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COLLECTIVE EXCITATIONS OF NUCLEAR MATTER 

A. E. Glassgold,, Warren Heckrotte, and Kenneth M. Watson 

. Radiation Laboratory and Department of Physics 
University of California, Berkeley, California 

June 23, 1958 

Abstract 

A study of the collective motions of nuclear matter has been made. We 

first give a purely classical macroscopic description of hydrodynamic waves 

in nuclear matter, an¢1. suggest some experimental consequences of their ex

citation. Next a quantum mechanical study of the collective eigenstates of 

nuclear matter is taken up. The starting point of this discussion is the theory 

of the nuclear ground state as given by Brueckner and his collaborators. The 

excited states are des.cribed by means of the method developed by Sawada to 

apply to an electron gas., We generalize this method so as to include the in

ternal degrees of freedom associated with spin and i .. spin and to handle the 

momentum dependence of the level- shift operator K used by Brueckner. The 

connection between the quantum=mechanical eigenstates "and the classical hydro

dynamic motion is established. As a consequence of the internal degrees of 

freedom, there exist not only the usu~l compressive waves, but spin, i- spin, 

and coupled spin-i-spin waves. The i-spin waves can be associated with the 

Goldhaber- Teller oscillations. 

We have investigated the corrections to. the Sawada theory. This gives 

rise to the damping of the stable Sawada collective eigenmodes, analogous to 

the viscous damping of a plasma oscillation. In some cases, however, we find 

not damped but· exponentially growing waves .. This seems to correspond to the 

system's collapsing on itself. This difficulty must lie in our description of the 

ground state and we can at the moment only speculate on the origin of this 

I""' difficulty. 
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COLLECTIVE EXCITATIONS OF NUCLEAR MATTER 

A. E. Glassgold, Warren Heckrotte, and Kenneth M. Watson. 

Radiation Laboratory and Department of Physics 
University of California, Berkeley, California 

June 23, 1958 

1, Introduction 

The shell model has provided the general framework in terms of which 

most nuclear models are now described. lt is characteristic of this model 

that orbits of single nucleons are rather simply related to states of nuclei. 

This includes excited nuclear states which are considered to arise from single

particle excitations. We need not review here the considerable successes of 

this point of view--or its limitations. In the latter connection, however, we 

recall that the failure of the shell model to correctly predict nuclear magnetic 

'moments, quadrupole moments, and some excited states of heavy nuclei has 

been generally interpreted as due to collective motions of nuclear particles. 

To improve the shell-model description, Bohr and MotJelson, Hill and Wheeler, 

and others have introduced collective oscillations of nuclear matter. 1 Also 
2 

Goldhaber and Teller have proposed a relative motion of the neutron and 
I 

proton "fluid components" in nuclei as an explanation of the "giant resonance" 

in the interaction of nuclei with Y, rays of about 20 Mev energy. ' 

The notion of cooperative effects in nuclei is hardly new to nuclear 

physics. The liquid-drop model of Bohr 3 exploited a hydrodynamic analogy. 

His argument followed c_losely that of the kinetic theory of gas hydrodynamics. 

That is, if a given nucleon is strongly scattered by its neighbors, any local 

excitation will be shar11d by many nucleons, and cooperative "hydrodynamic" 

motion is expected. On the other hand, if the nucleon is not strongly scattered, 

cooperative motion does no.t occur and there is no hydrod~namic motion. [In 

kinetic theory this is the distinction between the Boyle and the Knudson gas·] 

Because of the success of the shell :model it has often been argued 

that the mean free path for collisions between nucleons in nuclei is too large 

to justify the assumption that hydrodynamic motion cari occur. We feel, 

however, that this argument may be fallacious. First, the concept of a 
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collision between two particles .is not precisely defined for a medium in which 

several particles may interact simultaneously. [That this point is not trivial 

is evidenced by the fact that it involves questions of principle that are still not 

understood in kinetic transport theory. 
4

] Indeed, to take an extreme case, 

hydrodynamic motion may obtain in the complete absence of "collisions" be

tween particles, if instead the particles interact with a "collective field" 

produced by the motion. This is illustrated by the well-known phenomenon 

of plasma oscillations in an electron gas ... These represent a definite hydro

dynamic mode of motion by which the electrons interact directly with the 

e~ec~r~c field c~used by the cooperative motion and not with ont:Janother 
11 Ind1v1dually." · . . 

In this paper we pursue the argument just given to investigate possible 

modes of hydrodynamic motion in "nuclear matter"--or a nuclear medium of 

infinite extent .. Undoubtedly boundary conditions at the surface of actual nuclei 

will modify the details of our conclusions; on the other hand, it is hoped that 

some physical insight into the mechanism of cooperative motions may be ob

tained from these considerations. 

The analogy to plasma oscillations, which originally motivated this 
6 

study, turns out to be very helpful. The quantitative results differ considerably, 

however, from those. for an electron gas. This is associated in large part with 

the fact that nuclear forces have a finite range, whereas plasma oscillations 

are due to long-range Coulomb interactions.? 

In Section 2 we give an entirely classical. macroscopic derivation of 

nuclear hydrodynamic motion, including possible mention of experimental ob

servation. This derivation depends on the assumption that the nuclear volume 

energy is a minimum at observed nuclear densities. It ignores, however, the 

important question of the damping of the motion obtained. 

Fol,lowing this classical study of nuclear hydrodynamic oscillations. 

a detailed quantum-mechnical treatment of these phenomena is presented ... The 

starting point of the discussion is the theory of the nuclear ground-state 

structure as formulated by Brueckner and his collaborators. 
8 

The methods 
. . . ' 9 10 11 

developed by Gell-Mann and Brueckner, Sawada et al. , and Wentzel are 

applied to describe the spectrum of excited states, which includes the hydro;, 

dynamic eigenmodes. 

' 
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To be more specific, we first generalize the xnethod to systems of 

particles having internal degrees of freedom and to "s~atterings" described by 

the level-shift operators K, employed by Brue~kner·e~ aL8 
We then study in 

detail the macroscopic hydrodynamic motion (as a function of time) that. 

arises from "wave packets'' of the hydrodynamic ~igenmodes. }n doing this,· 

·'•' we shall see the close relation to the purely classical hydrodynamic discussion 

of Section 2. Because of the spin and isotopic--:spin degrees of freedom of nu

cleons, we find four classes of hydrodynamic motion. The simplest is a purely 

hydrodynamic mode (sound waves) involving density variations. In addition, 

there are spin-wave solutions, corresponding to periodic oscillations of the local 

spin density, Goldhaber-Teller oscillations, and coupled spin and i-spin waves. 

The above discussion indicates that the. Sawada method can be applied 

to a variety of problems involving cooperative fluid motions. Since this 

technique represents only an approximate solution to the many•particle problem, 

it is necessary to discuss also corrections to the Sawada method. To do' this, 

we have employed a time ... dependent Schrodinger equation and considered the 

excitation of hydrodynamic motion as a transient problem. The corrections to 

the Sawada treatment then appear in the form of damping of the simple hydro

dynamic motion--or as a mechanism leading to ergodic behavior of the many

particle system. By using a time .. dependent approach, we avoid some ex

ceedingly delicate problems concerning true ~igenstates of multiparticle 

systems. 

With the above technique we are able t-o discuss the damping of the 

collective motion. This appears in a manner analogous to the viscous damping 

of plasma oscillations. In some cases one finds not damped but exponentially 

growing waves. This instability seems to have a simple origin, occurring 

for systems that are at too low a density to satisfy saturation conditions. The 

exponential growth then seems to correspond to a collapse of the system into 

droplets of higher density. 

The simple compressive mode, described above, appears to be un

suitable in this sense when one uses the Brueckner ground- state density and 

,1 level- shift operators. 
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2. Classical Developmentof Hydrodynamic:: Moti-on 

We consider a large nucleus and imagine that we make a small dis

placement from equilibrium ~ (~.' t) of the nuclear matter at the point ::_. 

We suppose that s varies sufficiently siowly with .:_ that ·<:tla:rge number 

of nucleons are involved; thus, we inay apply classical mechanics to the sub

sequent motion. 

As we perform the displacement, the average nucleon velocity at r.--- is 
-j' 

v =·-- = ( 2- 1) 

dt at 

if s is small. Let the mass density of nuclear matter be -
p~,t) =Po+ p' (.:_,t), 

where p' is the (small) deviation from the equilibrium density, Po.· The 

continuity equation for 'P is 

~+ ( ) 0 "il' p~ = . 
at 

If we make use of the as-sumed smallness of v and p ', this may be approximately 

rewritten as 

~= 
at 

- p 0 \1 • v = 
at 

or 

p 1 = {2- 2) 

Now, the displacement s will be resisted by a restoring force per 

unit mass E,· since the nucleus .was originally assumed to be in equilibrium. 

