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ABSTRACT

A'general method of calculation is described for quantum statistical
mechanics. It is based on a simplification of the Laplace transform of the
density matrix which follows from a theorem due to Hugenholtz. The basic result
is that an element of the density matrix can be written as a sum over graphs,
with the contribution of each graph factored into contributions from connected
or linked graphs. Applied to the grand partition function, the exponential
formula of Bloch and deDominicis is obtained in a simple way. A similar formula

is then derived for the canonical ensemble and the case of a nondegenerate gas.

In this way the familiar result of Uhlenbeck and Beth is obtained for the second |

virial coefficient. Techniques are also introduced for evaluating ensemble
averages of operators. In this connection, some care must be exercised in the
case of diagonal operators. Finally, these methods are used to calculate the

pair-correlation function for a system of fermions interacting through short-

range forces.

Work done under the auspices of the U.S. Atomic Energy Commission.
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I. INTRODUCTION

 This paper describes a general method of calculation for the quantum
statistical mechanics of a system of interacting particles. It is based on a
theorem due to Hugenholtz,l vhich allows simplification 6f the laplace transform
of the density matrix.2 From this we derive a cluster expansion for the density
matrix, and give several applications of the result.

Brueckner has called attention to the fact that perturbation methods

for many-body systems involve formal complications not present in the conventional

5 The source of these difficulties is the possibility--for

perturbation methods.
extended systems--that many particles interact simultaneously. Thus a straight-
forward expansion in powers of the interaction energy and the retention of only .
low poweré is not expected to yleld a good description of a many-particle system.
On the other hand, different groups of the simultaneously interacting particles
act indepeﬁdently in the sense that particles in one group do not interact with
those of another. Thus the wave function may be factored.into terms referring
to independent clusters of interacting particles. Brueckner introducea the term
"1linked élusters“ to describe such factors.

The same difficulty also arises in statistical mechanics when expansions
in powers of the interaction energy are attempted. For classical statisticalv
mechanics, a systematic éxpansion applicable to gaseé has been présented by Ursell

and Mayer,h'6 Recently a number of new methods have been proposed for studying

the equation of state of quantum-mechanical systems. Some of these procedures
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are adaptations of techniques that have proved useful in quantum field theory and
nuclear physics. For example, there is the recent work of Lee and YanéTWhich uses
a generalized pseudopotential for hard-sphere gasés° Matsubara has given an
extensive field-theoretic exposition of the grand partition functions’9 which
makes use of time-dependent perturbation theory and Wick’s tﬁeorem.lo Bloch and
deDominicis have extended this work in several recent papers‘lléeIn particular,
they have solved the difficulty mentioned above and given a linked-cluster
expansion for the Gibbs potential. Similar results have been reported by

van Hove.,13 Montroll and Warduaave also obtained expansions in terms of graphs
for use in quantum statistical mechanics.

The methods presented in this paper are related to some of the above work,
particularly that of Bloch and deDominic‘islo12 " In addition to giving a novel and
simple development, we have also extended the general results and presented some
new applications. . '

In Section IT the theorem of Hugenhéltz‘is reviewed and then used to
give the expansion of the density matrix. In Section III this result is used to
evaluate the grand partition function, leading to a result similar to that of Bloch
and deDominicis.12 The evaluation of theqpartition function for the canonical
ensemble is then considered in Section IV. Techniques for obtaining the ensemble
average of an operator aﬁ;considered in Section V. In the last section this
result is applied to the,caiculation of the pair correlation function for a system of

fermions.
interacting'A It is hoped in a subsequent paper to apply similar methods to

the study of nonequilibrium phenomena. )

II. EXPANSION OF THE DENSITY MATRIX INTO CLUSTERS
We consider a system of N similar particles, each of mass M, in interaction

within a large volume ’l,ﬁ . The Hemiltonian describing their motion is
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H = K + VvV . (2.1)

In this expression K is the kinetic energy:

K = i € agr a & - KoM . (2.2)

The quantities + and are, respectively, creation and annihilation
S By By

operators satisfying the usual commutation relations

.
Loy g’ 1 = B,k

. (2.3)
[ak’ak']i':[ak*’ak"t ]i=0-

The + sign refers to Fermi-Difac statistics, while the - sign %Ffers to Bose-
Einstein statistics. The quantity kk represents the moméntum of a single free
particle ¢h = 1); when used as the label of a state or an operator, the label k
represents the momentum of a single free particle (#f = 1) and its spin (if any).

