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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, express
or implied, with respect to the accuracy, com-
pleteness, or usefulness of the information
contained in this report, or that the use of
any information, apparatus, method, or process
disclosed in this report may not infringe pri-
vately owned rights; or

Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any

information, apparatus, method, or process dis-
closed in this report. '

As used in the above, "person acting on behalf of the
Commission" includes any employee or. contractor of the
Commission to the extent that such employee or contractor
prepares, handles or distributes, or provides access to, any

information pursuant to his employment or contract with the
Commission.
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ABSTRACT

A general method is suggested for analyzing the scattering of
particle A by particle B, leading to three or more final particles, in
order to obtain fhe cross section for the interéction of A with a particle
which is virtually contained in B. Binding'compliéations are absent if
a plausible assumption about the location and fesidues of poles in the
Sematrix is accepted. The method is useful for unstable particles from
which free targets cannot be made; the special examples of pion and

neutron targets are discussed in detail.
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I. INTRODUCTION AND RESULTS
~A. The importance of measuring cross sections for such interactions

as pion~pion, neutron-neutron, pion-neutron, electron~-pion, etc. has long_
been recognized but no feasible way has been found for making targets from
pions or neutrons. . Deuteron targets have often been used with various
subtraction procedures to give rough values for neutron cross sections but
complications dﬁe to the presence of the ﬁﬁwanted_profon have made precise
interpretation impossible. Similarly it has been recognized that virtual
pions in the cloud associated with physical nucleons might in some |
approximation be considered as targets, but here, even more than in the
deutgrdn case, binding effects have obscured the desired two-body inter-
actions. The purpose of this paper is to present a scheme for analyzing
expériments with "complex" targets so as to obtain the elementary cross
sect;ons of target constituents, free from binding c§rréctions.

| The essential physical principle employed relates to the location

and residue of poles in the scattering matrix. The existence of these
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poles can be proved in local fieid theory, and the connection of the residues
to physically measurable quantities may be made very plausible, although
proofs have not yet been givén for all interesting cases. Well known
examples are the pole in the forward angular distribution for Coulomb
scattering ahé.the Weiszacker-Williams pole in the electron momentum transfer
for processes induced by high enefgy electrons.l The locétion of other
singularities of the S matrix, such és branch points, is of indirect
'importance to our scheme and here we resort to.guessﬁcrko In Section II
of this paper the nonrelativistic deuteron problem is analyzed, to illustrate
with a concrete example various essential aspects of our program.

B. From a practicél sténdpoint the proﬁlem turns out to be largely
oﬁé of choosing the right variables to represent the exberimental results.
To ensure thét ex@erimeﬁters are not led by unfamiliarity.with'S-mafrix
vﬁheofy to'ovérlook the utility of the scheme, we present at once our

prescfipfion for analyzing experiments of the type,
A + B - three or more particles,

sé.as to obtain thé'cross section for the interaction of A with some
constituent of B. An example might be the proceés
(a) .« + p - p + at least two mesons,

with the object of determining the total -(n', x° cross section),

or possibly
(p) n +d » p + n + n,
with the object of determining the cross section for

n + n - n + n.
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One must in general deal with four masses. First there is the
mass of the incident particle, which we shall call Kqs then there is the
mass' of the "complex" target particle, Ml’ and finally the two masses into
which the target can virtually decompose. We shall call ko the mass of

the particle whose cross section is of interest, while M2 refers. to the

recoil or "spectator" particle. For example, in case (a) above, we have

p'l = 'J'e = mﬂ J
and

while in case (b) we have

' Hl = My Mn’
and ‘
Ml' = Md’ M2 = Mp’

The first experimental variable of interest will be called A?
and is the invariant square of the difference of four momenta for the
target (Ml) and spectator (Mé) particles. The laboratory kinetic

ehergy of the recoiling spectétor particle we call T Then we see that

oL’
a linear relation holds between A? and T, (we use units in which ¢ = 1):
2 2
A = oM T, - (Ml - M2) . (1.1)

It is in fact convenieﬁt to use rather than A? a8 quantity p2 = 2M2 T2L
which nonrelativistically'ié the square of the laboratory recoil momentum.

Evidently the following relation is %rue:

p? - M?- [Ag + (Ml-MQ)e] . - (1)
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The second varlable of prime interest will be called wa-'and is
the square of the total energy of all the outgoing particles--excluding
the spectator--in their barycentric system. If the angle as well as the
momentum of the recoiling spectator is measured, w2 can be calculated

directly from energy-momentum conservation:.

o 2 .2 2
W= «DlL + M -=AM.2 "TEL) - (qlL - 2qyy Py €OS € + Py ). (1.2)

Here 1, and U7, respectively are the total laboratory energy and
momentum qf the incident particle, while Por, is the laboratory momentum
of the recoiling spectator and eL its angle with respect. to the incident-

beam direction. Thus we write

2 2
My + T = \A)QL %

o V NE -
L - 941, s

Qur method of analyzing the scattering experiment so as to obtain

and

*
the total cross section for the 1nteract10n of Hy with u2 reqpires a

t

determination of the two-dimensional distribution,

3 0(w,p)
Bwap

whlch can be obtained through (1.1) and (1. 2) if- one measures the energy

and angle distrlbution of ‘the recoiling spectator in the laboratory system.