Thus, by Newton's equation of motion, we have 

dv -p 0 ,--;:- = 

which is correct to first order in small quantities. 

derivable from a potential ! : 

F =- "f . 

(2-3) 

Let us now take F to be 
ANI 

(2-4) 
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h . fB dW"l"t 12• 13 t.th Following t e reason1ng o erg an 1 1 s,, we expec .:!:. to be de"-

v termined by p ', if p 
0 

is the equilibrium density. For example, we might 

~ expect the form 

~= 
1 

Po 
(2- 5} 

where C p C 
2

, •.. are constants, since terms of O(p '
2

) are negligible by our 

assumption that the displacement s is small. This expression is consistent 

with the assumption of small displacements, which means that only terms 

linear in p' need be retained. If we restrict ourselves to disturbances that 

also vary slowly (presumably over the range of nuclear forces}, then Eq. 

(2-5) may be replaced by 

!= p' . 

Using Eqs. (2-2) and (2-4), we have 

~=+Cl~ ~· ~, 

<P=-c 'V·s 
- 1- -

Since the disturbance must be caused by an external force, say .!a• this 

must be included in the first of Eqs. (2-7), which is now rewritten as 

! = c 1 ~( ~ • ~ + !a · 

This external force may be due to the passage of a fast particle through the 

nucleus. 

With this development, the equation of motion (2-3) is now 

Let us set 

a2s 
atz = cL_y ~·~+Fa. 

2 c 1 =.a 

· and take the divergence of (2-9 ): 

(2-6) 

(2-8) 

(2-l 0} 
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'(2-11) 

We may also rewrite this as 

[ :t: _ a
2 vj $ = 

2 
a 'V • !o _ s . (2-12) 

2 
We have abbreviated a 'V • F as S, the "source" of .the distcurbance of the ..... -o 
nuclear matter. 

In the absens e of the source term, Eq. (2-12) is a simple wave 

equation, describing acoustic waves in the nucleus. These waves travel with 

the "sound speed" a. 

Our derivation has been oversimplified in two respects.· First we 

have neglected the other degrees of freedom associated with the spin and 

isotopic spin of nucleons. This leads to the possibility of other eigenmodes 

of nuclear motion. We have also used the static relation (2-5) in the time-

dependent equation {2-3}. When the displacement takes place at a finite 

rate, {2-5} may be changed in form. (That is, the nucleons may make 

nonadiabatic transitions to excited states as the wave passes through the 

medium.) Equation (2-5) is not unreasonable for long-wave-length dis

turb~nces, ho~ever, because the rate at which the displacement occurs varies 

with the reciprocal of the wave length .. Consequently, as the wave length 

becomes large, nonstatic corrections to (2-5~ might be expected to become 

negligible. 

In later sections we discuss the other eigenmodes of nuclear motion. 

These are all governed by an equation of the form (2-12). so that we inay 

consider this to apply to any nuclear eigenmode. We shall also investigate 

nonadiabatic corrections to Eq: {2-5). These and many other results will 

follow from a general quantum-mechanical treatment of collective oscillations 

of nuclear matter. In the remainder of this section we simply give appli

cations of Eq. (2·H2}. 

We first relate the sound speed a to the nuclear compressibility. 

The work per unit mass done in making the displacement o~ is 

(-) o~ · ~ . The total work in a volume 7 as so cia ted with the displacement 

~ is then 

\i 

.. 
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based on the fact that the restoring force is linear in £. We make use of Eq. 

(2-8), and neglect boundary conditions, so that this expression becomes 

Po f 2 2 W ~ - dT (Y' • S) a 
2 - -

::::: PoTa2(v·£)2 

2 

or, according to Eq. (2- 2). [M is :the nuc:;leon J:Uas ~ 

WM_M 2(')2 -- ---2 a p . 
pOT 2p 0 

(2-13) 

(2-14) 

This is the compressional energy per nucleon. 

is conventionally d~fined as 

Th l 'b'l't 12 
. e nuc ear compress1 1 1 y 

K = 9 P\:
2
2 [:T , 

Using Eq. (2-14), we find the relation 

2 l K 
a ---

9 M 

Estimated values of K range from 

to 

K = 187 Mev9 

13 
K = 302 Mev; 

these values lead to sound velocities 

a/c = 0.14, 

and 
a/c = 0.19, 

where c is the speed of light. 

p = p 0 
"-

(2-15) 

A number of possible mea11:s might be employed to generate the waves 

described by Eq .. (2-12). We mention in particular very energetic nuclear 

. interactions, initiated by a single relativistic particle. In this case the mesons 
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produced and knock-on nucleons are largely confined to a cone of narrow 

opening angle. These particles pass through the nucleus (boring a hole through 

it, so to speak.) The initial disturbance is confined to a line along the orbit 

of these particles, and the source S in Eq. (2-12) may be written as 

S = S(x - Vt) - - , (2-17) 

where V is the velocity of the disturbing particle or particles. For cases 

of interest ~ is close to light velocity c; Let us suppose Y. to be parallel 

to the z axis. By introducing the Fourier decomposition of the source, 

s = (Znf 3s
0
f 3kg(k)e ilf ~-!tl , (2-18) 

where s 0 is a constant and g(O)= l, we may solve the wave equation, 

Eq. (2-12), for _I: 

<j> = (2-19..) 

In our case we are interested only in supersonic motion for whi:ch we have 

V >a. Equation (2-18) is readily integrated (subject to a retarded~. boundary 

condition and assuming long wave lengths} to give 

<j> = 0 for z, > Vt 

= 0 for 2 2 v 2 
2 

z < Vt, (y + x } ( - 2- -1)> (z-Vt) 
a 

so 1 

= 2 n a 2 ~ z - V t} 2- {Yj -l) ( x 2 + y 2 B 1/ 2 
a 

2 
for z, < Vt, (y

2 + x: 2 ) ( VZ -1} <(z,-Vt) 2 ' 
a 

(2-Z'P) 

The form of this solution is rather typical of the disturbance produced 

·by a supersonic particle. Most of the energy is localized in the neighborhood 

of the shock front, which is a cone of half angle [3: 

. -1 a · 
f3=sm (--}. 

v 
•. (2- 211) 

The absolute value of the energy dissipated by the· shock depends on a detailed 

knowledge of how the inCident particle tunnels through the nucleus. Rather 

than attempt to ·give a description of this complicated process here, we 

simply characterize the strength of the inferaction· bythe parameter s
0 

which 

occurs in Eq. (2-18). 

• 

I? 
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For this purpose, we define an energy gis sipation per unit.length, d, 

for ·a point P\ op the incident particle's path which is one nuclear radius away 

from the shock front. In this way we can apply Eq. ·· (2-19). which is the 
~ 

solution for propagation in an infinite medium, to a finite system. We assume 

here that the most of the energy i.s dissipated when the shock front reaches the 

nuclear surface. The geometry of the situation is 'shown in Fig . .1 0 .· The 

energy dissipated in the shaded slab is shnply. d ··times the thickness of the 

slab. We obtain a crude expression for d by integrating Eq. (2.-14) for the 

energy density W / T over the surface Of the slab. The singularity in Eq. 

(2=19) is smoothed over a distance of the order of the range of nuclear forces. 

In addition we assume that the ·external force per unit mass, ' F 
0

, may be 

represented by a potential function 

- K.X.. e 

KX 

This potential is simply related to the source in the wave_ equation (2-12), 

(2-21) 

2 2 ~ 
S = - a · V' v (~.) ( 2- 2 2) -

Because of the many approximations that have been made, the following 

estimate is probably reliable only to within a factor of two: 

where 

v = .. x;p 0v __:. f2 " 
is the volume integral of the potential, and K -l is the range of the force. 

One can get a fairlylarge energy dissipation, such as K-ld~lO Mev, by 

simply taking Kr 
0 

...v 1 and V"" 600 Mev. A volume integral for the potential 

of this amount corresponds to only 50 or 100 Mev for the individual nucleon-

nucleon encounters involved in the tunneling of the incident particle through 

the nucleus. 

The propagation of a shock wave through a'nucleus should lead to a 

number of interesting effects. When the shock front reaches the nuclear 

surface, nucleons or collections of nucleons (e. g. light nuclei) may be ejected 

and with an energy related to the sound velocity. If the sound velocity were 

very much larger than the internal nuclear velosities, we could expect the 

nucleons to be emitted just in the direction normal to the shock front. 

