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ABSTRACT 

An approximate method is developed for treating a generalized hydrogen .. 

molecule ion in which two heavy particles have positive unit charges and one 

light particle has a negative unit charge. The expansion parameter of this approx;;.. 

imation is the ratio of the light to the heavy mass. In first order, the method 

requires finding a solution to a pair of ordinary, second-order differential 

equations, which are coupled unless the masses of the heavy particles are equal. 

Explicit expressions for the coefficients in these equations are derived. The 
) 

asymptotic forms of these coefficients for large nuclear separations give to 

first order the reduced-mass corrections to the binding energy of the light 

particle on either of the two heavy particles. The usual scattering theory is 

extended to obtain formulae for the various possible cross sections associated 

with this system. An iterative, variational technique for obtaining eigenvalues 

and eigenfunctions for bound states of the system is presented. 

* This work was performed under the auspices of the u.s. Atomic Energy Commission. 
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I. INTRODUCTION 

The experimental observation of Jl.--meson-induced fusion in a hydrogen 

1 bubble chamber has led to an increased interest in the three-body system 

consisting of a light negatively charged particle in the presence of two 

heavier posit~vely charged nuclei. This system, the generalized hydrogen 

molecular ion, has been treated in the past by the approximation of Born and 

Oppenheimer. 2 In this approximation the expansion parameter is the fourth root 

of the ratio of the mass of the light particle tothat of' the heavier particles. 

For electronic molecules this quantity is small (,........ ~ ) and the approximation 

is sufficiently accurate to be useful inmany calculations. For Jl.-mesonic 

molecules, however, the corresponding value is nearly one (.,J ~ ), and the 

approximation is open to question. 

In this paper we develop a method based on a variational approximation 

to .the wave function of this three-body system. Although this method has the 

same starting point as the Born-Oppenheimer approximation--namely, the solution 

for the motion of the light particle with the heavy ones held fixed--it leads 

to an expansion parameter that is the ~atio of the masses themselves. In the 

present approximate treatment first-order terms in this parameter have.been 

included, while second-order ones are ignored. When the masses of the two 

nuclei are not equal, it is essential that the first-order terms be included, 

because they lead to the distinctive f'eatures of the unequal-mass case. Thus, 
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for example, :.·.the difference in binding energy of the light particle on one or the 

other of the two nuclei is contained in these terms; clearly, if the positions 

of the nuclei are fixed, their mass differences can play no role. In this 

unequal-mass case, it will be shown that the wave function of the system is 

obtained from the solution of a pair of coupled, ordinary, second-order differential 

equations in which the coupling te:rms come from the first-order corrections. On 

the other hand, if the masses of' the two nuclei are equal, the pair of equations 

is uncoupled and the first-order terms serve only to improve the accuracy of the 

calculation. The development of the equations for the wave functions is given 

in Section II. 

In Section III, the scattering states for these systems are treated. By 

use of the asymptotic behavior of the system of equations, explicit expressions 

for the elastic and exchange cross sections are derived. For unequal nuclear 

masses one obtains different expressions depending on whether the total energy 

is less than or greater than the binding energy of the light particle on the 

lighter nucleus. Finally, in Section IV a variational procedure for the 

determination of the eigenvalues and eigenfunctions of the bound states of the 

system is given. This method involves an iteration scheme that converges rapidly 

to the desired eigensolutions. 

In a subsequent paper; 3 the techniques that have been developed in this 

paper will be applied to the problem of muonmcatalyzed fusion. It will be seen 

that close agreement with the experimental results is obtained. 
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II. THE THREE-BODY WAVE FUNCTION 

A. The General Equations 

In this section we treat the Schrodinger equation for the generalized 

hydrogen molecular ion consisting of two positively charged nuclei and a light 

negatively charged particle referred to as a meson. All particles are assumed to 

have unit charge. 

In the development which follows, a convenient choice for a coordinate 

system is one in which the center-of-mass motion, the relative motion of the 

two nuclei, and the. motion of the meson relative to the center of mass of the 
~ _,. ... 

two nuclei are separated. If r 1, r 2, and r are the position vectors of 
1-L 

Nucleus 1, Nucleus 2, and the meson, respectively, 'and mi, m2, 
... 

and' m their 
1-L 

masses, then the position of the center of mass, rc' the internucleus separation, 
... 
rn' and the position of the meson relative to the center of mass of the two 

... 
nuclei, R , are 

1-L 

= 

-+ ... 
r = rl n 

and 

It ... 
= r 

1-L 1-L 

where 
m. 
~ p. 

~ 
= 

Mt 

and 

m. 
~ = 

... 
r2 ' 

... 
fl rl 

m. 
~ = ml + m2 

fi ml + m2 

... 
+ P r 

1-L jJ. ' 

-+ 
f2 r2 ' 

(for i 1 2, IJ.) = +m ' 1-L 

(for i = 1, 2) • 

'The wave function, ~r , for the three-body system satisfies the 

Schrodinger equation, 
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+ v rp- = ' 

where W is the energy and M and M are the appropriate reduced masses, 
n J.l 

i.e., 

M. = n 
and M = 

J.l 

The subscripts on the Laplacians refer to derivatives with respect to the 

appropriate coordinates. 

If all particles have unit charge, the potential V can be written as 

2 
e 
r 

n 

2 e 2 e 

where r and r are the distances between the meson and Nuclei 1 and 2 
J.ll fl2 

~ 

respectively; rn is the magnitude of rn. 

The dependence of the wave function on the center-of-mass motion is 

removed by the usual substitution 

= ' 

where P is the momentum associated with the motion of the center of mass. 
c 

The resultant wave function 'lr(R , ; ) can then be expanded in terms of a 
J.l n 

complete set of functions, 

may contain the variable 

-+ 
which are functions of the variable R and 

J.l 
-+ 
r · as an independent parameter. 

n 
Thus we may write 

'• 

~· 

' 

.. 
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= 

Here the functions X.(;) are to be determined and are dependent on the choice J. n 

f'or the 'l!r. or ' -:; ) . J. f.! n 

It is convenient to choose f'or the wi the complete set of' solutions f'or 

the wave functions of' the meson in the Coulomb potential of' the f'ixed nuclei of' 

unit charge. 4 With such a choice the adiabatic ef'f'ects of the presence of' the 

meson on the motion of the two nuclei can be replaced by an ef'f'ective potential. 

In this case the ~1 (-:;n) represent to lowest order the wave function describing 
\·· 

the motion of' the two nuclei. 

The wi are theref'ore the solutions to the equations 

J:f w. ci , ; ) 
IJ. J. f.! n 

where 
2 

e 

rf.l.l 

2 e --
rf.J.2 

' 

' 

and Wi(rn) is the energy associated with this system as a function of the 

parameter rn 

If' we insert the expansion f'or w(R ' -:; ) into the Schrodinger equation, 
J:.l. n .... 

multiply by w., and integrate over all values of' R , we obtain a set of' 
J f.! 

equations 

-
2

-fiM
2 

f w.(R,-:;) "i1
2

I:: X.(-; )w.(R,-:; )d~ + [W.(r) 
n Jf.J. n n1 J.nJ.J:J.·n f.! Jn 

2 
+~ 

r 
n 

J x.(;) = w-x.(i!') , 
J n . J n · 

where W is now the energy of the three-body system in.its center of' mass. 

