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Radiation Iaboratory and Physics Department
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ABSTRACT

In this paper a particular term in the perturbation expansion for
the two-particle scattering amplitude is examined. We consider the real
plane defined by the square of the total four-momentum and the square of
the momentum transfer, and show that the scatte}ing amplitude is an
analytic function of both variables in a certain connected region in this
plaﬁe. The precise boundary of the region is found. The purpose of this
work is to find some conditions that integral representations of the
scattering amplitude must satisfy, with the hope that such examples may
aid the stu@y of such integral representations in general.

We aiso apply our general result to some particular cases of physical

interest.

_T Work done under the auspices of the U. S. Atomic Energy Commission.

*
National Science Foundation Postdoctoral Fellow.
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University of California
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October 7, 1958

In a recent‘note; we discussed some properties of the vertex
operator in perturbation theory, corresponding to the three-vertex
(triangular) Feynman diagram. For simplicity we restricted our discussion
+to the case of six (possibly different) scalar fields, and studied the
matrix element as a function of the three independent kinematic inﬁariants
of the problem, which in our case were chosen to be the squares of the
three incident four-momenta. We then studied the properties of the matrix
element as a function of one of these invariants, keeping the other two
fixed at values corresponding to physical particles satisfying a number
6f "stability conditions.” The function so defined was shown to be

analytic in a cut plane, and our objective was to determine the exact

- position of the first branch point on the real axis.

Work done under the auspices of the U. S. Atomic Energy Commission.

National Science Foundation Postdoctoral Fellow.
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In this paper we invéstigate in a similar fashion the matrix element
corresponding to the foﬁr-ﬁertex square diagram ofiFig.bl,vwhich describes
a contribution in perturbation‘tﬁeory to-thé sé-called "four-point function."
We again restrict ourselves to the case of a_number of interacting scalar |
fields; since the spihs of the particles ininovway affect the analytié
properties of the scattering amplitﬁde, spin may fér_fhe purpbse of this
study be ignored. |

In this problem we may distinguish six independent kinematic
invariants: the squares of the four incident four—momenta,.the square of
the total incident momentum, and the square of the momentum transfer, for
example. -

We keep the first four Qariablesvat fixed values corfesponding to
physiéal pérticles; and subject to a number of "stability conditions." Our
limited objective is to show that the matrix element.is an analytic function
of the two remaining variables in a certain éonneéted région in the jlahé
where both are real, andvto determine the precise boundary of this region.
The_thresholés in the spectral representatién of the‘scatterihg amplitude
may be inferred from this information. Our hope is that o few examples
will aid in the study of general spectral representations, especially when
several stable particles occur in the theory;

,Our discusgsion is applied fg some "realistic".cases,of physical

interest.2

Consider the diagram>ih_Fig. 1, where the lines répresent'scalar
particles. For the sake of symmetry ﬁé take the four-momenta ‘plé, p25,
pjh’ and Py of the four particles to be "ingoing", so that the  law of

momentum conservation takes the form
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Fig. 1. Feynman diagram for general scattering process
in fourth order.
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Plo ¥ Pz * Pyt By = O . (1)

If a constant factor is ignored, the Feynman amplitude for this diagram

is given by the integral (real momenta)

1 1 1 L
F o= % doy  § o, 5 dmg é ay, — .
(2)
4 4
2 | 2 |
D= B ™ ik %% Py S (3)

where we have used the abbreviations

]

]
~~
o]

W
=

+
o]

=

}_J
g
AT

Pip * Ppsz
pe)_‘_ = p25 .+ pah = -(pl‘-l + Pla) )

Piy = Pyy

For convenience we introduce the variables Yip by

2 2 2 ’ - oy
Peg = T t Wy - I, Y, (&)

With these variables we have

4 5 o 4 L
Dl - k§1 O T +v 2 k§l £=§+l O Tp Ipg B My 0 (5)