( 
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Measured with respect to·the incident direction, this characteristic emission 

angle is 

(2- 23) 

Such a peaked, distribution will actually be smeared out for a number of 

reasons. The most important of these are the internal momentum distribution 

of the nucleons cand the refractions of the ejected nucleons at the nuclear 

surface. Before proceeding with the calculations of the energy and angular 

distribution of the ejected nucleons, we should point out that the observation 

of this distribution would provide a measurement of the "nuclear sound 

velocity," which is, as we have seen._ directly related to the nuclear .com

pressibility. At present there is no accurate measurement of this quantity. 

We calculate the angular and energy distribution of the nucleons 

emitted when the shock wave strikes the nuclear surface using the following 

model and assumptions. 

We consider the nucleus to be a degenerate Fermi gas inside a 

sphere of radius R. Instead of solving the actual wave equation subject to 

the boundary conditions of a finite system, we simply use the solutions 

(2-19.) for an infinite medium. Furthermore we consider only the shock front 

to be important in causing the emission of particles from the nuclear surface. 

We assume that the nucleons in the shock front possess an additional 

momentum M~, where a is the velocity of the shock wave and is normal 

to the shock front. 

When the shock front reaches the nuclear surface, we suppose that 

the nucleons inthe shock front, which now possess this additional momentum 

Ma, will continue on through the nuclear surface and thus be emitted. The 

n;~ber of particles ejected into the element d 3p (:pis the momentum of . - .· 

the ejected particles) is given by the following integral over the nuclear 

surfac~, 

(2- 24) 

·, ... 
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In the integral, IJ.• v ·. are the s'ph_erfcal coor<Hnates of the normal to 

the nuclear surface n, and the polar axis is the direction of the incident ....... \ 
particle that generated the shock wave. We have restricted ourselves to the 

case in which the incident particle strikes the nucleus with zero ·impp.ct 
., . :. ' '• .. ·' ,! . 

parameter. The st~p function 

. fl ·p·n>o 
E (p ·Q) = ' - _. , """""" o p·n;( o 

-~ 

(2- 25) 

insures that the escaping particle moves away from the nuclear surface .. Here 

N(P) is the distribution function for nuclear momentum. The rhorrientum of a 

nucleon located in the shock front is, according to our previous assumption, 

1:' = P + Ma. 
I 

We relate this internal momentum to the external momentum p, by reducing 
. ·-

the pormal component of ,e_' by a fixed amoun~ p 
0 

while leaving the tangential 

component unchanged: 

p·Q=p'·Q-p ' ~ N- ___ o 
p - (p· Q) Q = p'-(p'. Q)Q . (2-27) 

The momentum p
0

. is of course simply related to the potential-well depth of 

the nucleus. The final factor in Eq. (2· 24) is simply the Jacobian of the 

transformation in going from d 3p' to d 3p. 

Equation (2-24) involves a fairly straightforward numerical integration, 

the details of which we will not go into here.· Typical results are given in 

Fig. 2, where the following values have been assu,med for the pertinent 

parameters: Fermi energy, EF = 40 Mev; "normal" energy loss, 

V = Po 
2
/2M = 50 Mev; sound velocity, a = 1/;3 c. Equation (2- 24) can be 

evaluated in closed form if the effects of refraction are ignored. This result 

should be valid for particles of sufficiently high energy. If I .fE dQdE is 

the number ejected into the solid angle dQ about 

dE, we have 

where 

e and the energy interval 

(2-28) 

. -1 
A = f(p) (Sinesme 

0
) - cot e cot ,e 

0 
, (2- 29) 

and 
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f(p) = 
1 2 

E + ,.2 .Ma + V-EF' 

2 J _!_ Ma 2(E.+ V) 

(2-30) 

2 . 

This result is valid for f(p) >cos e
0

, which is the tase of fnterest here. 

Equation (2-24), and this approximation as well, can easily be generalized 

to include an effective mass .. The results in Fig. 2 are not to be taken too 

literally. They do show, though, that the high-energy nucleons emitted by 

this mechanism will have an angular distribution peaked at an angle con

siderably away from the forward direction, given approximately by . eo. 
This behavior differs markedly from the usual description of a high-energy 

nucleon-nucleus interaction, which is usually supposed to be initiated by a 

direct interaction and then followed by a cascade and the evaporation of 

particles. This latter picture predicts some very energetic particles emitted 

in the forward direction while the rest (and most) of the emitted nucleons are 

low in energy and distributed almost isotropically. This marked difference 

in the angular distributions resultingfrom these two mechanisms should 

make possible the identification of high-energy nucleons resulting from the 

excitation of nuclear shock waves by very energetic incident particles. 

Finally we note that the curves in Fig. 2 are 'undetermined by an over-all 

factor, which arises from our ignorance about the details of how the shock 

is initiated. In other words, we do not know the absolute magnitude of this 

effect, i.e., the energy loss per unit path length of the incident particle. 

The experimental observation of these effects W<mld, of course, serve to 

remove this uncertainty. 
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3. Formulation of Quantum Mechanical Theory 

We now give a quantum mechanical discussion of the collective 
10 

motion based on the technique developed by Sawada et al. for the electron 

gas. The spirit of our calculation is that of the Brueckner theory of nuclear 

structure. 

We suppose the nuclear matter to be confined· to a "large" box of. 

volume n. In the absence of interactions the nucleons form a dege~erate 

Fermi gas, their individual states being labeled by plane-~ave momenta p 
:"~· 

and a spin and isotopic spin index X.. All particles have momenta less than .. ' 

the Fermi momentum pF. 

Next, let us imagine the nucleons to interact via two-body forces. As 

the interactions are "turned on," nucleons are scattered into and out of the 

Fermi sea. .These interactions are described by the nuclear Ham,iltonian 

H = IKJ + IK0 + v s + V' 

The term jK0 represents the Brueckner ground- state energy, 

4 IK =~ ~ E = 

0 'A=l p<pF p, X 

1 

2 

with 

E 
p,X 

4 
.!: ~ 

>..,X.'= 1 p, p'(pF 

2 4 
=.E._+~ ~ 

' ; (p, >-..;p', >-..' rKl P 
~ --..; . ~ 

X.; p';X.'), -

2M X.'=l p'( pF 
(p; X.;p'' X.' jK l p, X.;p', X.') . 
~ ··"""""' """""" ~ 

(3 -1) 

(3- 2) 

(3- 3) 

Here X. is an index describing the spin and isotopic-spin label of a nucleon 

('A=l, 2, 3, 4) and K is the "energy shift" matrix used by Brueckner and his 

collaborators. 
8

• 9 (We discuss the evaluation of these at the end of this 

section.) ·Thus E , is the "effective energy" of a nucleon in nuclear matter 
p, 1\. ' ' 

in Brueckner's terminology. We shall assume that E. , is independent 
p, I\ 

of ), writing 

E ~ E 
p,X p 

(3-4) 

The "kinetic energy'' in Eq. (3-1) refers to particles and holes defined 

with respect to a degenerate Fermi (gas: 
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* and Q \. respectively annihilate and create a nucleon with 
p, . 

p and "spin"~; these quantities are defined only for p > pF 
..... .· : ·. . ' 

momentum 

Similarly, b ., and b.,. , are annihilation and creation operators for-
p,f\. p,.l\ * * -

'--
1 holes 11 within the Fermi sea (b , = Q , , b , = Q , for p< pF· ) , 

. . p, 1\ p, "j p, 1\ p, 1\ -

being defined only for p < pF. Following Sawada the interaction energy 

V is taken as 
s 

v 
s L: (p + q, ><; p~-q. >...I IKI P.· >...o;pl, AI o> 

p, PI 

Here Q is the normalization volume and K describes the scattering, 

p, ). 0 -+ p + q, A • 

PI. AI 0 - p' -q, AI 

(3-6) 

The final term V 1 in Eq. {3-1) represents the connections to the approximate 

Sawada Hamiltonian, 

H = IK + jK0· + v 
S 'I S 

We sha11 .return later to ah esti:inate of the importance of V 1 • 

Finally we adopt the Sawada- Wentzel commutation relations 

rbp .. •: +q' I ;,. I .~a pi , 1 • b , • Q ,] L. . . . , 1\. .J! . , " , P +q. ":l .- P, 1\ -

)'~ ~.c ::C ~~ 

= ra. I I I b I 1 a b ] [ ,_p +q , A p , Al' · p+q, A . p, Al 
= o. ' 

[bpl+ql, A\~~. Alt cip+q, A b:. Al] 

= .6 t . Q ' 6 r: .. 6 ' q , -q p , p+q A l_• A l A , A 

(3-7) 

(3-8) 
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When the commutation r~l~s (3-8)' are used,· the physical interpretation 
. . . * ~~ ''.' 

oftheHamiltonian(3-7)isasfo1lows, First, Q + , b , 'describes 
. .· p q , " p , "l 

the excitation. of a nucleon from the state (p, A.
1

) to the stat~E! (p+q, A..); this 

leaves a "hole" at (p, A.
1

), Thus a "pair" is created ... The commutation· rules 

(3-8) .prescribe that th~ particle is eventually r~turried to its original hole 

(with no virtual scatterings having occurred in the meantime} .. 'rhus a 

particle and a hole are always associated with one another. Such interactions, 

of course, do not exhaust all possibilities in the complete Hamiltonian (3-l). 

