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ABSTRACT 

The methods developed in the preceding paper are applied to the study 

of the behavior of ~ mesons in liquid hydrogen. Numerically evaluated energy 

eigenvalues for the bound states of the various molecular-ion configurations 
~· 

are presented. Phase shifts and cross sections for the scattering of mesonic 

atoms from hydrogen and deuterium are given. It is shown that in the neighborhood 

of 0.2 ev the scattering of (d~) atoms from protons exhibits a Ramsauer-Townsend 

effect with an anomalously small cross section occuring in this region. The 

existence of this effect provides an explanation for the appearance of "gaps" 

in the experimental observation of the catalytic process. The rate of exchange 

of mesons from protons to deuterons in pure deuterium is calculated along with 

the rates of formation of the (p~p)+, (p~d)+, and (d~d)+ molecular ions. It 

is shown that the predominant mechanism for the formation of the molecular ions 

is dipole electron ejection. These results are shown to be in agreement with 

available experimental data. A semiphenomenological treatment of the (pd) 

nuclear reaction is also given. A rough estimate of the ?'-emission process 

indicates that the dominant mode of emission is from the singlet proton spin 

states. 

* This work was performed under the auspices of the u.s. Atomic Energy Commission. 
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I. INTRODUCTION 

The theoretical possibility that ~ mesons could greatly enhance the 

nuclear fUsion of hydrogen and deuterium so that it might be observed experimentally 
1 . 2 

was first suggested by Frank and later was estimated by Zeldovich. Later, this 

fusion was in fact observed by Alvarez et al. in a liquid-hydrogen bubble chamber ' 

in a process in which the energy of fusion was given to the ~ meson. 3 Still later, 

y rays from the reaction were detected by Ashmore et al. with counters, again in 

liquid hydrogen.
4 

The process has been fUrther investigated theoretically by 
5 . 6 . . 

Jackson and by Skyrme, who have also given phenomenological descriptions in 

which the reaction is assumed to proceed through the following steps: 

(a) A fast ~ meson is rapidly slowed down and captured to form a hydrogen 

(p~) or deuterium (d~) mesonic atom. (Because the experiments have been carried 

out with much more hydrogen than deuterium, it is much more likely that hydrogen 

mesonic atoms are formed.) 

(b) The neutral mesonic hydrogen atom will then move about with thermal 

energy, colliding with the atoms of the liquid. It may then undergo elastic 

scattering, exchange of the ~ meson from a proton to a deuteron, or formation of 
+ + I 

either a (p~d) or a {PilP)- molecular ion •. --In either.-case of molecular-ion 

formation, no fUrther configurational change is likely to occur because the ion 

carries a positive charge. It is expected that the exchange from proton to 

deuteron is much more likely than the (p~d)+ formation. Because of the difference 
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in the reduced mass of the meson in the (p~) and (d~) atoms, the exchange of the meson 

from proton to deuteron will release about 135 ev; the inverse process therefore 

does not occur at thermal energies • 

(c) The (d~) atom formed may in turn form either a (d~p)+ or a (d~d)+ 

molecular ion, with (d~p)+ generally more likely because of the greater abundance 

of hydrogen in the chamber. 

(d) Because of the close proximity of the two nuclei in these molecular 

ions, nuclear fusion can occur in a time comparable with that of the lifetime of 

the meson. 

(e) In some of these reactions, which normally proceed via y emission, 

the Y ray may be internally converted with the ejection of a fast ~ meson. This 

~ meson is then free to repeat the cycle, thus playing the role of a catalyst for 

the reaction. 

In all of the above steps there is of course a competition with the 

natural decay of the meson. The observed fusion probabilities indicate, however, 

that the various steps in the process have rates that are comparable to or greater 

than the natural decay rate of the meson. In the experiments of Alvarez et al., 

the number of rejuvenated mesons produced per incident meson was measured after 

adding various amounts of deuterium to the hydrogen. 2 It was found that for 

small amounts of deuterium the fraction of mesons rejuvenated increased with 

increasing concentration, but that for concentrations larger than a few percent 

no further appreciable increase occurred. In addition, it was found that many 

events were observed in which the point of production of the fast meson was a 

considerable distance from the end of the incident meson track. It was also 

observed that the number of long gaps diminished with increasing deuterium 
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concentration. These gaps were di~~icult to understand on the basis o~ the above 

scheme, and a more re~ined calculation o~ the phenomena involved seemed necessary. 

The experiment o~ Ashmore et al. yielded in~ormation on the time" 

distribution o~ the y rays produced, as measured ~rom the time o~ injection o~ the 

. 4 --------initiating meson into the chamber. These authors made an analysis o~ thi_s -------

distribution which gave the number o~ y rays per incident meson. This number, 

together with the above result ~or the number o~ ~ast mesons per incident meson, 

can be used to obtain a value ~or the internal conversion coe~~icient in the 

process. 

Because these experiments created considerable interest, and since all 

o~ the previous theoretical investigations7 were essentially qualitative in nature 

and the explanation o~ the gaps was not completely clear, we ~elt that 

quantitative calculations o~ all the steps in the process would be worthwhile 

in ~urther understanding o~ these experiments. 

We have carried out such calculations based on a variational approximation 

to the wave ~nction o~ the three-body system. This approximation is described 
8 

in a previous paper which will hence~orth be re~erred to as I. The solutions o~ 

the equations developed therein were obtained numerically with the use o~ an 

IBM-701 digital computer. In this manner we obtain the eigenvalues o~ the energy 

~or bound states, and the elastic- and exchange-scattering cross sections ~or 

the ~ree states. From the calculated wave ~ctions, we have determined the 

rates o~ molecular-ion ~ormation in the (p~p)+, (p~d) 
+ systems 

using perturbation theory. In addition, we have made a more detailed investigation 

into the nuclear processes involved in the + (p~d) reaction and have obtained a 

somewhat di~~erent time dependence ~or the y rays than was obtained by Ashmore 

et al. using the previous phenomenological theory. Speci~ically, we have ~ound 

that the nuclear reactions will take place predominantly ~rom the singlet spin 

states o~ the two protons involved and not ~rom the triplet states, and that the 
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. reactions will proceed from various spin channels quite independently. Our 

re-analysis of the data of Ashmore et al. has then led us to a considerably lower 

value than they had obtained for the number of r rays per incident ·~ meson. 

II. SOLUTION OF THE BOUND STATE AND SCATTERING EQUATIONS 

A• Numerical Technique 

Solutions to the radial differential equations for the nuclear wave 

J functions, Eqs. (2) of I, were obtained numerically by the use of the procedure 

of Milne9 with a four-point integration formula. I~ this method the solution is 

advanced to successive grid points by first obtaining predicted values for the 

first derivative, y' of the wave function, . n' y , at the new grid point by the 
n 

use of the "open" formula: 

, (P) 
Y n+l = y' + .!! 6r( 2y" n-3 3 n 

where is the spacing of the grid points, and y11 as the 
n 

second derivative of the wave function. These are then used to obtain predicted· 

values of the wave functions by the use of Simpson's rule: 

(P) 
Yn+l = y + ~ 6r(y' (P) + 

n-1 3 n+l 4y' + y' ) • 
n n-1 

These predicted values are in turn used in the differential equations in order 

to calculate predicted values for the second derivatives. From the predicted 

values, more accurate corrected values for the first derivatives are calculated, 

again by the use of Simpson's rule (closed formula) :1 

' (c) 
Y n+l = , 1 /\-( " (P) 

Y n•l + 3 .L..Y.· Y n+l + 4y" + y" ) • 
n n-1 

These corrected values of the first derivatives are assumed to be their true 

values. Finally, d If 

an Y n+l are recalculated by'the use of the corrected 



~· 

UCRL-8391 

-6-

value of y'n+l" Starting values for the functions at four grid points are required 

in order to begin this integration scheme. For small values of r , these values 

· were obtained by use of the power-series expressions for the wave functions given 

in Section II C of I. For this purpose it was necessary to express the various 

~uantities appearing in the differential equation in terms of power series valid 

near the origin. In general, five terms in the power series were fitted to each 

of the required functions. 