- :
The procedure for determining differential cross sections will be

described below.
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To calculate the limits on the possible values of the variables w2 and p2
it is best to consider the over~all barycentric system, where we designate
the total energy by W. The relation between W and the laboratory energy

of the incident partiéle is

W = \/éMl ®p M12 + u12 , ' - (1.3)
and the upper limit of the variaﬁle w is W = MQ. The lower limit on w
is the sum of the two smallest masses which can occur in the final state
in addition to the spectator particle.

The upper and lower limits on p2 depend on both W and w and.
reéuire é slightly involved but straightfofward calculation. In the over-all
barycentric system let the recoill spectator energy be designated by E2.

One may easily show, then, that this relationship holds true

2 2 .2
w + M2 - W _
E, = 2w _ . , ' (1.4)

Similarly in this same system, we designate the energy of the original target

particle by El’ so that
L T |
E; = . (1.5)
oW . :

JEEY

Let the corresponding momenta be called P2 and ﬁl. Then by definition,

2 - 2

= & o+ (M - M)

S
o]

(P, - B

2
1 2 )

+ (M - M2)2 (1.6)

) - (?1 -5

,. : : 2 2y, 2 2
2E.E, = 2M,M, + 2 cos 6\/(E1 - M )(_E2 - M, )
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where e; is fhe'recoil angle in the barycentric sysiém and'fahges frbm 0 to-

180°. 'Formula'(l,6),rtogether with (1.4) and (1.5), gives the range of p2

v fbr.fikéd.valués of W ana w.‘- ; o | | -

As an example of the above kinematical considerétions,:Fig. 1 shows

© the allowed regions of the (w2, pg) plané for case (a) with W = 1.5 Mp

and 2.5 Mp‘ These total barycentric energies correspondbto laboratory

kinétic éhergies'for the‘incident pion of aboﬁt 0.45 and 2.6 Bev; respecﬁively,

A.p£ase—sbdce'diagfam for case (b) above is shown in Fig. 2. The importance ‘

of these phase-space diagrams to our séheme is discussed bel@w. | )
C. Lef us aéSﬁme,thét for some rangé of w2 and 92 ;t a fixed

'féfal eh;fgy the differéntialtéross sectiéh in thése variables-has been .

determined. Our method then prescribes that the following function be

constructed:
2
2, 2 2
M )2 a; (b = py) -
M. L ' 2 2 2
2 we , 2 2, 1, 2 2 v
\/%-'-2—'(“14'”2)'{'1;(“1'“2) aP

F(w?, p°) = o (

where

M
2 T2 2 YRy
Po = ”Ml|;“2 - (v, Ml)]’

This formula will be motivated below in Section III, where it will be shown

2
that for fixed w°, if —-2——92—
op~ oW
2 2 2

it has a second order pole at A~ = -4, Or P = po2 and that the

is extended to negative values of p2,

residue of this pole is directly related to the total cross section for

the sqattéfing of the incideht’particle by the particle of mass p,, at
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total energy w in the barycentric‘system of these two particles. From

the way we have constructed _F(ﬁz,.pe), it is clear that its value at p2 = p02
' is essentially the residue in Question.' Because of final-state interactions
involving the sﬁectator it is expected that other siﬁgularities'bff%F(wg, p?)
2 |

will appear in the neighborhood of p2 = po , but nothing as important as

the pole of interest. Therefore we believe that by extrapolation from the
physical region it should be possible to determine F(wg, poe).
From formula (1.1') it may be éeen that.we arévspeakihg of an
extrapolation in the fecoil-spectator kinetic energy to the point
o 1 2 2 ' ‘
which is always negative if the original target particle and its two virtual
components are stable, that is, if we have

Ml < M2 + My M2 < Ml + Mo and Ho < Ml + MQ.

In the physical region, T2L ’is of course alﬁays,positive, 80 an gxtrapolation
over an interval at least equal to TQLO is required. However for case (a),
which measures pion-pion scattering, this interval is only 10 Mev, while for
case (b), which measures.neutron-neutron scattering, it is only 1 Mev.

According to (1.6) the physical phase-space lower limit on p2

approaches zero at .

