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ABSTRACT 

A general method of calculation is described for quantum statistical 

mechanics. It is based on a simplification of the Laplace transform of the 

density matrix which follows from a theorem due to Hugenholtz. The basic result 

is that an element of the density matrix can be written as a sum over graphs, 

with the contribution of each graph factored into contributions from connected 

or linked graphs. Applied to the grand partition function, the exponential 

formula of Bloch and deDominicis is obtained in a simple way. A similar formula 

is then derived for the canonical ensemble and the case of a nondegenerate gas. 

In this way the familiar result of Uhlenbeck and Beth is obtained for the second 

virial coefficient. Techniques are also introduced for evaluating ensemble 

averages of operators. In this connection, some care must be exercised in the 

case of diagonal operators. Finally, these methods are used to calculate the 

pair-correlation function for a system of fermions interacting through short

range forces. 

* Work done under the auspices of the U.S. Atomic Energy Commission. 
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I. INTRODUCTION 

This paper describes a general method of calculation for the quantum 

statistical mechanics of a system of interacting particles. It is based on a 
1 . 

theorem due to Hugenholtz, which allows simplification of the Laplace transform 

of the density matrix. 2 From this we derive a cluster expansion for the density 

matrix, and give several applications of the result. 

Brueckner has called attention to the fact that perturbation methods 

for many-body systems involve formal complications not present in the conventional 

perturbation methods. 3 The source of these difficulties is the possibility--for 

extended systems--that many particles interact simultaneously. Thus a straight-

forward expansion in powers of the interaction energy and the retention of only 

low powers is not expected to yield a good description of a many-particle system. 

On the other hand, different groups of the simultaneously interacting particles 

act independently in the sense that particles in one group do not interact with 

those of another. Thus the wave function may be factored into terms referring 

to independent clusters of interacting particles. Brueckner introduced the term 

"linked clusters" to describe such factors. 

The same difficulty also arises in statistical mechanics when expansions 

in powers of the interaction energy are attempted. For classical statistical 

mechanics, a systematic expansion applicable to gases has been presented by Ursell 

4-6 and Mayer. Recently a number of new methods have been proposed for studying 

the equation of state of quantum-mechanical systems. Some of these procedures 



are adaptations of techniques that have proved useful in quantum field theory and 
7 

nuclear physics. For example, there is the recent work of Lee and Yang which uses 

a generalized pseudopotential for hard-sphere gases. Matsubara has given an 

extensive field-theoretic exposition of the grand partition function8'9 which 

makes use of time-dependent perturbation theory and Wick 9 s theorem. 10 Bloch and 

deDominicis have extended this work in several recent 1.1-]2 
papers. In particular, 

they have solved the difficulty mentioned above and given a linked-cluster 

expansion for the Gibbs potential. Similar results have been reported by 

van Hove. 13 Montroll and Ward1~ve also obtained expansions in terms of graphs 

for use in quantum statistical mechanics. 

The methods presented in this paper are related to some of the above work, 

particularly that of Bloch and deDominicis.
12 

'In addition to giving a novel and 

simple development, we have also extended the general results and presented some 

new applications,· 

In Section II the theorem of Hugenholtz is reviewed and then used to 

give the expansion of the density matrix. In Section III this result is used to 

evaluate the grand partition function, leading to a result. similar to that of Bloch 

12 " 
and deDominicis. The evaluation of the' partition function for the canonical 

ensemble is then considered in Section IV. Techniques for obtaining the ensemble 

average of an operator~ considered in Section V. In the last section this 

result is applied to the calculation of the pair correlation function for a system of 
fermions. 

interacting,... It is hoped in a subsequent paper to apply similar methods to 

the study of nonequilibrium phenomena. 

II. EXPANSION OF THE DENSITY MATRIX INTO CWSTERS 

We consider a system of N similar particles, each of mass M, in interaction 

within a large volume ~ The Hamiltonian describing their motion is 
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H = K + V ( 2.1) 

In this expression K is the kinetic energy: 

K = E ~ ~t' ~ 
k 

2 
~ = k 2M (2.2) 

The quantities ~ and ~ are, respectively, creation and annihilation 

operators satisfying the usual commutation relations 

(2.3) 

The + sign refers to Fermi-Dirac statistics, while the - sign refers to Bose
! 

Einstein statistics. The quantity k represents the momentum of a single free 
"" 

particle ~ = 1)); when used as the label of a state or an operator, the l.abel k. 

represents the momentum of a single free particle (~ = 1) and its spin (if any). 

v 

where 

1 
4 

The interaction energy V is 

~;t 
2 ~2 ~1' (2.4) 

(2.5) 

The quantity v (r) is the potential energy of two particles separated by a 

distance r ; it may also include spin interactions. The wave fUnctions X are 

( 

I 
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~(x) 
= \f-1/2 ik•x --e S (2.6) 

where S is a spin function if the particles have spin. Finally, the or + 

sign refers to Fermi-Dirac or Bose-Einstein statistics, respectively. 

We shall often use a momentum representation for the entire system. Thus. 

the ket I p ) specifies the momenta of the N particles; of course it also is 

an eigenstate of the kinetic energy operator: 

K I p ) = Ep I p ) 

Here E is the eigenvalue of the kinetic energy for the state I p ) • 
p 

The equilibrium properties of the N particle system are completely 

(2.7) 

described in terms of the operator -f3H e . , where -1 
f3 is the temperature times 

the Boltzmann constant. It is useful to introduce the Laplace transform of this 
. 2 

operator, 

where 

-f3H e 

W(E) = 

~i & dE e -f3E W(E) , (2.8) 

1 
E- H (2.9) 

Here E is a complex number, and the contour of integration (!. is illustrated 

in Fig. 1. First one integrates parallel to and above the real axis from +m 

to a point to the left of the lowest eigenvalue of H. At this point the contour 

crosses the real axis and returns to +oo below the real axis. 

We now consider the expansion of the operator W(E) in powers of V. 

A typical term in the expansion has matrix elements 

I I 1 1 1 1 I 
(p E-KVE-KVE-K ••• VE-K p) (2.10) 

.. 



.. 
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1 For the terms in this expansion we use the graphical representation of Hugenholtz. 

A typical matrix element of V may be represented by two directed lines, crossing 

at a point, as in Fig. 2a. Definite states are associated with the two lines, 

both before and after the scattering. We shall refer to this as a simple "scattering" 

graph. A typical term in an expansion such as Eq. (2.10) is then represented by 

a combination of the single-scattering graphs of Fig. 2a. For example, we represent 

the term 

] ----E-ek"-~" 
1 2 

(k II k It I v 
1 2 

(2.11) 

by the graph of Fig. 2b. A graph) every part of which ~s connected to every other 

part by lines; is said to be a "connected" graph. The graphs of expansions, such 

as (2.10} need not be connected. This is illustrated in Fig. 2c. Graphs that are 

not connected are called "disconnected." 