In a classically forbidden region, this numerical integration technique 

is stable about a solution with monotonically increasing magnitude. If one 

attempts to obtain a solution with decreasing amplitude propagated rounding errors 

will introduce solutions with increasing amplitude, and these will eventually 

dominate over the desired solution. For this reason, in the case of bound states 

10 (and certain free states in the unequal-mass case ), it was necessary to calculate 

the wave functions for large r by integrating in the direction of decreasing r. 

In these cases, starting values for the wave functions at an arbitrarily chosen 

large value of r were obtained by the use of the asymptotic behavior of the 

solutions for r ~co. For the calculations, this large value of r was chosen as 

20 a , where a is the Bohr radius in the mesonic hydrogen atom. For values 
~ ~ 

of r less than r 0, where r 0 is in the vicinity of the classical turning point, 

the integration was done in an outward direction, while for r larger than r 0, 

the inward direction was chosen. 

In this numerical work the integration steps were chosen to be 0.05 a • 
~ 

In Appendix A we give a discussion of a test problem that was used to check the 

accuracy of the problem codes. The equal mass and unequal mass cases were coded 

independently, and the test problem was constructed to convert the two uncoupled 

differential equations of the equal-mass case to coupled equations similar to 
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those occurring in the unequal-mass case. Aside from rounding errors, the two 

methods of solution agreed completely, thus providing a good check on the two 

~ .. } programs. In addition, the unttarity current developed in I, Section II D, was 

. 

computed at various points and was found to be zero within the rounding errors, 

as it must be for the regular solutions. 

B. Bound States 

The bound states of the system were obtained by the use of the varia

tional procedure of I, Section IV. As was stated there, the (p~p)+ and (d~d)+ 

+ systems involve only the symmetric states, whereas the (p~d) case requires 

the solution of the coupled equations. In Table I we give the computed eigen-

values for the binding energy, W, of all the bound states for various angular 

momentum, L, for each case. The binding energies given are to be compared 

to zero for a totally separated system. Also included in this table are the 

binding energies for the atoms. 

0 
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TABLE I· 

Eigenvalues for various bound states 

System L W(ev) 

PJ.l 0 2530 

d 0 2664 

0 2771 

1 2623. 

0 2878 

1 2754 

0 2986 

0 2845 

1 2887 

2 2746 

In Fig. 1, we give .the solutions ¢ + and ¢ _ for the .t.?:O and .6,::::,1 bound :states in the 

+ (p!J.d) case. In the vicinity of the minimum in the V+ potential (r ..,..J 2), 
n 

¢ _ is considerably smaller than ¢ + , while as rn ap~roaches oo , I¢ .. I 

approaches j¢+1; this results from the greater binding of the meson on the 

deuteron than on the proton (see I, Section III A) • 

c. Scattering States 

We have used the methods of I to calculate the wave fUnctions for the 

·~ free states <Df the various systems. In the ~-t-meson catalysis experiments, the 

energies of interest are quite small, however, and it is necessary to consider 

corrections to these solutions. The energies of interest range from something 
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less than a few hundred electron volts down to.thermal energies in liquid hydrogen 

( rv J/4oo ev). 

The num~rical calculations were carried out to a distance r = 20 a 
n 1-1 

• for several reasons. The potential at this distance is quite small, and it was 

found that beyond this point, it is well represented analytically, therefore 

analytic corrections for r > 20 a 
n 1-1 

could be obtained. In addition, the memory 

storage in the numerical calculations limited r to a value near 
n 

20 a • 
li 

The 

most important part of the long-range f'orce, varying as -4 r , (which is given 
n 

exactly by se.cond order perturbation theory) has been calculated by Dalgarno 

and Lewis. 11 They find 

where 

finds 

V(r ) = - 9/2£r 4 
n n 

€ is the parameter defined in I. 

4 that asymptotically V ~ .,.4/€-r;;, 
For our variational wave function, one 

which is close to the exact result. To 

obtain the correction to the phase shift resulting from the wave-function 

integration from r = 20 a to oo , we have used the potential obtained by 
n 1-1 

Dalagarno and Lewis. Because the potential is small in this region, we anticipate 

that the correction to the phase shift will also be small. However, as we are 

interested in the limit of very small energy, it is not possible to use either 

the Born or the WKB approximation to obtain estimates of the corrections, because 

neither is valid in this situation. Rather, we have chosen to use a method of 

variation of constants to provide the approximate solution desired. 

To develop this approximation for S-wave scattering, we define the 

variables A(r),(e)r_ by the equations: 

v(r)/r = ¢(r) =- A(r) sin [ kr + 5{r)] 
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and ( 1) 

d~~r) = kA(r) cos (kr + o(r)] 

where k is defined as [(w + 1- 0.25€}/€]~2 These equations then imply the 

constraint: 

~ sin (kr + o(r)] - ( do + A cos (kr + 5 r)] dr = 

In addition; the Schroedinger equation, 

leads to 

d2,0 
2 + 

dr 
[k

2 
- V(r)]¢ = 0 _, 

0 • 

dA do k dr cos (kr + o(r)] - kA sin [kr + o(r)]·ar = VA sin [kr + o(r)]. 

Thus, we obtain 

do - V(r) sin2 [kr + o(r)] (2) dr = ' k 

and 

dA AV(r~ sin ( 2[kr + o(r)] } dr = 2k 

In our problem, the numerical solution of the equation for r = 20 will provide 
n 

the boundary value for o(r) 12 for r > 20. The true phase shift will then be 

given by o = lim o(r). It should be pointed out that this approach is not 
r -+ oo 

correct for the (p~d)+ system if exchange is energetically possible, because in 

this~case the asymptotic form is not given correctly by Eq. (1). However, it 

is only for very small energies that the present corrections are necessary, 

and in this case the equation for ,0d for rn ? 20 is essentially uncoupled. 

4 Now, we have V( r) ~ cjr , and a posteriori one can show that o - o( 20) 

is much less than 1, so that we may write 
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2 sin [kr + o( 20)] 
4 

r 
dr , 

cos u d 4 u 
u 

- sin 
00 sin u 

( 2020) J . 4 
.. . 40k u 

du ] } • 

In the limit E ~ o, it is possible to solve the Schroedinger equation 

exactly, with the result that we obtain 

.¢(r) == Ar sin ( .££. + e) 
r 

where A, e are constants. From this, for, (C/202 ) << 1, we obtain an 

approximate value for a , the scattering length, 

a == a(20) 2 { a(20) + 3·20 [a(20) + 20] ) ' 

where a(20) is the scattering length computed from calculated values of .¢ and 

~/dr at r == 20. Because we have a = lim 5/k , one finds that the 
1' n n k~6 

approximate solution of the Schroedinger equation agrees with the exact solution 

·in the limit E ~ o, and for cjt2o)2 << 1. The latter requirement is necessary 

in order that we may drop o(r) - 5(20) in the ~rgument of sin2[kr + o(r)]. 

