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Radiation Laboratory 
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Berkeley, California 

October 21, 1958 

ABSTRACT 

A modified method of analyzing nucleon-nucleon scattering is discussed 

and applied to proton-proton scattering experiments at 310 Mev. The modified 

scheme is based on an explicit inclusion in all higher~angular-momentum states 

of the Born approximation to the one-pion exchange process. This procedure is 

suggested by Chew's conjecture that the singularities of the scattering ampli-

tude in the cos e plane (e being the scattering angle in the center-of-mass 

system) that are closest to the physical region are due to the one-pion exchange 

process and are given by.the Born approximation. Or, alternatively, in terms 

.of ranges, the one-pion exchange contribution has the longest range of the 

forces 80ntributing to the nucleon-nucleon interaction and hence should be 

primarily responsible for the contributions to the scattering amplitude in 

the high-angular-momentum states. Since the only parameter in the Born 

approximation is the pion-nucleon coupling constant, the modified scheme can 

also provide a determination of this coupling constant. The application of 

themodified scheme to p-p scattering at 310 Mev indicates that the first two 

of the five best solutions of the conventional phase-shift analysis are more 

satisfactory than the others for two reasons. Firstly, their goodness-of~fit 

* Work done under the auspices of the U. S. Atomic Energy Commission. 

t University of California Radiation Laboratory, Berkeley, California. 

§ 
University of California Radiation Laboratory, Liver-more, California. 
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parameters improve markedly when the higher-angular-momentum contributions 

are added, whereas those of the others remain essentially unchanged. Secondly, 

as a function of the coupling constant, the goodness-of-fit parameters of the 

first two solutions show minima close to the accepted value of the coupling 

constant. 
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I. INTRODUCTION 

It has been suggested by one of us1 (M.J' .M.) that the conventional phase 

shift analysis of nucleon-nucleon scattering experiments be replaced by a 

modified scheme in which the lowest order one=pion exchange contribution is 

explicitly included in the scattering amplitude. This approach was motivated 

by some conjectures of Chew2 on the behavior of the scattering amplitudes in 

the nonphysical region of the complex cos e plane (e being the scattering 

angle in the barycentric system). Chew argues that the singularities will be 

restricted to the real axis and that those closest to the physical region, 

=1 6 cos 9 b. 1, will be two symmetrically situated poles associated with 

contributions to the scattering amplitude of one=pion intermediate states. If 

these poles are removed the remaining singularities will be, according to Chew 9 s 

arguments, at least four times as far from the physical region. 

Assuming these conjectures to be correct, one would expect that the 

contributions corresponding to more distant singularities could be adequately 

represented in the physical region by fewer powers of cos e and hence by a 

smaller number of partial waves. On the other hand, the contribution 

associated with the two near=by poles is identical with that of the lowest-

* Work done under the auspices of the U. s. Atomic Energy Commission. 

t University of California Radiation Laboratory, Berkeley, California. 

s University of California Radiation Laboratory, Livermore, California. 
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order perturbation approximation to the one-pion exchange process, and is 

readily calculated in terms of the pion-nucleon coupling constant. 

These circumstances suggest that the poles (i.e. the one-pion exchange) 

.be explicitly included in the scattering amplitude. This should reduce the 

number of partial waves that are required to represent the remainder, and also 

permit an evaluation of the pion-nucleon coupling constant, g, which would now 

enter as a new parameter. This method of determining g differs somewhat 

from that proposed in Reference 2, which uses instead the conventional phase 

shifts to obtain the coupling constant from nucleon-nucleon scattering experiments. 

The same idea of explicitly including the one-pion exchange contribution 

in the higher-angular-momentum states is suggested also by the consideration 

that higher partial waves correspond to the forces of longer range, and the 

forces of longest range are due to the one-pion exchange contribution. 