Consequently, the Sawada Hamiltonian is only approximate. ( Thi.s approximation 

has been discussed and used several times previously. 
14

• 15 ) For the present 

we consider only H , neglecting V 1
• The extra contributions :to the energy 

s 
arising from V' have been called "cluster corrections" by Brueckner and his 

collaborators. (Corrections to the approximate commutation. relations (3-8) 

are also included in V'.) Our Hamiltonian H is considerably more com-
) 10 .. s . 

plicated than that of Sawada et al. These authors considered only the 

Coulomb interactions in a degenerate electron gas. The spin degeneracy 

of the electrons was trivial in their case, since the Coulomb potential is 

spin-independent. Also, the use of the K matrix in Eq. (3-6), rather than 

the matrix elements of a local potential, adds analytic complexities to the 

eigenvalue equation. As we shall see, however, these difficulties are not 

insurmountable. Our eigenvalue problem is actually quite similar to that 

of Sawada et al. 
10 

We shall find, as did Sawada et al., that the eigenstates 

of H fall into two classes--those corresponding to single-particle excitation s 
and those corresponding to hydrodynamic modes. Sawada et al. 

10 
classified 

the hydrodynamic modes as "damped" or "undamped." We feel that this 

distinction is artificial, as all the hydrodynamic modes are expected to be 

damped. That is, we anticipate that the eigenstates of H and H may bear . ,. s 
little resemblance to each other. Expressed differently, a many-particle 

system is expected to be "ergodic" in the sense that a simple cooperative 

motion pe'rsis.ts for only a limited time. The importance of H is thus not . s 
that it may give one information concerning the eigenstates of nuclei. Rather, 

we must think of a time-dependent process by which we excite an eigenstate 

of H at a given time. In calling H . a "good approximation" to H, we mean s . . . s 
that the eigenmodes of Hs do not decay in less than several oscillation~, If 

T is the time for decay, then -fi/T should be small compared with the energy 

resolution with which we are studying the eigenmode of H . 
s 
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From the above discussion, it seems clear that we must solve a time-
. .. - ; ' 

dependent problem, rather than one involving stationary states. Thus we use 

scattering theory. Let us suppose the excitations to be started impulsively 

by some external means, such as a particle striking our nuclear matter. 

Let x{t) describe the nuclear matter in its ground state plus the wave packet 

of the bombarding particle. Also, let us suppose this extra particle,interacts 

only for a short time at t = 0. Then the complete wave function for the 

system is 

~ = x(t) + ~s(t) (3-9) 

Here ~5 (t) represents the effect of the external disturbance on the medium. 

It 'arises from a term H. t which, with the nuclear matter, describes the 
. ln 

interaction of external particles 0 

Since we are considering a transient problem, the boundary conditions 

are important. To formulate these, we define 

D(t) :: H. t x(t), 
ln 

with ·n+ co 

D(t) = ( dE e -iEtD(E) (3-10) 

/iT)- bb 

For present purposes, we set D(t) = 0 for t < 0, so that 15 is analytic 

for Im(E) > 0. The "scattered wave" in Eq. (3-9) is the particular solution 

of the 11 inhomogeneous Schr<1dinger equation", 

~ ~ .. - Hl-~ = D(t) L' a't J s 

We have assumed here that H. t may be treated as a small perturbation. 
ln 

Using Eq. (3-10), is then found to be 

-iEt 
.e 

E-H 
D{E) . 

(3- 11) 

(3-12) 

Simple considerations of causality require ·l!Js = 0 for . t < 0. ·Thus, on the 

contour of integration, ·Im(E) must be sufficiently great that the singularities 

of (E-.H)-l lie below the .contour. In general this puts a lower llmit on Tl· 
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Firs.t, let us ;replace H by H in Eq .. (3-12). This equation then des-s . 
cribes a system with resonant eigenmodes which is excited by a transient 

impulse at t = 0. The poles of (E-Hs)-l give the eig~nfrequencies of these 

modes. Now, with the actual Hamiltonian H, rather than Hs, let us choose. 

Hint so as to give an initial excitation ,that corresponds closely to. one or a . 

few of the eigenstates of f:Is. If Hs is a "good approximation". to H, _in the 

sense used above, the initial excitation will be damped sufficiently slowly 

that the eigenmodes of Hs may be observed before they decay. 

Sawada et al. have stated that a hydrodynamic mode will be strongly 

damped when its energy lies in the continuum of the spectrum of single

particle excitations. Although tru_e, this is not a necessary condition for 

damping, since the single-particle excitation spectrum may be extended in

definitely by exciting two, three, etc. particles. 

To make these statements more precise, we define 

a:nd set 

so that we have 

a:: E- H 
s 

1 1 
=!:2-, 

E- H a 

n = 1 +_-1-v'. 
a-V' 

(3-13) 

(3-14) 

We note tha:t E must be considered as complex for the evaluation of integrals.· 

-By a theorem on the manipulation of such quantities, 
16 

we may set 

with 

1 
!:2 = 1 + ----;! a-u 

/),.I + _1_ V' 
a-~' , 

/),.I = V' _l_yt. 
a 

(3-15) 

Let us use the eigenstates of H as the representation for 6. 1 and keep only 
s 

the matrix /),.I 0 formed from the diagonal elements of /),.I' Then the matrix, 

!:2 = 1 + 0 
1 

a-6.' .0 

is diagonal in the eigenstates of H s 

(3-16) 

Thus, 
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is= JE [no ~Je-iEtD(E) 
(3-17) 

= ~E e- J-Et "f) (E) 
. JL. E-H -D.' 

s 0 

describes the pro~tingeigenmodes of H
8

• Since ti' 
0 

has a negative 

imaginary part, these modes are expected to be damped.c The damping occurs 

as the original modes share their energy with other degrees of freedom:' This 

represents the tendency of the.system to be ergodic. 1;
7

. We may extend the 

calculation of D.' 0 to higher orders 
16 

by taking the diagonal matrix elements 

of 

l' 1 1 
D. I = V' V' .+ V' _· V' - V' + ... (3-18) 

a 

There are delicate questions involved in the evaluation of the level- shift 

matrices K, and correspondingly in conveniently ordering the evaluation of 

the effects of V'. This is discus sed to some extend in Section 7. A complete 

discussion of the matrices K lies outside our present scope, however, since 

we are emphasizing here the hydrodynamic properties of nuclei for given K. 

We hope to return in a later publication to questions related to possible dis

continuities in K (i.e. energy gaps 
18 

in the single-particle spectrum). 
,. 

Applications made in this paper assume that the quantities K are continuous, 

as has been implied in the work of Brue~kner and his collaborators. 8 
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s 

UCRL-8348 

The commutation relations {3-8) for the .pair variables lead to the 
. . . 

following commutators for the interaction energy: 

- -~ L: (p, )...o;p' -q, "-' !KIM" "-;p', "-' o) 
p'' "-'· "-' 0 

(4- 1) 

To optain the collective eigenfunctions and eigenvalues of H , we 
s 10 

follow closely the.procedure of Sawada, Brueckner, Fukuda, and Brout. 

Let ~O be the ground state of Hs, and E
0 

the corresponding energy 

eigenvalue. Similarly, ~q and. E = E 0 + b. (q) are tre wave function and energy 
( 

for an excited state. Then we have 

( IK + v s) ~ q = . (E 0 + b. )i q • 

IK+Vs>2o =_EolJio · 

~( 

(4- 2) 

10 . 
We make the "ansatz" for the operator A , which creates the collective q l 

excitation 

* A 
q 

I ,t~ 

~ = A"'qio · 

[ 
(+) * ~( 

L: G ... a b. -
'' . p,q,y-\,-\0 p-q,}... P·"-o 

p, "• 1\0 . 

(4-3) 

(-) b . (1 J 
G p' q ; - >- ' - }... o· . p ::- q, ,.,_--p, ,"- o_ . 

-., . .. 

