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NOTES ON STATISTICS FOR PHYSICISTS
Iay Orear”

Radiation Laboratory.
‘ University of California
a Berkeléey, California
August 13, 1958

- Prefate

These notes are based on a series of lectures given at the Radiation
Laboratory in the summer of 1958. I wish to make clear my lack of '
familiarity with the mathematical literature and the corresponding lack of
mathematical rigor in this presentation. The primary source for the basic
material and approach presented here was Enrico Fermi. My first introduc-

_tion to much of the material here was in a series of discussions with

Enrico Fermi, Frank Solmitz, and George Backus at the University of
Chicago in the autumn of 1953. I am grateful to Dr. Frank Solmitz for
many helpful discussions and. I have drawn heavily from his report ''Notes
on the Least Squares and Maximum Likelihood Methods. 1l Other useful
references are Annis, Cheston, and Primakoff, 2 M. S. Bartlett, and-

H Cramer.? The general presentation will be to study the Gaussian
distribution, binomial distribution, Poisson distribution, and least-squares
method in that order as applications of the maximum-likelihood method.

i

“Permanent address: Department of Physics, Cornell University, Ithaca,
New York. : :

]'Frank Solmitz, Notes on the Least Squares and Maximum Likelihood
Methods, Institute for Nuclear Studies Report,. University of Chicago.

ZM,‘ Annis, W. Cheston, and H. Primakoff, On Statistical Estimation in
Physics, Revs. Modern. Phys. 25, 818 (Oct. 1953).

3I\/I. S. Bartlett, On the Statistical Estimation of Mean Lifetimes, Phil.
Mag., 44, 249 (1953). ‘ -

4H. Cramer, Mathematical Methods of Statistics (Princeton University
Press, 1946). ' ' ‘
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‘Jay Orear
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1. Direc‘t Probability

. Books have been written on the "definition'' of probability., We shall
merely note two properties: .(a) statistical independence (events must be
completely unrelated), and (b) the law of large numbers. This says that if
pj is the probability of getting an event in Class 1 and we observe that N,
out of N events are in Class 1, then we have

lim Nl =
N> |N |~ Py

A common example of direct probability in physics is that in which one has
exact knowledge of a final-state wave function (or probability density). One
such case is that in-which we know in advance the angular distribution f(x),
where x = cos @, of a certain scattering experiment. " In this example one

can predict with certainty that the number of particles that leave at an angle

x; in an interval Axjy is.Nf(x))Ax;, where N, the total number of scattered
particles, is a very large number. Note that the function f(x) is normalized
to unity: ' : . :

As physicists, we call such a function a distribution function. Mathematicians
call it a probability density functlon Note that an element of probability,
dp, is :

dp - f(x) dx

2. Inverse. Probability

The more comrmon problem facing a physicist is that he wishes to
determine the final-state wave function from experimental measurements.
For example, consider the decay of a spin-% particle, the muon, which does
not conserve parity. Because of angular-momentum conservation, we have
the a priori knowledge that :
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However, the numerical value of a is some universal physical constant yet
to be determined. We shall always use the subscript zero to denote the true
physical value of the parameter under question. It is the job of the phy51c1st
to determine a,. Usually the physicist does an experiment and quotes a
result a = o™ £ Aa. The major port1on of this report is devoted to the
questions What do wemean by a™ dnd Aa? and What is the '"best' way to
calculate a” and £a? These are questions of extreme importance to all
physicists. : :

Crudely speaking, Aa is the standard deviation, > and what the .
physicist usually means is that the ''probability' of finding o

(0_*. - La) < ag < (a)'< + £a) is 68.3%

(the area under a  Gaussian curve out to one st‘andafd deviation). The use of
the word ''‘probability' in the previous sentence would shock a mathematician.
He would say the probability of having '

(a*- Aa) < ag < {(a + £:a) is either 0 or 1.

The kind of probability the physicist is talking about here is called inverse
probability, in contrast to the direct probability used by the mathematician.
Most physicists use the same word, ‘probability, for the two completely
different concepts: direct probability and inverse probability. In the
remainder of this report we will conform to this sloppy physicist-usage of
the word 'probability. " :

3. Likelihood Ratios

Suppose it is known that either Hypothesis A or Hypothesis B must
be true. And it is also known that if A is true the experimental distribution
of the variable x must be f(x), and if B is true the distribution is fB(x).'
For example, if Hypothesis A is that the 71 meson has spin zero, and
hypothesis B that it has spin. 1, then it is "known'' that f, (x) = 1 and fg(x) = 2x,
where x is the kinetic energy of the decay m- divided by its maximum value.

If Ais true, then the joint probab111ty for getting a partlcular
result of N events of values X1, X, o o o, X1 is

N
dpA,f ! i77_’1 fA(xi)dxi”

5Some physicists use probable error rather than standard deviation. Also

“some physicists deliberately multiply their estimated standard deviations by

a ''safety'' factor (such as w) before publishing their results. Such practices
are confusing to other physicists who in the course of their work must
combine, compare, interpret, or manipulate experimental results.
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The likelihood ratio K is N o)

f | |
- TT A1 . (1)
ﬁ i=1 fB (x:) '

1

This is the probability, that the particular experimental result of N events
turns out the way it did, assuming A is true, divided by the probability that
the experiments turns out the way it did, assuming B is true. The foregoing
lengthy sentence is a correct statement using direct probability. Physicists

“have a shorter way of saying it by using inverse probability. They say Eq. (1)

is the betting odds of A against B. The formalism of inverse probability
assigns inverse probabilities whose ratio is the likelihood ratio in the case
in which there exist no a priori probabilities favoring A or B. All the
remaining material in this report is based on this basic principle alone. The
modifications applied when a priori knowledge exists are dlscussed in

Sec. 10.