The interaction energy V is

- 1 ; ] 1 + +
vV o= f z L (k.*'k.'" | v | k, k) &y a T & & , (2.4)
kK Kk 12 127 'k 2 2 B )
where
(k' kpt | v [y Ky) = (Xkl' (x)) ! (x5)5 . vz = %)) Xkl(xl) sz(xa))
gF(xkl,<xl) KOs v (g = ) % () %, () (2.5)

The quaﬁtity v (r) is the potential energy of two particles separated by a

distance r ; it may also include spin interactions. The wave functions X are
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x(x) = \J S (2.6)

vhere S is a spin function if the particles have spin. Finally, the - or +
sign refers to Fermi-Dirac or Bose~Einstein statistics, respectively.

We shallloften use a momentum representation for the entire system. Thus.
the ket I P ) specifies the momenta of the N particles; of course it also is

an eigenstate of the kinetic energy operator:

K|lp) =E |p) . (2.7)

p

Here Ep is the eigenvalue of the kinetic energy for the state | P )

The equilibrium properties of the N particle system are completely

BH

described in terms of the operator e’, , Where B—l is the temperature times

the Boltzmann constant. It is useful to introduce the Laplace transform of this

operatof,e

ePH _-2-}{ éadE e PE w(E) , ‘ (2.8)
where

w(E) = EfH . (2.9)

Here E 1is a complex number, and the contour of integration C is illustrated
in Fig. 1. First one integrates parallel to and above the real axis from +w
to a point to the left of the loweét eigenvalue of H. At this point the céntour
crosses the real axis and returns to +« below the real axis.

We now consider the expansion of the operator W(E) in powers of V.

A typical term in the expansion has matrix elements .

' 1 1 1 1
' A ————
(2 =%V V5=x - Ve=xlP) - (2.10)
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For the terms in this expansion we use the graﬁhical representation of Hugenholtz.l

A typical matrix element of V may be represented by two directed lines, crossing

at a point, as in Fig. 2a. Definite states are associated with the two lines,

both before and after the scattering. We shall refer to this as a simple "scattering"
graph. A typical term in an expansion such as Eq. (2.10) is then represented by

a combination of the single-scattering graphs of Fig. 2a. For example, we represent

the term
1 " " : [] ' 1 t [ ’ A ‘l

E - €k n - ek " (kl k2 I M I kl k2 ) E - €k P - Ek ' (kl k2 l v I klke)E-ﬁ(l-Qk
1 2 1 2 ‘ 2

(2.11)

by the graph of Fig. 2b. A grapp)every‘part of which is connected to every other

part by lineg)is said to be a "connected" graph. The graphs of expansions, such

as (2.10) need not be connected. This is illustrated in Fig. 2c. Graphs that are

not connected are called "disconnected."

If a graph contains "disconnected parts," a theorem due to Hugenholtzl
permits us to "factor" this graph into parts each containing only "connected
graphs.” This procedure is the cornerstone of our method.

The validity of this factorization may be understood as follows. ' lLet a
typical term (2.10) contain a particular connected grabh G2 and any number of other

graphs (in general disconnected) which we shall call G The contribution of all

l.
these graphs to W , summed over all permutations of the order in which the

interactions of Gl and 62 occur, is indicated by

l .
W, . (E) = (p'| | p) .
G,G, E-K-V, -V, 6,6,

(2.12)

Here the subscript (Gl’ GQ) means that we pick out of the expansion of
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(E = K = Vl - Vz)- only those terms which give the required graphs. For the
graph Gl alone, or G2 alone, we have the corresponding expressions,
1
W, (B) = (' | | p)
Gl 1 E-K- Vl -G1
(2.13)
W (8) = (n, | g—=— IP)g -
. 2 2 2

Here | pl') and I pe') represent the states obtained from | p )} by the
transitions of graphs Gl and G2, respectively. Likewise the interaction terms

Vl and V2 represent the particular terms in V' that are required for the

transitionsin G, and GE’ respectively.

1

The graphs in this discussion, i.e., those in Eqso‘(2.12) and (2,15),
involve a specific set of intermediate states,15 The sum over these virtual
states will be carried out at a later stage of the calculatioﬁ° Now for a large
interaction volume V , the interactions associated with the two parts of the
graph, i.e., Vl and V2 , may be considered to refer to different states. It
is true, of course, that the sum over intermediate states occasionally gives
terms in which the same states are involved. However, these cases are less
important by a factor ’ijl , assumed to be very small.