1 If a graph contains "disconnected parts," a theorem due to Hugenholtz 

permits us to "factor" this graph into parts each containing only "connected 

graphs." This procedure is the cornerstone of our method. 

The validity of this factorization may be understood as follows. ' Let a 

typical term (2.10) contain a particular connected graph G2 and any number of other 

graphs (in general disconnected) which we shall call G1 • The contribution of all 

these graphs to W , summed over all permutations of the order in which the 

interactions of G1 and G2 occur, is indicated by 

WG G (E) 
1 2 

= < p' I 1 
E-K-V -V 1 2 

Here the subscript (G1, G2) means that we pick out of the expansion of 

( 2.12) 
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(E ~ K - V - V )-
1 

only those terms which give the required graphs. For the 1 2 

graph G
1 

alone, or G
2 

alone, we have the corresponding expressions, 

= ( P a I 
2 

1 

1 
E - K = V 

2 

I P >a .1 

( 2 .13) 

and p2
1

) represent the states obtained from I p ) by the 

transitions of graphs G1 and G2, respectively. Likewise the interaction terms 

v1 and v
2 

represent the particular terms in V that are required for the 

transitionsin G1 and G2, respectively. 

The graphs in this discussion, i.e., those in Eqs. (2.12) and (2.13), 

involve a specific set of intermediate states. 15 The sum over these virtual 

states will be' carried out at a later stage of the calculation. Now for a large 

interaction volume V , the interactions associated with the two parts of the 

graph, i.e., v1 and v2 , may be considered to refer to different states. It 

is true, of course, that the sum over intermediate states occasionally gives 

terms in which the same states are involved. However, these cases are less 

/\;'1 important by a factor · v , assumed to be very small. 

Thus we are justified in treating the interactions v1 and v
2 

as 

referring to different states. We can next introduce a kinetic energy operator 

K2 which refers only to the states occurring in the connected graph G2, and 

also define the operator K1 ~ K - K2• Because the two graphs commute, a 

direct application of Cauchy's theorem gives 

1 
E-K-V -V 1 2 

1 
21fi 

1 1 
E ~ t - K1 - V1 ~ - K2 - V2 

(2.14) 
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The contour of integration is similar to that of Fig. 1, except that it is 

sufficiently close to the real axis that no singularities of (E - ~ - K - V )-l 
1 1 

are enclosed within the s contour. More specifically,. we may choose a 

representation in which 
,,/ 

eigenvalues ~ ind ~' • Then (2.14) obviously holds in the form: 

1 1 1 1 
I ds E - t - ~ s - ~ E- ~- ~ 

By forming the matrix elements of Eq. (2.14) appropriate to the graphs 
16 

G1 and G2 we obtain immediately 

WG G (E) = 
1 2 

1 
21ri 

We simplify this relation by introducing the notation 

We also define 

K I p ) = (E + E ) I p ) = E I p ) 
pl p2 p 

z + E , and now Eq. (2.15) becomes 
p2 

WG G (E) = 
1 2 

1 I 1 I dz ( p ' =----~--:-:=-
21ri 1 E - z - K - V l I P > < P2 ' I 

1 I p > t - K2 - v2 

E I p ) ' 
p2 

(2.15) 

1 
z ..,(K + V ~ - Ep) p ) • 

(2.16) 

1 
Equation (2.16) is just the statement of the Hugenholtz theorem. We have 

1 developed it in a manner suggested by Hugenholtz and also by Riesenfeld and 

Watson.17 A special case of Eq. (2.16) obtains when there is no graph G1 and 

v1 consequently vanish~s. 
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We now use Hugenholtz's theorem (2.16) to reduce e-~H to a sum of terms, 

each containing factors involving only connected graphs. First, let us suppose 

a typical graph in the expression (2.10) contains L connected graph~, G1, G2, ••• GL. f 

By induction, from Eq. (2.16), we obtain for their contribution to W(E), 

I p > 

( p I I 1 I p )G ( p2 i I 1 .I P >a 1 z - (K + vl - E ) z - (K + v2 - E ) 1 p 1 2 p 2 

.•• ( PL I I 1 I p )G • 
ZL - (K + VL - Ep) L 

We next carry out the sum over virtual states in each graph on both sides of this 

equation and also sum over all graphs to obtain 

W(E) = .E 
all graphs 

where 

w. ( z.) 
~ ~ 

1 
z - (K + V - E ) p 

I P >a. 
~ 

(2.17) 

(2.18) 

I ( ) we include only terms of [z (K + V- E )]-l contributing to G., n ~ ~ P ~ 

but sum oyer all virtual states. In Eq. (2.17) the sum over all graphs includes 

a sum over all topologically different graphs. It also includes a sum for each 

graph, over the available particle states in the states I p ) and ( p' I . 
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To obtain e-f3H it is necessary only to substitute Eq. (2.17) into 

Eq. (2.8): 

( P ' I e -f3H I P ) = E 

Then 

all graphs 

-f3E 
)(. ( p I E- (z e+ z + 

1 2 

1 I dE I dz1 I. . . I dzL 

( P ' I e -f3H I P ) 

-f3[E- (z1 + z2 + zL)] 

= E ( P I li I dE ~e-..----------...---..,.,...-
all graphs ~ E- (zl + z2 + ••• zL)- K 

I p > 

-f3z 
e 1 

Now define the quantities 

( 2.19) 

where i refers to a graph of the !th type, defined by its topological structure. 

With these definitions, the above expression reduces to 

( p ' I e -f3H I p ) = ( p I e -f3K I p ) .{ E • gl g2 • • • ~ }. 
all graphs 

(2.20) 

This equation represents the fundamental result of this investigation. It achieves 

the stated goal of reducing the interaction of many particles to a sum of products, 

each factor describing the interaction of a much smaller number of particles. 

Before discussing a number of applications of this result, we discuss 

Eq. (2.20) in somewhat greater detail. Each factor g1 represents a contribution 
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to e-~H from a single connected graph. We may suppose this graph to involve the 

scattering of ri particles. Then gi is a matrix, 

leading in general to a change of state for each of the ri particles. This 

matrix is 

p I 

i z -
v 

(2.21) 

1 ' • • V -z __ __,.,( K,___...,E,.....,..) 
p 

I p > 

y 

The last factor may of course be simplified, since [ z - (K - E )]-
1 I p ) = z -l, p ) • p 

The sum over "all graphs" in Eq. (2.20) implies first a sum over all 

(k1i' k2i' ••• kri' I gi I k1i k2i ••• kri) for each gi • In addition to this, 

we must sum over all topologically different graphs. To clarify notation on 

this point we use a symbol G to denote the topological strbcture of a graph. 