We subject the four variables associated with the single-particle invariants

to the stability conditions

> -1, y25 > =1, YBM > -1, YM_l > "l)(6
)
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which state that at each vertex the external mass is less thgn the sﬁm of the
two masses to which it is coupled. One might impose further conditions of
this nature by restricting these variables to being less than 1; this would
correspond to triangular éonditions, according to which any mass is less than
the sum of any two cther masses to which it is directly coupled. We will,
however, use only Conditions (6), which we assume to hold throughout the
remaining part of this paper. |

" Our objective now is to study the integral in Eq. (2) as a function

of the remaining two variables and yzu; to determine the connected

Y15
region in the corresponding real plane in which the amplitude is an

}
analytic function of both variables; and to describe the boundary of this

region, say,

Since inspecfion of Eq. (2)'shows that the function is analytic when any
one variable is complex while the others are real, it follows from Eq. (7)
that the singularities of F in the complex yl3 plane afe then confined to

part of the real yl5 axis,

. LT
Y13 Y13

A spectral representation for F that displays this information is

¥.2(¥,)
| L 137720 o Rt + 1, Vo)
iy v = M x 5 R - ()
' ’ -

To continue the analysis, the following fractional linear trans-

formation is convenient:
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‘It may be solved for the X

B % M

—h—ﬂ———_—-—
L a,m
zzlﬂﬂ

The region of inﬁégrationvremains unchanged under this trénsformation, and

in place of Eq. (2) we obtain

. ldx- ]_dx ld ldx 5(l,x1;x2_x3_xu)
) 1 2 *3 4 2 ,
0 0 0 \ mm m5 )
(9)
o, T |
D = b + 2 & 2 X, ¥V
oy kO o1 poesr KL ke

In Appendix A the analogous transformations are apﬁlied'to the
triangular vertex diagram considered in Paper I, and the results are re-
written in the new notation. This forms a useful introduction to the
study ofvthe four-point function, since the case of the Qértex functionvis
much simpler.

Some properties of F may be inferred directly when D is rewritten

D = _(xl + X f Xy " xu)z_ + 2xlx5(y15.= }) + 2x Xh(yeh - l)

+ 2 [xlxg(l + yle) + X x5(l + y25) + X xh(l + y5h) + X Xu(l + ylh)]

(10)
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The stability conditions (6) then imply that, in the region of the x integration,
the déﬁéminator D cannot vanish if
Y13 > 1 and Yo > 1. (11a)

On the other hand, if

Y13 < -1 and/or Yo < =1, (11b)

the denominator D vanishes at some point in the region of integration.

| Thus F(le, yag) is an analytic function of both variables in the
region defined by the inequaltites (lla).‘ This plane region is,included in a
larger connected plane region R in which F is an analytic function of both
variables. We shall find the boundary of thié région R and show that R consists
of all points (le, yéh) such that in the range of the x integration fhe
expression D does not vanish.

To prove this assertion let the region of integration be T,

T 2 0 X, + X, +X, +% =1 , ' (12)
X # 1 T T AR TR

and let R’ be-the regioh in the feal (le, yéh) plane in which D cannot
vanish if x is in T. Then, if the point (ylS’ yzh) is in R', so ié the
5 Furthermore, our
'preViou$=remarks show that R' is included in the region Y13 > -1, ¥, > -1.

point (y13 + 61, Yoy * 52) for nonnegative &, and &

Thﬁs, if" we let Yo be fixed and such that some point of the line
Yo = const. - belongs to R', then there is a 515 such that the point
) . t 2 - . - R - ,
(y13 yah) is in R' if and only if Y13 > ¥yz+ Furthermore, if Y15 > Y130
the integrand is positive. Therefore ﬁhe point (515, ygh) is necessarily a
' 3
singularity of F as a function of le.' On the other hand, F is certainly

