 

We have shown that the Scheme A, which accounts for the transformation 

properties of particles under continuous groups, leaves no rreedom for the 

definition of a parity operation distinct from CP, which would be conserved 

both in ptrong and in electromagnetic interactions. 

Dl. SCHEMES WITH FOUR FOUR ... SPINOR FIEIDS ( B AND C) • 

We start with Scheme B, in which the fundamental fields are E, V, 
A, and an isosinglet neutral lepton field ~ , all four-spinor fields. 

Since separation into left-handed and right-handed fields plays no special 

role in the definition of continuous groups in this model, we use the usual 

four~spinor formalism instead of 2 x 2 matrices, the bar denoting the adjoint 

four-spinor in the sense of the definition in (27). 

We now redefine the isofermion boson field e as 

The parity operation now is 

P: € ~ r e 
0 ' 

t €R 

A ~ r A, 
0 (44) 

and leaves e invariant. Thus e is a scalar field. We could equally well 

define a pseudo scalar e by replacing f by r 5 f . 

We introduce the · isovector boson field "¢ and the isoscalar ~ by 

¢0 + r:.w = ( 

9

:) (e0 * e-) ( 45) 
e .. 

where - + * e = (e ) . 

We now keep the definitions (20') and (21) so that we have 

' 
. ~ 

'f = A¢ ' (46) 



, .. 

and redefine the baryons N and 

0 
n = A e 

' 

UCRL-8290 

as follows:, 

(4-7) 
-- = A e-

The K (scalar for instance) and ; (pseudoscalar) mesons may be defined 

as 

( 4-8) 

( 4-9) 

The continuous groups are 

( y ' ~> -+ ( y' iu e -+e e' 
(50) 

where ( y , e) means the 4- x 2 matrix the columns of which are the four-

-+ spinors .) and e. The vector I stands fo~ the parameters of the isospin 

group and b and u, are respectively the parameters corresponding to the 

baryon number and the hypercharge. The lepton gauge group can still be 

introduced by (22) or (23), assuming ~ invariant under this transformation. 

For the muon we can still take the provisional definition (24-). 

The discontinuous groups are P, g~vey by (4-4-), and the charge-

conjugation operator 

C: c 
€ -+ € 

' 
c 

A -+ A • 

The Racah parity is a special case of the hypercharge gauge group and is 

given by 

' 
~ -+ € 

' ' 
A -+ A 

(51) 

(52) 

This scheme leads to the same results as the conventional theory of 

elementary particles, giving no deeper relationship between strangeness and 
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parity. However, it does give a basis to the isomorphism between the Pauli 

group and the isogroup of strongly interacting particles. Indeed, in the 

nonelectromagnetic approximation, the equations for the free electron and 

the neutrino are 

= 0 ' r a € = o 
11 1.1 

(53) 

Now, the four=spinors 

X = and (54) 

transform in the same way as ~ and € under Lorentz transformations and 

satisfy the same zero-mass Dirac equation 

r a x 
J.1 J.1 

0 (55) 

These equations are invariant under the simultaneous Pauli transformations13 

X .-4 ax + (/a 12 + jbl2 = 1). 
(56) 

But this transformation is equivalent to the isogroup in Eq. (50) which, 

according to the model, induces the isotopic rotations of strongly interacting 

particles. Therefore, in this model_there is still a strong connection 

between the Pauli invariance of zero-mass spinor fields and the isotopic 

spin invariance of baryons and mesons. The introduction of the (! field 

to provide the bypercharge group is, on the other hand, an unsatisfactory 

feature of the scheme. For the muon we now have another possibility, namely 

= 
' 

(57) 

which of course does not exclude a neutral muon defined by 

0 
1.1 = (58) 
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In this scheme -C and P , can be conserved sinrultaneously with isospiri 

and strangeness, although this is not a necessary consequence of the scheme. 