In Appendix B we analyze the additional effects on these phase shifts 

which might be expected because of the presence of electrons. It is shown 

there that for the energies of interest these contributions are negligible. 
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In Figo 2 we have plotted the phase shifts in the (p~) + p+ and (d~) + d+ 

systems both for the symmetric (+) and antisymmetric (-) wave fUnctions 

including the above correction to the phase shifts. In accordance with the 

usual convention we have set o = 0 for k = 0. For several values of k, an 

individual phase shift can have the value n1, so that its contribution to the· 

scattering cross section will be zero. However, in general, the second phase 

shift for these systems will still contribute to the cross section. 

The (d~)+ p+ system has quite different properties. For small energies 

only one phase shift is necessary to describe the scattering state. The 

be~vior of this phase shift for small energies is given in Fig. 3 both with and 

without the asymptotic correction. For small k, the phase without correction is 

small, leading to a scattering length of only ~ 0.8 a 
~ 

The correction .is 

important in this case and, as one sees, with the correction the phase shift 

actually changes sign for k "-' 0. 02 (energy -::::: 0. 2 ev). This therefore leads 

to a Ramsauer=Townsend effect13 in this energy region, and we would therefore 

expect an extremely small cross section for scattering. The various scattering 

cross sections as calculated are given in Fig. 4. 

We feel that the anomalous behavior of the (d~)+ p+ cross section gives 

the explanation for the gaps that have been observed between the end of a 

~-meson track and the point at which the nuclear reaction occurs. The inter-

pretation of the gaps is that the meson is slowed down, captured by a proton, 
1:\ 

and subsequently exchanged to a deuteron as discussed in the introduction. 
lif'a..r . 

Th~s neutral mesonic atom acquires an energy of about 100 ev in the exchange 

and is subsequently slowed down to very low energy. However, as it reaches the 

Ramsauer energy the scattering cross section becomes very small and the atom ·-... 

can travel large distances without effective collisions with the protons of the 



.. 
.. 

UCRL-8391 _ 

-13-

liquid hydrogen. The only significant collisions for stopping the atom would be 

those with deuterons, for-which there is no such anomalous behavior, and those 

with protons which result in the formation of the (p~d)+ molecular ion. The 

latter is small, as will be seen, while the former will be small for the deuterium 

concentrations in natural liquid hydrogen. Increasing the deuterium concentration 

by using hydrogen enriched with deuterium should quench these gaps, as is indeed 

observed. The cross section for scattering (d~) atoms by deuterons at low 

. -20 2 energies is found to be ~ 40 x 10 em • The density of the liquid hydrogen 

'22 /. 3 . -4 
is ~ 3.5 x 10 atoms/em , so that for a deuterium concentration of 2 x 10 

(natural hydrogen), we obtain a mean free path -v 3 mm, while for a concentration 

of 1%, the mean free path is 0.07 mm. These results are in reasonably good 

_agreement with the experiments on the quenching of the gaps with increasing 

14 deuterium concentration. 
j 

Although the cross sections for the various processes are of general 

interest, the exchange cross section, apd, for (p~) atoms incident on deuterons 

is of great importance in the phenomenological analysis of the dependence of 

the rate of catalysis on the deuterium concentration. This exchange cross 

section is inversely proportional to the incident velocity for small energies. 

It is to be expected that the (P!-1) atoms will rapidly slow down and will then 

exchange at low energy with· deuterons to form ( d~) atoms. Thus the rate of 

such exchange is of great significance. From our calculations, we find 

' 

which leads to an exchange rate in pure deuterium of 
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It will b~ seen in the next section that when this rate is taken in conjunction 

with the molecular-ion formation rate, one obtains reasonable agreement with the 

experimental dependence on deuterium concentration. 

III. MOLECUlAR-ION FORMATION 

A. (p!-1) + P + -+ (P!-lPt 

As has been shown in the phenomenological analysis, it is to be expected 

that the competition between molecular-ion formation and the exchange process 

discussed above will determine the dependence of the nuclear reaction rate on the 

deuterium concentration (cd) • We have computed the rates for those mechanisms 

that seem most significant. These include radiative formation of the· molecular 

ion and. the ejection of an electron from its orbit in the hydrogen molecule in 

which the "freen proton resides. In addition, we have considered in a rough way 

such processes as three•body collisions, and have found their effects to be small 

compared to the most significant of the mechanisms treated here. 

We will first treat the molecular-ion formation in which an electron is 

ejected into a p state of the continuum as the nuclear-mesonic system makes a 

transition from an incident s state to a bound p state. This will turn out 

to be the dominant formation mode. The perturbation Hamiltonian will be chosen 

to be -.... 

Jl~ 2 1 1 1 1 
= - e + - - - - -

rel re2 r r 
el-l ec 

where the rei for i = 1, 2, and 1-1 are the distances from the electron to 

the two nuclei, and to the meson, respectively. We will assume that the electron 

is in the Coulomb field of a fictitious charge at the center of mass of' the three 

"i11 particles (in addition to the field of' the other proton in the hydrogen 

molecule), so that e21r must be subtracted from the perturbation Hamiltonian, I ec 
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where r . is the distance from the electron to the center of mass of the three ec 

particles. Because the three particles must be very close to each other as 

compared to the size of the electron orbit in order that the molecular ion be 

formed, the precise choice of the perturbation is not important. As an approxi-

mate solution to the unperturbed electronic motion in the bound state, we have 

chosen15 

= ljr I 
e 

r ec 
+ e 

' 

where r is the distance from the electron to the other charge center in the ep 

molecule, and 

1:::. = (1 + 
1 2 ' 

P + 3 P ) e~(-p) ' 

where p = Z' r Ia pc'. e is introduced to normalize r is the spacing 

between the nuclei of the molecule, a e 

pc 

is the electronic Bohr radius, and Z' 

is the effective charge. The best value for Z' is about 1.19, and for 

r /a about 1.40. This leads to 1:::. = 0.677. This wave function gives 
pet e 

reasonably good agreement with the binding energy of the hydrogen molecule and 

seems to provide the principal features of that system. The introduction of a 

Z' takes some account of the binding of the electron provided by the other 

proton in the molecule. We will choose the outgoing-electron wave fUnction to 

be a Coulomb wave function. In this case, presumably Z' will lie somewhere 

between 1 and 1.19, approaching 1 as the energy is increased. (It would be 

expected that Z' approaches 1 as the DeBroglie wavelength becomes short 

compared to the distance between th~ protons. Thus, Z' approaches 1 as the 

kinetic energy becomes large compared to the binding energy.) 
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Now, after expanding 1/r . in the usual power series in ( r /r
1
. ) n , 

el. & 

we obtain for the dipole contribution to ~int: 

(I I ~int I F) = 

I* ri cos eie t/] 2 [I d\ * X '~~'e 2 
... e '!!I fF I: e:i 

re i 

r. 
]. 

2 I* 2 2 V F / X I r dre <We *e (r/ri - r./r ) cos 9ie ' 0 
e I e e 

where *e is the electronic wave fUnction for the initial, I , and final, F , 

states, j is the corresponding wave :function for the three~body system, €. 
]. 

is +1 for the two protons and -1 for the ·ll"'meson, eie is the ahgle between 
-+ -+ 3 
re and ri' and d T represents the volume element of the three-body system. 

