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INTRODUCTION

This report gives‘a short and practical summary of curve fitting by
the method of least squares. The purpose is to list and roughly justify the
formulae used in finding the best-fitting curve, the errors, and the quantities
which describe the goodness of the fit., The contents are therefore well
known to the statisticians, but apparently very poorly known to physicists,
although the problem in question arises very often in everyday analysis of
data. For more details as well as for a mathematically more satisfactory
tfeatment the reader is referred to textbooks on statistics. This report,
however, is self-contained, and explicitly utilitarian in tone. :

1. NOTATION AND DEFINITIONS
Experimental Point: T ¢
y(xi) z Y i=1...n . (1.1)

This is usually the average of a series of measurements of y at the
point X,

Uncertainty (experimental) in 12E
L, = Lix;): : (1.2)
This is the experimentally determined estimate of the standard

deviation. We assume throughout that x.iis measured exactly,
or at least with an error which is negligible compared to that

of Ys-
We approximate the experimental points by the series of degree n:
o .
f(x.) = Z a, ¢, (x.). (1.3)
i k=0 k Tk

“This work was done under the auspices of the U.S. Atomic Energy
Commission.
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The functions ¢k-(x)' may be any set of linearly independent functions
of x. Most simply we may set ¢k(>_<) = xX, which would give us a

polynomial of degree n. Other possible choices are, for instance,,
Legendre polynomials; Tschebycheff polynomials, ¢k(x) = sin kx, etc

Residual for this function: a

r(xi) =r, =y, - f(xi) =y - z ay q)k(xi) . (1.4)
k=0 <
Weights: )
w,o= 2 > o (1.5)
1 C,Z -

1

The ''real or "true' values of the y, are denoted by

Y(x.) Y. . , o . (1.6)

1 ) 1-

The Y. are the exact unknowable values which the Vi would
approach if an infinite number of measurements could be
- made of them.

Standard deviation (true) or variance:

o(xi) = o, ' : - (1.7)

The series of degree n apbroximating the Y(xi)"s:-
n oo .
Fix;)= 2 AL ¢plx;) ' (1.8)
k=0
Residﬁal for this series:
R(Xi) = Ri = Yi - F(xi) . (1.9)

"True' error in the yi's:

E(Xi) = Ei = Yi -y : (1.10)
We define for the '"experimental'' approximating function
: N : N | |
c 5 = 5
q = Z W, [yi - f(xi) 1° = Z woT (1.11)
i=1 i=1
We define for the ''true " approxii’nating function
N ‘ - N
Q= Z w, [Y. - F(x.)]% = Z w, R (x,) (1.12)
i i i i i’

i=1 i=1
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We will set 2
% _ 2
¢’ i
for all i, where N . 2 ) ; uj
pzz_lN >: LR s | (1.13)
_ i=1 ¢ ' .

"Experimental' quantities are lower-case:

Yi’ Xi’ 41’ f(xl)’ aik‘r(xi)’ Wis qe

"True'' quantities are upper-case (except O'i):
Yl’ F(Xl), Ak: R(Xl), Q: E(Xl)-

We wish to reassure the reader that'the "true'mquantities are used merely
for mathematical purposes, and that a knowledge of them is not necessary
for the use of the results of this article.

2. STATEMENT,OF THE PROBLEM

The basic problem is as follows. For each abscissa x. (i = . N)
we are given an experimental value of the ordinate Vi with experlmental
uncertainty {.. We wish to construct a curve of a glven type, i.e., with a

given ¢ (x) o% of a given degree, in such a way that this curve most closely
approxlmates the data.