Thus we are justified in treating the interactioﬁs Vl and V2 as
referring to different states. We can next introduce a kinetic energy operator
K2 which refers only to the states occurring in the comnnected graph G2, and

also define the operator Kl = K - K2. Because the two graphs commute, a

direct application of Cauchy's theorem gives

1 1 1 1
= - [ at . (2.14)
E-C-K, -V, [-K -1, |



UCRL-8583
8- '

The contour of integration is similar to that of Fig. 1, except that it is
sufficiently close to the real axis that no singularities of (E - { - Kl - Vl)'l
are enclosed within the { contour. More specifically, we may choose a

representation in which (Kl + Vl) and (K2 + V2) are both diagonal with

eigenvalues & gnd &, . Then (2.14) obviously holds in the form:
) .

1

1 1 1
a8 S (Y Ete Ty

By formingvthe matrix elements of Eq. (2.14) appropriate to the graphs

' 16
Gl and G2 we obtain immediately

1 1 1 ‘
W, o () = == [ a (p,'| |2 X2, | lp) .
N - A UL N A A e TR T,
(2.15)
We simplify this relation by introducing the notation
K le) =2 |2, K le) =2 |2),
1 2
K = E +E = E °
| p ) (B, +E ) [p) o 12
1 2
We also define € = z + Ep , and now Eq. (2.15) becomes
2
1 1 1 ' ’
W, o (B) = 5= [dz(p,' | lp X b, | =— ).
G,C, eni 1 E-2-K-V, 2 z (K + V2'-E£)
(2.16)

v 1
Equation (2.16) is just the statement of the Hugenholtz theorem. We have

developed it in a manner suggested by Hugenholtzl and also by Riesenfeld and

17

Watson. A special case of Eq. (2.16) obtains when there is no graph G, and

Vl consequently vanishes.
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We now use Hugenholtz's theorem (2.16) to reduce ‘e~ to a sum of terms,

each containing factors involving only connected graphs. First, let us suppose
a typical graph in the expression (2.10) contains L connected graphs, Gy G2,.,.GL.'y .

By induction, from Eq. (2.16), we obtain for their contribution to W(E),

1 1
GG, 7 T end 1 2 L E - (z, + Zy + e zr) - K
1 1
(p," | lp), (2, | 1)
1 zZ, = (K + Vl - Ep) Gy 2 Z, - (K f V2 - EP) G2
l .
vee {0 | lp), .
L zr. . (K + VL - Ep) _GL

We next carry out the sum over virtual states in each graph on both sides of this

equation and also sum over all graphs to obtain

1 : . 1
W(E) = .z R~ f dz f 4z, c.o f dz (p'. I lp)
all graphs (2ﬁi)L+l 1 2 L E -(zl+z2 +'°'ZL)' K
>< { wl(zl) W2(22) oo WL(ZL) ] i (2"17)
where
w(z) = (p," | L Iy, - . (2.18)
it"i i z = (K+V - Ep) Gi -,

In wi(zi) we include only terms of [z = (K +V - Ep)]-l contributing to G,,
but sum over all virtual states. In Eq. (2.17) the sum over all graphs includes
a sum over all topologically different graphs. It also includes a sum for each

graph, over the available particle states in the states | p) and ( p' | .
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To obtain e P it is necessary only to substitute Eq. (2.17) into
Eq. (2.8):
1

all graphs (21:1)1"+l 1 L

[}

(o' | ePE|p)

-BE :
. e , ,
x (» | F-(z. 2.+ ... 2 ) - K ) wy(z)) wylzy) wee vy (zy)
1 2 L .
Then
(p' |e p) = I (plzgy J @& : ~ P
all graphs 2ni E - (zl + 2y + e zL) K
. -Bz. - -Bz
1 1 1 L
X 5T f dz, e wl(zl) e 3T / dz, e wi(zL) .
Now define the quantities
-Bz
= X i .
& = I / dz, e wi(zi) , _ . (2.19)

where 1 refers to a graph of the ith type, defined by its topological structure.

With these definitions, the above expression reduces to
‘ -BH ~-BK
(o 1™ p) = (1™ 2 g geeg ). (2
all graphs

This equation represents the fundamental result of this investigation. It achieves -

the stated goal of reducing the interaction of many particles to a sum of products,

each factor describing the interaction of a much smaller number of particles.
Before discussing a number of applications of this result, we discuss

Eq,v(2o20) in somewhat greater detail. Each factor 8, represents a contribution
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to emBH from a single connected graph. We may suppose this graph to involve the

scattering of r, particles. Then 8; is a matrix,
t t T
(g "hy "ok, Ul Ly Ky ek )
i i i i i i

leading in general to a change of state for each of the Ty particles. This

matrix is
1 =Bz

) t ? - ————

(ky "y " oeen ko [ g; | ky ky .ok, ) = z5 [z e
1 1 1 ) 1 1 1
(2.21)

. 1 1 1

X(p' | 5= K- E) Ao E,) Vo VTR E,) e .