When the indicated dif'f'erentiations are carried out, the first term in this 

equation may be rewritten as 
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2 (-+ ) (·-+ -+r ) d3R 9 X. r 'if. R , n ~ n ~ 1-l n 1-l 

+ 2 1: ~ x .• I * . cit , -r ) ~ *. <it , -r ) d3R i n ~ J 1-l n n ~ 1-l n 1-l 

+ z X .• I w .(R ' r )9 
2 *· (R ' r ) d3n . i ~ J 1-l n n ~ .1-l n 1-l 

Here the last term can be made more symmetric by an integration by parts: 

...,. .... 3 -+ .... 3 = 9 • I . t. 9 *· d R n J n ~ p. - I 9 1jr.•9 *· d R n J n ~ 1-l 

Finally, if we define 

and 

I -+ -!> 3 ' 
~ 9 W. •\J W. d R == 

n ~ n J 1-l 

. ' . ~. . 
the set of Schrod~nger equations becomes 

( 9 
2 

X (t ) 
n j n 

+ :E 
i 

+ (W .(r ) + 
J n 

......... 
2f .. •\7 X. 
. J~ n ~ 

2 
e 
r 

n 
) x .c-r ) 

J n 

' 

= wx.(;) 
J n 

For convenience, we introduce the dimensionless parameters 

-+ 

~ 
r w n 

X = ' 
v = w ' a 

1-l 1-l 
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is the Bohr radius for the mesonic atom having a reduced mesonic mass 

and W 
1-l 

is the corresponding mesonic Rydberg, 

All distances are measured in units of a 
1-l 

and all 

energies in units of W · The dimensionless Schrbdinger equations are then 
1-l 

g .. X. ]} 
Jl. 1. 

+ (W.(r) + _g_ )x.(i!') 
J n rn J n 

= W X .(J:!' ) 
J n ' 

where the definitions of the symbols have been altered to refer to the dimensionless 

variables. We may write these equations as 

{~n2 M n 
+ M 

1-l 

where 

= 

~) 

[ W - W .(r ) - 2 
]J J n r n 

-+- -+ 
2f .. ·'il 

Jl. n 
+ 

-+ -+ 
('il ·f .. ) 

n Jl. 

X. (J:!' ) 
J n = - 2: 

i GJi xi (i!'n) ) ( 1) 

In the lowest Born-Oppenheimer approximation to the solution to these 

equations the dynamic correction terms (9j'i are assumed to be zero and only 

the X. corresponding to the lowest W. is retained. Furthermore, the 
J J 

effective potential Wj(rn) + 2/rn is expanded about its minimum value in 

a power series in the displacement of r from its value at this minimum. 
n 

While such approximations are reasonable for the treatment.of the electronic 

molecular ions, the larger mass of meson present in the mesonic molecular ions 

makes these approximations less reliable. 
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An alternative approach, developed here includes the lowest-order dynamic 

corrections and makes use of exact solutions to a simplified set of Schrbdinger 

equations. In this treatment it is necessary to separate the cases for identical 

and distinguishable nuclei. If the nuclei are identical, the wave functions must 

be either symmetric, + , or antisymmetric, - , with respect to an interchange 

of the two nuclei, and the two types are not coupled in the set of equations; 
-+ 

i.e. f.. and g . are zero if i and j correspond to states of opposite 
l.J iJ 

symmetries. If the nuclei are not identical these terms do not vanish, and 

furthermore, since there is a dege'neracy between the unperturbed symmetric and 

antisymmetric energies for large nuclear separation (corresponding to the equality 

of binding energy of the meson on either of the two fixed charge centers), it is 

necessary to include states of both symmetry in the wave function. 

In our treatment we restrict ourselves to treating only the states 

corresponding to the lowest values of W.(r ), designated by a zero subscript, 
J.·n 

for either of the two possib+e symmetries. Therefore for distinguishable 

( unequal=ma.ss) nuclei our wave function :l.s of the form 

while for the equal=mass case 

either 

or 'ljr = 

'ljr +X+ 
0 0 (synnnetric.case) 

(antisymmetric case) • 

The errors introduced by the omission of the higher excited mesonic 

states cannot be accurately determined. We may, however, estimate these errors 

to some extent by use of a simple perturbation expansion. If we consider the 

'i 
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state of lowest W. to be the dominant ones and treat M /M = € as an eXpansion 
l fl n 

parameter, then for the nondegenerate (equal-mass) case we may write 

X. 
l 

= X ( 1) 
0 + 

X 
(1) 

€ • + 
l 

( 2) 
€ xo. . . 0 0. ' 

€2 X. (2) 
l .. ' 

for i 1 o , 

where x0 is the state corresponding to the lowest W .• 
l 

Inserting these 

expressions in the coupled equations and considering only those terms in the 

lowest pm.;rer in € , we obtain 

X. (1) 
l 

hence, to lowest order in € 
' 

/ -1 (w - w. - 2. :r ) 
l · n 

.· ( 1) 
CY:o xo l .... 

= (w - w. - 2 r ) -l € ci
0 

x
0
. 

l n l 

If we consider the effects of the ith excited state on the equation 

for x0 we note that they enter the equation only in second order ih € • Thus 

the omission of the excited states introduces errors of order 2 
€ in the 

calculation of the energy of bound states. Similarly, for free states at 

energies such that mesonic excitations are energetically impossible even for 

large nuclear separations, only x0 is necessary to determine cross sections. 

The errors in these cross sections are also of order 2 
€ In addition, for the 

treatment of bound states and scattering states of low energy, the denominator 

in the above expression is. in general large d·ue to the large separation of the 

excited states of the meson in the molecular ions which we shall treat. 
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In the degenerate (unequal-mass) caseJ a small perturbation can cause 

large changes in the wave function'. It is therefore necessary to treat the two 

states of lowest' Wi corresponding to opposite symmetries, x0+ and x0=, 

together. The effects of' the rerr~ining higher states will, as before, introduce 

second-order corrections to the binding energies and cross sections. 

B. The Solution for Wi 

Although it is possible in pr·inciple to obtain exact numerical solutions 

to the mesonic problem with two fixed centers, 5 the ultimate accuracy of our 

approximations has been shown to be limited. We therefore felt justified in 

using approximate variational solutions for this part of the problem. 

For the symmetric solution w0+, we assumed a variational solution of 

6 the form 

where A+ 

'ljr + 
0 = e 

is the normalization constant and p+ and are the variational 

parameters which minimize the expectation value of J{J.! for a given value of rn 

The variables s and Tl are the usual confocal elliptic coordinates, 

= and 
~1 ~ r!-!2 

2 

A similar function was chosen for the anti symmetric solutions, i.e., 

= A ( ; ) sinh 
q r TJ - n 

2 
e 

p r s 
- n 

2 

Here the ( s ) indicates that a fa~tor of s was included in the expression 

if this led to a lower expectation value. Specifically, for values of rn less 
' 

than r ( r d'V 1. 70) this factor was included; for values of r larger than c c n 
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this it was omitted. For small values of r this additional factor is 
n 

essential in order for the solution to approach the hydrogenlike 2p function 

as r approaches zero. In the neighborhood of r the two sets of solutions 
n c 

were smoothly joined • 

where 

and 

The desired expectation values can be expressed as the sum of two terms, 

w. 
l 

(T ) 
f-1. 