M .
2 - 2 _ .2 2 2 .2 2 2 :
Vo= Wt o= W+ M, -,—Ml W= + M- - “1) _(1.9)

-.and . in the neighborhood of this point behaves quadratically:
2

2 My

P . ~ .
2 2 2

2
. (1.10)

3 2.2 (We'woe)
C- S My
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_Clearly our proposed extrapolation procedure is most feasible in the neighborhood
of wg = wbe. In case (&) and in general when proton targets afe used as a
source of pions, wo2 equals _m“E; therefore the point Yo lies outside
- the physical region. In the physical region the lower limit on pg' is
always greater than zero, but (1.10) shows that for
W om? 2 %r_l:(w2+ Mpa_ mﬂa_)2~ o 1 J 1/2
b .
the lower limit is no larger in order of magnitude than the extrapolation
distance m.ﬂe° Therefore for values of w2 in this rangé one may still
nope to be able to carry out our preacrip‘c;ionn It is easy to show that a
._sgatteriné experimeﬁt_with a free tgrget pion at rest, and with the same
incident~-pion laboratory énergy as.with the proton target,‘would correspond
to a value of w2 in the above allowed range. Thus our method permits a
study of the same energy region that could be reéched if real pion targets
were available. |
' With a deuteron target and the proton'as a spectator, the point L
oceurs in7£he physical renge for all but the lowest bombarding énergies
and closely corresponds to the unique value of w +that would occur with a
free-neutron target at rest. Thé poSsibility of reaching wb in the case
of a deuteron but not in that of the proton perhaps reflects the fact that
~the neutron contained in the deuteion is closer to being a real particle -
than is the pion contained in the proton.
In Section IT it will be shown that for any experiment designed to
measure & neutron cross sectlon with a deuteron target, including our

example (b), the value of the function F(W s P ) at the position of the

pole is to a very good approximation -
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(¥, p,0) = ri‘; (%) ™ s (1.12)

where 012 is the two-body total cross section of interest, a is the

inverse deuteron "radius" and T4 is the neutron-proton:triplet .
effective range. The position of the pole is at po2 = = aa.
For experiments designed to measure neutral-pion cross sections with

a proton target, the corresponding formula is

2 2 2
where fOp is the coupling constant for neutral pions to protons
(f0p2 ~ 0.08). The position of the pole in this case is at p02 = - mﬁz,

If one wishes to measure a charged-pion cross section, with a neutron recoil,
one uses the charged—pion'coupling constant, fc2 ~ 2f02.

Notice that the extrapolated value of F(wz,xpe) is negative in
pion cross-gsection experiments but positive for neutron experiments. This
circumstance results from the-:-fact that a singlé'&irtuél pioﬁ in thé
nuclebn cloud must be in a P stéte, while the neutron in a deuteron is
in a mixture of S and D states. 0dd angular momentum in the complex
target system in general gives rise to a negative residue for the pole in
the_cross section. This point will be elaborated in Section III below.

From a practiéal standpoint the negative residue in the pion problem
is a severe disadvanfage. It means that one must accurately determiﬁe not
only the value of the funcfion F(wg, p2) in the neighborhood of p2 =0
but also at least its first derivative in order to perform the required
extrapolation. There probably will be a peak in the cross section at low

p2 but this will be due to a first-order pole whose residue is not
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unambiguously interpfetable, since it may involve cross_ferms with parts of
the amplitude that we cannot calculate. The effect on which we must depend
is a tendency for the cross section to decreése at the last moment (as p2 - 0)
as a result of the.hegative contribution from the second-order pole.

D. To conclude this prescription for the analysis of expériments,
" we generalige the foregoing to allow the determination of differential as
well as total cross sectioms. First,:when'several'outgoing'channels are
-poss;ble, there is an obvious correspondence between channels in the
“elementary? reaction of interest and channels in the "complexﬁ target
reaction. For example, in our case (&) which involves the n-n interaction,
if w 1is greater than BQK there méy be both threeupioﬁ and two-pion
final states. If one wishes to determine the purely elastic n+ -5 cross

section, the measurement should be restricted to processes of the type

+ + o
T 4+ P - P + N 4+ X,

excluding events in which three pions emerge, but otherwise the procedure
stated above may be followed. |

Should one wish to go further and measure the angular distribufidn
for a two-body final state it is necessary to consider a variable
correspoﬁding to the barycentric angle of scattering for the two-body
system of interest.  The definition of this variable is not unique.and
will vary from problem -to problem° In many cases, however, it seems natural

to measure the energy - and momentum a%L of one of the outgoing

3L

particles (say the x° in case (b)) and to evaluate the invariant quantity

® cés ey (1.13)

9795 = = O3 @, * Qg Y31, €08 P31, 0
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where el is the angle of the outgoing particle with respect to the