Then a "sum over G" implies only a sum over all topologically different graphs. 

This kind of .summation is then not equivalent to the sum over "all graphs." Only 

when a sum over all (k1 ' k2 ' ... k ') 
i i ri 

and all (k1 k2 
i i 

performed is the "sum over all graphs" complete. 

k ) is also 
ri 

III. EVAWATION OF THE GRAND PARTITION FUNCTION 

We shall now derive an expression for the grand partition function using 

the basic result given in Eq. (2.20). This is the same problem solved by Bloch 

and deDominicis and, indeed, our result is similar to theirs. We shall treat 

separately the two cases of Fermi-Dirac and Bose-Einstein statistics. The two 

• 
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discussions are, however, quite similar, as are the final formal expansions in 

te~s of connected graphs. 

A. Fermi-Dirac Statistics 

The grand partition function is 

(3.1) 

where a is the chemical potential. In performance of the trace operation 

('Tr [ ] ) a sum is carried out over all number of particles N. The 

essential simplification of the grand partition function is now accomplished by 

the use of Eq. (2.20) for the diagonal elements of e-~H: 

J-= Tr[ aN 
e -~K e ( 3.2) 

For the operators N and K we use the familiar expressions 

N = 

K = E 
k 

with ~ = ~1- ~ For Fermi-Dirac statistics, of course, ~ can only be zero 

or one. 

Only the diagonal elements of e-~H are involved in the trace of 

Eq. (3.1). Then, according to the discussion of the preceding section, only 

the diagonal matrix elements of the g
1 

(diagonal graphs) are required in 

Eq. (3.2). A typical diagonal g then has the form 

g = ~ ] . 
r 

( 3·3) 
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This expression follow~? directly from Eq. (2.21) on substitution of the explicit 

expression, Eq. {2.4), for the interaction V. Between each interaction a sum 

over intermediate states si is introduced, and this gives r~ to the sums OYer 

intermediate states s1s2 
in Eq. (3.3). The states k1k

2 
•.• are the initial 

states which have been suppressed on the left side of (3.3). The coefficients 

a(k1k2 •.• kr; s1s2 ... ) involve energy denominators and matrix elements of the 

potential. Their form is not important for the general discussion of this section. 

Equation (3.2) may be written in a more explicit form as 

(}-= 
( 3.4) 

The summation over (nt nt ... ) means that the occupation number for every 
1 2 

state assumes the value zero or one. As a first step in evaluating Eq. (3.4) we 
insert the appropriate expressions (3.3) for the graphs but, for the moment, do 

not carry out the sums over intermediate states s1, s2 Instead, we first 

carry out the sum over the nt's. To do this, we observe that each factor 

exp[(a- ~€k.>~.] falls into one of three classes. If the state ki does not 
]. ]. 

occur in any graph, 

(a - ~€k·) 
[ 1 + e 1 

] 

If k. occurs somewhere as an initial state, it has, according to Eq. {3.3), a 
]. 

factor ~· i 
Thus the sum is 
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For k. occurring as a virtual state, there is now a factor of 
~ 

[again referring to Eq. (;.;)]. In this case, then, 

(a - ~£k )~ 
e i (1 - ~ ) 

i 
1 . 

(1- ~ ) 
i 

Taking account of these results we may extract from Eq. (;.4) for 

the factor17 

~= ( 3.5) 

Of course corrections have to be made to Eq. (;.5) for states occurring in the 

graphs. When this has been done it is seen that each summand in (;.;) is 

replaced by 

a(k1k2 ••. k' sls2 ••• )[ f (+) f ( +) 
][ fk 

(-) 
fk 

(-) (-) ] 
r' sl s2 fk 

1 2 r 

( ;.6) 

where 

f ( +) (a - ~€k) -1 
:s [ 1 + e ] ': 

' k 

(3.7) 
(-) (~€k - a) -1 

fk = 1 + e ] 

The factors f (-) and f (+) are simply the probabilities that state k is 
k. k 

occupied or empty for a Fermi gas. Note also that fk(-) + fk(+) ~ 1. 

Referring to Eq. (;.;) and (2.21) we see that, when the sum over the 

~'s is completed, each gi in Eq. (;.4) is replaced by a quantity 
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1 -t3z 
= 2rl' f dz ~ 

z 

z -

Here Ek = €k + €k + ••• €k The quantity f is an operator acting only 
1 2 r 

on the V to its right; a typical matrix element of fV is 

(.el.e2 I rv I .e •.e ') 1 2 

If .el (or £2) is 

chosen. 

= f (±) f (±) c.e .e I vi£'£') 
tl £2 1 2 . 1 2 

a virtual momentum state, then f(+) (or 

is a member of the set (k1 ••• k ) 
ri 

(3.9) 

f ( +) ) 
.e2 

is 

then f. (-) 
.el 

(or f (-) ) is used. Equation (3.8) provides a formal expression of the 
£2 

content of Eq. (3.6). 

To repeat, each intermediate state s in a graph is weighted by a factor 

fs(+) (the probability that s is empty), while each initial momentum state k 

is weighted by fk (-) . (the probability that k is occupied). This feature was 

obtained previously in the work by Matsubara8 and by Bloch and deDominicis. 12· 

To summarize, we have obtained the following expansion for the grand 

partition in terms of connected graphs (or linked clusters) 

( 3.10) 

As described in Section II, the sum over graphs is to be done in two parts. A 

given graph, defined topologically, must be summed over all states (k1k2 ••• kr). 

Then a sum must be made over all topologically different graphs. Define 
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% = (3.11) 

and let there be NG graphs of a given type G in a typical ter.m in Eq. (3.10). 

Now, a given graph G is counted NG! times in carrying out sums such as those 

in Eq. (3.11). The reason is that these sums give NG! ter.ms that correspond 

to permutations of the CG's among themselves. This per.mutation was already 

carried out once, however, in using Hugenholtz's theorem (2.16). Therefore if 
NG/, 

a graph G occurs NG times, its contribution is ~/' NG! • Finally, the grand 

partition function is 

NG 

}=}o 00 

differ& G 

QG 
E 

NG! ' N ,;o 
G 

which can be written as a simple exponential, 

exp ( E Q ] 
different G G · ( 3.12) 

We can also introduce the Gibbs' potential through the equation 

It can be simply expressed as a sum of connected diagrams, 

For convenience, we here rewrite ~' defined by Eq, (3.11), 

~ = 
1 f 1 

21ri dz ~. 
-t3z e 

1 
fV ••• fV I k1 .•. kr ) • 

( 3.13) 