In the following sections some of the detailed formulae required for 

the application of the above scheme are presented and the results of the 

modified analysis of proton-proton scattering experiments at 310 Mev are 

discussed. 
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II . THE POLE CONTRIBUTION 

In the conventional phase-shift analysis one expresses the scattering 

amplitude as a function of a limited number of phase shifts, the remaining 

ones being approximated by zero. This conventional expression we denote by , 

M(8), where M is the matrix of the scattering amplitudes corresponding to the 

various initial and final spin states3' 4 and 8 repr.esents the limited number 

of phase shifts. In the modified analysis we wish to add to M(8) the lowest 

order perturbation contribution to the one-pion exchange process, that is, the 

pole contribution. In order to preserve the unitarity condition in the 

angular-momentum states represented by M(8), the pole contributions are added 

only in those states that are absent in M(8). For instance, if M(8) contains 

contributions to and including J then in the modified analysis one replaces 
max 

the M(8) of the conventional analysis by 

(2.1) 

where Mt(g
2

, J > Jmax) is the pole contribution from states J > Jmax· 

In order to compute M(8, g2) it is necessary to obtain the decomposition of 

the pole contribution into the various angular~momentum eigenstates. One 

method of computing this decomposition is outlined in the remainder of this 

section. 

We define four-dimensional positive-energy Dirac spinors 

u (p) 
r = 

m = i~ 

\/2m(E + m) 

u (p) u (p) = 0 
r s rs 

1\ 
u 

r ' 
(2.2) 
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where m is the nucleon mass, E the total energy of the nucleon, and 

1\ _u = 

The. r's are defined as 

r = 
""" i (~ :) 

r = 5 
( 0 -1) 
\1 0 

We will also u~e the notation 

X = COS 9 1 

where e is the barycentric scattering angle, and 

X = 0 

2 
1+.1:_= 

mT 
1 

' 

(2.3) 

13 = ir 0 = (
1 0

) 0 -1 . 

(2.4) 

(2.5) 

( 2.6) 

where ~ is the pion mass, T the initial nucleon kinetic energy in the 

laboratory system, and k the-barycentric nucleon momentum. For p-p 

scattering ~ denotes the mass of the neutral pion. 

In this notation the pole contribution to the M matrix can be written 

as 



-
J 
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M p( p t' q t) rs r' s' p, q; 
' 

[ iir(p)r5 iir(p)r5 u
8

,(q')iis(iJ.)r5 ur,(p')J 2 2 UrI (pI )uS ( q)y 5 US I ( q I) gm 
-7 xo X XO + X 

(2.7) 

2 ( ~) 2 f2 14 ' g = ~ 

where p', q' are the initial, and p and q the final nucleon momenta. The 
~ ~ ~ w 

subscripts r, r 1
, s, and s 1 take the values plus and minus. The matrix Mt 

may be written in terms of the two-dimensional Pauli matrices if we observe 

that 

1 
= 2m [ cr·(p- q')] 

liW IMJ ""' rr I 

Using this formula and the notation 

,£ = 
wv 

where in the 

s2 

62 = 

2 
T) = 

m = 
"""" 

p - p' 
""'" "VV" 

center-of-mass system 

2 k
2
(1 + cos e) 

2 k
2
(1 - cos e) 

k4 . 2 9 sJ.n ' . 

one may express Eq. (2.7) in the form 

n 
oW 

q' X 

T) 

(2.8) 

(2.9) 

( 2.10) 



= M rs,r's' 
p 

where I is the unit matrix, /l) .....,., 

and 

1 + X 
a 

xo + X 

In Eq. (2.11) the r indices refer to 

-8-

13 

a 
( 1) 

"""--

il) ·~ 1.2) ·~ 

a a( l) ·n a( 2 ) ·n] ' 
ow IV"" """"' lAM/ rs,r's' 

(2.11) 

the two nucleon spin matrices, 

1 - X 
= (2.12) 

Xo - X 

and the s indices refer to 

(2) ' 5 
a . In the singlet-triplet representation Eq. (2.11) becomes 

"-J" 

p M p 
2 

[a(l + x) - 13(1 - x)J Mll -1-1 = -~ 

p p p p 2 v;;; 
MlO = MOl = - M-10 = - MG-1 = - g 8E 2 ( 13 + a) sin e ' 

p p 2 
[a(l - x) 13(1 + x)] Ml-1 = M-11 = -&: -

p 2 
Moo = fE (13 + a)x 

' 
p 2 

M = -~ (a + 13) (2.13) ss 

' 

In order to separate the contributions from the various final angular-momentum 

states one may expand these matrix elements in terms of spherical harmonics. 