3L

incident beam in the laboratory system.
‘One may then consider the same invariant in the required barycentric

system for particles 1 and 2, where the energy of the outgoing particle 3 is

W2 " 2 fu 2
- "k b)
Wz = — s (1.14)

if My, is the mass of the "other" particle in the reaction, 1 + 2 — 3 + 4,

The momentum qu is of course VAmee - u32 . The energy of the incident

particle in this system may be calculated if A? as well as w 1is known.
One finds
we + A? + plz

®1p = 5w s - (1.15)

and a corresponding momentum Uy = VAD1b2 - u12 . The cosine of the
scattering angle in this system is then related to the invariant ql.q3

by a formula analogous to (1.13), so that one finds

e s S Se VI A o (1.16)

Uy

91, 91,

cos 8, =

Thus it is possible to subdivide the events observed according to

b and to extrapolate in p2 at fixed Gb in order to obtain the

desired angular distribution. In Section II it will be explained that

cos ©

when a final-state interaction involving the spectator is important it
may be necessary to avoid certain regions of the scattering angle eb.
Since these regions are generally small; the determination of the total
cross section for‘a'given channel should not be too strongly affected by

final-gstate interactions.
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IT. A NONREIATIVISTIC EXAMPIE: N +D - N + N + P.-

A. We consider a neutron, of momentum Ea, incident on a deuteron
at rest. The deuteron diaintegrates, leaving a final state with two neutrons
of momenta E% and EL , and a proton of momentum ”51 The contribution to
the amplitude from the process in which the incident neutron is scattered
by the neutroﬁ 1n.the deuteron, the proton standing by as a spectator, is

given by
a = (B g I8 )@, (2.1)

where /T is the neutron-neutron T métrix,‘vﬂ is ﬁhe Foﬁrief;transform
of the internal wave function of the deuteron, and where explicit spin
functions have been omitted. | | | |
,LThe mein point of our paper is contained in the remark that ¢(§5
has a simple pole at p2 = - a? ( é is the deuterpn radius) whose residue
is simply the normalizafion of the asymptotic wave function.of the deuteron.
The rest of the amplitude has no pole at this point. Furthermore, at
p2 = = 02, the T matrix is on the enefgy shell, so that it can yield direct

information on neutron-neutron scattering. This evidently follows from

the energynconservation equations for Eq. (2.1):

2 2 2 o2 qf |
A < T MU - AP S
SR T M Y ZE Y THH (2.2)

The energy difference between the final and initial states of the T matrix

in Eq. (2.1) is
' 2 . 2 2 ™,

R S S 0.5
2N T M T @[ =W T 4 2

RS
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80 that when p.2 - - we have AE = 0 and the T matrix in Eq. (2.1)
becomes a multiple of the neutron-neutron scattering amplitude.

The contribution of a in (2.1) to the cross section is

(2.4)

In Eq. {(2.4) the integral is to be extended over the region of interest .
The quantity £, at p2 = - ae, is the neutron-neutron scattering amplitude,
that is | ¢ |2 is the neutron-neutron differential,.unpolarized cross
section in the center-of-mass system. The normalization of the asymptotic

deuteron wave function, C, is:

2 Q
c = T- 74 ’ » (2.5)
. 0 :
with Ty the triplet effectiveirange.gi Stfiétlyﬁspeaking;~fC?ﬂJis 5
‘& function of pe, as the deuteron is not in a pufe S state. In fact, one

: L
can easily show that c® must be replaced by 02(1 + ( g ) «ee). Here

€ = VE? Q,ae, where Q is the deuteron quadrupole moment. Since
€ ~ 0.02, however, the differeﬁce may be safely ignored.
We dp not néed to;fake the exclusion principle explicitly into
~ account. It is clea¥ that for the process under consideration (N-N scattering,

spectator proton) it enters only into the quantity f. For the other

process of. interest (NuP scattering, spectator neutron), the situation is
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slightly more complicated, but the coefficient of the pole will not be
affected by the exchange of the speétator and scattered particle.

In order to carry out the integrations indicated by Eq. (2.4) we
introduce the variable q = -;;L; (EflL - 3’5), which is the final relative

momentum of the scattered particles. In the notation of-Section I,

W = h(q? + M?); then we have
| 2 2 2
e 2 2.2 (g, -D° a 2
Lo _ P R A 0 R Yo NG WAL Sl A SO S
Ot 2 2 2,2 2M M M . 2M M
Mg, (p© +

(2.6)

We wish now to do the remaining integrals holding p2, q? and 2z fixed,

where
@G, + P - . |
z = sk (2.7)

The ® function in Eq. (2.6) shows that a measurement of the recoll energy
and angle is equivalent to a measurement of q2. The amplitude f is s
function of the final relative energy, qf2 = q?, as wéll as Qf z and
the iniﬁial relative energy, qu, where