An important job of a physicist planning new experiments is to
estimate beforehand how many events he will need to "prove' a hypothesis.
Suppose that for the 7 meson one wishes to establish betting odds of 10
1 against spin 1. How many events will be needed for this? This plroblem
and the general procedure involvéd are dlscussed in Appendix I: Prediction
of Likelihood Ratios.

4. Maximum- Likelihood Method

The preceding section was devoted to the case in° which one had a
discrete set of hypotheses among which to choose. It is more common in
physics to have an infinite set of hypotheses; i.e., a parameter that is a
continuous variable.  For example, ‘.in the p-e.decay distribution,

1 + ax
flagx) = 22
the possible values for a, belong to a continuous rather than a discrete set.
In this case, as before, we invoke the same basic principle which says the
relative probability of any two different values of a is the ratio of the
probabilities of getting our particular experimental results, x, i assuming
first one and then the other, value of a is ‘true. This probab111ty function of

a is called the likelihood function, X (a).

) = 7 £ (). o @
i=1 |

The likelihood function,%(a), is the joint probability density
of getting a particular experimental result, x; . . ., x,
assuming f{a;x).is the true normalized distribution function:

ﬂ(a;x) dx ': 1.
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The relative probabilities of a .can be displayed as a plot of X(a vs a.
The most probable value of a is called the maximum-likelihood solution a’
The rms (root-mean-square) spread of a about a™ is a conventional measure
of the accuracy of the determ1nat1on a=a®*, ~We shall call this 2fa:

i} ' 1 )
| _ | Jta-q) A&da ] : | (3) )
_ , /Xda o S

In general, the likelihood function will be close to Gaussian (it can be shown
to approach a Gaussian dlstr1but1on as N — ) and will look similar to the

right-hand f1gure below,

X(a_) o Zw

o

The left-hand figure represents what is called a case of poor statistics. In
such a case, it is better to present a plot ofo{( ) rather than merely quoting
a’ and "La. Straightforward procedures for obtaining Aa are presented in

Sections 6 and 7.

A confirmation of this inverse-probabili iy approach is the Maximum- -
Likelihood Theorem, which is proved in Cramer by use of direct probability.
The theorem states that in the limit of large N, o - a~; and furthermore
there is no other method of estimation that is more accurate..

In the general case in which there are M parameters, a] . . ., ap,
to be determined, the procedure for obtaining the maximum-likelihood '
solution is to solve the M simultaneous’ equations,

I
3
o
S
o]
zv

where w

- oa,

1 ) xR




‘oo i 0o 2 U0od 24

8- "~ UGRL-8417

5. Gaussian Distributions

e - As a first application of the maximum-likelihood méthod, we con-
sider the example of the measurement of a physical parameter ap, where x
is the result of a partlcular type of measurement that is known to have a
measuring error 0. Then if x is Gaussian-distributed,® the d1str1but1on
function is
1 g :
f (ao; x) = '\—/:_Z——:T——; , ‘. exp"'[-(x-aof/ZOZ] :

For a set of N measurements X1’ each with its'own measurement error 0,1.
the L1ke11hood function is '

. N : _
Z' (a) :Zz '\7-2?-0'.1. exp .[‘.(Xi—‘a)Z/ZO'iZ] ;

then

N
(xi-a)
w = - Z 5 + const;
- i=1 Oi ’
¢
X. - a
. ow _ i
o = > , (5)
0
%4 a>:<
Z——Z -z — = 0 ;
0. . 0.
i i
" = -2 “i
a = .71 (6)
z
U.
i
is the maximum-likelihood solution. Note that the measurements must be

weighted according to the inverse squares of their errors. When all the
measuring errors are the same we have
S ZX‘
a = 1
TN

Next we consider the accuracy of this determination.

°A derivation of the Gaussian distribution and its relation to the binomial
o~ o and Poisson distributions is given in Chapter II of Phys1ca1 Statistics by
R. B. Lindsay (Wiley, New York, 1941)
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6. The Magic Formula: Maximum-Likelihood Error, One Parameter

~/’7
It can be shown that for large N, ~(a) approaches a Gaussian
distribution. To this approximation (actually the above example is always

Gaussian in a), we have
! 7

X(a) .'oc ‘ exp. [._(h/Z) (a - d;:<)?],

where 1/Nh is the rms spread of a about a,

W= - % (a - 0,*)2 + const,
Cow
'—a—a".- —h(a»— Q s
BZW _
> 7 - h
Jda ¢

1
l 2 |72 : '
Aa = ! : Magic Formula I. (7)

Now the error of the above determination, Eq. (6), can easily be found by
differentiating Eq. (5) with respect to a. The answer is

f

This formula is éommonly known as the law of combination of errors and
refers to repeated measurements of the same quantity which are Gaussian-
distributed with ''errors' o, . o

In many actual problems, neither a nor Aa may be found
analytically. In such cases the curve X(a) can be found numerically by
trying several values of a and using Eq. (2) to get the corresponding values
of f (a). The complete function is_then obtained by using a French curve.
If /‘f (a) is Gaussianlike,” 82w/ a’ is the same-everywhere. If not, it
is best to-use the average '

82'\.&/ :gaz“r/aaz)xaa
'8.0.2 '. - fXda

e e e e o e - e o+ | SR e et g W - ot

e oy e o
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A plausd%\hty argument for using the above average goe.s._a.s_follows If the

tails of £ (a) drop off more slowly than Gaussian tails, 9 w/8a is smaller
than ' > a
2w
. a.az