an analytic function of y13 and Yo in R'. Hence R and R' are identical.
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The problem is thus to find the region R in vwhich the expression D
cannot vanish if x is in T. The fegion T consists of the interior and
~ boundary of an equilateral tefrahedron. The X, may.then Be'interpretedvas
barycentric coordinates. We note that at the vertices (xk - 1, k=1, 2, 30r k&)
we have D = 1. Our procedure will be as follows: we first_findfa region Ri
‘such that the expression D i1s positive on every edge of T if end,only if
(le’ yzh) is in R, . Next we find a smaller region R,, such that the
»-”express1on D is p051t1ve on every face of T if and only if (le, yeh) is in
“ Ril’ Finally we find the region R for which D cannot vanish at all in T. We
efe thus led to consider three cases. | '
AvCase (i) D can take on nonp051tive values on some edge of T. On an edge

two x's are equal to zero, e.g., X, ='xz = 0, The smallest value that D

assumes on such an edge is

_Min"[l.; -% (1 + ykZ) } . . : ' L (13)

Because of the stability conditions we need consider only the two edges

X, = X, =0 and Xy = X) = 0; the region Ri therefore is

X 3

R, : ﬁ Y5 > <1, Yoy > -1} o | (14)

>Case (ii). We assume that (le’ yeu) is in R, and consider the possibility
that D has a4nonpositive-value on the face of T defined by x = 0. Except
for the subseripts, the function D.is then}the same ae D o’ Eq. (AL),

which occurs in the vertex problem. The solution from Appendlx A may
therefore be ueed. Accordlngly, we introduce six angles between 6 and =x,

612, 613, elh,- 625, 621# eau by the conditions.f

Yy = cos ekz', o o (15)



which are to be used only when they are real, i.e., | Y I < 1.

Purthermore, let

L =

=
=
{

2

13

C -1

cos (e25

-1

cos (el,+

cos (612

cos (8l2

Max v[Ll’ sz]

Max,[La, th] .

5

+ eBh)
+ 8

)

+ 923)

«]10=

RAVIRRE TS

Y ¥ Y3

Yo + Y1y

Yo * 1y

Y12 ¥ Vo3

Y12 * Vo3

We may then conclude that the region R,, is

Rii

: { yi3 >

Ll}

pJ

ii

)

Yo 7 Ip

N

b
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(16)

(17)

(18)

(19)

(20)

(21)

The denominator D is positive on all faces of T if and only if (le, yéh)

is in R,.,.
ii
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Case (iii). Iet (y15, yéh) be in R;,- We must now consider the possibility
that D can take nonpositive values in the interior of thevtetrahédrdn T,
which means that D has a nonpositive minimum there. This occurs if and only

if the following conditions are met:

Q) Bt < 8y, + @y +0; +6, < 2x + 2 Min 1912, 050 B3y e@ ;
(22)
then the region R is
X ' - (0)
R { You = Yoy s Y1z > Ins z
. (o) o
My Ty) > 00 L, (23)
where
1 Y12 Y13 Iy
Vi 1 Y23 Yo
and where
0 L0 ' |

define yeho and ylEO uniquely. If the conditions (22) are not satisfied,
then

R = Ry - ' : (26)
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The algebraic details are described in Appendix B. The regions Ri’ Rii’
and R are illustrated in Fig. 2.
The 11m1ts used in Eq. (23) may be stated explicitly by solving

Eq. (25). They are

o _ o ) cos 812 sin 954 + cos 625 ﬁin elh —
Yoy = Pp T in (6. +6.) ~ s I By~
® 1 T F3h
(27)
. ) cos elh sin 925 + cos 93h sin 612 L1
= S)-l- = b 13 -y
sin (6 23)
and
0 . cos 612 sin 93)+ + cos 914 sin 623
y = S = ) )-I- = L
13 1 sin (9 ) 1
23 * 31# '
(28)
. cos 923 sin elu + cos 93h sin 912 |
sin (th + 912)