( 3.14) 
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To illustrate Eq. (3.14), we write out the first two terms (1st and 2nd 

order in v ). Sums are converted to integrals by the usual prescription, 

E -+ [ ,-v- J I d3k 
' k (2:rr)3 

2 (k1k2 1 v 1 k1k2) 
Ql -~ [(:,d I d3k I d3k = 2 1 2 t3€k - a t3Ek - a 

1 + e 1 ][ 1 + e 2 

1 
~ = 4 

t3Ek - a t3Ek2 - a t3€ - a t3Eg2 - a 
1 + e 1 ] [ 1 + e ] [ 1 + e gl ] [ 1 + e 

( 3·15) 

In the limit of zero temperature (t3 ~ ~) ; n
0 

becomes the energy of the 

lowest state of the system. From Eqs. (3.13) and (3.14) this is 

( 3.16) 

Here- EF is the lowest energy of a gas of noninteracting fermions. All sums 

over intermediate states are restricted to momenta greater than the Fermi momentum 

kF , whereas the initial momenta k1 • • • kr are all less than kF • As was 
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I 

noted by Bloch and deDominicis, 12 these restrictions are a direct consequence of 

the limiting values of the weight factors f (±) 
k 

for 13 ... co • Equation ( 3.16) 

19 is Goldstone's expression for the lowest energy of a system of interacting 

fermions. 

B. Bose-Einstein Systems 

We begin our discussion of Bose-Einstein statistics with Eq. (3.4), which 

is also correct in this case. Now the sums over occupation numbers must go over 

all positive integral values of the ~ , however. In addition, Eq. (3.3) must 

be replaced by 

g 

(3.17) 

We again first sum over the ~'s in Eq. (3.4) before doing the sums over 

intermediate state (s1s2 ••• ) • As before, the factors exp(a- 13~) fall into 

three classes according to whether k occurs later in a graph (as an initial or 

intermediate state) or not. For a k not appearing in a graph, the sum is 

= 6:: 
1 - e 

1 b ( +) 
- k 

If k occurs as an initial state, Eq. (3.17) gives 

where 

= 
1 

b (+) b (-) ' 
k k 

( 3.18) 

( 3-19) 

(3.20) 
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Finally, if k is an intermediate state, we have 

(a - ~~)~ ( ) 2 
~ e ( ~+ 1) = [ bk + ] • ( 3.21) 

We see then that each gi in Eq. (3.4) is replaced by a Ci , where 

This may be expressed as 

c.(k
1 

••• k ) 
~ r 

1 
21ti 

(3.22) 

( 3.23) 

Here, in direct analogy to Eq. (3.9), b is a symbolic operator which introduces 

the appropriate weighting factors into the above products. For example, 

The + sign is used for a virtual state and the - sign for an initial (or 

final state). 

Finally, we introduce, as in Eq. (3.11), 

% = ( 3.24) 

The partition function is given by Eq. (3.12), except that Eq. (3.23) is used for 

CG , and now 



/, 

= II 0 

k 

The entire development parallels that for Fermi-Dirac statistics. The only 

modification which has to be made is to replace the Fermi-Dirac weight factors 

/ f (±) 
k 

by.the b (±) 
k 

appropriate to Bose-Einstein statistics. 

A comment is required for the case of degenerate Bose-Einstein systems. 

Let us suppose, for example, that a finite fraction of all the particles is in 

the lowest state ~= 0. In this case we can treat n0 as a large number, as 

the creation and annihilation operators for this state commute. This permits 

us to use the Hugenholtz theorem to separate graphs even though many graphs 

iiwolve interactions with particles in the state "O". 

Care must also be exercised in carrying out statistical sums, such as 

in Eqs. (3.19) and (3.21). That is, many graphs may involve particles in the 

state "0·1' but only one sum is to be carried out over n0 • First let us set 

n0 + 1 -::::1 n0 Now in a· typical term of Eq. (3.4) let us suppose that n0 

occurs J.l. times when all graphs are considered. Now, instead of Eqs. (3.19) 

and (3.21) we have 

n J.l. 
0 

where n0 is the average number of particles in state"<?"· [Because n0 is 

assumed large, the average of the product is set equal to the product of the 

averages.] The quantity n
0

, by Eq. (3.19), is just b
0
(-). We are thus 

again led to Eqs. (3.23), (3.24), etc., so our conclusionsare valid for 

degenerate Bose-Einstein systems. 
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IV o NONDEGENERATE GAS 

The general method discussed in Section II can be applied to ordinary 

canonical ensembles as well as grand ensembles. Thus we now consider a 

nondegenerate gas and evaluate the partition function for a canonical ensemble. 

Let the number of particles in the system be N. The states of the system are 

specified by theN individual momenta, I p ) = i p
1 
... pN) 

partition function is 

Thus the 

z = 

where 

1 
N~ 

e 
-~(~ + lP + o•• ep ) 

1 2 N 
E ( 4.1) 

all graphs 

This expression follows directly from the fundamental result for the matrix 

elements of given in Eq. (2.20). 

As before, the sum over graphs consists of two parts. First, for each 

gi , the variables 

in the state f p ) 

(k
1 

k
2 

••. k ) are each summed over all momentum variables 
i i ri 

I p1 .•. pN ). Then a sum is made over all graphs that 

are topologically different. In taking the trace, one finally sums over all 

(p1 ••• pN) • The first sum merely duplicates terms that occur in the sum over 

(p1 ••• pN)' and may therefore be evaluated by simply counting the number of 

terms occurring. 
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In the approximation that the gas is nondegenerate, each ki may take 

any of the values (p1 ••• pN) • Hence the possibility is ignored of more than 

one particle's occupying the same state. The sum over all ki then gives a 

factor 

(4.2) 

where ri is the number of ingoing {or outgoing) lines in the graph gi • In 

addition to this factor, the sum over (k1 ••• k ) permutes the order of 
i ri 

topologically equivalent graphs. Thus, we must introduce {as was done before in 

Eq. (3.12)) the factor 

( 4.3) 

where NG is the number of graphs topologically equivalent to G in a typical 

term in Eq. (4.1). We recall that this factor arises because these permutations 

are already included in the use of Hugenholtz's theorem. 

For each pi that is not equal to a ki in one of the graphs, the sum 

over p in (4.1) gives a factor 

r 
-13~ 

e i (4.4) 

Next, we introduce 

' <4.5) 
'.' 

and the partition function in the absence of interactions, 



1 
N! 
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.. 

This leads to the following expression for the partition function, 

IT 
G N ! 

G 

or 

z = 

UCRL-8583 

( 4.6) 

Here the sum over G implies, as usual, a sum over graphs which are topologically 

different. This is the same kind of expansion as given above for the grand 

function, i.e., an exponential of a sum of linked clusters. 