1} o a %

Thus, use of the average second der1vat1ve g1ves the required larger error.
This technique is discussed further. 1n Section 12

Note that Magic Formula I depends on having a particular experi-
mental result before the error can be determined. However, it is often
important in the design of experiments to be able to estimate in advance how
many data will be needed in order to obtain a given accuracy. We shall now

"develop Magic Formula II, which depends on % on knowledge of f(a;x). Under
these circumstances we wish to determine 0 w/aa averaged over many
repeated experiments consisting of N events each. For one event we have

8w ol
5= — fdx
da / da
for N events, : : _ o
2y 2 :
9 Y =N _a_f’_’z‘;f.. fdx.
da | e

This can be put in the form of a first derivative as follows:

0%epf _  of1 ). 1 far\? , 9%t
——2 % Bal\f 8a) "~ T |7a Tz
da : da

) EAY 2
[_a————ﬁ“i fdx = f 1 ,__a_;) dx + a__ fdx

. 2 £ a .

da o : . » 8(1

The last integral vanishes if one integrates before the diffevrentiation because

Thus

and Eg. (7) leads to

- s -
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L

] C0

. - ) -2 . . . »
Aa = S R af dx| - Magic Formula II (8)
| NN | T \oa | o |

(the case in which there is no experimental result).

Assume in the pL e decay distribution function, f{a;x) = l1tax , that

= -1/3. How many p-e decays are needed to establish a to a 1% accuracy
(1. e, a/La = 100)?

_ X
Ba 2
: 1 (of)? 1 1 +a
j _f -5-a _dX = 3 [f/t\/l ~ - 2 ] s
2a
b | _
La = ! 2'0'3
NN W-——-—iﬂl— 2a
Note that o :
_ lim [Aa] _ 3
: Q> + N
For. ao L ag- [28
"3 ¢ N
- For this problém '
Ao.:3*(1)—‘, N52.527><105 events:

7. Maximum- Likelihood Errors, M-Parameters, C.orrellated Errors

, When M parameters are to be determined from a single experiment
countaining N events, the error formulas of the preceding section are
applicable only in the rare case in_which the errors are uncorrelated.
Errors are uncorrelated only for(a -a, “Na; a; ") =0 for all cases with i f}
For the general case we Taylor-expand w(d) about (a™):
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M
ow .
w(a) = w(a™) + Z da_ Ba -3 ZZ ab ﬁaﬁb t ’
a=1 a * a b ,
. a :
a
where I ' ' o
ﬁ1 =809y
and }
) :
- 9w
YR dapey |, )
: |

The second term of the expansmn vanishes because 8w/8 a, = 0 are the
equations for ay

- L
f,w,{(a =w(@¥) - L T g H, BBy
Neglecting the hlgher order terms, ‘we have . .

VZ-/_(Q) = C exp (-%5‘3 % H o ) Bb)

(an M-dimensional Gaussian surface). As before, our error formulas depend
on the approximation that,((a) is Gaussianlike in the region q ~a; . As
mentioned in Section 4, if the statistics are so poor that this is a poor
approximation, then one should merely present a plot of X (a).

According to Eq. (9), His a symmetric matrix. Let U be the
umtary matrix that d1agona11zes H:

| g By 0 - _' - )
- U.- H- U " = h, = h where U= U "~ . (10)
o~ vas ~w 2 w MmO e
c
Y
Let § = BB,y - Bydandy = B - g"l . The element of probability in

the B- space is
M - V . o~ M
a¥P=Cexp [-4(y- U)- H(y- 0] ¢

Since lU‘ =1 is the Jacobian relating the volume elements dM[B and dMy, we
‘have ,
2] M

d7p = C exp [_—(Z)Z;hava aMy

" Now that the general M-dimensional Gaussian surface has been put in the
form of the product of independent one-dimensional Gaussiams we have

-1

Ya¥p 6abh-a
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so that the final result is

where Hi' ==

Averaged over repeated experiments

g A

92w

9a.9aqa.
1 -

Magic Formula III

(11)

) dx
AN
A rule for calculating the inverse matrix H™ Vis

ijth minor of K

determinant of H .
o Lad

_____________________________________________________________________

Example:

standard deviation). N particles having ranges xj,
Find ay”, a3™, and their errors.

Then

Assume that the ranges of monoenergetic particles are
Gaussian-distributed with mean range a;) and straggling coefficieant a

> (the

., Xpy are observed.

X(al’“z)f

- L exp 12/ 242)
as R exp |-(x;-aq)7/ 20,
i=1 2 '
(xi—al)2
- -é— > —— - N!urvo.z-Nﬂn(Zn),
i as-
(x.-a
— : 1
z 7
1 a .
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ow _ 1 - 2 N
e, - T3 & x-o) - —
2 a1 _ 2

The maximum-likelihood solution is obtained by setting the above two equa-

tions equal to zero: e o

sk _ 1 .

o TN Oz X
; 1
'—’;*“’—.”"‘(

® 2
=\/Z_(Xi_al )

a) N

The reader may remember a standard-deviation formula in which N is
replaced by (N-1):
#* 2 »
N T I
*2 N-T

' : ' sk
This is because in this case the most probable value, a, , and the mean, a,,
do not occur at the same place. Mean values of such quantities are studied

- in Section 17. The matrix His obuc1ne“ by evaluat1ng the following quantities
at o, and a
-1 2
8%w  _ N _8%w 3 2. N
= . = h = - T(x.-a,) + )
5o 2 T2 5ol , i z
¢ A %% *2 %2
a w = -
80.?0.2
N
*'.Z O 0
a, |
H = ' and 2
~ 2N ' ay’™
0 z —
; a >2<2 ZN
o 'Accordin.g to Eq. (11), the errors on a anld a, are the square roots of the
= diagonal elements of the error matrix, ”I;I, :
- a;: | QZ* :
Aa, = and Aa, = (this is sometimes called the