= (p2 + q2 + ag). (2.8)

At p2 ?*- aa, we have already seen that by energy conservation 9 equals
q;, SO that =z approaches the scattering angle in the center-of-mass

system. Thus we have
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-3 2 : :

dqg = dq g d(cos ©

q Q" dg af, ( q)
2

= n d(q°) qdz - : : (2.9)
and
, . _

@ - = L) 473, | (2.10)

l :

so that now we write

3 " ' | :|2

op~ 3~ %z  g”  (p7 + )
2 2
As p“ approaches - a” Eq. (2.11) becomes
2 do

30 A ¢® NN
S~ A .12)

RN ® T3 T3 5.3 (2, 8p) (2
3 3q° dz q," (p° +a9)° ¢&

where 2z = cos eb.. Integration over the variable 2z gives the total cross

section:

- [+

2\ 2 2 2. 22 NN
%237 xq? (p° +0P)

2 2
) 2 € Ta) . (2.13)

«Formulas (2.12) and (2.13) yield the extrapolation procedure suggested in
the first section.

We shall see in the next section that it is generally true that
the distribution in energy and angle of the speétator particle extrapolates,
via Eq. (2.13), to the total cross section of the other two particles at

the appropriate energy even when multiple—productioh processes are involved.
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B. We turn next to the important question of the limits on the
variables p2 and q?. The limits on- z are of course *1., Iet us
choose q? first. Clearly, in the center-of-mass system, we may have _q2
take all the available energy, or none of it. Therefore we write

2
21
M

=Ry

2 ' -
0o =% < , | (2.14)

W~

In order to calculate the limits on pg,» we note that p° = MA(AT)Z,
whéfe Lﬁ? is the velocity transfer from the deuteron to fhe spectator
proton. . Since 157 is 5 Galilean invariant, we mﬁy calculate it in the
over=-all center-of-mass system. Iet ?; be the proton recoil in this

system. Then, by energy conservation, we have

2 2 2
P P 2 q 2
2. 2 a _ 1 1 _a
M T YW T3 WM W (&5)
or
3.2 1 2 2
" EF 735y -2 -a
P, -
: R . 2 1l q
The velocity transfer is AV = (- ot 3 ) so that we obtain
2 = 1 - 2 .
p- = (P, - —3-q) . : : (2.16)

The upper and lower limits on p2 _are therefore given by (P2 i-% q)2,

where we have - .

P. = -3 (a + qa”)

L o2
2 g ¢

ks

This result is a special case of the general formula (1.6), taken in the

nonrelativistic limit.
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It is convenient to put these results on a plot of p%/ala versué
x'(q2.+ GEX/ale such as is shown in Fig. 2. Here the allowed region of q2
and p2 is included between the two lines. The point to which we must
extrapolate is p2 = - de. Cléarly the oﬁtimum q2 is ghe one for wﬁich

'§2' can take on the value zero. This occurs at q02 = —%& - 02, a final
center-of-mass energy which corresponds, neglecting the binding shift aa,
‘to the collision of the incident neutron with a neutron at rest in the
laborator&. This is a second feature generally true for a deuteron target,

- irrespective of the particle striking the bound neutron: the minimum in the
extrapolation distance, At least in the limit a2 - 0, always occurs at that
final energy corresponding to the fictitious two-particle collision in the

"~ laboratory. -

| C. The contribution of the pole at p2 = - a2 to the total
inelastic cross section is of the same order of magnitude as the total
neutron«scattering‘érbss séction, so its effect is certain to be comparable
to that of more complex processes. It is therefore probable that a successful
extrapolation can be carried out in the deuteron case.

This order of magnitude may be estimated most simply by integrating

Eq. (2.13) over p2 and q?, We have

(2.17)

If we neglect agvpmaxe_ ~ ai/alz, the upper limit in Eq. (2.17) may be

dropped compared to the lower. Further, if we expand pmina(q?) about

qog, we find, if we call q2 - q02 = u,
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2 _ (p.-1q)? 2 Wt | | (2.18)
Pmin = Y2"3% = 73 o y
9, '
The denominator of _—-—52;-—5 therefore limits the integral over q to
D T+ -

: min
values of u.e_,é 02 (112 or (Aq) 4 «. Assuming no violent q dependence

in UNNT(q), we may neglect higher powers of q/&le in the denominator of.

Eq. (2.17) and replace q by q, everywhere else. The remaining integral

is
o . o0
o 2g. o T(q) |
s T wd . Zo'w W e du
oy ‘ = | . - :
inel =2 . d.q2 X q 2 - (ll-u2 p 2) + C12
1 1
- OO )
. /
2 \
cc Y g P

D. We shall here discuss the residual dependence of the various
terms in the production amplitude on the extrapolation variable p2 once
the pole has been removed. Of course the practiqaiity of our scheme

. depends most critically on this dependence. Roughly stated, if the

. dependence on p2 is too strong in the neighborhood of p2 ~ 0 we will
be unable to extrapolate to p2 = - a2. More preciéely, if there are
singularities in the cross section which are closer to the physical region
than the one at p2—= - 02 then a polynomial extrapolation may fail.