The second term gives a contribution of order kr1 when compared to the rate 

obtained when the final state is an s--state (which will be treated later) 

and is therefore negligible. The integration over the part of the wave 
-+ 

function centered on r can be carried out exactly, as is shown in Appendix Co c 

The other term has been obtained by an approximate numerical integration as is 

also indicated there. Theri we may write 

(I I ~int I F) 
2 

= - 41fe i 

where eik is the angle between ;i and ke the momentum of the ejected 

electrons, and I(k ) e is the value of the integral over the electronic wave 

function, Le., 
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I(k ) e 
= J r-2 [ 

-ar 
e + 

Thus, to evaluate (I I J:lint I F), we need the mtrix element of the dipole moment 
... 

of the three-body system, d , with respect to_the center of mass in the direction 
-1> 

of electron ejection k • In Appendix C, it is shown that e 

where we have chosen the final bound threeabody state to be quantized with 

a:r1gular momentum (L)k = 0 o The final bourld. state of the system is a p state 

and is of the (+) type (the·(-) type having an almost completely repulsive 

potential and consequently no bound states) so that the spins of the nuclei must 

be in a triplet configuration. The initial state is an s state of the (-) type, 

which thus makes the initial state also antisynnnetric in the nuclear spatial 

variables and again the spin state must be triplet. As discussed in I, the 

incident wave fUnction must then be chosen asymptotically as: 

Thus, because we have (f11 - f 12) -1 i8 
= k e - sin ea. , we find that asymptotically," 

r,::' -1 18~ 
/"V 1 2 (kr )e ·sin (kr + 8..,) ·v-
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The initial X wave function must therefore be normalized asymptotically to 

..(2' sin {kr + 8_). Finally, from the matrix element for ~ we obtain the 

total rate of molecular-ion formation in pure hydrogen as 

R (pJ.Lp) = ' 
( 3) 

where ve is the velocity of the electron and N is the number density of protons 

in liquid hydrogen. Here we have integrated the isotropic distribution in the 

electron direction over all angles. ~ and have taken into account the fact 

that the triplet state occurs only in three-fourths of the. collisions. 

In order to evaluate ~' the integration over the meson variables was 

carried out analytically, and the final integration over rn was done numerically 

for r b 20. The contribution t0 the matrix element for r > 20 was calculated n n 

analytically by the use of the asymptotic form of the X9s obtained from their 

values and derivatives at r = 20. For an incident kinetic energy near zero, 
n 

we find ~ = 25.0 From the binding energy of the (pJ.Lp)+ system in the 

p state, we find an energy release of 93 ev in the reaction. Because the 

electron is bound in the molecule with 15.6 ev, the electron will escape with 

an energy of 77 ev. This gives a value for k of 2.)8 atomic units. e The 

value obtained for I(k ) 4as some dependence on the choice of Z' , the e 

effective charge for the outgoing electronic wave function. Using 
~ 22 -3· 

N = 3.5 x 10 em , and Z' = 1.19, we obtain 

' 

while for zv = 1.00, we obtain a slightly smaller value. 
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In addition to the dipole ejection, molecular ions might be formed by a 

monopole ejection of the electron. This mechanism has been discussed previously 
16 . 

by Jackson. The perturbation Hamiltonian is identical to that used previously, 

but in this ease the ejected electron will be in an s state. Now, we expand 

=1 -1 1 r . and keep only the lowest order; viz., r for' re 7 r
1
. and ri-el. ec 

for r ? ri Then we obtain e 

2 f d3-r * 
ri 

1 1 V I* V F dT (I I :Uint I F) = -e fi iF E E:t I ( --- ) 
i ri r e e e 0 e 

-1 by extending the integral involving r over the entire Fegion 0 .f:- re ,t.- oo , e 

and then subtracting this part in the integral from 0 to r e For r larger e 

than all the ri's, it is evident that :Uint = 0 . Now, because the molecular 

-ion is small compared to the electronic Bohr radius, we may replace 

VF 
e by their values at r = 0 to obtain ~(2~/3) ri

2 v I(o) v F(o) 
e . e 

VI 
·e and 

for the 

integral. Using the previous choice for the electronic wave function for 

and a free particle *eF' we then obtain 

V I 
e 

v (J 
inc 

4 
2 a 4p.c 

= 9 kc-<~)( ~) 
e 

Where we have defined 

-ar 2 2 
l f: e 

p 
J (rl 

+ r2 
Ml = 

\/1 + .6 I 
2 a 

1.1 

- r 

*r is normalized to the incident part of 

2 

) * 'If d3,. 1.1 
'lr -F ' 

ikz is the e as r -+ oo, vine 

relative veiocity of the proton and (pl.!), and pe is the momentum of the 

22 3 outgoing electron. :Using a density of liquid hydrogen of 3.5 x 10 em , we 

find a rate, Rej' for the molecular-ion formation in pure hydrogen: 
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Thus, since one would anticipate that (r;fa )
2 ~ 102 , the monopole ejection 

ll 

cannot compete with the dipole case. 

Finally, we might consider the radiative formation of the molecule ion. 

The total transition probability for dipole radiation is given by 

., 

.... 
E is the energy of the photon, and d. is the dipole moment 

17 of the system. Inserting the value of ( dk ) as computed for the electron-

ejection process, we find a rate of radiative molecular-ion formation: 

R = 
7 

2 •1 5·7 x 10 sec . 

in pure liquid·hydrogen. Thus the radiative formation is also quite negligible. 

B. (d~-t) + P+-+ (dflpt 

In the case of (d~-t) + p+-+ (dlfJ.p)+ ; the major mechanism is, as before, 

the interaction of the dipole moment of the three~body system with the electron 

to eject it. There are, of course, numerical differences between the (d~-tp)+ 

and + (pflp) cases. The energy released is 90 ev rather than 93 ev. The matrix 

element is also different. In addition, because the nuclei in (dflp)+ are not 

identical, the incident wave function is normalized asymptotically to 

k-l sin (kr + 8) rather than {2' times this value, while the various spin 

,. states of the system are of no importance. With this normalization, we find 

for the matrix element (~) = 29.4. Also, we find I(k ) = 0.575 k -l • e e 

Thus, from an equation similar to Eq. (3), we obtain for the rate of molecular-



ion formation in pure hydrogen: 

= 
6 -1 2.5 x 10 sec 
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Once the (p~p)+ molecular ion is for.med, the most likely possibility 

is that the ~ meson will decay with its natural half life. Since the system 

has no dipole moment between two (+) states, it cannot readily decay to the 

ground state. On the other hand, the ( d~p) + molecular ion can readily decay 

from the p state in which it is for.med to the ground s state, because it will 

have a dipole moment as a result of the asymmetry in the two nuclei. In this 

process, 124 ev is released. Just as in the molecular-ion formation, the dominant 

mode of decay is electron ejection by a dipole interaction. Because the initial 

and final states are both bound, the wave functions are normalized differently 

than for free particles. The expression for (I I ~ I F) is given in Appendix C. 

We find (I I ~ I F) = 0.271 a~, and hence a transition rate of 

Rpg = 
10 -1 2.5 x 10 sec • 

In this calculaticm, we have assumed that the transition takes place from a 

molecule with two electrons present. Because one electron has been ejected in 

the molecular-ion formation, it is possible that only one electron: remains to 

be ejected in this decay process. It would seem that the exchange of an electron 

from another molecule in the liquid to the ion would take place quite rap.idly. 

Whether ()r not this is the case, the computed rate is so large that the molecular 

ion will proceed in a negligible time to the ground state. 
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c. (d~) + d+ ~ (d~d)+ 

Finally, we will briefly consider the formation of the (d~d)+ molecul~r 

ion. This case is similar to the (p~p)+ case, but there are two differences. 