For applications, we require the free energy, which is 

F -1 = ~13 .en Z 

or 

F 
=1 ~1 

= -13 .en zo - 13 

For convenient reference, we write 

N r 
( r ) 

1 

with 

~ ~G 

in full the expre.ssion for (}- G 

E;;k ) 

r ~i J dz e-l3z ?-

v 

( 4. 7) 
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r = 

and 

3/2 
(21t f3-l M) 

~ + • • • Ek 
1 r 

-23-

(4.9) 

We note the absence of weight factors in intermediate states (nondegenerate gas) 

and the Boltzmann factor for the initial states of a graph. 

As a simple application of this result, we evaluate the second virial 

20 
coefficient and obtain the result of Uhlenbeck and Beth. For the second virial 

coefficient, we need consider only those terms in which a single pair of particles 

interacts. Let these have momenta 1:1 and !2 . Then 

( k k I v + v --_.,.;;;,1----
1 2 z.+ ek + ~ - z 

1 2 

1 
23!1 

1 J dz crz -f3z e 

, ( 4.10) 

where only those terms in V are kept which describe the scattering of the two 

given partic~es. Introduce the variables 

! = ~1 + ~2 , 

K=k -~n 
- -1 '"'<:; 

to replace ,l1 and ~. Since ! is a constant of the motion, the energy 

denominators in Eq. (4.10) become 

( 4.11) 



UCRL-8583 

·-24-

where T = 0 ~t}/M and T is the kinetic energy operator for the relative motion 

of the two particles. 

The quantity 

R(z) :::. V+V l V+V l V l V + 
z + T0 - T z + T0 - T z + T0 - T ' 

(4.12) 

which appears in Eq. (4.10), is the two-body level shift operator. On introducing 

a representation (K: , £, m), where £ is the angular momentum of the two particles 

and m is its component along the axis of quantization, one can perform the 
21 

integration over z in a straightforward way: 

1 
2rci 

(4.13) 

Here 5£(K:) is the scattering phase shift for the ~th partial wave. If the 

two-particle system has bound states, some additional terms are required in 

Eq. (4.13). 

When Eq. (4.13) is substituted into Eq. (4.10), the result is 

(4.14) 

We can now evaluate the free energy, using Eq. (4.7), and thus the equation of 

state, from the familiar relation 

(p = o( tn Z) l 
a rv-- 13 
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n -1 
Here OV is the pressure and, of course, ~ = kT . The immediate result is the 

first two terms in the virial expansion. 

V. EXPECTATION VALUE OF AN OPERATOR 

In this section we consider the ensemble average of operators of the form 

0= a .•• a 
ql q"V 

(5.1) 

-This expectation value of CJ is denoted by C' . For the grand ensemble we have 

(5.2) 

For the canonical ensemble,. this expression is replaced by 

Z 0 = Tr [ 0 e -~H ] (5. 3) 

We give two different techniques for evaluating 0 . The first is 

formally very simple, but leads to somewhat more cumbersome expressions to 

evaluate than does the second method. In Appendix A the equivalence Of the two 

methods is demonstrated. 

It is convenient to think of CJ as a generalized scattering operator ~ith 

,V incoming and IV outgoing lines, as is illustrated in Fig. (3). Connected 

graphs may then be constructed, as in Fig. ( 4) by connecting 0 to graphs involving 

the matrix elements of V. 

In evaluating 0 , we first suppose that the diagonal matrix elements 

of C? either vanish or give a negligible contribution to C) . At the close 

of this section, the contribution of the diagonal elements is treated separately. 
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The reason why the diagonal elements require special consideration is clarified 

in Appendix B by a simple example whose solution can be found by other (elementary) 

means. 

We define the function, for real A , 

( 5.4) 

For A. = 0, this simply reduces to the grand partition function, i.e., Y( 0) = o
Furthermore, the first derivative of this function yields the average value of 

0 defined in Eq. ( 5 .2): 

_A-1 dY 
1-" ax I = Tr [ e aN 0 e -13H ] 

A=O 
(5-5) 

If Y can be determined as a function of A , the problem of finding the average 

value of an operator is reduced to once differentiating Y(A). The evaluation 

of Y(A) is achieved by simply taking over the development of Section III, 

except that V is replaced by 

V' = V + A 0 (5.6a) 

and thus 

H + A. 0 = K + V' (5.6b) 

Of course the connected graphs involve both the generalized 0 interactions 

and the pair interactions V. 

To be specific, the contribution of a particular type of graph ~(A), 

defined by Eq. (3.14), must now be considered a function of A. Of course 

these quantities reduce to the previous functions for A = 0: 

(5.7) 
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Again, in analogy to Eq. (3.12), we obtain an exponential form for Y(A), 

Y(A) = }o exp [ ~ % (A) ] 

Therefore, 

dY(A) I 
dA A=O 

and the average value of Q is 

() 
-l = -13 I: 

G 
(5.9) 

-To o.btain 0 for the canonical ensemble, we may carry out a similar 

analysis and consider 

X(A) = Tr [ e·13(H + A() ) 

Now X( 0 ) = Z and 

In analogy to Eq. (4.6), 

X(A) = z0 exp [ ~ o--G (A) ] , · 

where ~G is the quantity defined by Eq. (4.5), but with V replaced by 

V' . Differentiating, one obtains 

dX(A) I = z I: 
dA A=O G 

Tbe average of O is thus 

(5.10) 

(5.11) 

(5.12) 



0 = -13-l I: 
G 

(5.13) 

Before discussing the contribution of the diagonal elements we present 

an alternative procedure for evaluating O . We first recall the basic 

-13H ( ) expansion in graphs for a matrix element of e , which is given in Eq. 2.20 • 

In evaluating the average value of an operator, we are concerned with matrix 

elements of the form ( p I t7 e-13H I p ) • The direct generalization of Eq. (2.20) 

is then simply 

( P I C) e-13H I P ) = ( P I e -13H I P ) I: (5.14) 
all graphs 

The "sum over all graphs" has the following meaning in this situation. We refer 

to the sum in Eq. (5.1), which goes over all states (q
1

' ... q...,' q1 ... q..;) of the 

+ + 0 operators aq
1

, •.. aq,J' aq
1 
.•. a~ in • In performing this sum we obtain 

all possibilities of connecting ~ to the original graphs. The graphs g which 

are connected to L? in this way may now be separated from the remaining factors 

in Eq. (5.14) with the result 

( P I tJ e -I3H I P ) = ( P I e-13K I P ) X I: [ gl •• ·~ ] ' 
all graphs 

(5.15) 

where 

(5.16) 

In Eq. (5.16) each of the graphs g1 .. . ~1 is linked directly to CJ • The sum 

includes all connected graphs involving matrix elements of 6 . Since CJ has 

-f incoming lines, we nrust always have L' ~-1 
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In performing the sums over graphs, we sum independently over the graphs 

of X and over the graphs of the last factor 

Eq. (5.15). Therefore, 

(5~17) 

where 

Tr [ ~ [ ~ cl ... cL,]G J all graphs 
(5.18) 

The C' s were defined in Eq. ( 3. 8) ahd f 0 contains the weight factors f(-) 

appropriate to the ·outgoing lines of CJ • Thus, as in Eq. (3.9), the matrix 

elements of j9() are 

<-> r <-> c , , I 0 I > = f ' • • . . t ql ••• q ql ••• Q..., • 
ql ~ 4 

For Bose-Einstein statistics the operator f in Eq. (5.18) is replaced by b , 

defined in Eq. ( 3.23). 