L NN ' 2 N 2N error of the error).
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8. Propagation of Errors: the Error Matrix

Consider the case in which a single phys‘ical quantity, y,-is some

function of the a's: y =y (ay, . . ., apm). The 'best' value for y is then
y" = y{o;"). To first order in (aj-a; ) we have
% _ 8y . |
AR AR rl
; a
2 oy ay ' ’
y-y’ )" =z Z . w4 (a_-a_ ) (o, - a_ ),
a b Baa 30.b a 2t G'b » [
(Ay). = ls's B 2y G{J - (12)
Yirms ' 9a. 9da b '
~lab a b :

A well-known special case of Eq. :(12), which holds only when the variables
are completely uncorrelated, is : :

L N2
, - oy ! 2
(Ay)rms 'Jza <a—a‘a/-‘ (A(la) .

It is a common problem to be interested in M_physical pa.rameters,l
¥Y1» « « -s» Ypp Which are known functions of the a; - If the error matrix H™

of the aj is known then we have —.
K . 8y y . .
. B3 b - _th_
(yioy; Jly; -y, ) = 2 —— <35 (HZ : (13)
i J ] 2 b Baa Bob b
. ayl aai
In some such cases the 5o cannot be obtained directly, but the 8y. are
a ‘ : a
.easily obtainable. Then
it = (J_'l). where J.. = aai
da ~ fia’ 9y

9. Systematic Errors

"Systematic effects' is a general category which includes effects
such as background, selection bias, scanning efficiency, energy resolution,
angle resolution, variation of counter efficiency with beam position'and
energy, dead time, etc. The uncertainty in the estimation of such a
systematic effect is called a ''systematic error.' Often such systematic
effects and their errors are estimated by separate experiments designed
for that specific purpose. In general, the maximum-likelihood method can
ke used in such an experiment to determine the systematic effect and its
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error. Then the systematic effect and its error are folded into the dis-
tribution function of the main experiment. Ideally, the two experiments can
be treated as one joint experiment with an added parameter amp4y tO
account for the systematic effect. '

In some cases'a systemati¢ effect cannot be estimated apart from
the'main experiment. The example given in Section 7 can be made into
such a case. Let.us assume that among.the beam of monoenergetic particles
there is an unknown background of particles uniformly distributed in range.
In this case the distribution function would be

1 1 2
]

L | 2
f (al, a, a3,x) = = ———-—\/__ exp[—(x-al) /2(12 + as
. : [ VA 0.2
ad
where ‘X max
C (al, @y u3) = f f dx
X .
mln

The solution a3>'< is simply related to:the,percentage of background.

<4

10. Uniqueness of Maximum- Likelihood Solution

Usually it is a matter of taste what physical quantity is chosen as a.
For example, in a lifetime experiment some workers would solve for the
lifetime, 7, while others would solve for \* where \ = 1/r. Some
workers prefer to use momentum, and others energy, etc. Consider the
case of two related physical parameters X and a. The maximum-likelihood
solution for a is obtained from the equation 9w/8a = 0. The maximum-
likelihood solution for X\ is obtained from 8w/8\ = 0. But then we have

ow 8:1:0, and BW:O.
- da 0 a

Thus the condition for the maximum-likelihood solution is unique and
independent of the arbitrariness involved in choice of physical parameter.
A lifetime result 7° would be related to the solution \* by % = 1/\*,

The basic shortcoming of the maximum-likelihood method is what
to do about the a priori probability of a. If the a priori probability of a is
G(a) and the likelihood function obtained for the experiment alone is a\e (a),
then the joirt likelihood function is

Zla) = Gla) H (o)
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w =4 G+ in)d.

ow

_ 9 0
9a  da I G+ WMUH’

“‘,2 sz,ﬂ | —?- m G (a*j

da

give the maximum- ~likelihood solut1on In the absence of any a.priori know-
ledge the term on the right-hand side is zero. In other words, the standard
procedure in the absence of any a priori information is to use an a priori
distribution in which all values of a are equally probable. Strictly speaking,
it is impossible to know a 'true' G(a), because it'in turn must depend on its
own a priori probability. However, the above equation is useful when G(a)
is the combined likelihood function of all previous experiments and ﬂ(a) is
the hkehhood function of the experiment under consideration.

There is a elaés of problems in which one wishes to determine an .

unknown distribution in a, G(a), rather than a single value ag- For example,
- one may wish to determine the momentum distribution of cosmic ray muons.

Here one observes . _
Z (6= [cia) H (ax)da,

where H(a;x) is known from the nature of the experiment and G(a) is the .

function to be determined. This type of problem is discussed in Reference 2.