The last factor may of course be simplified, since [ z - (K - F.,p)]“l | p ) = z'll P ).
The sum over "all graphs" in Eq. (2.20) implies first a sum over all
1] ] ?
(kl 'k, e kr. l 8; | k) ky eee ko ) for each g; - In addition to this,
i i i i i i :
we must sum over all topologically different graphs. To clarify notation on
this point we use a symbol G +to denote the topological structure of a graph.
Then a "sum over G" implies only a sum over all topologically different graphs.

This kiﬁd of sumation is then not equivalent to the sum over "all graphs." Only

1 [ (] ’ .
when a sum over all (kli k2i ceo kri ) and all (kli kei ces kri) is also

performed is the "sum over all graphs" complete.

III. EVALUATION OF THE GRAND PARTITION FUNCTION
We shall now derive an. expression for the grand partition function using
the basic result given in Eq°>(2°20). This is the same problem solved.by Bloch
and deDominicis and, indeed, our result is éimilar tovtheirs. We shall treat

separately‘the'two cases of Fermi-Dirac and Bose-Elnstein statistics. The two
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discuééions'are, however, quite similar, as are the final formal'expansions in
terms of connected graphs.

A. Permi-Dirac Statistics

The grand partition function is

9/= (e FH | (3.1)

where o is the chemical potential. In performance of the trace operation

(Tr [ ... ] ) a sum is carried out over all number of pafticles N. The

essential simplification of the grand partition function is noﬁ accomplished by

the use of Eq. (2.20) for the diagonal elements of e-BH:

= omr [ N PK z (g - g ) - | (3.2)
‘ all graphs

For the operators N and K we use the familiar expressions

N = E n

K= & g

with n, = aﬁt 8y - For Fermi-Dirac statistics, of course, n, can only be zero
or one.

BH

Only the diagonal elements of e are involved in the trace of
Eq. (3.1). Then, according to the discussion of the preceding section, only
the diagonal matrix elements of the g; (diagonal graphs) are required in

Eq. (3.2). A typical diagonal g then has the form

nk2 ves nkr] .

g = z a(kl en k3 slsg 5..)[(1 - nsl)(l - nse) ...][nk

5152... 1

(3.3)
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This expression follows directly from Eq. (2.21) on substitution of the explicit
expression, Eq. (2.4), for the interaction V. Between each interaction a sum
over intermediate states 85 is introduced, and this gives rise to the sums over °

intermediate states 8§18y <o in Eq. (3.3). The states klk are the initial

2 LR 2
states which have been suppressed on the left side of (3.3). The coefficients

a(klk coa kr;‘s S, +..) 1involve energy denominators and matrix elements of the

2 iz
potential. Their form is not important for the general discussion of this section.

Equation (3.2) may be written in a more explicit form as

(o - Bey, Ink
9: ; ¥ '[Tfe i i] { &8y - g}
N, «os all graphs i

n
£y Ay (3.4)
The summation over (nzl n‘e2 ... ) means that the occupation number for every

state assumes the value zero or one. As a first step in evaluating Eq. (3.4) we
insert fhe appropriate expressions (3.3) for the graphs but, for the momént, do
not carry out the sums over intermediate states 817 By eee - Instead, we first
carry out the sum over the nz's. To do this, we observe that each factor
exp[(a - Bek.)nk'] falls into one of three classes. If the state ki dées not
occur in anyléra;h, | h

(o - Bey.)
T e = [ 1+e ki ] .

If ki‘ occurs somewhere as an initial state, it has, according to Eq. (3.3), a

factor nk » Thus the sum is
i

(¢ - Be, )n (a - Bey,)
T e Ky Ty n = e Ky .
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For k, occurring as a virtual state, there is now a factor of (1 - n )
. : _ 1
(again referring to Eq. (3.3)]. In this case, then,

(a - Bey . )
z e Ky nk
Ny,

i .

(1 - nki) = 1.

Teking account of these results we may extract from Eq. (3.4) for

the factorl7

(o - Bey,) '
2’“11[1” 1y - (5.5)

Of course corrections have to be made to Eq. (3.5) for states occurring in the

graphs. When this has been done it is seen that each summand in (3.3) is

replaced by
: (+) o (+) (-) o () (-)
a(k k. «.. k3 s.5, «..)[ F f e JLF f ees T ]
12 r 12 sy S5 kl k2 _ kr ?
(3.6)
where ( )
: a - Be -1
fk(+) = [1l+e k Ik s
( ) (3.7)
Be, - ) <1
fk(-) = [l+e k ] .
The factbrs' fk(') and fk(+) are simply the probabilities that state k 1is

occupied or empty for a Fermi gas. Note also that fk(') + fk(+) = 1.