The function §13 defined in Eq. (7) may also be directly inferred from

Eq. (23) by solving Eq; (24),

Y13 = I3 R
(29)
., , ,
- ; 2 [3’12 Yoz * Yy Y3y - You{¥1p Iz + Yy yza)
T ol .
K. K - . 0 > > L.
_'1-3] S C Yoy 7 Yoy 7T

Y13 = 2@ Loy 2 Yol
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Fig. 2. (a) Region

of analyticity of F for R = Rii = Ri'

(b) Region

of analyticity of F for R = RﬂC R..

lyticity of F for RCRﬁC Ri'

of ana

(c) Region
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A great simplification results when the scattering process is the
elastic scattering of equal particles with equal internal masses. Then we

have

V2 T Vo3 = Yy = Yy =V | - B0

The boundary of the region R for positive y is

y > 0, (31)
= . . < -
oo y24 1
while for negétive y 1t becomes
V. = 2y° -1 > 1
iz = =7 Yau
by ' 2
= L -] 1> y., > 2y -1 y<0
1+ : ; 24 .
U2k
= oo 22-l>
- Y Yol
- (32)

We shall examine several scattering processes illustrative of the
various cases.(Fig. 1).. If p,, 8nd Pq), (-p23 and -Peh) are the initial
(final) four-momenta, then the total four-momentum squared (WE) and the
square of the four-momentum transfer (-A?) are glven by
2

(33)

A = -(Plz + pl)_l_)g = '(p23 + p3)+)2 > Max '.-(MlQ - Ml)+)2) "’(1\423 - MBM-)EJ .
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The inequalities define the phySically accessible regions of W2 and A?, In

terms of yls_and Yoy» Ve have

. ml2 + m32 - WP f 2 2,
173 ' . ' .
2 2
Y1y Y - 7/(1 - ¥y, M1 - 35,7) ] ,
(3ka)
* 2 2 2
m + m + A : '
Jan = E— 7 Max [yle'ylu * 7/?: ylha)_(l"’ ylee) ’
2 m2 mLL

Vo3 I3 . 7/—('1 - y232)(l - %2) ] :
(34b)

Suppose we seek a spectral representation of the scattering amplitude
iﬁ terms of We.for a fixed physical value of 22 _Theﬁ’the inequality (34b)
guarantees that the threshold for y,; is Ly;. The "normal” threshold
_determined'by the mass of one real intermediate state is L13 =-l. Equations

(17), (19) show F } -1.only if a sufficient pumber of Y100 Yoz Ymur You

13
are sufficiently négaéive, .To see which processes might exhibit "abnormal"
thresholdé‘wev;isﬁ in Tab;e'I the velues of the y's (and correspoﬁding e!s)
for ten possible intefactions. We observe that theré are only six vertices
which have negative y's, and thét virtual dissociatiomsof N and n are not

among them. Thus we conclude”that a spectral representation of F for pion-

nucleon scattering as a function of W2 would have a threshold We at

ﬁ2 =:"(MN + M&)Q ,

which is considered normsl. We next investigate the diagram for pion-deuteron
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TABIE I
Values of y and corresponding © for ten possible interactions. The

table is read with reference to a particular trilinear coupling, for example

Y A . The parameter y and angle 6 for the process L —» A + xt which are
2 2 2 , '
cos ® = y = (MA +m " - My 2//é Mmoo,

are found in the line opposite £ in the box containing %, A, x together.

There is no need to distinguish particles from antiparticles.