This gives 

·-
' 
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M11P = M P = g26 {- 4- Y o(e ¢) 
-1-1 2E v3 1 ' 

~oP = 

M p = 
ss 

= 

= 

2 
+ (x0 - 1) 

g2VJC {_!_. Y o(e ¢) 
E . V3 1 ' 

- x (x - 1) f V2L + 1 Q_(x
0

) YL
0(e, ¢~, 

0 0 L=1 JL :! 
L odd 

L=1 
L odd 

00 

- (x - 1) J x 2 ~ 1 0 0 L 

2,1: 2 
g ~ (x

0 
- 1) 

2 E 

g2v:;t (xo2 - 1) 
2 E 

00 

L=1 
L odd 

~ I 2L + 1 2 2 
L V(L +2)(L+1)L(L- 1)" QL (xo)YL (e, ¢) 
L=3 

L.odd 
oO 

Lj 2L+1 
L=) ( L + 2 )( L + 1) L( L - 1) 

L odd 
cP 

L 
L=O 

L even 

V2L + 1 "r. (xo)YL o( e, ,0)} . 
(2.14) 
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L 
The YL z(e, 

6 
Weisskopf, and the 

¢) are the spherical harmonics as defined by Blatt and 
Lz 
~ (x

0
) are the associated Legendre functions of the 

second kind as defined by Morse and Feshbach. 7 

Using Eq. (2.14) one may separate the contributions from the various 

final angular-momentum states. Specifically one obtains the quantities 

M(L, S, L, S; S', S' ), defined by z z z 

Ms S' (e, ¢) 
z z 

z 
L 

.L 
y ~(e, ¢) M(L, S, L, Sz; S', S'z), L . z (2.15) 

where the primed and unprimed variables refer to initial and final states 

respectively. The quantities M(L S L 
' 

S '· S' 8' ) 
' ' z z' ' z 

contain those 

contributions to M which correspond to the final orbital angular momentum L. 

For the singlest case, comparison with Table III of Reference 4 allows 

one to obtain at once the expression for the singlet amplitude aL. For the 

triplet case, however, one must first separate the contributions from the 

three possible values of J that are consistent with this value of L. We 

express the separation of M(L, S, L, S; S', S' ) into its constituent J z z z 

contributions by the equation 

= I: M(J; L, S, L, S; 8', S' ) 
J z z z 

(2 .16) 

The isolation of the individual J value may be achieved by the use of the 

projection operators P(J J · L S L S · L S L11 
, 8 11 

) def1" ned by 
' z' ' ' . z' z' ' ' z' z ' 

I: 
8 11 L 11 

z z 
p ( J' J ; L' s' L ' s ; L' s ' L II z' s II ) M( L' s ' L II ' s II ; . s' s I ) z z z z z z z 

( 2 .17) 

M(J; L, S, L , S , S, 8 1 
) z z z ' 
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where J = L + S = L" + S" = S' + L' = S' • The vanishing of L' is a z z z z z z z z z 
4 consequence of the choice of coordinate system. Recalling that the Clebsch-

Gordan coefficients CLS(J, J , L , S ) z z z are simply the transformation matrices 

between different representations, one may easily see that the necessary 

projection operators may be expressed as 

P(J, J; L, S, L, S; L, S, L' , S' ) = CLS(J, J; L, S) CLS(J, J; L' , S' ). z z z z z z z z z z z 

(2.18) 

For the case J = L the projection operator immediately isolates the contri-

bution from aLL' For the cases J = L ± 1; however, the projection gives, 

instead, the sum of contributions from the two amplitudes aLJ and aJ. 

However, the three values of J give two linearly independent equations which z 

are readily solved. We obtain in this way the final expressions 

= 

= 

. k 2 
~ g 

2E(2L + 3) 

. k 2 
~ g 

2E(2L - 1) 

. k 2 
~ g 

- 2E(2L + 1) 

[ "r.-.1 ("o) - QL (xo)] 

[ 'lr. ( xo) - 'lr.-1 ( xo )] 

' 

(2.19) 

v J(J + 1) [ QJ+1(xo) + QJ-1(xo) - 2 QJ("o)] 

[ ("o - 1)<lr,(x0) - 5LO] 

· The symbol eLO is the Kronecker e function. The contribution from eLO 
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in the S state, which arises naturally in the relativistic Born approximation, 

corresponds in the nonrelativistic case to the explicit 5 function 

·8 
appearing in the potential. 