Referring to Eq. (3.3) and (2.21) we see that, when the sum over the

nk's is completed, each 8; in Eq. (3.4) is replaced by a quantity
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-Bz

1 e
Ci(k1k2 kr) = BT [ dz g

X (kg e k| (57) — (1% ) (£V) voo (2V) | dgky oon K )Gi .

(3.8)

Here B, = € + € + ... € The quantity f is an oﬁerator acting only

k kl k2 kr

on the V to its right; a typical matrix element of fV is

P (2) . (&) -
(4,2, | v | 2" 4, ) = f&l‘ f{a2 (4,2, | v | 2,'2,) . (3.9)

I 4 (or 22) is a virtual momentum state, then f(+) (or £, (+) ) is
2
(-)

chosen. If £, (or £,) is a member of the set (k, ...k ) then f
1 2 : 1 ri ﬂl

(or f
32

content of Eq. (3.6).

(-) ) is used. Equation (3.8) provides a formal expression of the

To repeat, each intermediate state s 1in a graph is weighted by a factor
fs(+) (the probability that s is empty), while each initial momentum state k

is weighted by f (-)_(the probability that k is occupied). This feature was

k
obtained previously in the work by Matsubara§ and by Bloch and deDominicis.lQ'
To summarize, we have obtained the following expansion for the grand

partition in terms of connected graphs (or linked clusters)

' = £ {C, +..C_]. ‘ (3.10) :
2\ 2’ 0 all graphs 1 L}

As described in Section II, the sum over graphs is to be done in two parts. A
given graph, defined topologically, must be summed over all states (klka...kr),

Then & sum must be made over all topologically different graphs. Define
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Q - k1°z-:~kr ?G(kl...kr) . (3.11)

and let there be N, graphs of a given type G in a typical term in Eq. (3.10).

Now, a given graph G is counted NG! times in carrying out sums such as those

in Eq. (3.11). The reason is that these sums give NGI tefms that correspond

to permutations of the CG's among themselves. This'permutation was already

carried out once, however, in using Hugenholtz's theorem (2.16). Therefore if

N,,
a graph G occurs NG times, its contribution is QG;}4NG! . Finally, the grand

partition function is

} : 3
= ™ w1
9‘* 0 m,=0 differeH‘c ¢ Nt

which can be written as a simple exponential,

= z 1. 12
/9‘ ?‘0 o | different G % (5.22)

We can also introduce the Gibbs' potential through the equation

9_ - exp (-8 2,) -

It can be simply expressed as a sum of connected diagrams,

-1 -1 ‘
Q. = -B Bn} - B s Q, .. (3.13)
0 0 different ¢ C -

For convenience, we here rewrite QG’ defined by Eq. (3.11),

- 1 1l _-Bz
% - klz.:..,kr mx 2 ©

: 1
X ( KoKye o K | £v ERCEEN

fv...fvlkl...kr).
(5.11;)_
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To illustrate Eq. (3.14), we write out the first two terms (1lst and 2nd

order in v ). Sums are converted to integrals by the usual prescription,

s - (A%,
k (2n)
[ Ar 2 | (kk, | v | kk,)
o, = -2 {__—3} J & [ &%, G 2 T :
(2r)~ [1+e 1 I 1+e 2 ]
' A b
Q = 1 [@—ﬁ)—g] [ &Pk, [P, [P &%, (e, | v eg)es, v]K
B - B -Q B - B -Q
><J[l+e€kl ][l+e€k2 1[1+e€g1 ][l+e€g2 ]}
[ Pleet Cep Sy ko) 8 o 1
XK(ek +ek-e-€)2 -(e +e-€~'e)-(e +e -ek-ek)e.
1 e & & B ok g & & & kK kK

(3.15)

In the limit of zero temperature (f = ) , Qo becomes the energy of the

lowest state of the system. From Eqs. (3.13) and (3.14) this is

1
Q =E + z . (k oo-k IV '——Vo.tvl.k oo‘k> .
"o F G kl..z.:kr<kF 1 r E, - K 1 r ‘G
(3.16)
Here‘rEF is the lowest energy of a gas of noninteracting fermions. All sums

over intermediate states are restricted to momenta greater than the Fermi momentum

kF , Whereas the initial moments k1 coe kr are all less than kF" As was

°
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noted by Bloch and deDominicis,12 these restrictions are a direct consequence of

. : +
the limiting values of the weight factors fk(—) for B -+« . Equation (3.16)

1
is Goldstone's'9 expression for the lowest energy of a system of interacting

fermions.