Yy © y e
D -.995 17hg K 14 : 822
n .99 3 K -

.999 3 7 96 16
N .075 862 A -.13 972
N 075 86_ N .55 5Tq
7 .989 8 K .90 26
5 -.50 120° 5 .31 1082
A .58 5ho N .66 49
x .99k 6 K .92 23
) .058 86.50 = -2k 1047
b3 .058 8665 A 57 550
7 .993 T K .93 21
= .052 87> = -.24 ou°
= .052 87, ) Uk 6k
7 <995 | 6 K .93 22
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scattering illustrated in Fig. B(a). Then
' o
T, = Lh = L13 = cos (l7h +87) = -0.999 > -1,

. (2MN) —OOOEMN

which is just slightly different from the normal-threshold. - For Z-nucleon

scattering (Fig. 3(b)), we have

L, = I, = L cos (86° + 120°) = -0.899 > -1,

13

(MN + MA)2

If we do not conflne our study to the coupling of particles that have

=
]

0.202 M, MA L

‘been observed, but also include virtual fields with masses that are limited
‘only by the stability conditions, then the spectral representations have
"abnormal" thresholds in many more cases.. Some of these have been mentioned
in Paper I. Sinee the general derivations ef dispersion relations presuppose
“a "normal" threshold but.de not iimit pafticles in intermediate states to the
few kinds that have been observed, these derivations'cannot-te applied. to

some cases of interest.
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HI2
HIX

N
N

MU -16099

Fig. 3. (a) Feynman diagram for pion-deuteron scattering.
(b). Feynman diagram for Z-nucleon scattering,
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~ APPENDIX A

Consider the expression (A) in Paper I for the vertex operator. The

‘substitutions
2 2 2 2
"4 = M o= omy +omy - 2mp Yoy
2 2 2 ' '
M2 = Mg W - 2m, m, Yz . (A1)
2 2 2
MB e U ? Ta ™o Y12 ?
- m o
e L
1 mava + mb B + mc Y
B
X T na mE é ¥ mr ’ (42)
a N c
3 m o + mb B + mc,r

enable us to rewrite the integral as

1 1 1 )
. . ) (1 - X - Xy = XB)
= X, dx2 de -
3 5 (xl m W, b Xy WM+ X W mb) Do
(A3)
D. = x° + x° + x + 2(x., x + x. X + X x‘ )
o T % 2 3 1 %2 Y12 1 %3 Y13 T %y X3 Vo3
| (Ak)

The problem is then to investigate under what conditons the denomihator

DO can vanish in the range of integration.
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We compare this problem with the problem in Case (ii) in the text
of this paper to determine the conditions under which the expression D can
take nonpositive values on the particular face X, = 0, and note that the

two problems are identical. We are thﬁs to consider DO when x s X

1 ¥ %3

> > P = 1.
; Z o = 0, x5 = 0, ‘and Xyt Xy F x3 1

*We may interpret this region, Fh’ as the face of an equilateral triangle

satisfy the conditions x 0, x

described by the barycentric coordinates x , and x As in Case (i)

K15 Xp 3
in the text, we impose the conditions on the Yies which state that DO cannot
vanish on any edge of this triangle, i.e.,

Yo > -1 Y13 > -1, Vo3 > =1, (a5)

In the case of the vertex operator, two of these conditions can always be
interpreted as stability conditions that the physical particles have to
satisfy. | |

Since DO is positive on the boundary of the triangle Fh’ DO can
vanish in the interior only if it has a nonpositive minimum there. ‘This

minimum may be determined by differentiation, and one must then find the

condition that this minimum in fact lies inside FlLo We may distinguish

two cases:
>
Yip * Vi3 < 0 (in this latter case Y0 <1 Y13 <1). (a6b)

To study the first case, we may assume Yo £ Let

y15 *

N = Min [1, 3’12{-_\ . (AT)
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Then we may write

_ 2 2, 2
Dy :;.(xz,- g + xxl) + (1 - )xl

+ 2 [ (1 + y25) + x (y12 - N\)

+ % x3(y15 + k)]
(a8)

Each term in this expression is nonnegative, and hence in this case DO cannot

vanish if y?3 > =1.

In the second case we write

DOE(x +x2y121-x le < -|/ —/l-le)

+ 2 X, xav [yEB - Y1 le + 7 (1 - y122)(1 - y152)v] L

(a9)

Hence D, is positive if (cf. Eq. (15))

-2 2 |
Vo5 7 Yo V13 - 7/(1 " M- yyz) = cos (8, + 6y5).