Ill. Confidence Intervals and Their Arbitrariness

So far we have worked only in terms of relative probab111t1eJ an
rms values to give an idea of the accuracy of the determination a = a”. Oue
can also ask the question, What is the probability that a lies between two
"certain values such as a' and a'""? This is called a confidence interval,

Plait < a<a!") = }”Ida/ Tdfda
a' Zeo

Unfortunately such a probability depends on the arbitrary choice of what
quantity is chosen for a. To show this X(a) '

consider the area under the tail of d?f(o.) ‘

in the figure. '

[, L
al . : : '

—-‘———‘———'oo i !

f (zda_ _ /

oo . (l'

If X = Xa) had been chosen as the physical parameter instead, the same
confidcnce interval is-

Pla>a') =
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'j’zdx | fofgax'da
CP(A>N) = =

fxd)\‘i | f%d)\

.%'P(a>.a_')-_

- Thus, in general, the numerical value of a confidence interval depends on
the choice of the physical parameter. This is also true to some extent in
evaluating Aa. Only the maximum-likelihood solution and the relative
probabilities are unaffected by the choice of a. For Gaussian distributions,
confidence intervals can be evaluated by using tables of the probability

“integral. Tables of cumulative binomial dlstrlbutmns and cumulative
Poisson distributions are also available. :

12. Bartlett S. Function
M. S. Bartlett discgsses a type of confidence interval that avoids

some of the above objections.” He defines a function S(a) which always has
a mean of zero and standard deviation of one, independent of the choice of a:

: o Coa o
: : max ,2
S(a) = é g_a“i - where cl= - f 4 \sz(a)da .
: : 9
_ a

a
min

For an/Zﬂ( ) which is a Gaussian curve w1th standard deviation Aa, S{a)
would then be :

- [
a-a

Sfa) = - La

‘Bartlett proposes that, since S is closer than a to belng Gaussian distributed,
the 68.3% confidence interval (one standard deviation) in a can be obtained
by solving for the two values of a which give S(a') = +1 and S(a'') = -1.
Similarly the 2-standard-deviation confidence interval is obtained by solving
for S(a) = +2. Bartlett's paper also contains a further refinement of a
skewness correction. > We now demonstrate that we have S = 0 and SZ = 1.
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‘min max

13. Binomial Distribution

Here we are concerned with the case in which an event must be one
of two classes, such as up or down, forward or back, positive or negative,
etc. Let p be the probability for an event of Class 1. Then (1-p) is the

. probability for Class 2, and the joint probability for observing Nj events in
Class 1 out of N total events is :

N l i - .
PN, N) = 1 &:?_N i N1 (1-p)N" N1 The binomial (14)
1 I ‘ distribution.
Note that £ P(j, N) =[p + (1-p)]" = 1. The factorials correct for the
j:]_ ) . :

fact that we are not interested in the order in which the events occurred.
For a given experimental result of Ny out of N events in Class 1, the likeli--
hood function Gz (p) is then
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¢Zﬁp)==rqﬁ(§?N I pN?(LﬁﬂN'N

= N ﬂn/p+(NN )Lle p)+const

5 1
Eﬁ :I'I_\I.i_-— N_____Nl L ‘ | (18)
p P d-p ’ T
Bzw - N1 _' N - Nl (16)
2 2 2
dp p (1-p)
From Eq. (15). we have o ’
‘ P (17);
From (16) and (17): ‘
bop")2 = 1 "
P-P N,  N-N
: 1 N 1
> z
p (1-p7)
_|p* (1-p™) B

The results, Egs. él?) and (18), also happen to be the same as those using e
~ direct probability.” Then o :

Example: In the.’previou-s example (see Section 6) on the u-e decay angular

distribution we found that
3 .
A‘O. = ,; ’N '

is the error on the asymmetry parameter a. Suppose that the individual
cosire, xi, of each event is not known. In this problemvall we know is the
number up vs the number down. What then is £a? Let p be the probability
of a decay in the up hemisphere; then.we have '
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1 a
_ 1l + ax dx = 1 +—2_
p 2 3
9%

dp = —};do., and in the lifnit of small errors, Aa = 4Ap.

By Eq. (18), | : B R
. o . Aa=4.p(ll\{p) ’
AN
. B 4 a;::Z
L‘.a - ’N’ (1 - 4 )
N

14. Poisson Distribution

A common type of problem which falls into this category is the
determination of a cross section or a mean free path. For a mean free path
\, the probability of getting an event in an interval dx is dx/\. Let P (0, x)
be the probability of getting no events in a length-x. Then we have o

dP{0, x) ="- P(0, x) X EIXX- ,

Lﬂ/P (0, x) = - i)i- + cqhst,

—x/)\

P(0,%) = e (at x = 0, P(0,x) = 1). (19)

Let P(N, x) be the probability of finding N events in a length x. An

element of this probability is the joint probability of N events at dx], ... dxN "~
times the probability of no events in the remaining length:
| | \
' N o /4. _
NN, x) = T K_d—)}\{l\ X e—x/x (:20)
. ) i=1 ] ) . o

The entire probability is obtained by integrating over the N-dimensional.
space. Note that the integral

N % dx. / \N
o f ~ - (%
i=1 JO

does the job except that the particular probability element in Eq. (20) is
swept through N! times. Dividing by N! gives
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/E)N- . . )
PN, x) = \)1\\1l . e—x/)\ , the Po’1.s‘son d1str1but10n, (21)
As a check, ‘note y .
.« : 4
00 - J \ ) .
-z P(,x) = e'-x/x (Z(———}f,/)\) )y = e X/)\ (ex/')\) =1.
j=1

.e—x/)\ = x/)\.

Likewise it can be shown that (N—‘N)2 = N.

Equation (21) is often.e‘x’pressed in térms of N: °

N -N
Nl

P(N, N) = e , - the Poisson distribution. (22)

e

: . : ,
This form is useful in analyzing counting experiments. Then the 'true'

ccunting rate is N.