B. Bose-Einstein Systems

We begin our discussion of Bose-Einstein statistics with Eq. (3.4), which
is also correct in this caée° Now the sums over occupation numbers must go over
all positive integral values of the o however. In addition, Eq. (3.3) must
be replaced by
g = I a(kl...kr, slsz...){ (ns + l)(ns + l)..aJ[nklnkz...nkr 1.

slse... 1 2

(3.17)
We again first sum over the nk's in Eq. (3.4) before doing the sums over

intefmediate state (sl 2...) . As before, the factors éxp(a - Bek) fall into
three classes according to whether k occurs later in a graph (as an initial or-

intermediate state) or not. For a k not appearing in a graph, the sum is

e(a - Pemy 1 bk(+) . (3.18)

z = . o=
a - pe. =
nk 1-e ek

If k occurs as an initial state, Eq. (3.17) gives

z e(a - Pen n = ‘bk(+) bk(') P _ (3.19)
o, .

where
AR leek =5  (3.20)
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Finally, if k is an intermediate state, we have

(@ - Be,) 2 _
e eknk(nk_+1)= [bk(+)] . - (3.21)

We see then that each 8; in Eq. (3.4) is replaced by a Ci , Where

. (+) (+) (=) (-
c,(kk ek ) = Slszo.. a(ky ...k 3 slsz.,,)[bsl bs2 ...][bkl ...bkr )y .

This may be expressed as

! 1 -Bz : 1 |
c (kj.ouk) = z== [dz = e ( kpkye ik | ov 2371217§;7 bV...bV | klkg..,kr)Gi .

(3.23)

Here, in direct analogy to Eq. (3.9), b is a symbolic operator which introduces

the appropriate weighting factors into the above products. For example,

(), | 6V | gy8,) = bkl(*) bkz(i) (s, 1 v | g8y -

The + sign is used for a virtual state and the - sign for an initial (of

final state).
Finally, we introduce, as in Eq. (3.11), .
Q = z CG(kl...kr) . _ (3.24)

klk2°°'kr

The partition function is given by Eq. (3.12), except that Eq. (3.23) is used for

CG , and now
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a - Be, =1

(+) k
26=ku =T r1-e 1 . (3.25)
k k ,
The entire development perallels that for Fermi-Dirac statistics. The only
modification which has to be made is to replace the Fermi-Dirac weight factors
+ +

fk(") by .the bk(”) appropriate to Bose-Einstein statistics.

A comment is required for the case of degenerate Bose-Einstein systems.
Let us suppose, for example, that a finite fraction of all the particles is in
the lowest state §’= 0. .In this case we can treat n, as a large number, as
the creation and annihilation operators for this state commute. This permits

us to use the Hugenholtz theorem to separate graphs even though many graphs

involve interactions with particles in the state "Q".

Care must also be exercised in carrying out statistical sums, such as
in Eqs. (3.19) and (3.21). That is, meny graphs may involve particles in the

state "O" but only one sum is to be carried out over ny. First let us set

ny+1 % n, . Nowin a typical term of Eq. (3.4) let us suppose that n,

oceurs u times when all graphs are considered. Now, instead of Egs. (3.19)

and (3.21) we have

(@ - Bey)n ' |
4 O + -
z e e no*l ~ | b(o) ] (no)“ ’ ' (3.26)
n . .
0
where ‘Eb is the average number of particles in state "0". [Because n, 1is

assumed large, the average of the product is set equal to the product of the
averages.] The quantity n. , by Eq. (3.19), is just bo(-). We are thus
again led to Eqs. (3.23), (3.24), etc., so our conclusiorsare valid for

degenerate Bose-Einstein systems.
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- IV. NONDEGENERATE GAS
The general method discussed in Section iI can be applied to ordinary
canonical ensembles as well as grand ensembles. Thus we now consider a
nondegenerate gas and evaluate the partition : function for a canonical ensemble.
Let the number of particles in the system be N. The states of the system are
specified by the N individual momenté, lp ) = | Py Py ) - Thus the

partition function is

ws(ep €t oees € )
P
7 = 5% b2 e 1 2 N b (g--8) » (4.1)
’ PPN all graphs

where

gi = gi(kl° ke.oookr ) ° -,
i i i

This expression follows directly from the fundamental fesult for the matrix
elements of e PL given in Eq. (2.20).

| As before, the sum over graphs consists of two parts. First, for each
g; » the variables (kli keiec.kri) are each summed over all momentum variables
in the state | p ) = | p,---Py ). Then a sum is made over all graphs that
are topologically different. In taking the trace, one finally sums over all
(pl,.opN) . The first sum merely duplicates terms that occur in the sum over