(V ) 
f-1. 

' 

I \If. :U \If. dt 
l f-1. J_ f-1. 

= 

= I \If. T *· dt = 
l f-1. l f-1. 

= 

( T ) 
f-1. 

+ ( v ) 
f-1. 

-+ -+ 

J \1 *· •\J *· dt 
f-1. l f-1. l f-1. 

1 
I *i [ -2 < r 

' J..Ll 

For confocal elliptic coordinates the volume element is 

r 3 
dtf-1. = + (£

2 
-

2 
1:) ) d~ dTj d¢ 

where the limits on the variables are 

1 ~ ~ < 00 and o~¢<2:n: .. 

The integrands.in the above expressions may also be expressed in these coordinates, 

i.e., 

and 

v 
f-1. 

4 
= 2 

r 
n 

8 --~
r e2 2 

n !:> - 11 

2 2 d1jr, 
[ Cs - 11 )( d~l ) 

2 

+ 
2 

d1jr. 2 
(1 - Tj )( l ) J 

dTj 
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The int.egrals that occur in these and other expressions in this paper 

can be conveniently expressed in terms o~ the de~inite integrals 

()() ~P~ 
~n dg E ::= E (P) J e )I n n l 

1 2n cosh2 ,. dTJ c2n c2n( Q) ::= J TJ ' .. 1 

1 2n 'nh2 S!l n 
c

1
2n(Q) J dTJ c 2n - TJ Sl. 2 J 

-1 
and 

1 2n sinh .S!l cosh' 
·a J dTj ,.., 

::= c ::= TJ '""2n+l 2n+l 2 ' -1 

where P = :Pr and Q = qr 0 

n n 

For the symmetric solution the ex~licit results are 

(V ) = 
jJ. + 

(T ) = 
p. + 4 

The normalization constant A+ is determined by the relationship 

Similar expressions can be obtained ~or the antisymmetric solutions. 

The minimization of' the expectation values.of J{ for values o~ r 
~ n 

between 0 and 20 in intervals o~ Oo05 were carried out with the aid of an 

IBM 650 digital computer. The expression for W. was minimized to an accuracy 
l. 

. of eight ~igures; however, because o~ the extremal properties o~ W., errors 
l. 
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due to rounding made the determination of P and Q less accurate. The results 

of these calculations are given graphically in Figs. 1 and 2. For comparison 

the results of some previous calculations of the values of W. are included in 
]. 

Fig. L For the symmetric case .with our approximate solutions we obtain 
\ 

W. = -1.20489 for a value of r of 2.00. This is to be compared to the exact 
J. n 

value of ~1.20527 obtained by Hyllerass. 5 Similar agreement is found for the 

other values calculated by him. In view of the other approximations made in 

these calculations we felt that this close agreement indicated a satisfactory 

solution to the mesonic part of the wave function. 

By making use of the analytic forms for the mesonic wave function it 

was possible to analytically evaluate the first-order dynamic correction terms, 

fig and gij' discussed in the preceding section. The specific analytic forms 

for these terms are given in the Appendix. 

For the equal-mass case only "diagonal" correction terms occur, because 

the states of different symmetries are not coupled. As a consequence of the 
....;,. ....;,. 

relationship fij = - fji it follows that f .. = 0. 
].]. 

Thus the only first-order 

corrections for the equal-mass case can be considered as a correction to the 

potential. This term is of the form 

= 
~ -> J \l \If. •\} \jr. dt n J. n J. 1.1. ' 

where i denotes either + or - This correction has been computed numerically 

by using the parametelSobtained from the variational calculation. The results 

for both the symmetric and antisymmetric states in the equal-mass case are shown 

in Fig. 3. There has been a certain amount of controversy concerning these 

corrections; our results for the symmetric case are in general agreement with 

those of Dalgarno and McCarro11. 7 



UCRL..,8390 

-15= 

For the uneq,ual-mass case in which the rat:to of the two masses is 1:2, 

similar diagonal correction terms were computed. In addition, the off=diagonal 

terms were obtained for this case. The results for these calculations are shown 

in Figs. 4 and 5. 

Co Behavior for Small rn 

The study of the behavior of the mesonic solutions for small values of 

r is of considerable interest, both for the general understanding of the threen 

body problem and for the development of solutions to the differentiaj. eq,uations 

for X. (r ) •. 
~ n 

The behavior of the parameters p and q, in this limit can be obtained 

by expressing the energy W. 
~ 

in powers of the parameters r ' n 

the symmetric case to lowest order in P+ and 

W r 
2 

+ n 
::: + J-tP r 

n 

p 2Q 4 
+ + 

240 

Q we have 
+ 

(P 2 
= 4P M ) 

+ + n 

P, 

Minimizing this expression for W+ with respect to the parameters 

we find for 

and 

Lim 
r -+ 0 

n 
' 

P -+ 2r , 
+ n 

4 

p -+ 2 ' + 

Q -+ 
+ -(3' rn ' 

w ~ ~4 
+ 

q -+ 
+ 

4 

13 ' 

and Q. 

P and 
+ 

For 

These results are consistent with the hydrogenlike ls solution which would be 

expected in this limiting caseo We note that the energy is relatively insensitive. 

to the parameter fn this region, occurring i.n terins of order 4 r .• 
n 
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In a similar manner we may obtain limiting values for the parameters 

p_ and q_ for the antisymmetric solutiono In this case we have 

2 
- W r 

- n = 
2• 

(- P + 2r P )(1 
= n -

from which it follows, for 

and 

~im 
r _, o 

n 
' 

p 

Q_ 

·w 

-+ r 
n 

-+ . .2 r '{f 5 n 

p 2Q 2 
-· -
2520 J 

J 

which indicates that our solution ~- approaches a hydrogenlike 2p solution 

with m = 0 
z 

where the z axis is aligned in the direction of 
-I> 

r 
n 

The asymptotic forms for and can be readily obtained from 

the complete expressions given in the Appendixo It is found that while g++ 

tends to zero in the limit of vanishing r ' n 
is divergent, having a leading 

term of the form 
2 

2/rn o This asymptotic behavior is in fact necessary for a 

consistent set of solutions to the three-body system for a state in which the 

total angular momentum is zero" We have already seen that ~- approaches a 

p state as r tends to zero, hence for the total.angular momentum of the n 

system to be preserved the two nucleons must be in a relative p state. This 

angular dependence must be c~rried entirely by X_ (i!' n), because ~ _ (or ~) 

is a ~~nction only of the parameters r ' 1-1 

-+ -+ 
r and r ·r and hence is invariant 

n 1-1 n 

with respect to rotations of the entire system" For s states the radial 

wave functions, X=' associated with 'It~ satisfy an equation w·hich in the 



limit of small r is of the form 
n 

1 
2 
r 

n 

d 

dr 
n 

(r 2 
n 

dX 
"" ' 

dr 
n 

i + __g_ X 
2 

r 
n 

+ terms of order 
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1 

r 
n 

= 0 
' 

where the singularity i.n g~= provides the term necessary to correct the form 

for the ·X equation to agree with that of the usual p=state equation. 