In the first place, the deuterons satisfy Bose statistics, so in the final state 

their spins must be in an antisymmetric configurationo This gives a statistical 

factor of ~3 rather than 3/4 in the rate of formation. Secondly, there are two 

bound s states, so that the free s•state wave function has an extra node 

compared to (p~p)+. As a result, there is much cancellation in the evaluation 
... 

of the matrix element of d , and it is very small. Thus, the rate of molecular-

ion formation in this case in pure deuterium is very small compared to the 

corresponding (p~p)+ rate. Specifically, we find 

10
4 -1 5.9 x sec 

Because this rate is so small, we would expect that an experiment carried out in 

deuterium would lead to rather few (dd) nuclear reactions4 In addition the 

likelihood for nuclear reactions is further decreased be,cause the final states 

of the molecular ion will be predominantly p states for which the probability 

of finding the nuclei at small distances will be smallo This latter effect will 

be compensated to some extent by a much higher intrinsic nuclear rate, since 

no electromagnetic interaction is involved. For molecular ions formed at higher 

energy, we would expect that some of them will form by a transition from 

incident p to final s states. These, of course, will react very quickly. 

D. Comparison with Experiments 

The phenomenological analyses lead to a dependence of the yield of re,juve

nateEi mus on deuterium concentration given b;' 6 

1 y = A 
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where Y is the number of energetic muons per incident muon, is the 

concentration of deuterium, R
0 

is the rate of natural decay, ~d we have 

Evidently, A gives the rate at saturation (cd ... 1).. Among other things, the 

value of A will depend on the nuclear reaction rate.. The experimental results 

are in reasonably good agreementwith this dependence on ed, and they lead to. 

a value for (A+ lV'B of about 1.3 x 103• , Our calculations give: 

A+ 1 
B 

::: 

R ex 
= 

Considering the fact that the experiments do not give a very precise value for 

this ratio, as the error seems to be something like ± 0.3 x 103 and the 

correction terms in the calculation of the three-body system are of order 

MjMn ,v 0 .. 2, this agreement seems quite satisfactory. 

T:V.. NUCLEAR REACTIONS 

A. Estimates of Matrix Elements 

Once the (p~d)+ molecular ion is formed, there is a sizable probability 

that the two nuclei come sufficiently close together to undergo a nuclear reaction, 

3 with the formation of He • Two possible processes have been observed: 

(a) 

and 

(b) 

The excess energy of 5·5 Mev is taken away in the former by the r ray and in 

4 the latter by the ~ meson.. As one sees on comparing the results of Ashmore et al. 
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with those of Alvarez et aL, 3 process {a) is much more likely than process {b)o 

We have carried out a somewhat phenomenological treatment of the nuclear reactions, 

in which we have assumed that the proton and neutron in the deuteron are distinct 

particles.and maintain their respective identities throughout the interactions. 

In the initial molecular-ion state, at small separations, the two nuclei 

are largely in an s state w~th respect to each other, corresponding to the 

(+) part 0f f, with a small admixture of p state corresponding to the (-) 

part. Since, in this state the probability is small that the nuclei are close 

enough together for nuclear forces to be significant, the wave function will be 

only slightly perturbed by the nuclear effects. Because of the exclusion 

principle forthe two protons in this system,. we must treat the singlet and 

triplet proton spin. states separatelyo In the incident singlet case, we can 

write symbolically for a state of J = z 

~. ( s) 0' 0 + 1/2 { L ( 0) L ( 0) ~I ,..._, 8pp ern pp pp,n 

1 
+ 2' 

+ L (2) L (2) 
PP pp,n + 

+ ' 

where S . PP represents the two-proton spin fUnction of total spin s 

z component of spin sz , and 
+, /2 . 

cr ~ is the neutron spin fUnction of 
n 

and 

z 

1 component + 2 ., The L (.e) pp represent the orbital angular-momentum functions 

for the two protons about their center of mass, while L (.e) represents the pp,n 

orbital angular-momentum function for the neutron moving about the pair of 

protons as-a unit. 'The terms multiplied by a represent the small admixture 

of (-) functions in ii(s). The total orbital angular momentum of the initial 

system is zero, and the terms such as LPP(2) Lpp,n(2) must be combined to 

gi've a total L of zero. Thus the total J for the singlet state is one-half. 



. 

. 

For the terms multiplied by a , the ~ meson (which has not been represented 

here) must be considered in treating the total angular momentum. In the (-) 

case, for small values of rn , the meson is essentially in a p state, so that 

the nuclear functions must be combined to form a total L of one. The functions 

Lpp,n(p,) are symmetric in the two protons, and so any P, may appear in them; 

because of the exclusion principle, however, only the even terms in L (P,) may 
PP 

occur in !r ( s) The final nuclear state is that of He3, with a total J of 

one-half. For it, the two protons are in a singlet state. Thus, the final state, 

fF, will be ·Of a form similar to fr(s), except that the a terms will. not be 

present. Now let us consider the electromagnetic transitions for such states. 

For the ~ -+ ~ transitions, either electric dipole or magnetic dipole 

reactions are possible •. The perturbation Hamiltonian has the matrix elements18 

CL ::: 
"""1,0 

and 
t 

M 1 0 = 
' ' 

respectively, where zi is the z component of the displacement of the i'th 

particle from the center of mass·of the system, ~i is its magnetic moment in 

nuclear magnetons, and cri is its Pauli spin matrix. The part of *r 
. ' independent of a will have only a nonvanishing M 1 0 , while the part 

.. ' 
proportional to a will only contribute to Q1, 0 

We might roughly estimate these two rates by considering that the nuclear 

states are simply of constant density to some distance, R, and then zero outside • 

From the normalized eigenstate of the molecular ion, we find that the (-) 

solution is given by 
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,T, ~ 0.0317 (ria ) 
I- /' ~ 

for small r. This function increases linearly with r, as is appropriate to a 

p state. Putting this wave function into.the expression for Q1 0, we obtain 

' 
as a very rough estimate, Q1, 0 ~ (0.0311/5)(r;fa~)

51'2 e R If we set 

4 ·-13 R = x 10 em., we find for ~ , the rate of electric-dipole transitions, 
d 

4 -1 
~ f""\..1 7 x 10 sec 

d 

f 

If we make a similar rough estimate of M l,O' we find first 

Again using R = 

becomes: 

~ :::1 0.0146 
J.+ 

-13 I 4 x 10 em, we have M 1 c/Q1 0 ,..._,t 12, so that this rate 
' ' 

RM ,J 10 7 sec. 
d 

Thus, it would seem that for the singlet initial states magnetic-dipole 

transitions are the most likely. In addition, one might consider the element 
I 

Q l,O' but because it involves both the magnetic moment and the a terms, its 

contribution will be extremely small. 

Let us now consider the initial triplet states. Again we write 

symbolically 

i(t),.....; S.
1

'
0

cr
12 ~(L (l)L (l)+ ••• +a[L (l)L (O)+•··.]J 

I · PP n ( PP PP, n PP PP, n 

The orbital angular momentum will again be zero, but now J is either 1/2 or 

3/2 depending on the spin orientations. In this case, in order to produce a 
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transition to the He3 ground state, it is necessary to flip a spin, thus changing 

the protons from a triplet to a singlet configuration, and in addition to change 

the orbital wave fUnction from an odd L to an even one. Now, various pp 

transitions are possible, for example, 

and 

i 

Q 2 0 
' 

::: 

f 

where M = E/1lc. The matrix element of Q 1,0 in this triplet ease may be 

compared to that of Ql,O in the singlet case. The former is smaller by a 

factor Ey./4 Mc
2 ~ ~200, as are all of the triplet transitions, because the 

spin must be flipped. However, it does not involve the small components of the 

molecular-ion wave fUnction, and one might therefore estimate Q' 1,o/~,o ~ 1/6. 

Thus, because the electric dipole rate from singlet states is small, the rate of 

nuclear reaction in this process will be negligible compared to the natural decay 

rate of the ~ meson. Similarly, we have roughly estimated the Q'2,0 element. 