The problem is solved as follows. We assume that the measured
values Y; have a Gaussian (normal) distribution around the ''true' value
Y., with standard deviation o.. Thus the probability that for an experi-
mentally determined Y3 the ''true' value Y, lies between Y, and dy; is

2
1 C @y
P(Yi)in = T  exp - ay, . (2.1)
o, N2 " 2 0.
Thus the best (most probable) guess of the Y., i =1 N is obtained when
N N
(Y;-vy;)
P=TT P(y)= 77 | —— exp | - . \
i=1 i=1 01 N 2T 2 0-1
2.2)
N (
. . 2 0.2
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is a maximum, or--what amounts to the same thing--when

2
2

i=1 .
i

(2.3)

is a minimum. Now, we wish to determine the a, 's in'Eq, (1.3) so . that the

f(xi) is the most probable estimate of the Yi'S. rom (2.3) this will occur
for
N
2
a= 0w i) (2.4)
i=1
a minimum. Here we have used C,i (wi = ?;iz) as the best available estimate!
of o, Equation (2.4} is Legendre's principle of least squares.
3. OBTAINING THE COEFFICIENTS OF f(x)
We want to minimize
S 2
N 7
N = ay ¢ (x0-yy |
N k=
q = Z _ , (3.1)
v T, ‘
i=1
or we want to satisfy g
' N . a, & (x.)-vy. \
oq _ . k=0 ©~ v ¢ g xy) -0
%a, - ¢ 2 L. -
i =1 i . i
e (3.2)
for all £ =0... n.
Thus we get a set of linear equations
n N : ¢k(xi) ¢f (xi) N } yi ¢ 7 (Xi» -
a = —_— £ =0..
k é2 » ¢ 2
k=0 i=1 i i=1 i
’ (3.3)

These are called the normal equations for the least-square-fitting procedure.
These equations can also be written as a matrix equation,

has=g. (3.4)

where



o

Dol 0020 2

& 6
-7- UCRL-8523
N . _ N
h = ¢k (Xi) éﬂ(xi) Yi ¢£(Xi)
k? > gz = —_— - (3.5)
i=1 C’i i=1 f,i
The solution can therefore be written as 5.
n n N
as  h,e s Joowh, ) LT e
2=0 ' £=0 i=] ?;,i
The matrix h is symmetrlc If the ¢£ (x.l)“s are orthogonal, h is a diagonal
matrix.

4.

The '"true' error in the y. is;given by E.

ERRORS IN THE COEFFICIENTS

i =Y1-Y1 From Eq. (2.1)
the probability that E 11es between E and E + dE is given b
P y g Yy

P(Ei)dEi = ___1___
o, '\/ZlT

exp

- > dEi . (4. 1_)
2 0‘i

Thus, .if we make a verér large number of measurements of y; we find, for

the average value of E

00
Eiz = __.__1____ [ Ei‘Z exp
o.N2w !
1 - 0

and for i ;4 s

“ o,
ZJ dEi--c.1 , (4.2)

(4.3)

The bar over the variables denotes dn average over a very large number of

measurements.

Let the "true'' series fitting the 'true' data Yi be given by

700

F(Xi) = Akcbk (x.l),
k=0

'

We can then define the uncertainty in the coefficient of f(x) to be
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P— 1/2 » .
2 : :
[(ak - Ak) -]f . (4.4).
Now, from Eq. (3.6), ‘
n ’ . N . )
LN Y Jidy )
» k¢ a 2
2=0 - i=l 5

Since h-1 does not depend on the Vs being dependent only on the X, and Li,
we find ‘ ' ’

n "N
< 1< Y. ¢, (x;)
A T/ h / —_— (4.5)
kL k4 A . 2 -
=0 = i=] i
{
.,fj 7
Hence 0 , N ‘ | ‘ 2
G, oA =S n LT LI (4.6)
" "L . Tz i :
' Lz=o i=1 i
Let us denote temporarily
) n
S.c0= ) h,Th e, (ke (4.7)
| LA k4 AT , '
£=0 ‘
Then we have
N N _
2 _ N e 1 '
i=1 j=1 i 5 '

Taking the average of both sides, using (4.2) and (4.3) gives us

N sz N\ (g2
(a - 8% = ) k LI | (4.9)
i=1 z;i -. ;'1 »

The {. are supposed to be the best possible experimental %stimates of the

o.. It is therefore not unreasonable to assume that giZ/L,i does not vary
much with i, and to replace it by its average value = :
N 2
2 1 9y
P N ¢ Z
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N 2

s 3, 0 (x,)

(ap - A2 =0 )[R (4.10)
i=1 % |

wd
Now
N 2
2 §fk (Xl) _
> =
i=1 &
4
so that

(ak -

This is as far as we can go without further assumptions, since p
directly measurable quantity.