(p..-.p,), and may therefore be evaluated by simply counting the number of
1 N _

terms occurring.
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In the approximation that the gas is nondegenerate, each k, may take

i
any of the values (pl...pN) . Hence the possibility is ignored of more than
one particle'é occupying the same state. The sum over all ki then gives a

factor

v, o (ke)

vwhere r, is the number of ingoing (or outgoing) lines in the graph g - In

- addition to this factor, the sum over (kl ...kr ) permutes the order of

i i
topologically equivalent graphs. Thus, we must introduce (as was done before in
Eq. (3.12)) the factor

1l ’
N ] ()"'°5)

where NG is the number of graphs topologically equivalent to G in a typical
term in Eq. (4.1). We recall that this factor arises because these permutations
are already included in the use of Hugenholtz's theorem.

For each P, that is not equal to a ki in one of the graphs, the sum |

over p in (4.1) gives a factor

-B
e ks

Yy = = . (b.4)
Py :
Next, we introduce ‘
r -B(e e ) 4
_— N K ekr i
Yo = (3 ki © galley e k) (4-5)

and the partition function in the absence of interactions,
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ZO = ﬁ]:'_ z e pl_ Py o
D, -« Py

This leads to the following expression for the partition function,

2 ©

G

Z_Z H N!
G G“

or

N
]

Z, exp[é/a,G] . ' (4.6)

Here the sum over G implies, as usual, a sum over graphs which are topologically
different. This is the same kind of expansion as given above for the grand
function, i.e., an exponential of a sum of linked clusters. .

For applications, we require the free energy, which is

or

=1 =1 :
F = 87" 4n Z. = B s . : (%.7)
0 ¢ 29’G :

For convenient reference, we write in full the expression for ?_‘ G :

Ble, + ... € ) ,
9’G = | N )r h> e 1 “r -———-—2; f dz e PZ }g
T K. ...k 1 z

1
Zm(K»Ek)

((kpoeok, | v VoV ke ) (4.8)

with
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[ (Iev;] (o 57 ) | | (1.9)
7 K

and

B = + ... € .
k €kl k.

We note the absence of weight factors ih intermediate states (nondegenerate gas)
and the Boltzmann factor for the initial states of a graph.

As a simple application of this result, we evaluate the second virial
coefficient and obtain the result of Uhlenbeck and Beth.go For the second virial
coefficient, we need consider only those terms in which a single pair of particles

interacts. Iet these have momenta El and ‘§2 . Then

2 -Bleyg, + )

- N a1 1 Pz
g aﬂs Tk .?.k ( '8 ) e eni - [ oz z °
1 T _
1
( kK, lv+v V o+ oo | Kk, ) o, (4.10)

Z-+ € + - 2
k) %k

where only those terms in V are kept which describe the scattering of the two

given particles. Introduce the variables

2=k * ko
(4.11)
K = -
USRS >

to replace and k.. Since P 1is a constant of the motion, the energy
Al “2 )

denominators in Eq. (4.10) become
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where Tb = njyﬁw and T 1is the kinetic energy operator for the relative motion
of the two particles.
The quantity
_ 1 1 1
R(Z) = V+VZ_+T_OTI"V+VZ+JT‘O-TVZ+TO~TV + e 3 ()-!».12)

which appears in Eq. (4.10), is the two-body level shift operator. On introducing
a representation (k , 4, m), where £ is the angular momentum of the two particles
and m is its component along the axis of quantization, one can perform the

A 21
integration over 2z in a straightforward way:

1 1 -
= l 4 3 ePZ(x |R () L)
(4.13)

hnp ® ,
= z o
aTrzfﬁ zfo (22 + 1) Sz(n)

Here 62(“) is the scattering phase shift for the £th partial wave. If the
two-particle system has bound states, some additional terms are required in
Eq. (4.13).

When Eq. (h015).is substituted into £q. (4.10), the result is

5/2

o0 © 2 ]
T (20+1) [acwePM 5 ) L (kb
£=0 0

N2 B
gla-szﬁﬁk—f(ﬁ) ,2‘_

We can now evaluate the free energy, using Eq. (4.7), and thus the equation of

state, from the familiar relation

oF <1 o(4n 2)
oo, el
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Here 6) is the pressure and, of course, B'l = kT . The immediate result is the

first two terms in the virial expansion.