For the case in which the total angular momentum of the system is one, 

the situa.tion is somewhat less clear. In this casej if the meson is in a p 

state it is necessary only that the nuclei be in relative s or d states. 

With our choice of approximate wave functions we have in fact chosen a linear 

combination of these states such that the potential for small r 
n 

is 2 
Yrn. 

A similar situation arises for states of higher total angular momentum, so that 

for small values of the wave functions for antisymmetric meson states are 

not accurately described. For symmetric states no such ambiguities appear. 

This difficulty for small values of r 
n 

is associated with the degeneracy of 

the various 2p states that occur for r = 0, and is therefore unimportant for 
n 

larger values of r . 
n 

To treat the inner region correctly would require the 

introduction of the two other 2p states and their associated Xi 1 s. We e:x:pect 

that such a treatment would., however, make small corrections to the wave functions 

at large distances and·would be significant only for small values of r 
n 

For 

the scattering states the energies of interest to us are such that the contributions 

for other than s states are negligible. For the bound states, only the 

unequal=mass cases involve 'o/..,. and the effect of this term is small except 

for large values of r • n We have therefore felt justified in omitting these 

add.i.tional complications in our treatment. 
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The asymptotic behavior of f 
+-

and in this limit are also of 

interest. From the expressions in the Appendix we obtain for 

Lim 
r ~ 0 

n 

and for 

Lim 
r -i> 0 

n 

-i> 

where e 
r n 

= 

- 2f /r +- n 

is a uni.t vector in the direction of 

-+ 
e r 

n 

r 
n 

and f 
+= 

The term g+~ is therefore seen to be divergent in this limit. As we shall 

show, the particular form of this divergence is crucial for the satisfactory 

solution of the differential equations. 

The radial equations for a state of total angular momentum £ can be 

obtained. from Eqs. (1) by the usual substitution of ¢./r 
:r n 

equations are 

and 

where 

+ 2:[w-v(r) ]¢. 
·€ + n -t-

V (r ) 
+ n = w + + 

= 

-1 
2r 

n 

= - 2f +-

2f 
+-

+ + 

df + .... 

df 
+-

dr 
n 

+ --dr 
n 

¢_ + 

( ) 
-2 

€£ £ + 1 r 
n 

for X •• 
~ 

' 

These 

(2a) 

. (2b) 
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v (:t ) 
= n = w =1 

+ 2r n + + e.e(.e + l)r - 2 
n 
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In order to obtain the behavior of the solutions to these equations for 

small values of r it is convenient to express the solutions in a power series 
n 

in r ; i.e., we assume 
n 

= 

and 

¢ (r ) 
= n 

In addition it is necessary to expand the various other functions which appear 

in the equations in power series, thus 

and 

:f 
+-

v 
+ 

v 

= 

= 

= 

t 
Ftr ,n ' 

€.8(.8 + l)r '-" 2 
n + 

2 €[.8(.8 + 1) + 2]r ~ 
n 

00 

+ !: 
t==l 

= 

= 

Inserting these expressions into Eqs. (2a) and (2b) and equating terms with 

equal powers of' r , we obta,in the recursion relationships n . 

( 



.• 

'> 

[(t + K)(t + K- 1)- £(£ + l)]at ~ 

= 

and 

[(t + K)(t + K- 1) - 2- £(£ + l)]bt 

t=l 
= L: 

t'=O 

1 t-1 
E 

€ t 1-=0 
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From these equations we obtain the pair of indicial equations 

[K(K- 1) - £(£ + 1)] a0 = o 

and 

[K(K- 1) • 2- £(£ + 1)] b0 = 0 • 

Thus if a0 is not zero K is either -£ or £ + 1, while if b0 is not zero 

K is equal to ~ ± [ t + £(£ + 1)]
1
/

2 
• In both these cases the solutions 

with the minus sign do not satisfy the conditions of integrability and may be 

discarded. For £ rf 0, these two cases constitute the two possible solutions 

to the equations. For £ = o, on the other hand, these two values for K differ 

by an integer, and therefore further investigation is necessary to determine 

whether or not two regular and independent solutions to the equations exist. 

!t is clear that two such solutions must exist, since we must be able to 

describe states in which the meson is associated with either of the two nuclei 
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for large separations of the nuclei. If we examine the recursion equation which 

determines the value of' b
1 

in the case where K = 1, i.e., for a
0 

:;1: 0, we 

find 

or 

8 this would lead to an inconsistency unless the multiplier of' a0 were zero. 

This is, in fact, the condition which we have shown to be true from the 

asymptotic behavior of the f'unctions 
-+ 
f. 

+= 
and e£ • 

+~ 
This being true, the 

value of' b
1 

is undetermined. Thus t.he constant b
1

, which is arbitrary in the 

'solution with K = 1, represents the fact that one can add an arbitrary amount 

of the solution with K = 2 to the solution and still retain a valid power-series 

expansion f'or small values of r . 
n 

D. Unitarity Current 

It is of interest that one can obtain an invariant relationship between 

the various solutions for the system of equations describing the motion of the 

nuclei. If' we consider v&o sets of solutions X±(l) and X±( 2) to these 

equations, with eigen1~,lues w1 and w2 respectively, then the following 

equation can be constz:ucted~ 

f {x (2)* [(\72- .!v) x (1) + e x (l)J 
+ n E: + + +- ~ . ' 

+ X (2)*[(\7 2 - _! V )X (1) + 8 X (1)] 
- n E ~ ~ -+ + 

- x (l)[(v 2 =! v )x (2) + e+- x_< 2)J*-
+ n €++ -

X (l)[(\7 2 - .!v )X ( 2 ) + 9 X ( 2)t1d...-: 
= n e - - -+ + j n 



.. 
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'-22-

2 
is equal to W then the right-hand side of the equation is zero and we 

find 

where 

{ X (2)* \l X (1) 
+ n + . 

- X (1) \l X (2)-l<· 
+ n + 

+ X ( 2 )* 'V X 
n -

+ 2b (X ( 2 )* X (l) ~X ( 2 )* X (l))} 
+- + ~ - . + 

We shall call j
12 

the 11unitarity current". (For X(l) 10> x(2 ) 

to the usual expression for the probability currento) If X(l) 

the same angular dependence, then we may write 

2-l> -i> 

r jl2•r. n . n = X (2)* 
dX (1) 

+ 
dr 

n + 

X (2)* 
dX (1) 

dr 
n 

X (1) 
(2)* 

dX 

+ 

dX (2) 

X 
(1) ... 

-d-::-r-
n 

+ .. 