2
AL)

. n n
L b -1 -1
z z by ¢y lx) Z bk @m &)
i £=0 : m=0
n N
-1 -1 1
hﬂk z hmk Z ¢ 2 ¢£ (Xl)q)m (}‘1)
- m=0 4 =1 i

. n
h ! Z h "l by (3.5)
Ik mk fm ¥y o2
m=0
—11 '1
By By W (4.11)
2 -1
= pPhy (4.12)

is not a

In order to estimate p we proceed as follows:

)

and therefore

1

Y.-yi,

Ei tr;= F(Xi) - f(xi) + Ri’

where
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1

LYoo f(‘f‘i)'; ' R, = Yi - 'F(xi);
thus a
E vy = Z (A = ag) & b)) + Ry
k=0
n N §;k.(xj) .
= z &1 (x;) z o E; +R, . (4.13)
k =0 j:l J
2

Multiplying both sides by ri/g,r and summing over i, we get

N ] - XN 1 2
. — r. E, + —e T, =
}: ¢ 2 i i Z 2 i
. i : &
i=1 . : i=1
N n. . N . . N r R
Y Y Lz T orbe) Bl By 5 —
L. : .
i=1 k=0 .  j=1 : ) i=1 *
(4.14)
From Eq. (3.2) we see immediately
N
S\ 1 _
i=] i
~vhereupon (4.14) becomes
- 1 a 1 2 al s By ‘
e = [
Z g—'z ri El + Z ZT ri Z g 2 . (4,1.):’
i=] 1 i=1 i i=l S|

hMualtiplying Eq. (4.13) by E:/(_,‘.Z and summing over i, we get
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N Ei2 w T n n N EE,
)Tt ) D)) IR =g
i=1 53 =1 % k=0 j=0 =0 i bic
¥ N ., i
E: E; R,
+ L (4.17)
=12 5
Eliminating Z riEi between (4.16) and (4.17),
i
N o2 N N
i | 1 2
EZ —— ¥ 2: E: — T T
i=1 5 i=1 & i=1 &
4 A 4
n N N E, E, N E; R,
: $, (x.) &, (x.) + >
EZ E:" E: ki) 2 ¥ tJiz‘g.z 5 =
k=0 j=1 i=] ) i=1
(4.18)

Let us now take.the average of both sides of Eq.
normal distribution of the y;. = We note that'y; = Y;,
Using these results as well as (4.2) and (4. 3),

’ N

=1 & i=1 i i

. NooE 2
From the definition of p~ we have z >— = N p
=1 G
2 .
o, > - . v
>— = p_ on the left-hand side of (4.19), we get
N R2 N _
E: i E: 1 L2 pz
2 - 2 i 7
¢ _ &

n
k=

(4.18) on the basis of thg_
so that r
we get for Eq

—R and E. = 0.

(4. 18)

N
0 i=]

(4.19)

, and setting
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However,
N 3
> Oy b) By ;) i ¢ ) n? -1
2 = Z Z L By e kxy)

i=1 5 =1 & 1=0

n

= Z R

= k4 k4

1=0
and

n N ‘ n
i .
k= i . i k=

2.1 Z o 2 Z 1 2
P T NTh T — T - > R
‘ - i=1 5 = 5

(4.21)

We may approximate the first term on the right by the .actually observe
residuals, in which case )

N

- R.
2 . 1 Z i
P NTaod a- 2 g (4.22)
' i=1 '

If now Ri = 0 for all i -- that is, if there is an underlying physical law which
obeys a series of degree n, '
Y, = Z A by lxy) -~
: k=0
‘then -pz X C%N -n-1), Incase R, # 0 we see from Eq. (4.22) that

%(N -n-1)> pz; thus, in setting p‘Z =g/(N-n-1)in Eq. (4:10) we are making
conservative estimate of p2 and also in'some measure taking into account

the poorness of the fit. The error in the coefficients may consequently be
‘written :
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-1
2 Kk
(Aak) = (ak A-k) N-n-1 (4.23)
; h -1 N
Mk z 12
T N-n-1 2 i
im0 b