In this case, the element involves only the small components and so is quite 

negligible. Finally, we have estimated M' 2, 0 • Again we firid that the matrix 

element is smaller than the singlet Q1, 0 (by a factor ~~2), and the transition 

· rate is also negligible compared to the natural decay, having a value of 

3 . -1 
~10 sec • Thus, from these considerations, we would conclude that essentially 

only the sing~et initial states will undergo nuclear reactions to produce He3, 

with r-ray emission.
1
9 

In addition to the y emission, it has also been suggested that a 

monopole transition may occur, with ejection of the ~ meson~ 51> This process 
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is similar to that for the monopole ejection of an electron in the molecular-ion 

formatic:m. discussed in Section III A. .For this process, we find a rate of 

R ·. 
eJ 

R . ' eJ 

32 
= 9 1 

where r 1 and r 2 are the positions of the two protons. In this case, transitions 

from the triplet initial state are forbidden. On making the same rough estimate 

as previously, we find 

5 -1 5 x 10 sec 

B. Magnetic-Moment Effects 

We will now consider the nuclear reaction rat~s from the (p~d)+ molecular 

ion, under the assumption that transitions from the triplet state are negligible, 

as is indicated by the above considerations. Because of the magnetic=moment 

interactions between the three particles in the molecular ion, some of the spin 

degeneracy in the eigenv~lues will be removed, with the formation of definite 

spin eigenstates. As the energies involved are very small-(~ 0.1 to 1.0 ev) 

compared to the Coulomb binding energies of the system, the orbital functions 

will not be affected appreciably by these interactions. However, the energy 

splitting is large enough that after a molecular ion is formed and until a 

nuclear reaction occurs, one may consider that the system is in a definite spin 

eigenstate, because interference effects between states will only persist for times 

of the order of 10=14 sec. Thus the J of the nuclear system alone will not be 

a good quantum number. In computing the nuclear decay rate from a particular 

eigenstate, we will assume that the rate is proportional to the probability of 
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finding the system in the singlet state, and we will introduce a phenomenological 

constant, Rn' which will give the nuclear rate if the system is a pure singlet 

configuration. Thus, we set: 

R = P (s)R , 
t t.. n 

. . (s) 
where Rt is the nuclear rate from the tth eigenstate, and Pt is the 

probability of a singlet configuration in that t state. 

The interaction Hamiltonian for the spins is 

Jl .... ... 
( 1 ) 

.... .... ( _L_ ) 
..... ..... ( _L_ ) spin = f.l.p•IJ,d 3 + IJ, e f.l. . + IJ.d•f.l.ll ' rpd 

p IJ. r. 3 r 3 
Pll df.l. 

.... 
the magnetic moment of the where lim is .mth particle, and the expectation 

values of r·3 are taken with the molecular-ion wave fUnction. Here " is ,...IJ. 

(rpd-3) much larger than either IJ.p or 1-ld , and is much smaller than 

-3 -3 (rPil ) and (rd
11 

), sQ that in the following we will neglect the term in 

;- ·~ • In addition, we will approximate (r -3) ~ (rd · "'3) , which is valid 
p d PIJ. ,..._, ·J:L 

because the (-) part of the eigenstate is always small. We may separate the 
..... 

various spin states according to their z components of J , as this is a good 

quantum number in the presence of the interaction. Let us now designate by 

Xt(s), the spin .state of the tth particle, corresponding to a z component 

of spin equal to · s. 

J = + 2 

Then the unperturbed states" I:", ~~; . .:;ma'y)be .tchosen as: s 

•· _;:;.z ___ _ 

.• 
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J = + 1 z 

.EA 
1 = X~(l/2)Xp(l/2)Xd(O) 

.EB 
1 = X~(-l/2)Xp(l/2)Xd(l) 

L: c = X (l/2)X (~l/2)Xd(l) 1 ~ p 

J = 0 z 

EA 
0 = X~(~~2)Xp(-l/2)Xd(l) 

.EB 
0 X~(=l/2)Xp(~2)Xd(O) 

.E c = X (l/2)X ($~2)Xd(O) 0 J.l p 

ED 
0 ·- X~ ( J/2)Xp( lj2)Xd ( -1) , 

and similarly for J < 0 " The states J = ± 2 are evidently good eigenstates, z z . 

but since they are pure triplets, we have Pt(s) = 0 ~ In order to determine 

the eigenstates for J = ± lJ it is necessary to solve a cubic equation;> while z 

for J = 0 it would seem that .one has a quartic equation to solve. However, z 

in this case the matrix may readily be split into two second-rank-matrices, 

and one must s0lve t-wo quadratic equations. The eigenvalue, "-t , and 

coefficients at(i), for each Es(i) are given in Table II. The eigenvalues 

are given in units of The eigenstate is given as 

B For Jz = + 1, it is clear that .E1 is pure triplet (since all the 

nucleons are aligned in the same direction)~ One readily finds that the 
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TABU: II 

,. Eigenvalues and coefficients for E i 
s 

J ·~ 
A B c D P (s) 

z t at at at at t 

± 1 0.978 0.143 0.771 0.621 0.135 

± 1 -0.407 0.733 0.504 0.456 0.002 

± l -0.258 -0.665 0.390 0.638 0.613 

0 -o.416 0.435 0.557 0.557 0.435 0.002 

0 ~0.144 0.557 -0.435 -0.435 0.557 0.748 

0 0.990 0.141 0.693 -0.693 -0.141 0.122 

0 -0.298 0.693 -0.141 0.141 -0.693 0.629 
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contribution from other states to the singlet probability, 

P (s)(l) 
t 

In addition, for 

P (s)(O) 
t 

J = 0, one finds z 

= 
2 

1 a B ) 
{"'i:t 

These values are also tabulated in Table IIo 

UCRL-8391 

P (s) is 
t ' 

Co Analysis of the Time Dependence of the r-Ray Experiment. 

Our analysis leads to a. somewhat different analysis of the time dependence 

for the r-ray production that was observed by Ashmore et al. than the previous 

treatment. 4 Instead of having a single rate of nuclear reaction to produce 

r rays, we must now consider 7 different rates (± J give equal rates, and z 

J = ± 2 gives a zero rate). We have made a new analysis of their time z 

distribution in w~ich we have used the calculated value of the (p~d)+ molecular-

ion formation rate and have then fitted R ' and the background rate to the 
n 

eXperimental data. Our expression for the number of r rays is similar to 

Eq. (2) of Ashmore et al., 

1 
12 

1 m 12 f.. (t) A. [ 

' 

where the notation is the same as in their paper with an added index t to 

distinguish the different eigensta.tes. The factor 1/12 is simply the 

statistical weight of each of the spin eigenstates, t • The total number of 

r rays emitted per incident ~ meson is: 
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A. ( t) A. j( ),_ A. ( t) 
1 m ·-b c 

The ratio of rejuvenated mesons to r rays which is needed for the recycling of 

the process was fitted by an iterative procedure by the use of both the experi-

mental data on r rays and on rejuvenated mus. Because the internal conversion 

ratio was rather small, the method was rapidly convergent. Representative curves 

that were obtained are given in Fig. 5. From these curves we believe that the 

best fit to Rn gives 

R 
n = (1.25 ± 0.10) X 10

6 -I 
sec. 