X ( 1) \lh X ... ( 2) * 

this reduces 

and x< 2 ) have 

{'"')* '1) + 2f (X ,~ X ~ 
+- + . -

= X. ( 1) X (2)*) = constanto 
-t- -

Furthermore, if these solutions are regular solutions to the differential 

' equations, their contribution to this quantity is zero because 

vanishr=s at the origin. Irregular solutions, on the other hand, contribute a 

finite amount to this expression. It follows that if rn2 j 12 is not zero 

when evaluated.for any value of r some irregular solutions must be present. 
n 
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III o SCATTERING WAVE FUNCTIONS 

A. The Asymptot.ic Behavior for Large Values of rn 

In the limit of large values of r the parameters 
n 

p and Q which 

describe the mesonic wave functions also become large. In this limit the binding 

energies may be expressed approximately by 

Lim 
r .., OlJ 

n 

- w 
+ 

2 
r 

.n 
2 

r 
n = ( P + Q = 4r n) P~ P + Q) , • 

The values of P a.nd Q which minimize this expression for the energies are 

P = Q = r , for which W = W = -lo This expresses qualitatively the fact that 
n . + 

the symmetric and antisymmetric solutions for fixed nuclei can be formed from 

the solutions in which the meson is centered on either of the two nuclei. These 

eigenvalues, however, are not exactly the binding energy for such a separated 

system, because the units i.n which the eigenvalues are measured use the reduced 

mass for the mesdn with respect to the sum of the nuclear masses. The necessary 

corrections to the energies in this limit are contained in the asymptotic behavior 

of coupling ·terms g,' 0 

~~ 
In addition, for the unequal~mass case it is necessary 

to obtain the splitting in ·the energies corresponding to the fact that the meson 

is more tightly bound on the heavier of the nuclei. The removal of this 

degeneracy in energy for this limit is contained in the off-diagonal term g 0 

+= 

As will be shown, both these corrections lead to expressions accurate to first 

order in the parameter e o 

~e asymptotic values of g and 
++ 

come entirely from the terms 

and I 
7111 

(see Appendix) because the derivatives which occur in the remaining 

terms vanish in this limi.t. We find for 



For 

for 

Lim 
r --!>()() 

n 

the equal-mass 

Lim 
r -+ ro 

n 

g++ g 

case we have 

' 

1 (f 2 = + -- 2 1 

fl f2 
l 

= 
2 

g __ = 

and the effective potentials are corrected to give 

for Lim 
r _,.. oo 

n 
v = v + "'l 

2 f 2 )E 

' 
hence 

' 

l 
+ 4 E = 

tJCRL-8390 

- l 

li1 
+ ~ 

2ml 

To first order in E this is identical to M */M , where M * is the reduced fll J f.l f.l 

mass of the meson with respect to one of the nuclei. For the unequalgmass cas~ 

let us consider a system which consists of a proton (Nucleon l), a deuteron 

(Nucleon 2), and a meson. In this case we have . l d f = - an 
l 3 

hence 

for Lim 
5)"'18 ' g++ go.~ = r .... co 

n 

The only term for g+ .. which does not vanish in this limit is 

and this leads to the result 

for 
Lim 

-(f _ f' v2 J/6 ' g+- = = -r .... (]!) 2 l n 

2 '3 , and 

the term gsT! ' 

To interpret these results let us consider the asymptotic form for the 

radial differential equations, 

dr 2 
n 

l 
+ -- (w + 1 

€ 

1 
- b )i?_ 



and 

and 

where 

+ ~ (w + 1 - -fg E)¢_ = 
1 -.,..¢ 
0 + 

From these equations we obtain a new set of equations, 

2 
d ¢'d 1 

+-[W+l-
dr 2 

€ 
€( .fg - g ) ] ¢ d = 0 ' 

n 

( 3a) 

(3b) 

This particular choice for ¢P and ¢d is such that asymptotically ¢P 

corresponds to a total wave fUnction in which the meson is centered on Nucleon 1, 

while ¢d is the corresponding case for Nucleon 2. The binding energy of the 

meson is that 

motion is zero 

and 

value of W 

( d2 ¢ 

dr 2 
n 

w = p 

w = ·d 

for which the kinetic energy of the relative nuclear 

0). Thus we find, for the binding energies, 

= 1 

= 1 

+ 4 € 

9 

+ _§_ 
9 

These expressions are the correct binding energies to first order in the 
9 

parameter € • 
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B. Scattering Cross Sections 

In the treatment which follm,rs we restrict ourselves to the consideration 

of the scattering states of zero total angular momentum; the extension to states 

of higher angular momentum, however, is straightforward. For the investigation 

of scattering phenomena, as in the usual treatments, we need study only the 

asymptotic behavior of the wave functions for the separated system. 

For the unequal~mass case there are four asymptotic functions to consider, 

ioe., X and X, for each of the two solutions regular at the origin. In 
+ .-

add.ition, as we have shown i.n the preceding section, the degeneracy of the binding 

energi.es of the meson on the two separated nuclei has been removed by the 

dynamic correc'ti.on terms. It i.s therefore necessary to distinguish between the 

case in which the energy of the system lies between these t·wo binding energies 

and the case in ·which it i.s larger than either of them. These two energy ranges 

correspond. to different physical si.tuations. In the former the only scattering 

states allowed are those in which the meson is bound to the heavier nucleus for 

large separations. In the latter the meson may be bound to either of the nuclei; 

exchange processes are also possible in this case. 

It is once again convenient to use wave functions that asymptotically 

describe the meson centered on one of the t·wo nuclei. We ·therefore define 

and 

¢ i 
p 

¢ i 
d 

= (¢ i 
+ 

= 

Here ¢P is the radial wave function vThose form corresponds to the meson bound. 

on Nucleus 1,~ the lighter nucleus, with an energy WP ; ¢d and Wd are 

defined in a. similar manner for the heavier nucleus. (If we consider the 
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system of a proton, a deuteron, and a meson, the expressions of the preceding 

section define WP and W d 6) The superscripts i ( i = 1, 2) refer to either 

of the two regular solutions to the radial differential equat:i.ons. 

If the energy, W, is such that Wd ~ W ~ WP , then we can write the 

asymptotic behavi.or for y?p 

and 

where a 

i 
a ' p 

b i 
p ' 

y?p 

y?d 

and 

= 

= 

0 i 
d 

and y?d in the form 

i ar i -ar n b n a e + e p p 

i 
sin(kdrn 0 i) a, d. + d 

and 

i are determined by the value of ¢ , 
p 

The parameters 

and d¢d)fd.rn evaluated for some large value of r o 
n 

In order to completely 

specify the wave function it is necessary to d.etermine that linear combination 

of the two solutions i = 1 and i = 2 for which no increasing exponential 

remains in the asymptotic expression for ¢ 0 

p 
We may also normalize these 

solutions to the incident part of the plane wave. If this is done we find., for 

the corresponding wave functions XP and Xd in this asymptotic limit, the 

10 forms 

and 

xa 
p 

e 

= 

~ar 
n 

r n 

r. 
n 

where the z axis is in the direction of the incident~particle beam. The quantity 

M is defined as 
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iod 
2 ·o 1 

1 2 2 1 ~ d 
a ad e a ad e 

M 
p p 

:::: 

""i5d2 ·o 2 1 2 2 ili -~ d 
a a ·· e a ad e 

p d p 

If we replace e
2i9d 

M by the quantity , then ed may be consid~red the phase 

shift for this scattering, and the scattering cross section can be written in 

the usual form, 

o - 4 ~ sin2 9d . - k 2 
d 

If the energy is larger than W , then both solutions have asymptotic p 

sinusoidal behavior, i.e., 

¢ i i sin (k r 0 i) :::: a + p p p n p 

and 

¢ i i sin (kdrn 5 i) ad + ' d d 

where k == 
p 

J/2 
[(W - Wp)/€ ] • There are now two possible physical states 

corresponding to incident states in which the meson is centered on either of 

the two nuclei. In this case, however, we may separately choose those linear 

combinations of the two sets of solutions that correspond to no incident part 

for either the XP or the Xd. In either case we may normalize the solutions to 

the incident wave. 