5. ERROR AT ANY GIVEN POINT

The error at any given point is given by
n
2 2 2
A%x) =[Flx) - 2] = [ 22 (A - a) ¢, (x)]“ =
_ k=0

%

R n !

n ‘ , o
=S ) (A -a) (A, ) e b, ) (5.1)
k=0 £=0

Using Eq. (4.4) and (4.5), we can write this as
n n N
a%x) = \Z_ DY) B E ) Bl By ) 6y ) b G,
i 1 (5.2)

Again assuming, as in.Section 4, the randomne’ss of the distribution in Yy
we get

A (x) = p° ’kz=0 £ ¢ &) ¢, (x) iZ:l ;—2— § )8, (). (5.3)
But

N N . n .
, iz:l 'z_iz $ 509, (j‘i) = %1 ZI:_Z— ;O #hpk-l ¢p (x;) qgo .hqlcbq(xi) =
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. n
o p Ay tly e 4 -l -l
SO L Pertucthgr T ) SpBal Thao G4
p=0 q=0 q=0
so that
n n -
2 2 | -1
NN T WS Wy W RS (5.5)

Again, assuming that

(a) the 'true" function F(x) is an ideally good approximation to Y., d.e.
R. =0, and
(b)

the sum of the squares of the average values of the weighted residuals

can be approximated by the sum of the Squares of the observed values of the
res1iuals we get

N rz(x.) n n .
8% = g ) W'g 7 ) ). 'hzk—vl by () & x)
' i=1 5

i k=0 (=0
' ' (5.6)

6. SOME PROPERTIES OF THE ERRORS

A. The Average Error of the Fitting Function at the Points of Observation

If we setx = X in Eq. (5.5), divide by éiz and sum over i, we obtain

At

i= 1 5 k=0  £=0

N A (x ) , N X n n . _
Z = p Z 7 2 Z by " el oy 0)
. 7

n n
- 2
= o’ Z Z h, thy =@+ e,  (6.1)

and therefore
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2
A7) _n+l 2 _u+l 1
3 N P = X N-n-1
&5
av

where the av refers to averaging over the points of observation.
extreme right-hand side holds underithe conditions that make Eq.

Eq. (5.6) possible. Thus if p¢ is unity (see section 7),

UCRL-8523

(6.2)

The

(4.26) and
the average error of

the fitting curve is always less than the error of the observation at that point,

since n + 1 £ N for a meaningful fit.

B. The Average Error over an Interval

This average is given by

f ¢k(x) ¢, (x) dx,

which in case of polnomial functidns can be written as

N n
=3
k=0

fié; ih

=0 £=0

r(x)

>

X
i= l ‘

£=0

1
X27%
6.3)
-1
b o AL
THR+1 52

(6.4)

1

£+k+1
x

).
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7. GOODNESS-OF-FIT CRITERIA

The error in the fitting series, as given by Eg. (5.6) is composed of
two factors, One of them, mamely

n n
ST by ek ey, o (7.1)
k=0 £=0

gives the contribution of the statistical errors of the experiment. This
expression is independent of y; and is determined only by the experimental

errors §; and the abscissae and basic functions we use for fitting.

The other factor in Eq. (5.6), namely

N 2
1 () 1
N-n-1 z_'“——’_@z = N-mn-1 % (7.2)
i=1 i

which, once we have assumed that the 'true'' values Y, are ideally fitted by
the "true' function F(xi), gives an indication of the goocliness of the: set of
data under consideration. ‘In particular, it can tell us whether the set of data
is an "unlikely' one or not. If it is a very unlikely set, one might suspect
some systematic error in the measurement.

In practice, however, often it is not known for certain whether F(x.)
indeed gives an ideal fit to Y;. If not, and the minimum value of Q is not 0,
this will also show up in Eq. (7.2). Thus it is in fact difficult to tell whether
this is the case or whether there is a systematic error in the experiment.

The goodness-of-fit criteria are concerned with the quantity in Eq. (7.2).
We discuss two tests for such fit, the so-called chi-square test and the

so-called F test.