We now consider the case in which, in a certain experiment; N
events were observed. The problem is to determine the maximum-likeli-
hood solution for a = N and its-error: S

__aw = .__N_ - 1 .-
da Coa ’
82w - N

- i 8,0.Z a;

. Thus we have : o.>'( =N

. and by Eq. (7), Aa = %

S NN

In a cross-section determination, we have a = pxo, where p is the number
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of target nuclei per cm?> and x is the total path length. Then

Sk N AU _ ].

o*=—" and 22 = 2
. Px o '\]N
t i - '

* In conclusion we note that a%* ;( a:

f .aja') da jf o,.N+.1 e %da
. v . o

15. Extended Maximum- Likelihood Method
14 ) 3 . . i

So far we have always worked with the standard maximum-likeli-
hood formalism, whereby the distribution functions are always normalized
to unity, Fermi has pointed out that the normalization requirement is not
necessary so long as the basic principle is observed: namely, that if one
correctly writes down the probability of getting his experimental result,
then this likelihood function gives the relative probabilities of the parameters
in question. The only requirement is that the probability of getting a part-
icular result be correctly written. We shall now consider the general case
in which the probability of getting an event in dx is F(x)dx, and

X '
ma>l< '

X -
min

is the average number of events one would get if the same experiment were
repeated many times. According to Eq. (19), the probability of getting no
events in a small finite interval -

. i xX+Ax
Ax is exp (- / F dx)
X
The probability of getting no events in the entire interval x_ . <x< x is
: v min max
the product of such exponentials or
x ' =
Fdx)=e

. X
: ma
“exp (—f
| -
. mi

n .

. - e st ame e s - s
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The element of probability for a particular experimental result of N events
at x = Xy oo ea Xy is then.

N ~ N

dp=e /7551 F(Xi)dxi’
5 Thus we have B C N
/{(a) = "Nl g7 F(a;x,)
i=1
and. .
N _ Xmax
wila} = 1:_:1 M/F(a,xl) - j‘ F(a;x)dx
k.
l‘ min B
" The solutions a, =

o.i* are still given by the M simultangous equations:

3w | .
. : B da. . Ov'
) : - i
> The errors are still given by
" ' . W (=) o
S (a;-a;*)(a;-0y%) = (HAT
where A '
. 2%
ij ~ " Pa.0a.
1)
The only change is that N no ldnger_ appears ekplicitly in the formula
' 2

9w 1 [aF\[oF "
- = = ||| 70— dx
- 9da.0a. JF Va. |\0a., ;
i i i/
A derivation similar to that used for Eq. (8) shows that N is alreédy taken
care of in the integration over F(x). :

In a private communication, George Backus has proven, using
direct probability, that the Maximum- Likelihood Theorem also holds for the

extended maximum-likelihood method and that in the limit of large N there
is no method of estimation that is more accurate.

In the absencé of the extended maximum-likelihood method our
procedure would have been to normalize F(a;x) to unity by using
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For example, consider a safnple containing just two radioactive species, of

. lifetimes a, and G, Let ag ancl.o.4 be the two initial decay rates. Then we
have ‘

v F(a x) = -x/a + a, € --x/az _-,
- where x is the time. The standard method woul-d then be to use-
. e_‘x/(11 + ag e—x/az v
fla;x) = - s
a; ta; 0,

which is normalized to one. Note that the four original parameters have
been reduced to three by using ag = l//a3. ‘Then a3 and ay would be found
by using the auxilary equation , '

. o]

the total number of ccunts In this standard procedure the equation

(u ) = N,
must always hold. - However, in the extended maximum- 11ke11hood method
these two quantities are not necessarily equal,” Thus the extended maximum-
likelihood method will give a different solution for the a;, which should, in
principle, be better.

Another example is that the best value for a cross section ¢ 1is not
obtained by the usual procedure of setting po L = N (the number of events in -
a path length L). The fact that one has additional a priori information such
as the shape of the angular distribution enables one to do a somewhat better
job of calculating the cross section. In a private communication Fraunk
Crawford has pointed out that the two methods give exactly the same
answers in the sgecial case in which F(ai;x) is hoi'nogeneous_ in the aj.

16. The Least-Squares Method

Until now we have been discussing the situation in which the
experimental result is N events giving precise values x,,. . . , X,;, where
the x: may or may not, as the case may be, be all different. The case in
which. thevxi have known measurement errors is discussed in Reference 1.

From now on we shall confine our attention to the case of p

measurements (not p events) at the po1nts 'S T The experimental
results are (yy £ 04), . . One such t?pe of exper1rnent is
where each measurement conmgts oipN events. Theny;, = Nj and is

Poisson-distributed with o, = '\/Ni. In this case the 11ke11hood function is
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i ' » . P N:
- - . I ey . p - .

| e o BeTE )
., o i=1. Ny T

and p D - P. ’
1 : w = = N, £ny(x;) - = y(xi) + const.
i=1 i=1 :

4

We use the notation y(a;;x) for the curve that is to be_fitted to the experimen-

tal points. The best-fit curve corresponds to q; = '.ai'. ‘In this case of _
Poisson-distributed points, the solutions are obtained from the M simultaneous
© equations - ' ‘
podky) Ry, 990k
-y T %) Toa
- a= a=1 a 1

1 i

] v _A/_'V(X)

X

The remainder of this section is devoted to the case in which the
y; are Gaussian-distributed with standard deviations o.. Here the famous
least-squares method is applicable. We saall now see that the least-squares
rmethod is mathematically equivalent to the maximum-likelihood method. In
this Gaussian case the likelihood function is '

P | , ,
Z:_ Z: T{'Z“l—ﬁ‘; exp z[-wa-?(xa)"‘)/w ) (23)
4 w=-3 777 "“ g 14\/\/_2_17 o
-i a=1 : : @
| where _ 2
M= & Ll Yz(xa)'] | (24)
- a=l o ' .
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The solutions a, = ¢, * are given by minimizingw (maximizing w):