Scheme C: 

Before leaving the spinor schemes we note briefly a more symmetrical-

looking scheme with four four-spinors, which runs into difficulty with the 

conservation of parity in interactions involving strange particles. The 

fundamental fields are €, v , p, n, and the definitons of Scheme A are kept 

for the e field. The baryon and the_ hypercharge transformations are now 

defined as 

G : u 

( ~' 

(p, n) 

J 

iu 
-+ e (p, n) • 

Therefore under Gu we have 

G : 
u ' 

The hyperons-may now be defined as 

0 1 (p e - o*) A = ~ 
.. n e 

r.o 1 (p - o* 
= 
-~ 

e + n e ) 

I:+ o* 
= P e 

- -r. = n e 

_,0 0 o* 

J 
= A e 

- Ao - = e 

in the 

(p, n) ib 
-+ e (p, n) , 

e+ 6+ iu 
-+ e 

<k>ldhaber model, 

( isosinglet), 

{isotriplet) 

(isodoublet) 

(59) 

(60) 

(61) 

(62) 
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The mesons are defined as 

+ 
1( :::: :::: 

' 1( 

0 
= ~ (p r 5 p - n r 5 n) ' 

(63) 

= (64) 

It can now be shown that the parity difficulties associated with Scheme A are 

now limited to interactions involving .strange particles. In this scheme, 

C and P would be conserved in electromagnetic and pionic strong interactions, 

but would be violated by the K-meson interactions. 

V. A MODEL WITH MIXED FERMION AND BOSON FIELDS (SCHEME D) • 

We have seen that in a pure spinor model at least four four-spinor 

fields are required in order to give the continuous gauge groups as well as 

C and P separately, so that the basic field has 16 components.· Moreover, 

because of the different nature of the fields involved, there· is a great 

arbitrariness in formulating the interaction Lagrangian in terms of the basic 

field. Therefore it is desirable to have a model with a smaller number of 

fUndamental fields at the price of sacrificing their common spinor character. 

Such an example is now given. 

Scheme D (Three Twoa:Spinor, Two Scalar Fields). 

The basic fields are taken to be 

A. = (:~) ' AL = c: ), ~ :::: 

Here A., AL' and .~ are two-spinors, whereas the components of k are 

scalars, one being neutral and the other positively charged. We further 

(65) 
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assume that A , AL , and ~ are scalar in isotopic spin space while k 

is an isotopic spinor. We shall often combine AL and ~ into the four­

spinor 

A = (66) 

and use the four~spinor notation. We note that each basic field is chosen to 

have d~fferent spins in the ordinary and isotopic spin spaces, so that in a 

sense they are all strange fields. All together we now have eight components 

--that is, half the number of components in model B. 

For four-spinor fields we use the notations (1), ( 27), and ( 66). 

For two~spinor fields s we define 
' 

= ' -
(67) 

where the star denotes complex conjugation as usual. If g is a two-spinor 
1\ 

of the first kind, then s is a two..,spinor of the second kind (see Ref. 8)& 

Further, as in (59) if v and ¢ are two :four=spinors, by the notation 

(t, ¢) we mean the 4 x 2 matrix the columns of which are respectively the 

four-spinor~ 'ljr and ¢, so that we have 

"'1 ¢1 

c ¢L) = '2 ¢2 L 
<v, ¢) = (68) 

'ljrR ¢R t3 ¢3 

t4 ¢4 

Similarly, ( g, ~) is a 2 x 2 matrix, the o;:>J:umn.s of which are the two=spinors 

s and 1 as in (2). 

We now propose the view that the basic fields cannot be observed by 

themselves owing to their strong interactionsp and th13-t they tend to :form 

compound states which correspond to elementary particles. Consi,J.ering 
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provisionally the muon as the charged member of a doublet, and choosing a 

scalar K, we define the scheme by the following operators: 

(a) ( )JL' ~L) = A. k t 
' ( YR' ~) = ;\A. k t ' 

(b) (p, n) A kt (-0 .,..-) 1\t 
= .:. ' .:. = Ak 

' 
(c) 0 A kt k "it A kt dk A = ' = ' 
(d) --+ 

A r 5 A kt dk K X A k ' 'J{ = 

0 A. kt k kt (p.-R' lloR) 
A t 

(e) ( ll-L' J.1 L) = ' = A.k k 

The continuous groups are given by 

GL (proper Lorentz group) : 

A. 4 L A., AL - L AL' k --+ k ' 

where L is a unimodular 2 x 2 matrix. 