I 
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III. p-p SCATTERING AT 310 Mev 

In this section the application of the modified procedure to p-p 

scattering data at 310 Mev is discussed. A conventional phase-shift analysis 

at this energy is given in Reference 4, and this is used as a basis of 

comparison. 

In the conventional analysis phase shifts up through H waves were 

used. Our first step was to take in turn each of the five "best" solutions 

of that analysis and simply add the pole contribution in the angular-momentum 

states beyond the H waves. For the coupling constant we used, in turn, the 

values 9.4, 14.4, 19.4, and 28.8. The .goodness-of-fit parameter increased atg2:14o4 

by about 15 in all cases. This constituted a change of between 40% and So%. 

Next, with the added pole contribution unchanged, a search was made for the 

new best sets of phase shifts. All partial waves up through H waves were 

allowed to vary. For g2 = 14.4 we obtained what we believe to be improved 

sets of phase shifts. 

The calculations were carried out on the IBM-704 electronic computer, 

the code being the same as that of Reference 4 except for the inclusion of the 

pole contribution. The results of the new search are given in Tables I, II, 

and III, and in Figs. l-7o 

2 
Table I gives the goodness=of=fit parameter X for the five new 

' 
sets of solutions. In the first column are the values of x2 

for the 

conventional analysis. This corresponds·: to th~ modified analysis with 

g
2 

= 0. The various values of x2 are also shown in Fig. 1. For 

Solutions 1 and 2 parabolae through the lowest three points are also given. 

These have minima at g
2 = 13.48 for Solution 1 and g2 = 15.42 for 

Solution 2. It will be observed that the plot of the goodness-of-fit 
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parameter for Solution 4 contains only the g2 = 0 and g2 = 9.4 points. For 

the larger values of g2 the solutions were identical with those obtained from 

Solution 2. This indicates that for g2 = 0 Solution 4 was probably a relative 

minimum separated from Solution 2 by a rather low barrier and that the addition 

of the g2 contribution either eliminated the relative minimum or distorted the 

contours enough to give the effect observed. Similarly Solution 3 goes over 

into Solution 1 at g2 = 28.8. These effects are not surprising if one con­

siders that even at g2 = 0 the predictions4 of Solutions 1 and 3 were quite 

similar for the various observables even in the region where no experiments 

exist. Similarly~ the predictions of Solutions 2 and 4 at g2 = 0 are also 

similar. 

Table II gives the new sets of phase shifts themselves and also, for 

comparison, the corresponding sets from the conventional analysis. Finally, 

Table III gives, for set No. 1, the observables as 

(a) given by the conventional analysis, 

(b) given by the conventional phase shifts (unchanged) plus the 

pole contribution in angular-momentum states above H waves, 

(c) given by the new phase shifts plus the pole contribution in 

angular-momentum states above H waves. 

This table is given to show the detailed effect upon the observables of the 

modifications involved in the present scheme. Figures 2-7 give the predictions 

of Solutions 1 and 2 at g2 = 14.4 for the various observables as defined 

in Reference 4. It is clear from these figures that the two solutions differ 

markedly for some range in some of the observables, so that even a qualitative 

experiment, if properly chose~, could distinguish between the two solutions. 
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IV. CONCLUSIONS 

The significan~ features of the results contained in Tables I; II, and 

III are as follows. 

1. 
2 The goodness~of-fit parameter X decreased appreciably only 

for Solutions 1 and 2. This is the behavior expected of the 

correct set of phase shifts. 

2. For Solutions 1 and 2 the parameter x2, considered as a 

function of g2, is represented by a smooth second-order 

function that shows a minimum near 14.4, the presently 

accepted value of this parameter. 

3. The inclusion of the pole contribution in higher-angular-

momentum states produces changes ranging from about 0 % to 

about 80-% of the experimental errors. These changes are 

significant enough to warrant incorporation into analyses of 

experiments of this nature. 

4. Although the observables changed significantly the new best 

sets of phase shifts differ generally by less than a degree 

from the solutions obtained in Reference 4. 

Work is under way to extend the present scheme in a number of directions. 