9
aa.m, = 0 (25)
i
N o
This minimum Value'of’})'( is called //) R the least squares sam. The
values of a, which minimize 7/7f are called the least-squares solutions. Thus

the maximum-likelihood and least-squares solutions are 1dentlca1

According’
to Eq. (11), the least-squares errors are_

sk > - —1 = 1 a M
(ai— ai.)(aj‘(].j ") = (E . )1J: where H]_J = 3 —aTia—_w,-J_
Finally we consider the special case in which '{r(ai; x) is linear in the
a.: ) ) '
i o M
y(ai;x) = 3 aafa(x) .
‘ ra=l
Then | M
P V.o-.2, afo(x ) ' '
g'n’(: _ s > a' bH=1l. bb»a k), (26)
Q. _ 2 17a : ‘
i a=1 g :
a
and
js) (e M. (x_) .
H.= = aJ & (27)
. - T 2 .
. a=1 g .
Define
p y. f.(x_)
U = = —aras ' (28)
i 2
a=1 o
. a.
Then
o M B
a» _
5o, 21V - ‘E apHys |

=1 J

In matrix notation the M simultaneous equations giving the,least-sQuares
solution are :

- | ' (29)

(@]

1]

=

¥

- 1e

X
It
e
i
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a;* = Z z - 2 (H )al !
a=]l b=l AN
o 1(30)

s.é. i '

: o) fo(x_ ). (x_)
(a.-a.*){a.-a.*) = H where H,, = Z 1 2.3

J J ~ 1} a=1 T 2

‘ ' a

Equation (30) is the complete procedure for calculating the least-squares
solutions and their errors. Note that even though this procedure is called
curve-fitting it is never necessary to plot any curves. Quite often the
complete experiment may be a combination of several experiments in which
several different curves (all functions of the a.) may jointly be fitted. Then
the > value is the sum over all the points on all the curves. '

o e e e e e e e e o e e e e e e e v e e e em e e et mem Gk e e e e e e e e e e e o = =

Example: The curve is known to be a parabola. There are four experimental
points at x =- 0.6, -0.2, 0.2, and 0.6. The experimental results are 5%2,
3xl, 5%l1, and 8+2. Find the best-fit curve.
— 2
y(x) =.a; + a,x + ax
_ 2
fi—l, fz—-x, f3—x, )
2 4
1 *a *a
a o a o ac
a a a
2 3
X, X X
Hl2™ 2 =23 = 2 —3 " Hy) Rl
a a a
. s 0 0.26 0.664 0 -2.54
' H={0 0.26 . 0 "wl={o 3.847 0 ,
0.26 0 0.068 -2.54 0 24.418
Z :
- u=(11.25 0.85  1.49)
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a %= 3.685, bay = 0.815, Aajba, = 0,
0.2* =3.27, Da, =19 , Ac:LlAcx3 = -2.54,
ay* = 7.808, - Moy = 4.94 .

F(x) = (3.685 + 0.815) + (3.27 + 1.96)x + (7.808 + 4.94)x" is the best-fit curve.

17. Goodness of Fit, the XZ Distribution

The numerical value of the likelihood function at Ozp(a*) can, in
principle, be used as a check on whether one is using the correct type of
function for f{a;x). If one is using the wrong f, the likelihood function will
be lower in height and of greater width. In principle, one can calculate,
using direct probability, the distribution of Aa(a*) assuming a particular
true f(a,, x). Then the probability of getting an £ (a*) smaller than the
value observed would be a useful indication of whether the wrong type of
function for f had been used. If for a particular experiment one got the 7
answer that there was one chance in 10 of getting such a low value of,,f {a*),
one would seriously question either the experiment or the function f(a;x) that
was used. "

In practice, the determination of the distribution of ,/Zf(a*) is usually
an impossibly difficult numerical integration in N-dimensional space. However,
in the special case of the least-square problem, the integration limits turn,
out to be the radius vector in p-diméunsional space. In this case we use the
distribution of 27({(a*) rather than of ,Zp(a*). We shall first consider the
distribution of )}/(ao). According to Egs. (23) and (24) the probability element
is

P : P
d¥ P o« exp [-¥]/2] d%y, .
Note that Y|= p.z, where p is the magnitude of the radius vector in p-

dimensional space. The volume. of a p-dimensional sphere is U« pP. The
volume element in this space is then

‘ -1 4 -1)/ 251
dpyi « pP™" dp W\(p )/ mz d MW,
Thus

dPW_) oc\ﬂ(t)/Z)_l }e('wl/z) a M

The normalization is obtained by integl.-ati_ng fromW;O toM = oo,
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(29)

dp(ﬂa). 1 >7(0(p‘/2 7/]0/2 d///O’

2P 2 rp/2)

where 7/)1 / ).

This distribution is the well-known X d1str1but1on W1th p degrees of freedom.
XZ tables of '

2
¢

PO

for several degrees of freedom are in the Handbook of Chemistry and .

Physics and-other common mathematical tables.
13

—

From the def1mt1on of m (Eqg. (24)) it is obv1ous that
One can show, using Eq. (29), that ( m - My ) Hence, one s%ould be
suspicious if his experimental result g1ves an ‘77{ value much greater than

(p + Ni2p).

Usually a5 is not known. In such a case one is interested in the

distribution of
mE =7l

" Fortunately,; this distribution is also quite simple. It is merely the ¥
distribution of (p-M) degrees of freedom, where p is the number of
experimental points, and M is the number of parameters solved for. Thus
we have -

2

dP(nr) = x ° distribution for (p-M) degrees of freedom, '
o o (31)
¥ = (ptM) and AM* = N 2(p-M) T

Since the derivation of Eq. (31)is somewhat lengthy, it is given in
Appendix II.

Example 1: Determine the X probab111ty of the solution to the problem at
the end of Section 16.