Gb ( baryon group) : 

ib 
A --+ e A, k --+ K • 

or ( isospin group) : 

A --+ A , 

where R is unitary and unimodular as in (6) so that it has the form 

--+--+ 
R = exp (i G•I ) . 

G (hyper charge group) : 
u 

Gw ( r 
5 

group· for leptons) : 

A --+ A , 

A --+ A 

k ~ k 

kt 0 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 
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G (r5 group for baryons) : a 

A ~ 
ir

5
a 

A A. ~ A. k ~ k • e 
' ' 

(75) 

These are the continuous groups available. The charge gauge group is 

a combination of G u and GI , so that we have 
:; 

G (charge group)~ 
q 1 + 0:; 

i ---,,.--.:.. q 
k ~ e 2 k 

' ' 
A ~ A (76) 

We shall expect GL' Gb, and Gq to be always valid. Strong interactions are 

assumed to have additional invariance under ~I and G • u 

Ga are expected to play a role in weak interactions only. 

p 

c 

We now consider the discontinuous groups. 

(parity)~ 

1\ 
A ~ A 

(charge conjugation) : 

A ~ A 

A ~ r A 
0 

' 

' 
k ~ k 

* k ~ k 

The groups G and w 

(77) 

(78) 

By combining these and by using R(2) defined as a special isorotation of 

0 180 around the second axis, we can also define 

A r Ac CP: A ~ A A~ 

' 
k ~ k 

0 

G ( == C x R( 2 ) ) : Ac /\ 
A -+ A 

' 
A ~ j k ~ k 

1\ 
Ac 

A 
GP: A ~ A 

' 
A -+ ro ' 

k ~ k 

To C and P we may add another reflection operation 

~(mirror operation): 

' 
A -+ A 

' 
/\ 

k 4 k 

* 
' (79) 

(80) 

(81) 

(82) 
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Strong and electromagnetic interactions are presumed to conserve C and P 

separately, while CP remains valid for weak interactions$ The mirror 

operation ~ , which changes leptons into antileptons, K mesons into 

anti K's and exchanges the nucleon and the cascade particles, while not 

affecting the remaining particles, is not known to play an important part 

in the formulation of interactions, although it may be related to global 

synnnetryo 

Finally we note the following discontinuous groups, which are special 

cases of the continuous groups: 

PR (Racah's parity) is a special case of 

A ~ A 

G : 
u 

k -+ -ik 0 

U?m (mass reversal) is a special case of Gw and Gu 

A,~ iA. 
' 

k ~ k. 

Their product is 

A, ~ i A., k ~ -i k. 

(83) 

(84) 

(85) 

PR is expected to be conserved in strong interactions
14 

and Vt m in weak 

· i:nteractions o 15 

If both Gw and %_ are assumed to be valid in weak interactions 

2 
we obtain the same weak interactions as in the Feynman-Gell Mann scheme, 

provided the neutral leptons A., ,)L' 
0 and ~ L are regarded as physically 

undistinguishable. This is also equivalent to postulating invariance under 

(84). However, if both the.Racah parity and the mass reversal are assumed 

to be conserved in Fermi interactions, then, as in Scheme A, we would observe 

~ decay only within a charge multiplet. This seems to be supported by recent 

eX]>eriments, 
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VI. CONCIDDING REMARKS 
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~ 