An alternative way of writing Eq. (5.18), val~d for either Fermi-Dirac 

or Bose-Einstein statistics, is 

-0 - 1 aN- f3K =X=Tr[-e · 

(1o 
( 5.19) 

This expression makes use of the notation of Bloch and deDominicis. 

We have previously indicated that the diagonal parts of (} have to be 

treated in a special way. This may be illustrated with the particular example 

CJ = r ·< q' I 0 I q) 
q q 

+ a . 
q' . a ' q 

i.e., with an operator which has just one 

ingoing and one outgoing line. The leading term in X is clearly 
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This does not conform, however, to the general result of Eq. (5.14). The correct 

result is obtained by omitting from the sum over q in Eq. (5.20) those terms 

occurring in intermediate or initial states in the [ g1 ••• gL] • 

The same conclusion may be reached more simply in the following way. 

Let us separate from L' a typical diagonal term, i.e., one for which some ingoing 

line equals some outgoing line (q = ~~ = qA). Then Eq. (5.1) may be rewritten 

as 

od = I: 0 ( q) n ' q q 
(5.21) 

where we have simply contracted the two operators referring to the same state 

= a + a = n ) 
. q q q and incorporated ~11 other factors into 0(q). 

Now, 

d { a:N + An .. 13H J 
= ~ dA Tr[ e q 0 ( q) e ] IA.=O , (5.22) 

which leads us. to define the following function of q and >.. , 

a:N + >..n -13H 
A(q, >..) = Tr[ e q l?(q) e ] 

This quantity may be evaluated by either Eq. (5.9) or Eq. (5.18). 22 The new 

feature implied by Eq. (5.23) is that, in the evaluation of the diagrams of 

A(q, >..), a is replaced by (a+>..) in the weight factors f (±). Carrying 
q 

out the differentiation in Eq. (5.22), one obtains the following formula for 

the average 

I: 
q 

(5.24) 
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Tb illustrate this result, we consider the very simple example, 

E n 
q q 

so that the familar result is obtained by this procedure, 

- d~ 
N = ~ • 

For a nondegenerate gas, we use the canonical ensemble (Section IV) and, 

by analogy with Eq. (5.18), write 

-0 = x = 

( 5·25) 

In conclusion we note that the final formulae for the two procedures 

described in this section, Eqs. (5.9) and (5.18), are ·quite different. It is 

shown in Appendix A that these actual~ give the same result~ In Appendix B 

we discuss in more detail the source of the complications that occur when 

0 has diagonal elements. 
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VI. PAIR-CORRELATION FUNCTION FOR A SYSTEM OF INTERACTING FERMIONS 

We now illustrate the above discussion of expectation values with the 

example of the pair-correlation function. We consider a system of interacting 

fermions and, in doing so, go beyond the familiar results for noninteracting 

particles. 23 On the other hand, we treat the interactions only in terms of the 

simple scattering graph shown in Fig. 1, and give a definite numerical result 

for the nondegenerate case. The reason for these restrictions is that we are 

now primarily concerned with illustrating the formal procedures discussed in 

this paper. This particular example has been studied with other methods by 

24 25 Blatt and Karplus and Watson. 

where 

We define the pair-~orrelation operator as 

1 

N2 
E 

pp' 
qqV 

e 
i [(p- p 1 )·r + (q- q')·r - _.......... -v--1 ~ ~ ~2 

is the avera~ of the square of the number of particles. 

a a 
q p 

(6.1) 

As discussed 

in detail in the previous section, the diagonal part of <:) will have to be 

discussed apart from the nondiagonal part. The diagonal part of ~ is 

where 

1 

N2 
E 

pq 
b(q, p)n n 

q p 

[ 1 i(p- q)·r ] b( q, p) = - e - - ____,. 

(6.2) 

(6.3) 

and r = z 1 - ~ • We note b(q, q) = 0, so that the sum in Eq. (6.2) involves 

only the terms for which p rs q. 

In treating the diagonal operator ()d we recall the discussion of 

the preceding section, particularly Eqs. (5.22) and (5.23). In this case we 
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have a sum of products of two-number operators and the expressions are only 

slightly more complicated than in Section V. In this case we introduce the 

function 

and evaluate the average value of ()d with the formula 

I: 
pq 

b(p, q) 

(6.4) 

(6.5) 

The evaluation of A(p, q; ~ , ~ ) follows directly the development in Section III 
p q 

for the grand partition function (Eq. (3.12)). The only essential change is the 

replacement in the statistical factors fk(±) , (Eq. (3.7)) of a by 

(a + ~ ek + ~q ekq): p p 

fk (-) (p, q; ~p' ~ ) = q 

fk ( +) (p, q; ~p' ~ ) = q 

Thus the function 

[ 1 + 
ef3 ~-(a+ ~P ekp + ~q ekq) ]-1 

' 

1- fk(-)(p, q; ~p' ~ ) q 

~ , ~. ), which occurs in Eq. (6.4), is 
p q 

fk(-)(p, q; Ap' Aq) rl 

(6.6) 

In a similar way the contribution QG(p, q; ~p' ~q) of a graph of type G is 

evaluated from Eqs. (3.10) and (3.8) by using the new statistical factors of 

Eq. (6.6). Finally we note that the differentiations in Eq. (6.5) lead to an 

average value for ()d which consists of five terms, 
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Od 1: b(p,q) bo-l {a~o2l +(~) 0 
~ p,q p q q 

1: Q,G 
G 
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(d_j) 0 + r.. ·~ 

J 

q . p 

1\ =0,1\ =0 
p q 

l: 
p 

(6.8) 

In this expression the dependence on (p, q, r.. , r.. ) has been suppressed inside 
p q 

the square brackets. 

In evaluating the function'? A(p, q; X , r.. ) as the exponential of a 
p q ' 

sum of topologically different graphs, we now make the main assumption of this 

section, which is to consider only the simple scattering diagram of Fig. 1. Its 

contribution Q,1 was evaluated in Eq. (3.15), and now becomes 

To complete the evaluation of ()d we need only_perform the differentiations 

indicated by Eq. (6.8) on 216 and Q,1, which are given in Eq. (6.7) and· 

Eq. (6.9), respectively. Without going into further detail, the final result 

is 

~d 
1 [ ~ (-) -i9:;r 

f3 I: 
~i~1·!.. 