From this value, we then can calculate the number of r rays per incident muon 

as 

This is considerably lower than that of Ashmore et al. (0.34- r/J.J.) but is in fact 

in good agreement with an earlier value obtained by them by a simple integration 

of their data, together with an assumption that the background was simply 

given by the average of one point obtained at ~ < 0 and two points at the 

largest values of 20 
~. It would appear from the curves that the analysis 

presented here represents the data reasonably well. 
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V. CONCLUSION 

As can be seen from the preceding analysis, the original qualitative 

considerations concerning the enhancement of nuclear reactions through the 

formation of p;-mesoni·c molecular ions have been well verified by more quanti-

tative calculations. The saturation phenomenon on increasing deuterium 

concentration seems to agree reasonably well with the experiments. The phenomenon 

of the gaps also seems to be well understoodo In this case one might argue that 

the calculations are not sufficiently accurate to provide the precise energy at 

which th~ Ra.msa.uer effect takes place, but that such an effect occurs for a 

small energy seems very likely. 

Finally, the nuclear reaction rates as obtained on a phenomenological 

basis are in qualitative agreement with rough estimates made for them. Here, 

however, our analysis leads to a ratio of 0.20 for r rays per stopped muon, 

which is smaller than the ratio obtained previously by Ashmore et alo If this 

number is used in conjunction Ydth the experiments, we then obtain for the internal 

conversion coefficient, 
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APPENDIX A 

In this appendix we will develop the test problem which was used to check 

,. the accuracy of the coding of the solution of the numerical integration. Because 

the equal-. and unequal-mass cases were programmed separately, it was possible to 

use a test problem to convert the equal-mass equations 

+ ,! (W - V )¢ = 0 
€ + + 

and 

+ ,! (W ... V )¢ = 0 
€ ,,. - ... 

into the form of the equations in the unequal mass case, Eqs. (2) of I. This 

can be done by making a uni ta.ry transformation on the two-component ¢ . Thus 

we set 

I \ / ¢+ 
\ 

) ( = 

¢ -

!fJ 
/~ 
I 

( -p 

p \ 
) 
! 

I 

' 

where p is to be chosen as a function of r. If this transformation is 

introduced, we obtain the equation for ¢1 , 

• E. (dp@r~2 J ¢ + 2 dp/d2 
1 - p 

1 1 - p dr 
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and a similar equation for These equations are of the proper form if we 

• make the interpretations: 

,. 
2 v (1 - p

2
)V (dpfttr)2 . 

(V )test = + + E p + - 2 
1 - p 

p2 v (1 • p
2

)V+ 
A 2 

(VJtest = + + € 
(dpy_r) - 2 1- p 

(f\est = (dp.Jr} 

1 -
2 p 

/1 (g\est -l:p 2 
(V+- V_) = - p 

€ 

Further, if we have 2 
p ~ 1 + e(r ) as r ~ o, then (f)test approaches 

h = const. and (g) approaches test These are of course the boundary 

conditions found for the true f and g , and one would like to have them 

satisfied in a test problem as well. The true V and V become equal as 
+ -

r goes to oo , and this can be accomplished by requiring that p approaches 

~~ in this limit. Finally, the true g approaches a nonzero constant as 

L 

r goes to oo , and to satisfy this requirement, as have the difference between 

V+ and V approaching a nonzero constant in this limit. With these restrictions, 

the test problem will duplicate all of the features of the unequal•mass equations. 

To produce all the test functions, we have used the equal-mass V+ 

and V , with the latter displaced by a constant so that (g)test does not go 

to 0 as r approaches oo , and we have chosen for p : 

p = 1 R -1 

{2 
(cosh r)-1 
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The solutions of the test proolem then have been compared to those of the 

uncoupled case by making a unitary transfo~tion, and agreement was found to 

.• within the rounding errors involved. It might be noted that because the test 

problem is just a different form of two uncoupled equations, no exchange 

scattering should occur. This was also found to be true within the errors of 

the numerical calculations • 
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APPENDIX B 

Because the energies of interest in this system may be very small 

(thermal energy ~ J/400 ev), one might question whether the electrons in the 

molecule play a significant role in such processes as the scattering of (d~) 

atoms from protons, because the latter will generally have an electron around 

them. The direct interaction between the two systems seems to be the largest, 

where we have 

t:N = [ 1 1 l ---r r 
~e de 

• 

In,this expression, v is the wave fUnction of the~ meson in the (d~) atom, 
iJ. 

and *e is the electronic wave function in the (pe) atom. The separation of 

the nuclei, rn , will be considered as a fixed parameter.- These are the only 

interactions that have not been included previously. On inserting hydrogenic 

wave functions for the v's, which will be valid for the p. for r >> a 
n ~ 

(the only region for which this perturbation could be significant), we find: 

a 2 
( J! ) 

a e 

-r fa n e e 
' 

where ae is the electronic Bohr radius. Because we have a~jae A/ ~200 , 

D.V has a maximum value of ~ J!Boo ev, but since it has a long range, we will 

consider its effect a little furthero 

For r >> a , D.V vTill be the only potential present. If this 
n ~ 

potential is put into the Schroedinger equation, we find as a solution 

--r/a 
v = A J. (i s e e) 

~11 

-r/a 
+ B J i (i s e e) 

- 11 ' 
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where 11 = 2 1/2 
(2M E aofme e ) , and g = Here M is the 

nuclear reduced mass, m is the electronic mass, and m is the mesonic mass. e 

Given a particular phase shift resulting from the potential at small r , by . n 

appropriate matching of w and w' one can determine the effect on the phase 

shift of this potential. However, we are here interested in determining the 

limits of the energy, E , for which ~V can be neglected, and for this purpose 

we can expand J in a series in its argument, keeping only the first two terms. . ±iT] 

We introduce 

1 = , Tlrl 
tan(- + a e 

where r 1 is the point at which the wave function is to be matched, and 50 

is the phase shift without ~V. Then, upon expansion of 

.. t2 
!:> l) 

2 4(1 + , ) ' 

where 51 is the phase shift including the effect of the potential ~V • For 

r 1 ;"\../ 20 a!J., at low energy, we find that the electronic effects will be 

negligible if we have E ~ ~200 ev. 
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APPENDIX C 

In computing the rate of molecular-ion formation in Section III A, it is 

necessary to carry out an integral, over the electronic coordinates, of the form: 

J J d3r r -
2 

[ exp( -73 1 r /a ) + exp( -~' I~ _-; 1/a ) ] ri cos ei. e *eF e e ec e e p e 

In this integral,we choose for VF 
e the p-state Coulomb solutions, u (k r ) , 

c e 

about which tend asymptotically to approximate plane waves. Then we have 

v F = 3i cos e k u (kr ) e e c e ' 
... ... 

where eek 

electron. 

is the angle between r e and k, the direction of ejection of the 

The integration of the term containing exp(-Z' r /a ) · ec e can be 

carried out exactly. Because the other term decreases exponentially with the 
-+ ... 

distance from rp rather than from rc , we expect that it will be small compared 

to the contribution of the former. This expectation is borne out by the cal-

culations. Thus, we will only keep those terms that interfere with the first 

term and will ~eglect the contribution of the quadratically-dependent 

(noninterf'ering) ones. 21 This approximation leads to a retention of only the 

part of exp(-Z' r /a ) e:p' e 
-+ 

which is spherically symmetric about rc 

Let us consider first the integration of this second term. We must 

evaluate 

00 

3i J 
0 

dr J dU e e exp( -s' I~ - -; 1/a ) , cos ei cos e k u ( kr ) . e p. e e e c e ' 

... -+ 
where eie is the angle between re and ri, and eek is the angle between 
... -+ 
re and k, the direction of electron ejection. To carry out this integral, 
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+ ~26 ~ f (r ) 
P e 

where ~ 
... 

is the angle'between re 
-+ 

and r , 
p 

e.nd we have 

f (r ) 
s e 

f (r ) 
P e 

and so on. 