(4-4) 
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The quantities a are numerical coeffiCients to be evaluated in a way to be 

described below. We must, of course, consider (}+ to vanish except for 
( ) . p, q 

_P < pF, j p-q j > p~, and Gp~ q to vanish except fo~ p> pF' J p-Clj < pF. .· 
The symbol "(-\), etc., in Eq. (4-4) represents the time-reversed state of 
11

\
11
,. etc., for reasons that will soon become apparent. From Eq. (4-2) 

one may readily show ~· * J . * 
K+V,A =M. s q q 

(4-'5) 

Equation (4-4) is next substituted into Eq. (4-5) and the commutator is 

evaluated with the help of Eq. (4-1). On equating to zero the coefficients of 

the annihilation and creation operators, one obtains two sets of equations 

[ J (+) 1 
.6.-L a . =- E 

P p,q;->..,->-o rn p','>..'j-:>..•
0 

(p', >..' 0;p-q, >.. IKI p!.q, >..' ;p, >.. 0) (4-6) 

X [a
(+) +a(-) ·J 

I '\I I p' • AI )._1 p,q;-1\,-Ao ,q,- ,- o, 

-1 
E (p', >..' 0;p-q, A IKI p'-4•>-'·;p, ~0 > = 

0 p'' ')..', ')..' 0 

x ~(+) +a<-> . · J L p',.q;->-b-A'o p',qj-A,-A'o' 

L -p E -E 
p-q· p 

To simplify these expressions, we use time-reversal and parity 

invariance: 

(p' ·'X.' o;p-q,). IKI PI -q, >..' ;p, >-o> 

= < -p,-\o; -p~ +q, -AI I Kl -p+q, -}(;;.pi • - >..:; o> 

= (p,-\o;p~-q.- \' IKI p-q,- AiP' •- \' o> • 

This allows (4-6) to.be rewritten as 

[ .6. -L Pl a<+)P. ··q·" , = ! E (p, \0 ;p~q. 'X.' jKI p-q, AiP', A' 
0

> 
~ • ·I\· 1\o o p', \', 'X.'o 

x Ia<+> , ·"' ,, +a<-> 1 • 1 , J l p ' q, I\ ' I\ 0 p ' q, A ' >.. 0 ' 

[ .6.- LPl a<- >p, q; >.., ~o = -1 E (}p·, AoiP~-q, >..I )II<! p-q, AiPI, A' o> 
>j 0 PI' A'' AI 0 

xf;<+> · +a<~-> · J 
[ p~,q;A~,x.~o · pl,q;AI,>-Io · 

(4-7) 

(4-8) 
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The two Eqs. (4-8) are the eigenvalue equations' whichdetermine .D., G(+) and 

G(-) .. Before we proceed to the actual solution of the eigenvalue proqlem, it is 

interesting to note that our solution leads to boson commutation rules for the 

operators that create and destroy the collective modes, 

[ A , A* J = 6 ,.~;. 1 [A A ,J = 0 . 
q q - q,y_ ' q, q -

To obtain a practical means of solving Eqs. (4-8) we wilL assume that K 

can be approximated as follows (this method can be easily generalized if K is 

piecewise continuous in several do:m.iin~:. 

where{p'} m and 

where 

{ p, ~ m are some finit: set of functions. 

M(m)(±) := ~(±) J. '} m G . 

{+) 
~ 

p' \p p', q' 

1 

n p'<pF 

-~ p~ ~ ql> PF 

~("')- 1 ~ 

n p'> PF 

. P!.,.q <pF 

(4-9) 

Next we introduce 

(4-1 0) 

(4--11) 

The quantities M and·· G in (4-10) are considered to be column matrices in the 

index A., while the coefficients C in (4-9) are square matrices. 
m 

Equations (4-8) are then 

G (±) = ± 
p,q 

Multiplying by {P] m' 
and summing our p gives 

{p} m' ~; q} 
.6. - IL .. 

p 

(4-12) 

(4-13) 
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This set of equations defines the eigenvalue A 

We are finally left with the problem of interpretatio:l::i--that is, relating 

our quantum-mechanical calculation to the classical hydrodynamic arguments 

of Section 2. For this purpose we ·must form wave packets of the eigenstates 

of H and then calculate the expectation value of th~ nucleon density operator 
s 

. for nucleons of type \: 

~" = k~ k ~~'}. a.k, 'A 
. ' 

-i(k' -k) · X 
e - - -

12 
(all k, k') 

In the Sawada approximation, this is to be rewritten as 

= ~ ~ 
q p 

The complete wave function is 

u.. . b . +b ·'-L···. e---tt1* * /'i . ~· d.q· k 
p-q,}. p, }. p~q,}. . p, _j 12 

- _ 717 -iEot ""f'!(q) A* ~n e-i(Eo + A)t , .~-Co~oe +Cl ~~ .:r..v. 
q q 

(4-14) 

(4-15) 

(4-16) 

when we use Eqs. (4.:.3) and (4-4). Here c
0 

and .. c
1 

are constants and a(q) 

is the wave-packet amplitude. Equation (4-16) may easily be generalized to 

states involving the exdtatiorl. of several hydrodynamics quanta, in which case 

our arguments are not changed. 

The expectation value 

n}. = (~, ;1 ~) 
contaiins·c.onstant and time-dependent te.rms: 

nX = nX + n' A (t) . 
0 

(4- 17) 

(4-18) 

The time-dependent term n 1 A (t) describes the hydrodynamic motion and the 

average density. From (4-17) we obtain 

(4-19) 
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Here Re {··} means "real part of{·-}·" 

For small q, we shall show later that for a clas.s of K' s we have 

A= a_q, where a is a constant. Thus; n).., satisfies the wave equation 

[ 
a2 

2 2] . --;;z ~ a "il n)..1 = 0 . (4- 20) 

The wave equation for the various "components" ").." are coupled by the ).. 

dependence of the G' s in Eq. (4-19). Having established the existence of Eq. 

(4-20) we :may apply the classical consideration of Section 2. However, we 

must first show that the damping of the wave (which is neglected in Eq. (4-20) 

is not important during the time interval in question. 

5. First Example 

Studies of nuclear struct1.1re and scattering indicate that the following is 

a reasonable approximation to the K-matrix, as obtained by Brueckner et al.: 
8

' 
19 

The function Vo(q} is discussed below .. The quantities f . I are a set of 
"· ).._ 

constants defined by the following notation: 

).._ = 1 corresponds to (P f ) 
).._ = 2 corresponds to (Pi; ) 

).._ = 3 corresponds to (Nf ) 
(5-2) 

).=4 corresponds to (N;l. ) ' 

where (Pt ) means a proton with spin "up, 11 etc. The physical significance of 

this form for the K matrix is that we have four interacting "fluids,'' correspond

ing to the four systems (5-2) .. A particle in one fluid always ~emains in it, 

since spin and isotopic spin flip have been left out. 

We further simplify our problem by ·considering q to be very small. 

Then p 
2 

and p'
2 

in ( 5-l) may each be set equal to ·P:F 2 . [Referring to the 

expression (4-8) one may easily convince himself that this is valid.] The 

assumption that· q is small restricts us to distu.rbances '?lith wave numbers 

q small compared with pF. .f>. final simplification in this section will be 

the neglect of the.£' e' term in Eq. (5..; 1 ). (In the next example this term will 

be considered. ) 
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It is convenient to define 

V(q) ; 

. 2 

V O(q) ~ - 2a.pF 2J __,; ~ng 2 
fl.: + q 

UCRL-8348 

(5-3) 

Here fl. is the pion mass and g is a Yukawa coupling constant. The particular 

form of (5-3) is actually unimportant for our purposes, since only V(O), a con

stant, is significant in the approximation that q is smalL Equation (5-3) 

represents the strength of interaction of two particles on the Fermi surface. 

The quantities f'AA.' are specified as follows in terms of three di-

. 1 f d . 20 mens1on es s constants o on e21_' un1ty: 

(5-4) 

The terms with c correspond to repulsive forces, while those with a and 

b correspond to attractive forces. 19 The choice of (5-4) corresponds roughly 

to actual nuclear forces if we consider I a ( , c, and ! bl to be comparable in 

magnitude. 

With this choice for K, the Brueckner ground- state energy \Eqs. (3- 2) 
'--

and (3-3) J is 

IK =A{: PF: + _!_(a+ fci + Zb) n
0

V 
0
(0)(1- ~ a PF

2J}. 
2M 8 5 

(5-5) 

where A is the nuclear mass number and n
0 

is the particle density. Since 

IKo must be negative, we have 

c +a+ 2b < 0 • (5-6) 

the form 

Because of the. 6, , o,,, ... , in Eq. (5-1), the G' s of Eq. (4-4) have 
. 1\.01\. 1\. 01\."' 