= 1-- f e ....... _ e 
N2 q 

klk2 

X < k1 k2 1 v 1 k1 k2 > fk 
(-) 

fk 
( +) 

fk 
(-) r 1 1 2 

(6.10) 

Q,G} 



"' 
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The statistical factors in this equation are the original ones given in Eq. (3.7), 

since now ~· = ~ 7 0. The contribution of the fifth term in Eq. (6.8), i.e., p q 

the term containing ( o2t o~ o~ ) I: QG , has been dropped since it is smaller 
p q G 

than the others by a factor of IjV . In the derivation of this result it has 

also been shown 

f (-) - t3 
q 

( k k I I k k ) f (-) f (+) f (-) 
1 ~ v 1"' k k k 

c;; c;; 1 1 2 

In the limit of ?/-+ m one also verifies N2- = if . Finally, for complete 

degeneracy, Eq. (6.10) reduces to the familiar formula 

[ -iq.r r I: e ,__., . 

- ~ < Pr od = 1 -

[q~ ~ 1 r 
We next evaluate the contribution from th~ nondiagonal part of the 

pair-correlation operator. We shall use the second method of calculating 

( 6.11) ' 

(6.12) 

average values describ,ed in,. the preceding section and summarized by Eq. (5.18). 

The only nonvanishing graph involving a single scattering is illustrated in 

Fig. 4. In accordance with the discussion in Section III the contribution of 

this diagram is obtained from 

-t3z e - z 
. 

z • 

. ( 6.13) 
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where G
1 

is the graph in Fig. 4. When Eq. (2.4) is substituted for V and 

Eq. ( 6.1) for. Q and the contour integration is carried out, this becomes 

E b ( k
1 

k
2

, m£) ( .em I v I k 1~ ) f ( -) f ( .. ) f ( +) f ( +) 
.e m 1 2 k 1 k 2 m £ 

[.-~(·~ + € .. € - ~) J m kl 2 

X 
€£ + € - € - €k m kl 2 

(6.14) 

Here b is simply the coefficient of the operators appearing in the definition 

of Q in Eq. {6.1), 

b(k' q; k q) = 
i[(k- k')·r + (q .. q')·r ] .... .... ~1 - ......._.., 2 

e ( 6.15) 

The last factor in Eq. (6.14) comes from the contour integration. The complete 

nondiagonal contribution is then obtained by summary over k1 and k2 

b(k1 k2 , m.e){.em I v I k1 k2 ) 

€ .e + €m - ~1 - ~2 

f (-) f (-) f (+) f (+) 
k1 k2 £ m 

We note that when these last summations are introduced, the two terms of 

Eq. (6.14) give equal contributions. This may be shown with the help of the 

relation 

and by relabeling the sums in Eq. (6.16). Finally, this expression may be 

simplified by using Eq. (2.5) for {.em I v I k1 k2) and Eq. (6.15) for 

b(k1 k2, m.e), and by replacing sums by integrals in the usual way, 
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X 
( _) ( _) ( +) ( +) -i(~ - l_) ·.E_ w(~1 -!:) - w(~ - 1!!2 

fk fk f n f e. _...;+;._ ___ ....;;~-

1 2 XI m e .t e:m - ~1 - ~2 

(6.16) 

Here w represents the Fourier transform of the potential v , 

(6.17) 

The complete expression for the pair-correlation function is the sum of 

the diagonal and nondiagonal contributions, i.e., the sum of Eq. (6.10) and 

Eq. (6.16). We shall now obtain a quantitative estimate of the pair-correlation 

function by making the further approximation of nondegeneracy. Thus the 

statistical factors are now 

f (+) ,-.J 1 . 
k.'-

In addition we shall ignore the exchange part of the potential. 

The diagonal contribution, Eq. (6.10), new assumes the form 

.;-
= 1--

~ 

'[ ' . 2 2 2 I d3 · . -iq·r + a - r q 3 q e ...... ,..., 
(23t) 

.. f3w(O) 
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( 6.19) 

The length r is defined as 

The square bracl\:ets in E1.. ( 6. 18) is the same as that in Eq. ( 6.19) except 

for the dependertce on r. But this dependence may be removed by completing ,..,...,. . . 2y 2 · · -r 4 the square in the exponentials in Eq. (6ol8), and leads to a factor e r 

for each bracket. There Eq. (6.18) .is simply 
I 

(6.20) 

The second term is a quantum-mechanical correction arising from the repulsive 

effect of the exclusion principle. It is important only for particle 

separations of the order of the deBroglie wave length, i.e., for rAJ y. 

Returning to the nondiagonal contribution in Eq. (6.16), two integrations 

can be done immediately with the aid of the transformation 

lsl = K + k , J!e=K-k, 1-=K'•k' and m = K' + k' . The result is 
~- . _.., ......., --- ,.,.._ ....._ . ' __, _..... 

v2 ~ 23 Q 3 - .20: {+'+) Qd = -- (-) e 
(21f)9 

I (6.21) 
N2 r2 

f d3s v(s) J d3k 
-2r~2 - ik•x 

J d3k' 
ik' ·x ........ -.; e- ...... 

(6.22) I = .e 
k'2 - k2 
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We have used Eq. (6.17) for the Fourier transform of the potential and put 

x = r - s. The integration over k' is 
~ -~ --

CIO ik'x 
1 (21C)2 ikx •ikx 21Ci I dk' k' e 1 ( ) --

- k2 
= e + e 

X 0 k' 2 X 

where the contour corresponding to the principal value has been chosen. The 

integration over k can also be carried out and the final result for I is --
I = (6.23) 

If we are interested in correlations for separations considerably larger than r, 

we may regard v as constant in doing the integration and obtain a closed form 

for the integral: 

I = :c (/+ ~ ) (2>!)
3 

v(r) (6.24) 

The complete calculation of the nondiagonal contribution also requires 

evaluation of the chemical potential a from the total number of particles. 

Neglect of the first-order effect of the potential in Eq. (6.19) leads to 

-a v 
e = -=-

N 

2 ( 
.E_3 

T ) (6.25) 

Collecting all these results, one finds ~he nondiagonal contribution to the 

pair-correlation function to be simply v( r y'kT. Adding this to the diagonal 

part for r > > r , one has for the pair-correlation fUnction 

0 = 1- v{r;hr (6.26) 

This is just the classical result and it serves to verify the techniques 

introduced in the preceding section. In addition it should be noted that the 
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result of Karplus and Watson25 for the nondegenerate case may also be shown to 

lead to this result. 