7)? = <§_:_2Y_(‘_~(ll>z + <3 -vl(_.z)>2 . <5_v1(.2)>2+ <8'§’(.6)> 2 |

V)/)l.* - 0.674 cornpa‘réd to W::; - 4_3 =1.

— o ean © e e e - T g AR ¢ D Aoy 78 e R 8
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According to the XZ table for one degree of freedom the probability of
getting 7//(* >0.674 is 0.41. Thus the experimental data are quite consis-
tent with the assumed theoretical shape of g ’ :
¥.=a; tax +a o

2 3%

Example 2: Two different laboratories have measures the lifetime of the 6
fo be (1.00 = 0.01) X 10-10 sec and (1.04 + 0.02) X 1010 sec respectively.
Are these results really inconsistent?

1.008 X 10”10 sec.

According to Eq. (6) the weighted mean is a*

2 2 -
e - (1.00 - 1.oos> . (1.04 -1.008)* L5, Fieazo1=1

z 001 0.0z )

Thus

According to the XZ table for one degree of freedom, the probability of getting
9% >3.21is. 0.074. Therefore, according to statistics, two measurements
of the same quantity should be at least this far apart 7.4% of the time.
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Appendix I: Prediction of Likelihood Ratios

An important job for a physicist who plans new experiments is to
estimate beforehand just how many events will be needed to ''prove'' a
certain hypothesis. The usual procedure is to calculate the average logarithm
of the likelihood ratio.:: The average logarithm is better behaved math-
ematlcally than the average of the ratio itself,

We have

;% f 10g -— fA( x)dx, assuming A is true, ' (32)

or
: fA | o :
log Q = N ‘flogf——éfB (x)dx, assuming B is true.

Consider the example (given in Section 3’)'of the 7 meson. We believe spin
zero is true, and we wish to establish betting odds of 104 to 1 against spin 1.
How many events will be needed er this? In this case Eq. (32) gives

1

o -
log 10% f )dx = - N flog (2x) dx ,

T+wus about 30 events would be needed on the average. However, if one is
lucky, one might not need so many events, Consider the extreme case of
just one event with x = 0: would then be infinite and this one single
event would be complete proof in itself that the tau is sp1n zero. The
fluctuation (rms spread) of log Xfor a given N is :

i, ; . .
.2 A 2 . A 2
(10g@ - 1og(<) =N (log -f—B; ) fAdx - (jlog fB fA dx_)_
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Appendix II: Distribution of the Least-Squares Sum

We shall define

y A £ (x;)
zZ. = =~ and F .= I
i T _ j g,
1 N 1 (Y
. 5
Note' that}:l /_l': . E by Eq. (27),
Z  F=qa - Hby Eq. (28) and (29) (33)
Then a” =2Z - F H-1 (34)
P M o RO AR e A 2.
My = 2D (2 F ) (et e JF T
a=1l b=1 _ :
where the unstarred o. 1s used for oy
PM Va \\2 ) ~ ~ ~ ~. o~
— - a 32 . S ~ b5e 3¢
.M():ZZ —_ - Z-a * F)F(a" -a)+ (a -a)F F(a -a),
g - I . T - -, T an— - -
a b a - a
> ) sk ~ e~ -1 -1 -l -1,
Ny =M +22- F-o* EF)a -a)+ (2 E . H '-oHH "H(H 'FZ-H 'Hg)

w o -— L ~ A —a A W ”~ A

using Eg. (34)._ The second term on the right is zero because of Eq. (33).

B o — ~
7”\ 7’10 (Z - E-oFE)H gfi NFz-FFa),

P2 J VR VY

— o~ —_
“YY\ = (Z—_Z_)( -S)(Z-2) where o ¥ = Z and
b A P A e o A )
-1
. 8§ = FH F. ' (35)
, o~ —— o~ »
Note that : '
| 32 = (FH” lf)('FH"lbf:) - FH IF = S.

If s, is an eigenvalue of 5, it must equal siz, an eigenvalue of SZ. Thus

‘ s, = 0 or 1. The trace of S is

-IE o gr1=M.

TrS = 2 Fabec Fca = . chHbc = 1

a,b,c

oM

Since the trace of a matrix is invariant under a unitary transformation, the
trace always equals the sum of the eigenvalues of the matrix, Therefore M
of the eigenvalues of S are one, and (p-M) are zero. Let U be the unitary ~
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i .
: matrix which diagonalizes S (and also (1-S)}). According to Eg. (35),
4 | : M* = n- U(1l-S) U-'l - %, where n .= (_Z,-_Z.) - U,
g p ' 2"'
= 2 a na where /VV\—a are the eigenvalues of
a=1 '
(1-S). . v
' o= Z n since the M nonzero eigenvalues of S
a=1 : : -

cancel out M of the eigenvalues of 1.
Thus o W '
dp(M:{:) oc e_ /Z d(p-M) n

a

2

where M\* is the square of the radius vector in (p-M)-dimensional space.
. By definition (see Section 17) this is the x ¢ distribution with (p-M) degrees
: of freedom.

‘
o ¥
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This report was prepared as an account of Government.
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any; warranty or representation, express
or implied, with respect to the accuracy, com-
pleteness, or usefulness of the information
contained in this report, or that the use of
any information, apparatus, method, or process
disclosed in this report may not infringe pri-
vately owned rights; or '

B. Assumes any ‘liabilities with respect to the use
of, or for damages resulting from the use of any
information, apparatus, method, or process dis-~
closed in this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the
Commission to the extent that such employee or contractor
prepares, handles or distributes, or provides access to, any

information pursuant to his employment or contract with the
Commission.