= 6 G(±) 
· A., A. 0 . p, q; \ 

(5-7) 
/ 

We may now define 
± ± 

(FA.-~. (5-8) 

and p 
. ~' ; 

• < ~ .; •: • #I 
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T (+) + T (-) 
).._ . ).._ (5-8) 

Equations (4-8) now become 

T X.' (5-9) 

!{both sides of this equation are summed over ~· the result is 

± 
£>.. ~' 

± 
T\ = ± ~ V N 0 TX.'' (5-1 0) 

where \I. 

No 
± ~± 1 - (5-11) 

L::..-L p 

Finally, the two Eqs. (5-10) may be added to give 

T = 
\ 

·~ 

\' 
f V NT .·.·\\t. 0 >-.'. (5-12) 

With 

(5-13) 
,. !'. 

Equation (5-12) is the eigenvalue equation, which determines .6, the T >-.' s , 

and thus also the G' s in Eq. (5-9). 

To evaluate N 0 , we continue to make the approximation for small q 

in the pair excitation energy (and suppose that the quantities K are continuous 

functions of p, p', and q near the Fermi surface), 

,L. cl. -. p (5-14) 

where M~!< is the effective mass of a nucleon at the Fermi surface. 21 The 

quantity. N 0 may be transformed into the intergral, 

(~:~:3~MJ 
p<pF 

jp-qj> PF 

' (5-15.) 
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and this may be written as :n,o 
No 

3 1 = 
2 SeF Q 

(5-16) 

where n:
0 

is the nucleon density and .. S is the number of nucleon degrees of 

:freedom (S = 4 in our case). We also have 
2 

PF 
EF = _______,.. . .... 

and 2M 

41T 3 ( 21T) 3 
No 

PF = 
3 s 

(5-17) 

The quantity Q is a function of 

(5-18) 

the ratio of the eigenvalue .6. to the maximum energy for exciting a pair of 

momentum q._ 

When the eigenvalue Eq. (5-12) is satisfied by A> 1, the integrand 

(5-15) is nonsingular and evaluation is straightforward: 

_1_ = -l _ · ~ 1 n [A + 1] . 
Q 2 A- 1 

. / 

(5-19) 

When no solution to the eigenvalue problem exists for A :?.J, we invoke 

the considerations of Section 3, where we concluded that .6. must have a 

positive imaginary part. This condition defines how the singularity ~,n Eq. 

(5-15) is to be treated; to be specific, it defines the phase of the logarithm in 

Eq. (5-19}. Accordingly we write 

where a, e > 0. 

Then we have 

A+ 1 = lA +d. 
A - 1 = jA - 1{ 

ia 
e 

ilf-iE e 

1 A = 1 - l n 01 + .Aj J + i 1T A 
ll - AJ 2 _Q 2 

- 1 (a- E) A 
2 

(5- 20) 
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In either case the eigenvalue equation (5- Ii.2) may be written as 

Q(A)T >-- = _F i . f}- A.' T "-~[· ~ 'n.ovl . · 

L ~= 1 . J 2 e Fs J 
(5-21) 

The function : .. 1/Q is exhibited as a function of A fodl<A < oo in Fig. 3. It 

is seen that. Q takes on all negative values in this interval. Consequently, 

there is always one (and only one) value of A with A~~ 1 if the eigenvalue 

equation (5- 21) gives a negative Q. For a single component (S = 1) this' is 

true if the forces are repulsive, i.e., V(O) > 1, For positive Q there exists 
22 

no solution with real A --that is, no stable hydrodynamic solution. 

Since Q is necessarily real, the imaginary part of the right side of 

Eq. (5-20) is identically zero. A brief analysis of this equation leads directly 

to the conclusion that the imaginary part of A, and thus A, is positive. This 

implies that if for the solution of the eigenvalue equation any of the modes 

corresponds to a positive Q, this mode is not only unstable but also its 

amplitude increases exponentially with time. Such a situation is of course 

unphysical for a stable mediui!l , and if the theory leads to exponentially 

growing waves, this must be ascribed to an improper treatment of the state 

of the medium described by the Hamiltonian IK0 . 

For small q, the function V(q) of Eq. (5-3) may be replaced by 
2/ 2 V(O) = 41Tg /1-l • The eigenvalue problem, Eq. (5-21), now yields a value for 

Q(or A) whi.:ch is independent of q. From the definition of A, Eq. (5-18 ), we 

conclude that only the ratio of b. to q is determined, i.e., 

4'q =,a . 
This result was the basis of the previous discussions of nuclear hydrodynamics 

in Sections 2 and 4. 

The actual eigenvalues of Q ~q. (5-21)J , which follow from the 

coefficients fA. A.' assumed in Eq. {5-4), are · 



Q 

[: ::~J = 

c - a 

c - a 

c + a - -2b 

c + a + 2b 

The corresponding T", 
6 

are 

1 (Pt) 

T_= Tl 
1 (P.l,) 

-· -1 (Nf) 

-I (N~) 

1 

T= T 
- 1 

1 

1 

T= T 
-1 

-' ·. 1 o-.l 

-1 

1 

T = T l 
'- 1 

1 

l 
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(Solution 1) 

(Solution 2) 

(Solution 3) 

(Solution 4) 

(Solution 1) 

(Solution 2) 

(Solution 3) 

(Solution 4) . 
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. ± 
On comparing Eqs. (5- 21) and (5-9), we see that- G . , .is equal to T, _ times 

- p, q,f\. {\. 
a quantity that is independent of "· According to Eq. (4-17},- therefore, the 

TA., s are essentially the normal hydrodynamic amplitudes: 

n ' o n' · n' 0 n' · - T 0 T · T -. T r · 2· 3° ... 4. - · r· 2· 3· 4 (5- 24) 

By Eq. (5-23) we see that Solution (4) corresponds to a simple compressional . 

mode, since the four fluid components move together. According to the saturation 

conditions, Eq. (5-6), this eigenmode has a position Q and is unstable, and moreover 
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the waves increase rather than decrease .in amplitude with time. We are 

forced to conclude that the ground state of the medium is not adequately described 

by our approximate Hamiltonian /K0 , Eq. (3- 2) ~ The perturbation by V' s 

leads to large, unstable ~ariation in the density of the medium. We may note 

here that this difficuLty is not removed by the more precise treatment of the 

K matrix given in the next section. Thus at the very least, this may imply 

the need to include the effect of V':S in the evaluation of the ground- state energy. 

Otherwise certain radical revisions of the K matrix may be necessary to 

correct this difficulty. 

On the other hand, the degenerate Modes 1 and 2 are stable in the 

Sawada approximation because Eqs. {5-4) imply c •. a >;?O. Solution 1 is a 

Go1dhaber-Teller
3 

mode, for according to Eqs. (5-23) and (5-24), the neutron 

and proton fluids move 180° o:ut of phase. Estimates of a, b, and c indicate 

that Solutio11 3 is also expected to be stable, i.e., we anticipated c + a - 2b > 0. 

For this solution, nucleons with spin "up" move out of phase with those having 

spin "down, 11 

For A 
2 > > l the solution of Eq. (5-19) is Q - - 3A

2 
and the eigenvalue 

solutions (5-22) are 

We may call 

the nuclear "plasma frequency. 11 

{ 

(c-a) (Solution 1) 
(c-.a) (Solution 2) 
(c+a~2b) (Solution 3) . 

To obtain numerical estimates of the energies of the collective 

oscillations we utilize the numerical values of Karplus and Watson! 9 for 

(5-25) 

V(O) and a.. For simplicity we pick the absolute values of a, b, and c to be 

unity, which makes the three stable modes have the same energy. We choose 

the following numerical values: 
270 Mev .. V 50 M (2 )-2 M~:c 2 M 

p F = C ' P. 0 0 = ev' a. = P F ' = ! · 
It is a simple matter to solve for A, and we find that the value is practically 

equal to unity, so tl;lat ·We have , 
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= (OA43 C) q. 

The value of 6. for a large n\lcleus can be estimated, by taking 

;.Kn
q = 

R 

.• -lt2 .. 
and R.-10 em, so that 

6. f:l! 27 Mev. 

This value is larger than the values associated with the Goldhaber

Teller collective oscillation,. but is certainly in qualitative agreement, 

particularly when one considers the probable importances of boundary con

ditions for a finite system. 

6. A Second Example 

We now choose a K matrix that is physically more plausible than that 

of the last section: 

K = f (p + q$ p' -q h<.01 p, p' >. 

f = 1 + :_c 1 u · u' + b 2 't · 1' + \S3 u · &' T • 
vvv V'<N - - """ <jW ""' 

Ko = v o (q) ~ - "o (p 2 + P' 2 - 2 P. P') J . 
.I 

'k.· 

(6-l) 

{6-.2) 

(6-3) 

Here ,$ and ~t_ are respectively the spin and isotopic spin operators for a 

nucleon. The coefficients c 
1

, c 
2

, and c
3 

are constants which will later be 

chosen to correspond to actual nuclear forces. Finally, a.
0 

is a constant. 