In conclusion we should like· to point out that the entire discussion of 

this paper refers to general annihilation and creation operators satisfying the 

commutation relations for Fermi and Bose statistics, and not just to those 

referring to free-particle states. They may, for example, refer to collective 

variables such as those introduced by Bogolubov26 and Sawada. 27 This problem 

will be studied in detail in a separate publication. 
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APPENDIX A 

We demonstrate here (for Fermi-Dirac statistics) the equivalence of the 

two methods given in Section V for evaluating 25 . An analogous demonstration 

can be given for the Bose-Einstein case. The contribution of a typical graph to 

Eq. (5.18) may be written 

where 

and 

f . 
J 

+ tu ) ' ,J 

Q = <o I o I 1)(1 I v I 2)(2 I v I 3) ••• (J J v I o) . 

The label zero refers to the initial state, and the intermediate states are 

enumerated with the integers from 1 to J • In the carrying out of the 

(A.l) 

(A.2) 

(A.3) 

comparison, sums are not made over the intermediate or initial states, in this 

expression. ·The factors f 0 , f 1 ••• fJ represent the appropriate statistical 

factors 

The analogous term in Eq. (5.9) is 

1 
[
( fz~ ) ( f 1 ) ••• ( fJ )] • 

z + to,l z + to,J 
(A.4) =-21ti 

In addition to this, there are J other terms obtained by cyclic permutation 

of the factors in Q . A typical permutation of Eq. (A.4) is 



(.t) 1 I -~z 
-~T = ~i dz e 

(.t) 

. (.t)' 
f J-.t+l 

2 z 
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(J - .t + 1 I v I J - .t + 2) 

fJ-.t+2 I 
>< (J ~ .t + 2 vI J- .t + 3) .•• z+l:::. J"-.t+l, J+£+2 

( .t) 
fJ 

z + 6 (J I v I o) 
. J"+.t+l, J 

( .t) 
f X. _ _.,...;0;_· --

z + 6J+£+1, 0 
<o I o I 1)(1 I v I 2) ••• (J- .t I v I J- .t + 1) 

(A.5) 

Now, the matrix elements of V and 0 in this expression may be combined and 

set equal to Q , defined by Eq. (A.3), so that one has 

1 I -~z -2 . dz e 
1U 

If the new variable, 

z' = z + 

• . • f(£) ---:---1 --
z + l:::.J-£+1, J-£ 

is introduced, the energy denominators in Eq. (A.6) may be rewritten as 

1 1 1 1 
z' z' + t:::.o, 1 z' + tu, 2 ~· + tu, J+£+1 

1 1 1 
X z' + tu, z' +~ 

... z' + ~, J+£+1 J+.t J 
' 

(A.6) 

(A.7) 

(A.8) 



At the same time, the following equation holds: 

Because we have 

(+) (a - t3e. ) 
f - K 
k e 

= f (±) 
k 

UCRL-8583 
' 

(A.9) 

the second factor in Eq. (A.9) may be used to convert the f£'s in Eq. (A.6) into 

the f 0 ••• f J of Eq. (A. 4) • 

Finally, the complete te~ associated with the second method is 

1 1 

z + .tu, 1 z + .tu, J 

1 

+ ... 

1 1 
+ -

z z + 6o, 1 -{ Z_+_L\)_1 -, J-) 2::-- } • 

This may be rewritten as 

z + tu, 1 
... 0 ~l~J}' z + .tu, 

(A.lO) 
{

-.!. 1: dz z 
1 

which, after partial integration, is simply T. We have thus shown that the terms 

of Eq. (5.9) combine in groups to give the terms of Eq. (5.18). 
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APPENDIX B 

We attempt to clarify here the complications which arose in Section V in 

handling diagonal terms in the operator L' . For purposes of illustration, we 

consider the evaluation of the grand partition function for the Hamiltonian 

H = K + V 

(B.l) 

Her~ each bk is a real number representing the "potential energy" of a particle 

with momentum k. This example is chosen because the grand partition function 

may be evaluated directly to give 

(B.2) 

We now evaluate tr- by the methods of Section III, using Eq. (2.20), 

which now takes the specific form 

-f3H -f3K I: II g(k, .tk) e = e 
£1,£2''' k 

(B. 3) 

Here, for .ek 1, 2, 3, ••• ,we have 

1 -f3z b~ g(k, .tk) J dz 
e = 21ti lk+l ~' k 

z 

(B.4) 

and for .ek 0 ' 

g(k, 0) = 1 (B.5) 

Equation (B.3) is easily verified directly, since we have 
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Now, following the notation of Section III, one obtains 

d-= Tr [ eaN e -~H ] = )o I: n C(£, £k) 
£1,£2, ••• k 

(B.7) 

where (for £ = k 1, 2, 3, ... ) 
-~z £ 

C(k, £k) 
1 f dz e b k f (-) = :ek+l 21ti k k (B.8) 

z 

For £k = 0 , 

(B.9) 

Then sum over these factors is easily carried out, 

~ (-) -~ bk 
I: C(k, £) = 1 + fk [ e 1 ] _ 1 + h , 

£=0 K 
(B.lO) 

where ~ is simply the second term of the result. Equation (B.7) is clearly 

equivalent to Eq. (B.2), since 

ex-~ ~ 
[l+e ][l+J:x] = 1 + ; 

the first factor on the left comes from the~ in ~q. (B.7). 

To see the relation of this development to the exponential formula of 

Section III, we consider 

1 + I: 
k'< k"< k'" 

(B.ll) 
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Now, if terms such as ~2 
are negligible, we may write this as 

TI [1+~] 
k 

= 1 + 

= exp ( I: ~ ) 
. k . 

1 
2~ 

2 
( ~ ~) + ••• 
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(B.l2) 

This shows the relation to the graphical analysis of Section III, since each ~ 

is a sum of connected graphs. The factorials here arise just as they did in the 

sums of Section III. 

The error in Eq. (B.l2) may be seen by examining 

(B.l3) 

For 

the expression (B.l2) is valid. This condition is satisfied when the bk are 

very small. The corresponding case in Sections III and V obtains when the matrix 

elements of V and () are individually very sma.ll (for example, of order 

,., r-l ) ' . · v a finite result being obtained only on performing a sum. 
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FIGURE CAPTIONS 

Fig. 1: Contour of integration C for Eq. (2.8). 

)
-1 Fig. 2: Typical low-order graphs in the expansion of (E - H : 

UCRL-8583 

(a) simple 

scattering graph; (b) repeated scattering of two particles, (c) example 

."of a disconnected graph. 

·Fig. 3: Generalized scattering operator with J ingoing and .) . outgoing 

lines. 

Fig. 4: Simple scattering graph linked to the pair-correlation operator 0 . 
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Fig. 2 
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