First we plan to fix the H and G phase shifts at the values given by the pole 

contributions, since these values do not differ markedly from the values 

obtained in the calculations presented here. This procedure reduces the 

number of free parameters and should increase the sensitivity with respect 

to the value of the coupling constant. Also this procedure may fUrther help 

to resolve the ambiguity with regard to· the various sets of phase shifts. We 

also plan to extend the application of the present method to other energies 
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and to n-p scattering. Finally, work is in progress on the incorporation of 

the two-pion exchange contribution into the above scheme, and it is hoped that 

eventually other processes may also be included. 
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TABlE I 

Goodness-of-fit parameters for p-p scattering at 310 Mev . 

Set 2 = 0 2 = 9.4 2 = 14.4 2 19.4 2 
= 28.8 g g g g = g 

(Conventional 
analysis) 

1 17.92 14.37 13.97 14.83 20.09 

2 21.66 18.32 17.59 17-89 21.85 

3 23.79 23.66 25.01 27.29 :20.09 

4 24.51 25.44 17-59 17.88 21.85 

6 34.58 34.05 34.98 35.44 34.77 



TABLE II 

. . • t 

Conventional (g2 
= 0) and modified (g2 = 14.4) phase shifts* for p~p scattering at 310 Mev 

State Set 1 Set 2 Set 3 Set 4 Set 6 
Old New Old New Old New Old New Old 

ls 
0 -10.1 -10.9 ~19.5 =22.1 -11.0 -11.2 -27.0 -22.1 - 0.3 

~2 12.9 12.1 4.4 4.4 13.3 13.4 4.9 4.4 12.9 

1 . 
G4 1.0 1.2 1.3 1.1 1.1 1.2 1.1 1.1 ~ 1.1 

3p 
0 -14.3 -14.0 -36.1 ~34.4 - 4.1 - 4.4 .. 25.4 -34.4 -64.7 

3pl -26.7 ~26.2 -11.7 -11.1 .. 2o.o -19.8 - 7·3 -11.1 -13.4 

~3 - 4.4 .. 4.6 0.3 .. 0.5 - 2.6 - 3.0 1.6 - 0.5 3.1 

~5 0.1 - 0.4 - 1.4 .. 1.5 0.9 0.5 - 0.9 - 1.5 - 2.0 

~6 1.3 1.2 1.4 1.4 - 0.6 - 0.3 - 0.8 1.4 0.3 

3p2 16.1 16.6 18.8 19.2 22.6 22.4 23.1 19.2 8.2 

~2 o.8 1.3 - 0.5 0.1 - 2.0 - 1.8 - 1.4 0.1 - 2.1 
" 

- 1.0 .. 1.4 - 9·3 .. 8.6 1.8 1.4 - 7·5 - 8.6 .. 0 .. 2 €2 ( ; 
' . 
I .. 

~4 3.2 2.5 2.9 0.5 0.8 2.6 2.9 3·3 3.2 

~4 1.5 1.7 2.1 2.4 .. 1.1 - 0.4 - 0.7 2.4 2.2 

€4 - 1.2 - 1.4 - 1.5 - 1.7 - 0.9 - 1.4 - 0.8 - 1.7 1.3 

* Nuclear bar phase shifts in degrees as defined in Reference 4. 

New 

0.4 

12.1 

- 1.3 

-65.7 

-14.1 

2.5 I 

~ 
8 

- 2.0 

0.5 

8.2 

- 1.3 

0.9 q 
Q 
!:0 
t-1 
I 

3.4 ()) 
\Jl 

b 
2.3 

o.8 
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TABlE III 

The value of the observables as determined by the phase shifts, for p-p 

scattering at 310 Mev, Set No. 1 

Observable Old value One-pion term, One-pion term, 
old phase shifts new phase shifts 

value % change value % change 

I0(90°) 3.72 mb 3.85 mb 3·5 3.72 mb 0 
r( 9.1°) 1.041 1.076 3.4 1.055 1.3 
r(11.3°) 1.034 1.057 2.2 1.028 -0.6 
r(14.8°) 1.079 1.090 1.0 1.058 -2.0 
r(l8.6°) 1.094 1.105 1.0 1.076 -1.7 
r(23.4°) 1.079 1.097 1.7 1.07;5 -0.4 
r( 31.9°) 1.044 1.052 0.8 1.055 1.0 
r(36.o0