The Brueckner approximation to the ground-state energy is 

}K = A·{i 
0 5 

2 
PF 

2M 

1 + 

Here (p-p' )
2 

is an average ;over the Fermi sphere. Since we have 
2 

a. 0 (p-p') < 1 we see that we have 

(6-4) 

v 0(0) < 0 0 (6-5) 

This is the analog of Eq .• (5-6). 

To anticipate our conclusions, the K-matrix (6-1) leads to pre~isely 

the same eigenmodes as were found in Section 5. In addition:, we shall find 

extra modes which correspond to oscillations of the isotopic spin vector density. 
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Equation (6-1) is now to be substituted into Eqs. (4-4). Paying careful 

attention to the order of indices, we obtain the two equations 

1 
12 2; 

p' 

+ ~· '1(-. ·~ "r(G + + G . )) 
2-·. ooNO p'.,q p' ,q 

+~3 u. 7;. (rs.f!.(G+, +G, ·)~} 
. 1 J ll J p , q P. , q / 

(6- 6) 

It is convenient t~ consider G± as rectanglar matrices in spin and i- spin 
~q -

space and omit the "- indices. The sy~bol ' ..• 7 represents a trace in 

both spin and i-spin variables. Finally, a sum over repeated vector indices 

is implied in the fast term above. 

Multiplying Eqs. (6-6} successively by 1, u, -;p, and u. 7- and forming 
- ""' 1 j 

the trace, we obtain the decoupled equations 

4 
2; 

Q p' 

r-LJIJ/~± 
4c

1 2:: 
0 p' 

" 

& -'L p]rlp± ~ ± 
46 

2 2; 

0 p' 

We have here introduced the abbreviations 

r4p 
± -

r ± 
-3p -

'('GPJ q ±7 , 

'(' u G ±.....,, 
- p,q / 

~O'n 'tm G 
X p, q 

± 

>· 

(6-7) 

(6-8) 
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The G' s corresponding to these four classes of eigenmodes are 

G± 
p,q(4) = {F= 4p 

G± 
p, q(3) 

1 (J r± = 4 ""'" -~3p 

G± 
p, q(l) 

l ''t • I*. 
= 4 .J 

""" - lp 

G± 
p, q (2) 

1 (rt= ) = 4 (]"1 'f-. m Zp 1m 
(6-9) 

The numbering of these eigenmodes is chosen to correspond to that of 

Section 5. At present, however, we have sixteen eigenmodes rather than four, 

although we have only four different eigenvalue equations. These extra 

degenerate modes' are due to the directional degeneracy in spin and i-spin 

space. The effect of this is to permit us to set up a nuclear vibration in 

such a manner that the spin and i-spin vectors oscillate. Thus, we may 

have 11 spin waves" and "isotopic spin waves." 

The discussion in Section 4 showed that the macroscopic density, n' A 

is proportional to the diagonal elements (in A., the spin, i- spin index) of the 

G functions. For the excitation of any given eigenmode of collective os

cillation, the ratios of density of the components of the medium can be ob

tained immediately from inspection of the G functions given in Eq. (6-9}. 

Th.us for the component, protons with spin up, in eig:e.nmode Number 3, we 

have 

± . 1 
n' 1:::: (G (3) )1 i = 4 (gJl 1 · p, q • ' 

We note that only excitations of the third component of r± 
3 

can lead to 
. p 

density fluctuations, since only u
3 

has diagonal elements. Procee'ding in 

this manner we can obtain the ratios of the densities of the various components 

in all the eigenmodes, which we list: 

Solution 1, 

(6-10) 

Solution 2, 
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Solution 3, 

(6-10 con'd) 

Solution 4. 

These are seen to correspond exactly to the solutions in Section 5. 

The solutions (6-11) do not exhaust the possible motions. We may 

calculate, for instance, the average spin density, 

in the same manner as the density was calculated in Section 4. This is 

straightforward and leads to the expression 

e ..r v1 Q i{q'X+~f) 
1: (q} n 
q (6-11) 

We may now for example excite all three components of r
3 

and phase them 
-p 

to correspond to a rotation of the average spin-vector density, which is then 

propagated as a spin wave. Similarly, we can obtain the propagation of i

spin waves, 
6 

and coupled spin and i-spin waves. 

We next require the eigenvalues !:::.. for each of the four Eqs. (6-:7). 

It clearly suffices to calculate any one of these and then insert the appropriate 

factor <;. into the expression. For definitions we shall take the first of . 1 

Eqs. (6-7). Again, q is considered to be very small, so that Eq. (6-3) may 

be written as 

= V(q) [1 +2a.R · J>] . (6-12) 

This equation implicitly defines V a~d a. in terms of V 
0 

and a.
0 

· 

Let us now define 
. ± ± ± 
T - 1: r.:. 4p' 

p' 

± ;.: 1:± .· ±· 
( 6-13) R ... p' r 

'<W p' ~ 4p 
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The notation ~± is that of Eqs. (4-8). From thesewe obtain 

. + -T= T +R, 

+ -R::- T +.R . ....., ,.... -
With this notation, the first of Eqs ~ (6-7) becomes 

r± 
4p 

± 
N 0 ~ 

AN± 
~ 

q 1 -

q"'N± -= q 2 

= ± 

1 
n 
\ 

_.il 
Q 

1 
n 

1 

± 1 
~ ~- L· 
p p 

± ~ ~- ~- u 
p p 

~± .E ..E 
p ~-L 

p 

In terms of these, there will occur 

No 
- N + 

No 
-= -

0 

N Nl 
+ 

Nl 
-

1 - -

N2 "' N2 
+ 

N2'"' -

(6-14) 

(6-15) 

(6-16) 

(6-17) 

On multiplying Eq. (6"'-15) by 1 and by p , and in each case summing 

over p, we find 
""""' 

T± = ± V [N
0

± T+ 2aN
1

± ~ • !_]. 
-. ± 
-R 

From these we obtain 

T = V [NOT + 2 ·,:: a N l q · i) , 
q · -~ = V [N 1 T + 2a ~ 2 q -~ . _ 

Eliminating ~ • R from these,· we find the algebraic equation for L:::J;, 

~ 2 
2a(VN

1
) 

1 = v N 0 + 
1 - 2aVN

2 

(6-18) 



,. 
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We use the notation of Section 5. It was seen there that the only un

damped waves (in the present approximation) are those for A > 1 . In this 

case we have 

* M.t::. 

q 

N
0 

is given by Eqs. (5-16) and (5-19) 

We introduce the abbreviation 

r= 
3ri v 

0 

ZSe F 

and find that Eq. (6-18) reduces to 

2 

r 
2(a.pF ) 

1 - - + 

r2A2 

Q2 

Q 
I + z(apFz>~r+ 

This, in turn, can be written in the form 

, r 1 + (2a.pF 
2

) r/3 
.:r - ·""' 2 r 2 

Q 1 + (2a.pF )( "3 + A ) 

which reduces to Eq. (5- 22) for a. ->· 0 . 

~r] 

(6-19) 

) 

(6- 20) 

(6-21) 

In Section 5, it was concluded .from an examination of the eigenvalue 

equation that repulsive forces (r> 0) led to stable collective oscillation and 

that attractive forces (r<' 0) led to inherently unstable (and unphysical) 

eigenmodes. These conclusions remain valid for repulsive forces; and also 

for attractive forces Jor 

< 1. 

For typical values of a. and r' such as we are using, these co'nditions are 

satisfied, so that the previous ca'n~lu.s:lons are maintained. ·. The eigenmode 

corresponding to the compressive wave is unstable and furthermore is ex

ponentially growing. Our improved treatment of the momentum dependence of 

the K matrix in this section did not change that unsatisfactory aspect of our 
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results. It would require a substantial change in the values of our parameters 

to make the compressive mode stable. The spin and i- spih.' eigenm:odes will 

be stable if the constants c
1

, c
2 

, and c
3 

.are negative;. ·Negative values 

for these constants are compatible with the low-energy-nucleon-nucleon scattering, ' 

and we conclude that these modes are stable. Just as in the preceding section, 

though, we will find that the value of A is very close to unity and thus relatively 
\ 

insensitive to the precise value of the potential. Accordingly we simply proceed 

with the numerical estimates of Eq. {6-21), using the values of V 0 and a
0 

determined by Karplus and Watson! 9 This yields r= 0.321, and we find. A= 1.01, 

so that very nearly, just as before, 

= (0.441C)q. 