(A10)

The condition (A6b) takes the form 912 + 913 > gt . We also note that

if Vg3 = cOS (612 + 613) and.
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. sin (e 13) S o

1 ~ sin 8,, + sin 615 - sin (8,, + 6 5)

' !
sin © .
, 13 :

X, = - > 0 (A11)

2 sin 6., + sin 915 - sin (e12 + 915) .
. : i} 51n_912 : > G

3 - sin 912 + sin 915 - sin (9 13)

then Do = 0. Thus the necessary and sufficient»condition that DO be
positive on the face F) is given by the inequality (AlO). Comparing the
results just obtained with the results in the Appendix of Paper I, we see
that they are identical.

A graphical solution to the problem in Paper I may be obtained as

follows: In a plane draw three vectors E; » ﬁ; R ﬁ; of lengths

: - X = =
m,o, Mo, m, from a com@on origin O, such that | m, - my l M3
and | ﬁ; - ﬁ; | = M2a Then the threshold “2 of the spectral representation

of F as a function of -q? is | ﬁ; - E; | , provided that the figure can
be drawn at all and provided that the origin O lies inside the triangle

determined by the end points of E; B ﬁ; s ﬁ; .. Otherwise the threshold

is (mb + mc)2
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APPENDIX B

In this appendixhwe consider Case (iii) of4the‘text. We let (le, y2h>
be in Rii so that D cannot vanish on any of fhe faces Fl, FE’ F5, F1+ of the
tetrahedron T. We seek avregion_Riif' such rhat D{vanishes at some‘point
in the.interior of T if and only if (y15, yeu) is in Rii": We‘proceedvby
finding necessary conditions for the existence of a region Rii"

Since D is positive on the boundaries of T, it can vanish inside T
only if‘it assumes a nonpositive minimum inside”T. We shall.show thau if
such is the case D can be negatlve only in the two regions xk >0 and
X, < o (k—l 2 5,4) in the four=d1men51onal Euclidean b'4 space ‘In particular
D is nonnegative on the four hyperplanes Xk | |

To prove these remarks we observe that since D is a quadratic function
- of the Xk’ it can have only one extreme value on any hyperplane 2In'.
particular, 1f-—as our assumptlons state»-on the hyperplane Xl + Xy + x5 + x) = 1,
D has a minimum value Within T and is p051t1ve on the boundaries of T, then it
must be pos1tive throughout the rest of this hyperplaneo Now suppoSeﬁthat we
Vevaluate D at some p01nt x' such that x'l % x'2 + x! 5 'h = ¢ ;: Tnen the
vfhyperplane xl + x2 + X3 + XLL = ¢, pa851ng through x', is parallel to the

hyperplane X, + %X, + X, + xLL = l, on which lies the p01nt x defined by

17 %"

x'k = cxok. Furthermore D(x') c2D(x ), and since D(x°) can be negative
only for xok > O, so then can D(x') be negative only in one of the
regions xlk >0 or x'k < 0, depending on the sign of c.

The quadratic form D may be written in diagonal form in many ways,
some of which can be obtained from the following by suitable interchange of

indices;
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D = (X, + X, Jopo +X, V., +X%X, ¥ )2
1l 2 12 3 Y13 4 Yk

\ Yoz = Yan ¥ Yo = Yan ¥
v (-3 +x, 232 712725 T2k 712 71k
12 ) 3 ) L )
| -9 R £

, . 2
K (Fap =Tz Ty ) (L= 2 02) = (Fom =TT x) (T = TosF g’
4 (x3 ', 24 ~V13 Yau/h 1; ‘ 23~ V12715 Yol Y1oVah
N

%, . _ (B1)

where

K, = 1- (B2)

2__2__ 2
Yip = Y13 = Vo3 * 2 Vip Vi3 Vo3 ¢

In order that D take a nonpositive value, at least one of the coefficients:

2 _ 2 as
L 1-95, Kﬁ/(} - Y ), A/Kﬁ, must be nonpositive. But we have
Just shown that for (le, yau) in Rii’ D takes a ﬁdnpositive minimum inside
T only if D is positive definite for X = 0. This allows us to conclude
that'necessary conditions for D to vanish inside T are ] Yo | <1,

Kﬁ >0, A <« 0. By considering other ways of writing D we find that the
)

44 cen be no larger than that defined byLL

region R

v I <2 | . (B3a)
K, > 0 (B3b)

A £ 0 . o | (B3c)
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The\inequality (B%a) permits us to introduce the real angles 812,

6 e

g defined in Eq. (15). It then follows from the structure

23 T3k Tih _
of the K, that there exists a region in the (le, y2h) plane in which

condition (B3b) is satisfied if and only if

) | '_ L A . v < .
Oyp + By5 + Oy + 0 2 Min [912, 955 O3, Oy, ] on (Bk4)
Because each K depends on yl5 or on y24 but not on both the region

'deflned by (B3b) is a rectangle W1th edges parallel to the coordinate axes.

The curve

A = 0O | : I (B5)

lies inside this rectangle and is'tangent to -all four edges. The situation
is depicted in Fig. 4.

" Now, it follows from the argument after Eq. (12) that the region

Rii must have in common with Rii those pérts of its‘boundafy that

. separate it from regions of smaller le and. (or) Yol For,this reason the

lines mg;ked..zla_vand 224 in Fig. 4 must actually.be ;13 and LelL
1 S : C o :
. respectively if there is to be a region Rii , and only the section -
S S . . , T - - ,
parked I in Fig. 4 capAbe a pgrt of R, - The ;onditlon thgt .z15 = L13

ol = Ly, 1S

6., + 625 + egu s eui.'> o . | N (B6)

The inequalities (B5) and (B6) are necessary conditions for the
. _
existence of a region Rii . It is simple to show that the conditions
are also sufficient by choosing some point in the region I, Fig. 4, and

exhibiting a negative D for some values of the X, in T.
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v
AL

(-1,-1)

Ki>0 ,A<0
K> 0,450

MU-16100

Fig. 4. The regions defined by Eq. (B-3).
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The threshold 5152 of a spectral representation of F as a fﬁnétibn
of p132 corresponding to the conditions thét allow D to vanish inside T
has a graphical construction. Draw, in three dimensions, four vectors
ﬁ;, ﬁ;, ﬁ%, ﬁ; ofvlgngths )y Wy, Mgy My from a common origin O. Adjust

their directions so that

l H:|_ - 1—5)2 I = M12 ) I Ee - % I = M23 ‘ s
f ‘ e 2
| - 2 o ‘2: . .
~Then the threshold is Pz = | m, - m3 | » provided that the figure can be

drawn at all and provided that the origih O lies inside the tetrahedron

determined by the end points of"iz, ﬁ;,

draw figures of the type described at the end of Appendix A with the

ﬁ%, ﬁ;’ 'If this is not the case,

- - - — -
vectors m,, m,, m and m ms,

3 17 EL, and obtain the threshold given

there.
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It may be remarked.that if a function is defined by an integral like (2),
and if the variables Vg 8re not restficted to be'reai, then-thé mere
fact that for a certain set of Viep the denominator can vanish in the
region of integration in no way guarantees that the function has a

singularity at this point.

The quantities Kl’

appropriate permutations.

Ky Ky K, are defined by Eq. (B2) and its
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FIGURE CAPTIONS
FPig. 1: Feynman diagram for general scattering pfocess in fourth order.

Fig. 2: (a) The region R,

_(b) The region R,, # R;
(¢) The region R # Ryy-
Fig. 3: (a) Feynman diagram for pion-deuteron scatterihg.

(b) Feynman diagram for Z-nucleon scattering.

Fig. 4: The regions defined by Eq. (B3).
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