From the preceding discussion it appears that if one insists on a 

pure spinor model, then 8;. 16-component basic field (Scheme B) seems to be 

necessary in order to account for separate conservation of C and P in 

strong and electromagnetic interactions. However, three spinor fields would 

be sufficient in a scheme in which the only reflection operation would be CP 

(Scheme A). Scheme B necessitates the introduction of a field f whose 

only role is to save parity conservation. besides introducing the hy:percharge 

into the scheme. A 16-component spinor model which tries to do away with 

such an extra field and attempts to derive strangeness from symmetry 

properties of the basic isodoublets (Scheme C) is also confronted with the 

difficulty of conserving parity in strong interactions involving strange 

particles. If we relax the requirement of a spinor model and take the view 

that a basic field with a minimum number of components compatible with the 

observed group structure of elementary particles has more chance of 

corresponding to nature, then, the highly economical but less symmetrical 

Scheme D with eight components should be preferred. 
I 

But the mixed model, 

unlike the spinor models, does not relate isospin rotations. to the Pauli 

invariance of zero-mass Dirac fields. Both strangeness and isospin are 

introduced as basic concepts and no attempt is made to connect them with 

the group properties of spinor fields. 
I 

Some of the difficulties inherent in the schemes under discussion 

can be noted. 

a. Occurrence of New Particles. 
/ 

The baryons and spin-zero mesons seem to form a fairly closed system 

(except for the possibility of an isoscalar pion). But as no such closure 

property is apparent for leptons and spin~one particles, any scheme that 
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purports to unify elementary particles by a group theoretical classification 

is bc:mnd to offer the possibility of defining new particles that· will give 

a more symmetrical structure to the scheme. One is then forced to explain 

away the extra particles by assuming that they have very short life-times 

owing to the nature of the fUndamental interactions. 

b. The H Meson. 

If the isotopic~spin concept is extended to the leptons, as it is in 

all such schemes, then, there are three possibilities for the muon. It may 

be a charged singlet, the charged component of an isodoublet, or the charged 

component of an isotriplet. None of these assumptions is satisfactory. In 

the first case, if one admits the possibility of charged isosinglets, then 

there is no reason to eliminate baryons that have the same property. In the 

second and third cases we are forced to admit a neutral muon (~0 ) into the 

scheme. The only other way out is to regard the muon as a heavy electron. 

Then we are confronted with the problem of the large mass of the muon and 

the nonoccurrence of ~ decay for the~ and K mesons. 

c. The Photon. 

The photon is a massless, neutral, spin-one particle. Again if one 

constructs such a particle operator from spinor operators, one is led to 

consider also charged spin .. one particles (Schwinger's Z particles), for which 

there is no experimental evidence. Another problem is to explain why electro­

magnetic interactions necessarily destroy full isospin invariance. 

d. Parity and Strangeness. 

Many authors have envisaged the possibility of a connection between 

strangeness and parity which seem to be conserved or violated simultaneously 

wherever strangeness is defined; although mathematically the two quantum 

numbers are unrelated. If one were to extend the notion of strangeness to 
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leptons, it would be attractive to do it in such a way as to have strangeness 

violated in all, including leptonic, decays. Such a common selection rule for 

all weak interactions would help to understand their universal character 

(common A=V structure, approximately equal coupling constants). None of' the 

schemes surveyed above gives such a selection rule. The nonconservation of 

C and P seems to be the only feature common to all weak'interactions. To take 

an example, in Scheme D strangeness is conserved in the ~ decay of' nucleons, 

but not conserved in the mesonic decay of hyperons, while in both cases parity 

is violated. , , Therefore the scheme makes a sharp distinction between 

leptonic and nonleptonic decays, giving no connection between strangeness and 

parity. Such a connection is also absent in Scheme B, whereas a strong 

connection of the wrong kind appears in Schemes A and Co 

e. Relative Parities of Different Fields. 

Within an ambiguity due to superselection rules16 the relative 

parities of' fields can be def'ined. For instance, the relative parity of the 

pion and the nucleon system is odd. , Experiments are under way to determine 

the relative parity of the nucleon and the (A0
, K) system. In the above 

schemes there is freedom to change the relative parity of the particles, 

which should be determined in a unique way in a successful theory of elementary 

particles. 

This discussion leads to the inevitable conclusion that no satisfactory 

scheme for elementary' particles has been discovered yet. 
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