A, The Chi-Square ( XZ) Test

In Section 4 (Eq. (4.19)), we showed that for y; which are distributed
normally about the Y., then :

N N

. 2
Sl - en-nge S b r2 (7.3)
i=

i , izl

If the Qi are good estimates of the ¢., then p‘2 = 1. If in addition the Ri =0, ,
which would be the case for a good fft, then we would expect
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N
q = Z *1 I. ¢zN—n—l. (7'4)
1=

7
¥

For a poor fit, Ri2 >0, so that we would expe‘ct q”>N-n- 1.

It can be shown that for normally distributed y., with Ri = 0, the
statistic q obeys what is known as a chi-square (LXZ) distribution, that is,
the probability that q lies between q and q + dq is given by

A

- 1 -q/2 _(M-2)/2

where M =N - n =1 is the number of degrees of freedom of the distribution.
A simple integration shows

[+.o]
q = [ q Py,(q)dg = M, (7.6)
0 . :
in agreement with Eq. (7.4). In order to flnd the degree of the series which
best fits the data, one calculates q/M forn=1, 2, 3, ..., etc. In general,
qa/M as a function of n will first decrease, then level off to a plateau, and
finally perhaps slowly increase. The best series is thus the one with the
smallest n at which the plateau begins. ’

Sometimes the plateau will not occur at q/M = 1, but at some higher
value. If this value is so high as to be improbable it may be concluded either
that the R are not small, or that there is some internal inconsistency in the
data. Thé probability p that q be larger than a given value q4 is

f_ Pyladg'=p;  (0Sp<1). (7.7)
qO

. A brief taBIe of p, a, and M is given in the Appendix.

Another thing that can lead to values of q/M differing significantly
from one is a poor estimate of the uncertainty {;. For instance, unwarranted
rejection of data would make {. too small, resulting in a large p~. n the
other hand, estimates of {; which are too conservative would make p small,
so that for R; =0, q/M would be considerably less than one.

Supplementing the XZ test one can also use the F test, which is
discussed next.
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B. The F Test

Strictly speaking the F test was designed to solve the following
problem. Suppose we are given a set of normally distributed varidbles Vi
of which it is known that the true values Yi obey a relation of the form

n

YoE ) A e ),
k=0

where n is unknown. For a given n, what is the probability, on the basis of
the available data, that A = 0? In most practical cases we do not know
whether the Yi's obey a relation of the above form; as a matter of fact, in
many cases (e.g., scattering cross-sections in nuclear physics) the under-
1y1ng physical law may be an infinite series. However, even though the test
is not rigorously applicable it may still be used to indicate the degree of the
series that best fits the data. :

Let the data be fitted with a series of degree n and with a series of
degree n-1; let q, and q,_] be the respective weighted sums of the residuals.
We form the statistic :

M
Sy= =— la

M7T q a-1" %) M=N-n-1. ©(7.8)

Under the cond1t10ns stated above q, obeys a X distribution with M degrees
of freedom; similarly q,.1 - 9 obeys a x ~ distributjon with one degree of
freedom. Now the distribution of the ratio of two x ~ variables divided by
their degrees of freedom is called a Fisher F(m,, m,) distribution, where
m,; and m, are the degrees of freedom of the varlables in the numerator
and denominator, respectlvely In our case m so that S5, ; has
an F(1, M) distribution. (F) is the F(1, M} d1str1%ut10n then the
probability a for

S F (M) is given by

a
f P (F) dF . _ - (7.9)
F

. (M)

M

The F test now states that for SM ZFQ(M) one may assume An )é 0 with a
probability a of being wrong in this assumption. Thus if SM corresponds to
an Fa(M) with a = 0.75 there is a 75% chance of being right if we assume
A = 0. A table of FQ(M) is given in the Appendix.
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The F test must always be used in concert with the ;‘XZ test. For
suppose the F test indicates that with a high probability A_ =0, itis still
possible that A , A . are not zero. However, if in that case we
terminate the séries a?t n- 1 the XZ test indicates that a good fit has not yet
been obtained.