For the scattering of the p-mesonic system from a d nucleus, we obtain 

the asymptotic forms 



where 

and 

X 
p 

xd 

h 
PP 

hpd 

-D 

= 

= 

= 

= 

= 

-29-

ik z ik r 
e p 

+ h e Pj r ' PP . . n 

ikdr 
h e l)/r pd n 

[( a 2 
p 

l 
ad ad 

2 a ad p 

2 

1 

i(5 2 .., 5 1 ) 
p d e . 

sin (5 l- 5 2}/Dk d d p 

-i(5 
2 1 

+ 5d ) 
e - P a 

p 

a 
p 

' 

1 
ad 

2 
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"'(I>. l I>. 2) 
e~ up - ud )D-l 

~i(5 1 + 5 2) . p d e . 

Here h 
pp 

gives the amplitude for normal scattering and hpd the corresponding 

amplitude for exchange scattering in which the meson is captured by the heavier 

nucleus. The cross sections for these cases are 

G = 
PP 

and for the exchange process, 

where the factor kafkp is necessary to correct for the change in velocity of 

the incident and outgoing part.icles i.n this inelastic collision. 

In a similar fashion the scattering of the d~mesonic system from a p 

nucleus can be obtained. In this case we firid 



'• 

and 

[(a 2 adl 
p 

e 

-30-

i(o 1 
- o 2) 

d p 

h = a 1 a 2 sin (o 
1 

- 5 
2

'/Dk dp p p p pI· d 

The corresponding cross sections are 

and 

a 
p 

1 
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\ 

From the conservation of unitarity current one can show hpd = hdp 

that the two exchange cross sections are simply related. 

For the equal-mass case the phase shifts for the symmetric and 

antisymmetric scattering states may be independently evaluated by use of the 

asymptotic forms 

+ o. )lr 
~r n ' (for i = +, -) ' 

and 

where 
J/2 

k = [(W- 1 + ~4~€] • In this case, however, a further complication 

is introduced because the nuclei are generally identical particles. In such 

cases the total wave functions for the system must be properly symmetrized. 

As before, it is convenient to introduce combinations of wave functions which 

describe the states corresponding to the meson centered on each of the two , 

nuclei for large separations. For the case in which the meson is centered on 

Nucleus 1 the mesonic wave function is 

wJ/F , 
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with a corresponding nucleonic wave function(· 

= 

The wave functions for the other case are 

= 

and 

= + xJ//2'. 
The total wave fUnction is then of the form 

Before symmetrization, the solution which corresponds to an incident 

system in which the meson is associated with Nucleus 1 or mt:th Nucleus 2 has 

the asymptotic forms 

ikz 
~l 

ikr 
xl hllrn 

n 
= e + e 

=1 ikr 
x2 hl2 

n 
= r e n 

and 

o.l ikr 
xl 

n 
= h21 rn e 

=ikz ~ ikr 
x2 h22 

=..L n e + r e n 

respectively. Using the asymptotic forms for X and X } .;.'e find 
+ = 

= 
. 1 2io 

( 4ik)"' [ e + 
2i6 

= + e 2] 



.. 

and 

= 

2io 
( 4ik) -l [ e + 
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2io 
e 

For a system consisting of a meson and two spin-~ particles such as 

protons, the total wave function must be symmetric for singlet states (s) and 

antisymmetric for triplet states (t). Thus for states of zero total angular 

10 
momentum the total wave functions are 

ikz -ikz 
e \ltl ± e + 

From this wave function ><e obtain for the cross ·sections11 

4 I h h 12 4~k·2 s4n2 ~+ . ' a singlet == rc 11 + 12 == " ... u 

a triplet 

The total cross section is 

a = pp 4 -2 [ 1 . 2 ~ 
1C k 4 s~n u+ 

4 -2 . 2 ~ rck s~n u 

+ 3 . 2 ~ 
4 s~n u 

Similarly we find, for the case in which the two nuclei are deuterons, 

-2 2 2 
4rc k . [ "3 sin o + 

1 . 2 ~ 
+ 2' s~n u 
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IV. BOUND STATES 

This section is devoted to a discussion of an iterative scheme by which 

it is possible to obtain the bound-state eigenvalues and eigenfunctions for the 

system of differential equations describing the nuclear motion. In this 

development it is assumed that the integration of the differential equations 

can be carried out by either exact or numerical methods. 

For the unequal-mass case, the Hamiltonian for the nuclear system can be 

written as 

H = 
co d¢ 2 
J { ( dr+ ) + 

d¢_ 2 
( dr ) 

v 
+ _± ¢ 2 

€ + 
+ t(£ + 1) (¢ 2 + ¢ 2) 

2 + -0 n n r 
n 

If we consider variat.ions of ¢ +' where ¢ + is assumed to be continuous wi t:h 

a piec:e\>Tise continuous fi.rst derivative, subject to the constraint. that 

00 

I (¢+2 
0 

2 
+ ¢ )dr = 

- n 
1, then the variation of H is 

co 
oH = J 2 { 

0 

Here 

of d.¢ +/drn' 

-- + ' 2 

v 
( + + 

€ 
£(£ + 1) )¢ = 

2 + dr · 
n 

r 
n 

bo 
+ A I 

0 

ro indicates the values of r 
1. d¢ n 

and 6i( dr+) are the changes 
n 

at 

in 

and ri + I vI in the limit of vanishing ). 

+ 2f 
+= 

the points of discontinuity, 

d¢ /dr between r. ~ I ')) I + n 1. 

If the parameter A is ~wje 
' 
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then the condit~ons for an extremum in H are that the radial differential 

equation for ¢ + ·be sat~_sfied and d¢ /drn be continuous. In a similar manner 
I 

the variations of H with respect to variations of ¢_ lead to the radial 

equations for ¢_ The value of H obtained for this extremum is in fact ~€. 