7 .. Damping of the Collective Eigenstates 

It has been emphasized '.that the stable collective eigenmodes that 

appear in the Sawada approximation are only relatively or quasi-stable. 

Those terms in the Hamiltonian, V 1
, ignored in this approximation cause 

the damping of these eigenmodes. These eigenmodes are degenerate with 

respect to two-pair, three-pair, etc., states, and the perturbation V' trans

forms the ordered collective motion into the noncorrelated motion of two or 

more pair states .. If the Sawada approximation is good this damping will be 

small. 

According to Section 3, the lowest-order damping is given by 

.'1i = ]m {< ~· v• ! v• iq~· (7 -1) 

The fact that we are using K matrices for V1 does not change this form, 

since we obtain K matrices from potentials by summing over pairs of terms 

involving a pair of nucleons. In doing this we do not lose any qualitative 

features of class of terms. W~ may write Eq. (7-1) in the form 

- rr z 9(6{q)- E)l:fE' V' i, 12PE, 
E ,. 

(7- 2) 
.. 
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where .6.(q) is the energy of the collective eigenmod-e,- and p E is the density 

of states, ~E . The simplest state,- :±: E' degenerate with the collective state 

tjJ is a two-pair state. It can be verified easil-y: that there are two classes 
-'-<! 
of terms in V' for which this matrix element exists. These are-

1 
V' = - :2:: 

f 2Q p,p'q 

= V' 
2 

"- ). 

"-'"-9 0 

1 

2n 
:2:: 

p, p'. q 
>-, "'-o 

A.', }.'0 

+ d'p+q, A Qp, -q, X' b:. >-o a_p'' X' 2} 

{ 
(p+q, 'A:p'-q, A.' IJ.<I p, "-"n.J1',"-'o-fd: + _, b ,_ ,, b~::, b>:~ ,,, 

v f P q, "- P q, 1\ P "-o P "- o 

b b I I • 
:>';: ~:< I J} 
P"-o P '"- o 

(7- 3) 

The potential V' 1 operating on a collective eigenmode results in the 

scattering of the excited particle of the collective eigenmode with a particle 

in the Fermi gas, and the raising of the latter up above the Fermi energy, 

thus creating two pairs. The potential V' 
2 

operating on the collective 

eigenmode can be regarded as the scattering of the hole member of the pair 

in the collective eigenmode in the Fermi gas, resulting in the creation of two 

pairs. We represent the two-pair state i E simply as 

(7-4) 

W 1 h f h h ld 1 . . 1 . 1 0 e neg ect t e. act t at we s ou putin sing e-pa1r scattenng so utlons, 

since this would be a high-order effect. 

Before we proceed with the details of the calculation of Eq. (7-2),

it is instructive to establish the connection of our damping term with the 

classical collision damping in plasma-s .
22 

Very simply we can interpret 

the square of the matrix element in Eq. _ (7- 2) in term of an effective nucleon

nucleon cross section, so that roughly.we can write 

1 

2 
:2:: 
p,p' 

(7-4} 
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' where u is the effective eros s section, M .is the.mean v_elocity of the excited 
. + 

particle, and G 
p,q 

The sums over p, p' 

is the usual function appearing in the collective eigenstate. 

are restricted in the usual way by the .exclusion principle. 

Now we have 

~ 

p 
and ~ ~ .. N,(q_) • 

p 

where N(q) is the nurriber of nucleon-s at the Fermi surface to depth q .. This 

leads 1:0 the result 

1 

2 

= N(q) 

n 
(7- 5) 

23 
which is the form of the classical damping term ... and serves as an inter-

pretation of our calculations here. 

Returning to Eq. (7- 2), we can now evaluate the matrix element 

(~. E' V'~) using the stated potentials and wave functions. In order to. 

avoid unnecessary complications in our e_stimate of the damping we neglect the 

spin dependence and take account of the momentum dependence as in Section 5. 
As heretofore, we are concerned only with the evaluation for small q, and 

with these considerations each of the four terms contained in V' 
1 

and V' 
2 

yields equal results and our expression for ~O becomes 

f 
From Eq. (5-9) ,we have 

G+ 
p,+q,q 

= 

2 

v 
"IT"" .6.(q)- ~] . ·~ 

M..., 

1 
T • 

which we will approximate by neglecting the dependence on l) · 2 .. · in the 
M* 

denominator. Though this leads to an underestimate in ~ our subsequent 

approximation for T tends to cancel this. The resulting integral is still 

quite tedious,and w.e~ have estimated it with the result for ~ of 

- -
. 2 

4TIY 

(2lT)9 
(7- 6) 
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The normalization condition that the G functions .must ,satisfy
1 0 

is 

p ;PF I G;+q, q 

jp+qj>pF 

1

2 ~ 
p>pF 

1P + qJ< PF 

G- . [ 2 
·p + q, p 

From this one can easily obtain the result (for q<<pF), 

1 

(7 -7) 

In the limit of large A thl.s is 

-.2 2 f. * 2 . } . - l _ye-T M 4 

-n- = l (2rr) 2q 3A 3 (7-7a) 

Since A in our previous numerical estimates was --vl, this represents· an 

overestimate in our evaluation of L\l; however, our approximation for the 

function G was an. underestimate, and this should at least correct that. 

Substituting Eq. (7~7a) inEq. (7-6)p we obtain 

3 
L1> = -

4 
..,, 

The ratio of this with .6. = Ap:Fq/M'" is 

(7 -8) 

.6.0=- 3 * 2 M q . (7 -9) 
.6. 4 

We can very easily compare this to Eq. (7-5), the classical ex~ 

pression for damping. We take for the quantities appearing in Eq. (7-5), the 

following reasonable e~ti~tes: 

Substituting these values in Eq. (7-5), we obtain 

1T 

v2 
3 ( 2rr) · 
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which possesses the same form as Eq. (7 -8), exc~pt ~fot ~:iltimerieal factors. 

Substituting our numerical values used in the previous sections into 

Eq. (7-9), we obtain 

~ 2 - = (==} 0.125 { q ) 
D. PF 

\ 

F~H a large nucleus 
-12 (R'Vl0 em} this becomes 

Thus it appears that the damping is quite small and that the stable Sawada 

. collective states are approximate eigenstates of the total Hamiltonian. Of 

course, we must emphasize the qualitative nature of this result, particularly 

as it applies to actual nuclei. 

8. Conclusions 

We have attempted, first of all, to show how the method of Sawada et al. 

can be used to provide a detailed description of ' 1macroscopic" hydrodynamic. 

:(ri()tiOn~ (:In.parthecula:r~Lthis.lm'ay· be ::dqne 'for; cfoupleCl s:ystems of particles 

(leading to spin waves in our example)o . The formulation in terms of level-

shift K matrices permits a generalization of the method in that the precise 

definition of the K matrices enters at a separate stage of the. calculation. 

We have suggested that the problem is most properly developed within a 

time-dependent framework, in which the damping appears as a consequence 

of the approximations made. In this sense, it is seen to be unimportant to 

establish a connection with the true eigenstates of the system ~he understanding 

of which is undoubtedly beyond our reacSo 

We assert that the so-called "single-particle states," whose excitation 

energy is given by the .1;.::; , must be understood in the same manner. These 
. p,q 

states also will be damped in time, with a characteristic time (say) T~ (p, q). 

For L >>--1i __ _ 
. p, q ~(p, q) 

the single-particle energy will lie within a small 

distance Ai/-r~{p, q) of the energy of a true eigenstate. 
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· The problem of obtaining the .K matrices is not a simple one. We 

have avoided this in our discussionp, using forms suggested by thework of 

Brueckner and his colleagues. In view of the instability of the hydrodynamic 

mode obtained here, the possibility of discontinuities in the K matrices at the 

F . f h ld b . . d. 18 I 1 h d . erm1 sur ace s ou e re1nvest1gate • t a so appears t at groun -state 

energy should be re-evaluated by the Sawada method to determine if a higher 

equilibrium density,is implied. We hope to return to these questions· in a 

later publication. 

We wish to thank Dr. Richard Latter for a conversation in which he 

suggested the possible existence of the exponentially growing solutions in 

the Sawada approximation. 
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Commission. 
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Normal to shock front 

MU-15638 

Fig. 1. Geometry of the shock wave in nuclear matter initiated 
by a very-high-energy incident particle. 
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Fig. 2. The angular and energy distributions of nucleons emitted 
though the excitation of shock waves in nucl.ei by a very
high-energy incident particle. For the values of the 
parameters given in the text, the maximum energy for the 
emitted partiCles is about 115 Mev. The units of the 
ordinate are relative . 
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Fig. 3. Plot of 1/Q as a function of A(Eq. 5-19). 
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