)

8, EXAMPLE

Consider the set of numbers gii'fren at the left. By ‘use of an IBM 650
computer these were fitted with the

X y 8 function n
12 3.85 .09 f{x)= Z ay Xk
.56 9.42 .15 k=0
.83 12.90 42 .
1.36 17.36 .42 forn=1, 2, 3, 4, 5. The results are
1.48 19.31 .23 shown below.
1.73 22.73 27 ' b ' ¢
2.20 32.89 .36
2.5 44.51 .83
2.83 53.01 .52
3.01 62.09 .61
3.32 81.00 .93 ,
3.62 102.11 .86 -
3.90 124.00 11
n 1 2 3 4 5
M 11 10 9 8 7
ag --0.5567 ,, 4.8593 | 1.9142 1.8899 1.9802
ay 18.9928 - 1.5784 17.0535 17.2574 16.2962
as -——- 7.3924 8.0616 - 8.3539 - 6.2119
as - -——— 3,0132 3.1472 1.4636
ay -——- S S - 0.01877 0.5136
ag - — S - - 0.0580
95 11148.407 1471.809 13.142 13.097 12.838
qn/M 1004.01 147.1809 1.4002 1.6371 1.8340
SM 65.7462 | 1041.741 : 0.02748 0.14122 ————
M=N-n-1, N=13
We see immediatéfy that the XZ test selects n = 3 as giving the best
fit. The F test corroboratesthis selection, since Spyg = 0.02748 for M = 9
corresponds, according to the table in the appendix, to a = 0.85. Thus in

terminating the series at n =

3 we have approximately an 85 % chance of being
right. :



.01

6.63
11.34
15.09
18.47
21.67

. 23.21

30.58
37.57
44.31

50.89

.05

3.84

781
11,07
14.07
16.92
18.31
25.00
31.41
37.65
43.77
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Values of qo for given M and p

S Py (x%) dx2

2,71

6.25

9.24
12.02
14.68
15.99
22.31
28.41
34,38
40.26

o

.20

Tles

4.64
7.29
9.80
12.24
13.44
19.31
25.04
30.67
36.25

.50
' 0.455
2.37
4.35
6.35
8.34
9.34
14.34
19.34
24.34
29.34

=P

.31
.58
i8.
23.

94
36

.90

© 0.016

0.584
1.61
2.83
4.17
4.86
8.55
12.44
16.47
20.60
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.95

0.004
0.352
1.14
2,17
3.32
3.94
7.26
10.85
14.61
18.49

.99

0.0002
0.115
0.554
1.24
2.09
2.56
5.23
8.26
11.52
14.95
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Distribution of F:

Values of Fa(M) for given M and a

\Y P (F)dF = o

F (M) ‘

S
aM 5 10 15 20 T 60 120 w
999 1.73x107% 1.65%107% 1.62x107% 1.61x107% 1.60x107® 1.59x107® 1.s8x107® 1.s8x107® .1s57%107®
99 1108 Lesxio® Leaxio® Lewao * 1eoxi07? 1soxi07? 1sexiont 1ssxao? 1s7xaet
.95 4.35x1070  4.13x1077. 4.07x107?§4.03x107° 4.00¥1073 3.98x107°  3.96x107° 3.95x107° 3.93x107°
.90 0.0175  0.0166  0.0163  0.0162 00160 9.0160 ° 0.0159  0.0158  0.0158 |
80 0.0713  0.0(.6  0.0666  0.0660  0.0655  0.0650  0.0645  0.0645 0.0640
75 0.113 0.107 0.105 0.104 0.103 0.103 0.1025  0.102 01015
.50 0.523 0.490 0.477 0.472 0.466 0.464 0.461 0.458 0.454
.25 '1.69 1.49 1.43 1.40 1.38 1.36 1.35 1.34 1.32
10 4.06 3.29 3.0 2.97 2.88 "2.84 2.79 2.75 2.71
05 6.61 4.96 4.54 4.35 417 4.08 4.00 3.92 3.84
.01 16.26 10.04 8.68 8.10 7.56 7.31 7.08 6.35 6.63
.005 22.78 12.83 10.80 9.94 9.18 . 8.83 8.49 8.18 7.88
1.97 11.38 10.38

.001 47.18 21.04 16.59 14.82 13.29 12.61 1

e
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