If we novr use trial wave functions ¢ (o) 
+ 

and ¢_(o) that (a) satisfy the 

0 differential equations for an energy W , (b) are continuous for all values of' rn' 

and (c) have continuous first derivatives except at one point r 0, then the true 

T eigenvalue W may be expressed as 

- T 
w 

+ 

+ 

00 
(¢ (0)2 ¢_ (0)2)drn 

00 
¢ (o) {-

d2¢ (o) v 
¢ (0) J J + + + = '2 + 

0 + 0 + - dr € + 
n 

l 

' d¢_(o) 
.e~.e + ll ¢ (0) ¢;..(0) 

df 

~ g+- + 2f + ¢ ( 0) ___:!::: dr 2 n +- drn - dr r n 

i 

co I 

J ¢ ( 0) ~ -
0 - i 

L 

d2¢ (0) v 
+ _:: ¢ (0) + .e(.e + 1~ ¢_(o) 

dr 
2 € - dr 

2 
n n 

d¢ (0) 

- 2f + 
dr 

n 

.. ¢ (0) 
·+ 

df+-1 
dr 

n 
dr 

n 

d¢ (0) 

( d; 
n 

+-

) 
d¢ (0) l 

+ ¢ (.0) ( r ) !i_ ( ) \ 
- 0 10 dr r n 

j 

n 
.J 

' 

/ 

¢ !( 0) 
g+- + 

n 

As a result of condition (a) and the extremal nature of H for this solution, 

this may be revrritten as 
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) 
d¢_(OJ 
dr ) } 

n 

where· 5 is a pro:ameter of smallness that indicates the deviation between the 

trial and. true solutions. 

The integration for the bound s·tates can be divided into two regions, 

with r as the common boundary" m 

f d 1 ~. (o) can be speci. ie , name y, ;,u + _ J 

At this. point four i.ndependent quanti.ties 

OJO+(O'ldrn' ¢=(o), and d¢_(o~drn" 
By choosing appropri.ate linear combinations of the two regular inner solutions 

and the two bounded ou·ter solutions, three of the four q:uanti ties can be made 
12 

For the correc·t eigenvalue the fourth quantity will also continuous at r o 
m 

be continuous. -For a trial eigenvalue in general one of the four quantities will 

not be continuous, however. If, for example, we allow this discontinuity to 

occur in d0 (o)/dr then a better approximation to the correct eigenvalue, . + / n ' 

Wn , is expressed in terms of the tr::!.al eigenvalue and the value of the function 

at r as 
m 

¢ (o) 
+ 

-(;d)J}o)'l J 
dr 1 

n I _J 
' -lr+lrl· 

J ¢ (0)2 · + ¢ (0)2 dr 
+ - n 

By using this new improved eigenvalue to obtain a new trial solution and thus 

iterate the solution, we can ~onverge upon the correct eigenvalue and consequently 

the correct eigenfUnctiono 

. ,_ 
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This variational procedure is not restricted to the ground state, but 

may be applied to the higher excited states as well. The determination of a 

specific state merely requires the specification of a boundary condition on the 

number of nodes allowed in the solution. 

For the equal-mass case the development given above is equally applicable. 

In this case the ¢+ and ¢_ equations are not coupled. Bound states, however, 

occur only for the ¢+ solutions. It therefore suffices to impose on the 

development given above the added constraint ¢_ ~ 0. 
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APPENDIX 

In this appendix we obtain explicit analytic expressions for the 

first=order dynamic corrections for the case in which the mesonic wave functions 

are assumed to be those used in the text, i.e., 

e 

and 

= A e 

The dynamic correction terms are of the form 

= = 

and - ~ 

f .. 
l.J 

= =f'.. = 
Jl. 

~ 

J \l "'· n l. 

J 
<>+ 

"'· \l '\jr. d-r 1. n J ll ' 

where, from the previous development, the ind~cated differentiations, -be carried out with the mesoni.c variable R fixed. 
ll 

For the symmetric case, we may write 

= 
r Tl 

+ .2L. 
2 

q+ ~ 
+ -;::;- \l ( r 11 ) tanh 

c. n n 
~ (r ;) n n ' 

-\l , · must 
n 

~ ~ 

where e is a unit vector in the direction of r For reference we 
r n 

n 
designate these five terms by the subscripts A, q, p, T}, and ;,:·respectively. 

·.•' 



Similarly for the antisymmetric cases for r > r , we have n c 

dA· 

f 
1 -A dr + 

- n 

q 

+ 2 
~ q_rn~ 
\1 (r ~) coth 2 n n 

r g dp ~ n ... 
- 2 drn 

p 

2 
V (r g) 

n n .. -

while for r ~ r , we write n c 

{ ( x .. 
dA 

dr -
n 

1...) 
r 

n 

rn~ dq_ q_rn~ 
+ - th ---:~ 2 dr co 2 

n 

' 

In order to obtain the expressions for and f .. 
~J 

the following 

identities are useful: 

f 2 f 2 
2 2 

- 2 ? (r £)·? (r £) :;::: + - 2flf2 
g + !l 

n n n n 1 2 2 2 ' g - ~ 

f 2 f 2 
2 2 

~ (r ~) ·~ (r 1:1) :;::: + + 2flf2 
g + !l - 2 

n n n n 1 2 £2 2 ' - ~ 

~ (r g)•~:(r 1)) . - f2 - fl ' n n n n 

-+ ~ 1 2 . 2 . 
\l(r£)·e :;::: 

£2 2 [ £(1 - ~ ) + (f2 - fl)~(g - 1)) ' n n r · n - ~ 

V (r 11) .; 1 
f(f2 - fl) £(1 - ~2 ) 2 

:;::: 

2 2 + ~(g - 1)} .. 
n n r n g - n 



UCRI,-;8390 

-~39-

Using the above expressions~ 'liTe may evaluate each of the terms that occur. 

For g++ ·we obtain the sum of the following terms: 

dA 2 

IA A 
+ ( 1 + ) = 

A+ 
-· ' dr 

' n 

2 dp 2 r. 
I 

+ 
N 

n ( + ) (E4. CO E2 C2) = 4 dr "' ' p,p 
n 

2 dq 2 r 
I + N 

n ( + ) (E2 cv2 E C3 ) = T dr 
~ 

q,q 0 4 n 

'2 
dp dq r 

I + 
~ N n ( + ) ( + ) (E3 cl El c3) = 2 dr a:r- -pq n n 

+ 1 dA+ dp 
I = - N ( 

A+ dr )r ( d + ) (E3 CO = El C2) ' p,A n r n n 

1 
dA dq 

I + N ( + )r ( + ) (E2 cl E0 C:) q,A = 
A'+ dT a:r- = 

n n n 

I~ 
+ 

0 = ' ,Tj 

+ 
= N rnq+Cl 

(E
3 

"" E1 ) 
I = 2 ' TJ,P 

I + N r q cu 
2 

(E2 = EO) 
= 2 ' Tj,q n + 



·~ 

+ 
I 

T),A 

rs,s 
+ 

I + s, q 

= 

== 

I + = s,P 

1-
. dA 

+ 
N ( A drn ·+ 

2 
p+ 

( f 2 
4 1 

N r p E
2 n + 
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)q+ Cl(E2 -: EO) ) 

2 - 2f1f 2 N [ E2C0 EOC2. - 2EOCO]) + f2 + J 

' 

where N = 
-1 

(E2 C
0 

- E0 C2) • The subscripts indicate the pairs of terms 

involved. 