) 1.033 1.024 ~0.9 1.042 0.9 
r(44.8°) 1.012 0-958 -5.6 1.012 0 
r(52.4°) 0.993 0.916 -8.4 0.988 -0.5 
r(6o.8°) 0.985 0.911 -8.1 0.980 -0.5 
r(64.0°) 0.986 0.921 -7.1 0.983 -0.3 
r(71.4°) 0.994 0.955 -4.1 0.992 -0.2 
r(8o.2°) 1.000 0.988 -1.2 0.999 -0.1 
s(76.2°) 0.622 0.602 -3·3 0.603 -·3.2 
s(63.9°) 0.628 0.645 2.7 0.631 0.5 
s(53.4°) 0.661 0.697 5.4 0.67_7 2.4 
s(42.9°) 0.734 0.747 1.8 0.737 0.4 
s(32.3°) 0.850 0.820 -3·7 0.821 -3·5 
s(21.6°) 0.956 0.915 -4.5 0.916 -4.4 
t(23.0°) 0.760 0.749 -1.5 0.724 -5.0 
t(25.8°) 0.702 0.721 2.7 o. 70_0 -0.3 
t(36.5°) 0.519 0.570 9.8 0.576 11.0 
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TABLE III (Cont.) 

Observable Old value One-pion term, One-pion term, 
old phase shifts new phase shifts 

value % change value % change . . 
' 

t(52.0°) 0.469 0.409 -11.5 0~448 - 4.7 

t(65.2°) 0.530 0.499 - 6.2 0.500 - 6.0 

t(80.5°) 0.512 0.557 8.8 0.528 3.1 

u(22.3°) -0.226 -0.249 -10.2 -0.213 6.1 

u(34.4°) -0.173 -0.152 13.8 -0.103 . 68.0 

u( 41.8°) -0.006 0.007 216.7 0.050 933·3 

u(54.1°) 0.314 0.294 - 6.8 0.314 0 

u(70.9°) 0.521 0.505 - 3.2 0.517 - 0.8 

u(80.1°) 0.606 0.613 1.2 0.623 2.8 

v(25.4°) -1.148 -1.202 - 4.7 -1.315 -14.5 

v(51.4°) 0.011 0.095 863.6 0.005 -54.5 

v(76.3°) 0.436 0.379 -11.5 0.381 -14.4 

crT ~ 20° 22.14 mb 22.14 mb 0 22.10 - 0.2 



UCRL-8~;510 

-22-

FIGURE CAPTION 

Fig. 1: Goodness-of-fit parameter vs. pion-nucleon coupling constant for the 

five "best" solutions of the modified analysis of p-p scattering at 310 Mev. 

2 For Solutions 1 and 2 a parabola was drawn through the points at g = 9.4, 

14.4, and 19.4; these parabolae have their minima at 

g2 = 15.42 respectively. 

2 g = 13.48 and 

Fig. 2: Plot of P/sin 9 cos e ~ e for Solutions 1 and 2 at g2 = 14.4. 

Experimental values are shown for comparison. 

Fig. J: 2 Plot of D n 9 for Solutions 1 and 2 at g = 14.4.. Experimental 

· values are shown for comparison. 

Fig. 4: Plot of R JJ! e for Solutions 1 and 2 at g2 = 14.4. Experimental values 

are shown for comparison. 

Fig. 5: Plot of A JJ! 9 for Solutions 1 and 2 at g2 = 14.4. Experimental valu~s 

are shown for comparison. 

Fig. 6~ 2 Plot of C ~ 9 for Solutions 1 and 2 at g : 14.4. 
KP 

Fig. 7~ Plot of Cnn ~ 9 for Solutions 1 and 2 at g2 : 14.4. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 

A . Makes any warranty or representation, express 
or implied, with respect to the accuracy, com­
pleteness, or usefulness of the information 
contained in this report, or that the use of 
any information, apparatus, method, or process 
disclosed in this report may not infringe pri­
vately owned rights; or 

B. Assumes any liabilities with respect to the use 
of, or for damages resulting from the use of any 
information, apparatus, method, or process dis­
closed in this report. 

As used in the 'above, "person acting on behalf of the 
Commission" includes any employee or contractor of the 
Commission to the extent that such employee or contractor 
prepares, handles or distributes, or provides ac~ess to, any 
information pursuant to his employment or contract with the 
Commission • 