The p2 dependence may be’divided'inté a part associatéd ﬁith those

terms present in Eq. (2.1) and a part associated with other terms, such as

final-state interactions. The figst type is harmless, being given by the
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characteristic momentum associated with the range of the nuclear potential.

Thus the deuteron wave function satisfies the Schroedinger equation

#3) = s |V(E -3 83" &

p- o+
' (2.20)
1 " iﬁ"? —9) —->) -
= -5 e ‘V(r v(r)dr ,
P+ Q

and hence the singularities of the second factor are determined by the
range of the potential. The proof for the dependence of the T matrix
on its initial momentum is identical. Thus the dependence of (2.1) on p2
is quite accurately given by the pole and its residue for a range of p2
which is large compared to the extrapolation distance a2.

The p2 dependence of the rest of the amplitude is considerably
more involved and much less favorable. One can qualitatively understand
the difficulty by considering the final relative energies of the spectator

and one or the other of the neutrons. These energies are

-
+ qd -~ . 2
E;:ﬁ(—e}--%-iaf) . | (2.21)

Clearly the scattering amplitude is brimming with singularities in the

variables Eri, pérticularly'in the neighborhood of Er = 0, One need

only recall the branch point at Er = 0, the bound n-p state and the

virtual-singlet state; (There are also other less obvious singularities

associated with scattering by the spectator particle rather than with
4

final-state interactions.) Since we have 5 =9 = 4, we see from

Eq. (2.21) that for small p the forward and backward directions will be
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dangerous so that the extrapolation to the fbrwardvand.backward differe .
ential'éross;sectiOn' can probably not be carried out. As far as we have

been able to determine, as long as | z | 1is substantially‘smaller than 1,
'however, the nearest singularity in p2 is the pole at p2'= - ae,-so that
the extrapolation is possible in principle. Furthermore, the singularities
‘in the forward and backward directions appear to be sﬁfficiently weak so

that, although they make an extrapolation £o the differentlial cross section
impossible at those points, they will not cause any practical difficulty in

the total cross section. For example, a term in the total cross section

of the form

log

[a + V;iz + P :’
Q 2

although it has a branch point at pg + aa = 0, would show almost no trace

of this singularity in the physical region compared to the rapidly varying

term of interest, -_E_l_—ﬁ—ﬁ .
(p” +a%)

special model to investigate these problems in more detail.

Calculationsvare,beiﬁg carried out on a
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III. THE GENERAL PROBLEM

A. The central physical principle employed in this paper is the
existence of poles in the S-matrix corresponding to single-particle
"intermediate states." In the elastic scattering problem, = + N -»x + N,
the fact that such poles exist in the energy variable has been rigorously
proved; and it has recently been argued that for nucleon-nucleon scattering
there are poles in the momentum~-transfer variable. In both cases the residues
of the poles are given by the rendrmalized pion-nucleon coupling constant.
A generalization is required for the present application, and the following
conjecture seems to us extremely plausible. '

1. Consider an element of the S matrix corresponding to a definite
total number of particles N (incoming plus outgoing) as a function of the
% N(N - 3) independent invariants which remain after all particles are put
- on their mass shells and energy-momentum conservation is considered. Then,
if it is possible to’divide the particles involved into two groups, each of
which has all the same quantum numbers (spin, charge, parity,betc,) as some
single-particle state, we conjecture thét there exists a pole in the S
matrix at a point related to the mass of this particle. (In forming these
two groups, if a particle is switched from incoming to outgoing or vice
versa it is to be éonsidered as the antiparticle with the opposite energy-
momentum.) More precisely, if we choose one of the independent invariants
to be P2, the square of the total energy-momentum four vector for either
group of particles, then the pole occurs at P2-= -m2, where m ié the
mass in éuestion.

Consider for example pion-nﬁcleon scattering,
ﬁi(ql) + Nl(pl) —aﬁg(qe) + Ne(pz)° Here one may form two groupings which

lead to poles. First, the two incident particles (ﬂl, Nl) and the two
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final particles (ﬁz, N2) bothréén connect to a single-nucleon state, giving
rise to a pole in the barycentric energy at (pl + q_l)2 = -M°. An alternative
grouping is: (Ei, Ne) and (Eé, Nl) which gives rise to a pole at -
(p1 = q2)2 = =M?, This latter variable is a combination of the conventional
energy and momentum transfer. .The last possible grouping, (ﬁl, Eé) and
(Nl, ﬁé), has no pole associated with it if one lgnores electromagnetic
effects.