1 1 
= --· f exp( -&9 I; - 1: Va ) d~ 

_r-;::"1 e p e 
-y2 -1 ' 

' 
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+ . . . ' 

On integrating over dU , we find that the nsu part gives 
e 

co 1 
21C 

= T cos eki f dr u ( kr ) f exp ( -i5' I; - -; Va ) <4t 
0 

e c e _
1 

e p e 

The "p" part vanishes, and the "d11 part gives 

co 1. 2 1 
>< f dr u (kr ) f c~ -· ~) exp( -!!.' l~e - ?p 1/ae) d~ 

0 
e c e _

1 
.,~ 

... ... 
where eip is the angle between rp and ri , 

... -+ ... -+ 
angle between the (p, i) and (i, k) planes. 

and ¢ "k is the azimuthal 
p~ 

The term J2(d) will not 

interfere with the spherically symmetric term, J 2(s), however, because on 

..... 
integrating over the direction of k, the cos ¢pdk term will vanish, while 
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on averaging on the direction of -+ ' 
p, the first term will vanish. All other terms 

also vanish, and so we obtain J2 = J 2(s) in this approximation. The integral 

over ~ can be carried out analytically, and we have performed the final inte-

gration numerically. In the latter integration, we have replaced 
22 

Inserting the appropriate values for k, r ' p 
and 

u (k r ) 
c e 

Z' ( 2.50, 

by 

1.40, 

and 1.19, respectively), we find 

= 

Let us now proceed to the exact integration of the first term. 

Here, the angular integration is simple, and using 

cos eie = cos eik cos eek + sin 9ik sin eek cos ¢ , we obtain ( 4n:i) cos .eik 

for the angular integration. To carry out the radial integration, we need the 

radial wave function. This function is given in terms of the Whittaker function, 23 

wkm, where k = iaZjk , . e and m = .e + l . Here we have a = eo/'flc • A very 
2 

useful form of the radial function for arbitrary .e is given by the integral 

representation 

kr .e 
1 ( e ) 
2 2 

exp( ~ T}) 

I'(.e + 1 + iT}) 

1 
f du(l - u).t-i11(1 + u).E+iT) 

-1 
e 
ikr u 

e 

where we have T} = az'.(c/ve) = Z'/(a k ) , e e c is the. velocity of light, 

and ve is the velocity of the electron at infinity. This wave function has 

the desired asymptotic behavior for r
8 

·-+ oo· : 

Rn(r ) A./ (k r )-l cos(k r + T} .en 2k r - ~2 (.e + 1) - ei' ) 
h e e e e e e e ' 

where 6I' is the argument of I'(.e + 1 +iT}). Using this representation, we 

may carry out the radial integration. 

' 
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where 

Interchanging the 

re to obtain 

where we define 

Then we have 

= 

X 
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00 

J 
0 

u and r e integrations, we .can integrate over the variable 

exp ( ~ T\ ) 1 
f du 

-1 

(1 - u)l-iT} (1 + u)l+iT} 

(u + i g)2 
.. 

g = z•/(a k ) e e 

1 (21cn) 
21C'I'l 

1 

Jl ( 1 - u)2 ~ 
2 exp irl.en[(l+u)/(1-u)]l du 

-1 (u + i£) S 

' 

This integral can be evaluated by the methods of contour integration. One 

introduces a cut in the u plane between -1 and +1, and then the integral 

can be replaced by a contour integral on a path C taken counterclockwise 

around the cut. One finds 
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1 2 
J ( 1 - u) exp { i TJ .en [ ( 1 + u Y ( 1 - u) ] l du 
-1 (u + is)

2 

= 
2 

(1- exp(21fTJ)f
1 f (l - u) 2 exp { iTJ lln[(l + u)/(1 - u)]} du 

c < u + is) ' 

where lln[(l + u);i(l- u)] is defined to be real on the lower side of the cut. 

On expanding C to a circle of infinite radius, one obtains two contributions 

to the integral--one from the pole at · u = -is and one from the circle. Finally, 

one obtains 

f (T) + s) exp(21) tan-1 g) + (1)- s) exp(1f1))} 

1 2 ~· f 1/2 -
k (1 + ~ ) .=.:! (exp (23!1)) 1) e 1f 

·' 

For the total integral J, we then find 

Thus in terms of the I(k ) defined in Section II A, we find 
e 

To obtain the rate of molecu.lar-ion formation, we must compute the 
... 

dipole moment d of the three-body system: 

... ... 
- r - r 

1..1. c 

... -1> ... 

On inversion of the relations between the r. terms and r , r 
l. c n 

given in I, we find 

... 
and R , 

1..1. 
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(1 + P )it 
e 1-l 

-+ 
Here R is the vector to the center of mass of the two nuclei, while the mesonic 

1-l 

wave function is expressed in terms of the vector from the center of charge, 

Making this change of variable, we obtain 

d = 1 ( -+ - f - f )(1 - p )r 2 2 1 e n (1 + P )it• 
e 1-l 

~· 

In the case of greatest interest, the initial state is an s state, and 

the final (bound) state, a p state. It is convenient to quantize the latter 

-+ -+ 
in the direction k • The only component of the matrix element of d different 

-+ 
from zero will then be that in the direction parallel to k • The first term of 

~ is independent of the mesonic variables, and-we obtain for it 

00 

J 
0 

r dr 
n n 

X I* X F 
+ + 

+ X I* X F - - ' 

I where the X is chosen to give the proper asymptotic dependence for the 

incident wave, while XF is a bound state, normalized so that we have 

00 

J 
0 

dr 
n + = 1 

The angular dependence of the bound state is 13/41! I COS 9 J Where 9 

is the angle between 

.. -+j finds R' •r r 
1-l . n 

-+ 
r 

n 
-+ 

and k • In the ellipsoidal coordinates, one readily 

The other two components of 
-+ 
R' vanish on 

1-l 

, integration over dTI-l , and so we find for the second term in ~ : 

1-l 



where we define 

00 

J r dr n n 0 
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X I* X F + X I* X Fe ] ( s ) 
+ u - + ~ ' 

On carrying out this integration employing the approximate v+ and v_ used in 

I, we obtain 

(£ Tj) = 

where the notation is the same as in I. This expression is correct for r > r , . c 

and for r < r the subscripts of some of the E terms must be,modified in a 
c · n 

manner similar to that carried out in I. 

In the (p~p) system, we have f 1 = f 2 , and the first term in d 

vanishes. Thus, in this case, mesonic transitions are necessary to obtain a 

nonzero matrix element for ~ • 

is purely X+F , so that we obtain 

(I I <\ I F) = 

F In addition, the bound-state function, X , 

In the (p~d) system it is necessary to keep all the terms. In both cases, 

the final integrations were carried out numerically. 

In computing the decay between two bound states, as is done in Section 

III B, the initial state is normalized differently. The radial function is 

normaiized as in Eq. (4), while an s state has an angular function equal to 

(4-lt)-J/2• Otherwise the calculation is as above. 
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LEGENDS 

Fig. 1. ,Bound-state radial wave functions for the + (p~d) molecular ion. 

Fig. 2. Phase shifts for s-wave scattering in the (p~p)+ and (~d)+ systems 

as a function of k. 

Fig. 3. The phase shift, 5 , for the scattering of (d~) atoms by protons, 

divided by k versus k. 

Fig. 4. Mesonic-atom scattering cross sections as a function of center-of-mass 

energy. 

Fig. 5. Time distribution of y rays from the (pd) nuclear fusion. The 

4 experimental points are those of Ashmore et al. Theoretical curves 

for three values of the parameter Rn are given. 
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