A similar set of terms is obtained for g __ For rn > r 0 these differ 

from the abqve not only in that p + and q+ are replaced by p _ and <l .. ·, 

but also by the interchange of c2n and C'2 • n For rn < r 0 

changes occur: 

(a) 

(b) E is replaced by E 
n+2 ' n 

(c) in the last two terms p+En is replaced by E p - n+2 
and 

(d) Is,s has the form 

several additional 

2 E r n+l ' n 
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2 

I~,E= = ~ ( fl2 + f22 = 2flf2 N [ E4Cu0 + E2cu2 = 2E2Cu0 J ) 

In the calculation for f , only those ti:berms containing either 
+= 

'9 (r ~) or V (r T\) give a result different from zero because the others n n -n n 

lead to integrands odd in the variable ~ o Thus we find 

where L: p . = p . + p ' .E = ( q + q v2 ' and 6. = ( q - q ) /2 0 The argument + = + = + -'/· 

of the terms En is (L.: p ) o This expression is valid for r ~ rc; f'or 

r<r . c ' E becomes E 
1 

o 
n n+ 

Finally we obtain the expression for 

times the sum of the terms 

' 

= ) 
' 

/ 
( 



~ 

,,. 

,. 
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1 dA p + - (E2 - EO) [C1(i:) ~ c
1
(6)] gA, ~ .;,A dr 2 ' + n 

1 dA p+ 

g~,A = =-
dr (E2 - EO) [ c1(E) - c1 (6) ] 

A 2. n 

rp dp 
n - + 

(E3 ~ El) [c1(i:) - c
1
(6) ] 

~J~ = +-4- dr J 

n 

rnp+ dp - (E
3 

- E1) [C1(E) - c1(A) ] g~,p = --r dr J 

n 

r P dq 
n - + (E2 - E0) [C2(E) - c2(6) ] gq,~ = - --r J dr n 

1 dA g_+ -
El [c

0
(E) g c

0
(6) ~ c

2
(i:) + c

2
(6) ] gTJ,A = A dr 2 ' n 

r q dp 
n - + E

1 
[c

0
(E) + c

0
(6) ... c

2
(E) - c2(6) ] 

~,T] = - --r dr J 

-- n 

rnq+ dp 
= 

~,p --4- dr E2 [ c0(E) - c
0
(6) - c

2
(E) + c2(A) ] 

' n 

r q dq 
n - + E1 [c1 (E) + c1 (8) - c

3
(E) - c

3
(t:.) ] gq,Tj = ~ 'd'r" ' n 

rnq+ dq -
~,q = --r;- ar- E1 [C1(E) + c1(A) - c

3
(i:) - c

3
(A) ] . 

n 

Again, for r < rc' modifications 
1 dA 

such as have already been pointed out must be 
dA 

1 - 1 made: A dr- is replaced by A- -dr - -r , E by E 1 , and p E n n+ - n n n n 2 
by p_En+l ·- r 

n 
E in these expressions. 

n 
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-FOOTNOTES 

1. Alvarez, Bradner, Crawfordj Falk=Vairant, Good) Gow, Rosenfeld, Solmitz, 

Stevenson, Ticho, and Tripp, Phys. Rev. 105, 1127 (1957) •. 

2. M. Born and J. R. Oppenheimer, z. Physik 46, 814 (1928); Z. Physik 50, 347 

( 1928) 0 

3. Cohen, Jud.d.tj' ~ ap,doRQ.dGtell" Mu-Mesonic Molecules: IL Molecular= Ion Formation 

and Nuclear CatalysisJ UCRL~8391, May 1959. 

· 4. The ground state and some of the excited states for this system have been 

studied, e.g., by E. A. Hyllerass, Z. Physik 71, 739 (1931); Edward Teller, 

z. Physik 61, 458 (1930); and Bates, Ledsham, and Stewart, Phil. Trans. Roy. 

Soc. London, Ser. A, 246, 215 (1953~4). 

5. E. A. Hyllerass, loc. ci.t. 

6. This form was used :ln treating tJ:ie hydrogen molecular ion by V. Guillemin, Jr o 

and C. Zener, Proc. Natl. Aead. Sci. U.s o 15, 314 ( 1929). 

7. A. Da.lgarno and R. McCarroll, Proc. Roy. Soc. (London) A237, 383 ( 1956). The 

results ofT. Y. Wu, J. Chern. Phys. 24, 444 (1956) and T. Y. Wu and A. B. Bhatia, 
. 

J. Chern. Phys. 24, 4.8 (1956) are in disagreement with ours. 

8. If such a conflict ex:Lsts, the second solution will be of a logarithmic. type. 

By generalizing the functions v+ and *= to the form ~ = a ~ + ~ * + = 

and including in ·the Hamiltonian those terms in g++' and that 

are independent of derivatives of p, q, etc., one could obtain the exact 

binding energy as rn ~ oo J without changing the form of the differential 

equation for the X~ s. Because physical processes would still involve 

unknown terms of order e2, it was felt that the additional labor involved 

in such a treatment was not justified. 
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10. I't might be pointed out that this asymptotic form has a defect in that the 

meson current is zero. This is consistent with the assumption that the 

meson velocity about the nuclei is large compared with the nuclear velocities, 

and therefore, in the region whe~e the particles interact strongly, suq~ 

additional velocities represent a small correction. A correct asymptotic 

form for the plane-wave part would be 

' 

· where o/m1 = k ym~ and f is the wave function for the meson about 

Nucleus 1. Our wave func-tion thus neglects kg = (m~m1)k. 
11. It is perhaps of interest that this result is the same as that which would 

have been obtained for nonidentical particles. The presence of the meson 

on one of the two particles provides some basis for distinguishing between 

them. The result follows directly from second quantization of the system. 

12. If, as was done for the bound states, the integration is divided into two 

regions for free states with WD ~ W ~ WP' three bounded outer solutions 

exist (two sinusoidal ones associated with 'ljrD and a decreasing-exponential 

one associated with 'ljrH). This gives the necessary freedom to make all four 

quantities continuous at r 
m 



UCRL-8390 

FIGURE LEGENDS 

Fig. 1. Static molecular~ion potentials for the lowest symmetric (w ) .+ and 

anti symmetric (W J mesonic states. Here 8 indicates values obtained 
4 - . 4 

by Teller, and 0 the exact values of' Hyllerass. 

Fig. 2. Mesouic wave-fUnction parameters, p±(r) P±(r)/r and ~(r) = ~(rJ!r, 

which minimize the static Hamiltonian. For the antisymmetric states, 

d.i.fferent curves are presented for r < r , c 
r>r c (see text). 

Fig. 3. First=order dynamic corrections to the molecular-ion potentials for the 

equal-mass case. 

Fig. 4. First-order dynamic corr'ection terms to the molecular-ion potentials 

Fig. 5. First=order dynamic coupling terms between the lm..rest symmetric and 

antis:~etric molecular-ion states for the unequal-mass case (m~m2 = 2). 

.. 
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A: Make$ any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 
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mation, apparatus, method, or process disclosed in 
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