In nucleon-nucleon scattering we have,
Nl(ﬁl) + N'l(p'l) - Ng(pa).+ N'Q(P'Q): in which are three poles:

at (Pl + P’l)2 = -Mba , corresponding to the deuteron; at (pl - ﬁe)a = -m

and at (p1 - p'2)2 = -mﬁe, both corresponding to the pion. In pion-pion
scattering there are no poles. '

2. The residue of a particular pole in the S-matrix is conjectured |
torbekgiven By the product gf the (smaller dimensional) S-matrix elements
which connect the two groups of particles to the intermediate particle on
its mass shell_° In the above elastic-scatteriﬁg examples one is always
considering gfoups cpntéining two particles. The S-matrix element connecting
such a_group to a‘single particle, even though all three particles are on
the mass sheli? does not corrgspond to a physically realizable transition
for stable ﬁarticléso_ Nevertheless the matrix element may be defined by
a process of analytic continuation and can be experimentally determined.

Tt is well known for instance that for the transitions = + N’Zi N or
N +T &€ x the value of the S-matrix element is essentially the pion-nucleon
coupling constant. It is also known that for the transition n + p :;d. the

Snmatrix element is directly related to the normalization of the asymptotic

wave function of the deuteron.
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In this paper we are concerned with a problem where pneuofvthe
groups in:qpestidn contains two particles and the other three or more.

As shown in Fig. 3 the smaller group cohsists of the complex target particle
(Ml) and the spectator (Méz; the larger includes the incident particle
(ul) and all outgoing particles except for the spectator. (We designate -
these outgoing particles by the symbol F.) The intermediate particle.here
is of mass u2,

Our basic conjecture is that the matrix element connecting the
larger group (F + 1) to the intermediate particle on its mass shell is equal
to the physical matrix element for the process 1 + 2'—» F. Avasis for this
conjecture has been given above in Section II by considering a nonrelativistic
deuteron problem in the impulse -approximation; it can also be verified in
relativistic-perturbation theory for the pion problem. We are, however,
not able to give a general proof, although aﬂproof for the case of real
four-momenta has been given by Zimmermann.,3 For our purposes we require
also complex four-momenta.

When we have a deuteron target (M1 = Md) with a proton recoil
(Mé = MP) anq wish to measure the neutron cross section (u2 = Mh), the
residue of the pole in the S matrix at A? = -the is the product of the
matrix element for the process d f; n + p with the amplitude‘for the
incident particle (ul) to be scattered by the neutron. Correspondingly
in the deuteron cross section there will be a second-order pole whose
residue is a knbwn multiple of the neutron cross section. Similar
statements apply to the proton target when the object is the x°  cross

section. Let ﬁs now consider the calculation of explicit formulas for

these residues.
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B. We designate the total energy-momentum four vector of the F
outgoing particles by the symbol @ while the "internal" state of these -
particles is labeled by the index n. The matrix element of essential

interest is then

{an |4 l‘ql> y | (3.1)

1

where 32 is the "current" operator associated with the particle of mass

Hos and ay designates the incident particle of mass My When
(Q = ql)2 equals =u22 this matrix element describes the physical transition
1+2- F. To establish a normalization, let us say that the total cross

section for the scattering of particie 1 by particle 2 is

H
A, H n

a0 = gzl (el iy, G

where w = V~Q2 , and q‘i is the magnitude of the momentum of particle 1

in a frame where particle 2 is at rest. One may easily calculate that

N 2
a'y by = V/%; cH wru)) +p e L (33)

The other matrix element that is required is

CHENED I - | A(B-E)

where p2 and Py designate the single~particle states of mass M2 and

Ml’ respectively. We are interested in the case (p2 =Py) = =Hy

where this matrix element is given by a single real number if all three
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particles involved have spin zero. If nonzero‘spins occur, more than one
number may be required, but we‘shall concern ourselies only with experiments
‘where the initial state is unpolarized and no measurement is made of the
spin of any final particle; in such a case only a spin average of the
square of (3.4) need concern us. We shall call this average 4T and
normalize it so that for the process p — p + no, we have

2 o (o - pp)°

I = g
M 2
p

(3.5)

it
H
FrolPro

where f2 ~ 0,08.

With the same normalization for the process d - n + p, a very good

approximation is given by

R i (3.6)
P 0

as explained above in Section II.

The contribution to the cross section from the pole indicated in

Fig. > may now be calculated. One finds

Ao 2% huT I 2
= = — — | {a,n i, | q)l
T
0
, d" p
W M, 6(p22+M22) —2 (3.7)

(2r)°
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.with thé energymmoméntum conserﬁatidn condition
P = pl + ql = P2 +Q . : ‘ : : (3'8)

- We may now transform from Py fo the variabies of interest by observiﬁg

that in the laboratory system we have

2 2 2
A = (p2 - pl) = -M2 - Ml Ld 2E2L Ml (3'9)
and
2 ‘ 2 2 2 '
w = (P - pl) = W +M,” +2p, g cos 8, (3.10)
giving

d cos 6. dE

5 a'p, 8(p,2 + M2

T Por, L ““oL .
(3.11)
T 2 .2
= dA™ dw .
W q)p
Remembering (3.2), we then get the final result for the limit as AQ._
approaches '-u22£ 'g_wue (w0 e ] | i
A~ ' \
‘ w oW 2 2 1 2 2 .
o 2 (% ‘/T'?(“l'“’“e)*ﬂ(“l - My ) 0yp(w)
2.2 21 M 2] 2 - i 2 5.2 ’
_ _ : 5
(3-122

which leads to the prescription given by (1.7), (1.11) and (1.12) when the
relation (1.1") between p2 and A° 1is used. It may easily be verified
. that (3.12) reduces to (2.13) in the nonrelativistic limit for a deuteron

target.
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C. We conclude by discussing the particular case of a proton target
that is being used to determine the (ﬂ+, #°) cross section. Formula (3.12)

here becomes

o ' W 2
o 2 2)2  wy i -u
"“"‘2 — 7, Z«: g/u 575 5 Op4© 7 (3.13)
dp°~ dw-  p° - -p (p° + n%) a7,

where g is the pion mass.

' To establish the order of magnitude of the effect we may perform a
rough integration of (3.13) over the allowed phase space (e.g. Fig. 1)
assuming a constant value for O’ The result for W - M_>:>‘u is a

contribution to the totel pion-nucleon cross section of the order of

magnitude
2 2 2 o
£ (‘M Wa-M _ '
7 m ) W+ M Citgo (3.14)

Since’ %—2- (%)2 is of the order of magnitﬁde unity, we see that at
sufficientlj high energies the full pion-pion cross section may be expected
to contfibute.‘ Therefore, if oﬁ*ﬁ? is as large as 10 mb our pole should
constitute an important part of thé ﬁighfenergy pion-nucleon interaction,
since the observed total inelastic % - P crbss section is only ~/ 20 mb.,
even though it includes also a (x', x¥) contribution, which occurs with
twice the coefficient of 6, .
One may add here the qualitative remark that analyses of elastic
pion-nucléon diffraction scattering in the Bev-energy range have shown a

mean-square radius of the nucleon approximately equal to the charge- and

magnetié¥moment radii measured in the Stanford electron-scattering
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experiments. This fact strongly suggests that the pion-pion interaction
m@st be important since these large radii can only be understood in terms
of a pion cloud. We expect, then, that a measurement of the type described
in Section I will show a concentration of recoil protons at low kinetic
energies, as predicted by formula (3.13).
Unfortunately, as stressednearlier, the magniﬁude of this concentration
is not a qpantitative measure of o&ﬂa The difficulty is that in squaring
the ampiitude,there will occur cross terms which lead to a first-order pole
of unknown residue in the cross Section.' Only the second-order pole has

a clearly interpretable coefficient, and in the physical region the second-

order pole in (3.13) has a small and negative effect, since

2 N 2
5 P23 - & 3 - T3 33 ° : (3.15)
(p° + 1) P+ (p° + %)

In ordef to determine o&ﬂ qpaptitatively fhe low=-energy proton recoils
must be measured with sufficient preciéion to determine the tendency of
the cross section to decréase (of at least increase less rapidly) as p2
approaches’ 0. of course, és pointed out also by Goebel, the‘existence of
a concentration at recoilmpréton kinetie energies of the order of 10 Mev
.ﬁill constitute qualitativé evidence for the =n - =« intéraction.h

In coneclusion it shbuld be emphasized that a negative experimental
result wogld still be valuable it it gave an upper 1imit on the magnitude
of o&ﬁ, since at present absolutely nothing is known‘about this cross

section.
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FIGURE CAPTIONS

Fi'g. 1. Allowed region in pz/M2 Vs WQ/MQ _for meson-nucleon collision
at W= 2.5 M (2.6 Bev laboratory energy) and W = 1.5 M (0.45 Bev

energy) .

2 2 2 , . -
Fig. 2. Allowed region of 9—2 and 2.._:_22_ for neutron-deuteron

1 P
" collision. The lower limit on '3—% and the extrapolation
. ‘ ql » .
distance below zero are both given by g—e ~ :E:-L-., where E is
4

the neutron laboratory energy in Mev and g is the final

relative momentum of the two neutrons.

-Fig, 3. Diagram showing the particle groups corresponding to the pole of

interest.
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