V. EXPECTATION VALUE OF AN OPERATOR

In this section we consider the ensemble average of operators of the form

1 + +
= z harerad ( '000 ' O LIE N )a s o8 - a PP - § .
O AP L B 101 q---q, ' ey %%,
q'-eqy | - (5.1)

g

This expectation value of,.CD is denoted by Q@ . For the grand ensemble we have

| 9——0— = Tr ['edNO ePH 1 | | | .. ' (5.2)

For the canonical ensemble, this expression is replaced by

z0 =[O PR ' (5.3)

am—

We give two different techniques for evaluating O . The first is
formally very simple, but leads to somewhat more cumbersome expressions to
evaluate than does the second method. In Appendix A the equivalence of the two
methods is demonstrated.

It is convenient to think of (:) as a generalized scattering operator ﬁith

</ incoming and -V outgoing lines, as is illustréted in Fig. (3). Connected

graphs may then be cdnstructed, as in Fig. (4) vy connecting O to graphs involving
the matrix elements of V.

In evaluating 55' , we first suppose that the diagonal mat?ix elements

of O either vanish or give a negligible contribution to & . At the close

of this section, the contribution of the diagonal elements is treated separately.
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The reason why the diagonal elements require special consideration is clarified
in Appendix B by a simple example whose solution can be found by other (elementary)
means.

We define the function, for real A ,

‘ ) 0 _ |
Y(N) = Tr [ e B(E + AC) ] . (5.4)
For A\ = O, this simply reduces to the grand partition function, i.e., Y(0) = ;rl
Furthermore, the first derivative of this function yields the average value of

() defined in Eq. (5.2):

TR e oy -9 . (5.5)

If Y can be determined as a function of A , the problem of finding the average
value of an operator is reduced to once differentiating Y(A). The evaluation
of Y(\) is achieved by simply taking over the development of Section IIT,

except that V is replaced by

vV i = v + N0 , | (5.6a)
and thus

H + N0 = K + V' . (5.6b)

Of course the connected gfaphs involve»both the generalized  J interactions
and the pair interactions V.

To be specific,\the contribution of a particular type of graph QG(K),
defined by Eq. (3.14), must now be considered a function of A. Of course

these quantities reduce to the previdus functions for A = O:

ag(0) = 4 - S (5.7)
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Again, in analogy to Eq. (3.12), we obtain an exponential form for Y(A),

Y(\) = b A) 1. o (5.8
(\) }oexp[GQG()] B (5.8)
Therefore,

ar(n) | ) o | ,

=0 G dr =0
and the average value of (7)) is

— aQ,(n)

1 e
O = - §E T |x=o ) . (5:9)

| —

To obtain C:) for the canonical ensemble, we may carry out a similar

analysis and consider

x(A) = e[ ePEFXO) . (5.10)
Now X(0) = Z and
g7t ) L, - Lo - 2D, - (5.11)

In analogy to Eq. (4.6),

X0) -z, em [ Zap (M), | (5:12)

where 2}1} is the quantity defined by Eq. (4.5), but with V replaced by

V' . Differentiating, one obtains

() ‘ . s a () |
an  a=0 G ar A=0

The average of () 1is thus : y
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- an.(n)
o _B‘l T JQES_Z I

z NP (5.13)

Before discussing the contribution of the diagonal elements we present
an alternative procedure for evaluating 5 . We first recail the basic
expansion in graphs for a matrix element of e~PE , which is given in Eq. (2.20).
In evaluating the average value of an operator, we are concerned with matrix"

elements of the form ( p | O 8 | P ) . The direct generalization of Eq. (2.20)

is then simply

(p 1O p) = (p]eP|p) p> [ O e-eog 1. (5.14)
_ ‘ ; all graphs

The "sum over all graphs" has the following meaning in this situation. We refer

to the sum in Eq. (5.1), which goes over all states (ql'..,,qd' ‘ql.,.q'\,) of the

operators a .+,..a ,+ 8., ool in 0 . In'performing this sum we obtain
ql Q4 ql Ay

all possibilities of connecting @ to the original graphs. The graphs g which

are connected to O in this way may now be separated from the remaining factors

in Eq. (5.14) with the result

(| OePh ) = (p|eP|p)x E [g.g ] (5.15)
all graphs .
where
x = (p| z [Oegyeeegr, 1, I2) | (5.16) :
all graphs 18 GI _
linked goo

In Eq. (5.16) each of the graphs SRRRE:Y is linked directly to d . The sum
includes all connected graphs involving matrix elements of 0 . Since O has

’i/ incoming lines, we must always have L'<-7 .
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In performing the sums over graphs, we sum independently over the graphs

of X and over the graphs of the last factor % [ 818y, ] in
, all graphs
Eq. (5.15). Therefore,

e [ NO PR - 9,7 , o (5.17)
where |

X = [ allzgmph[O CpeeCrily 1 - (5.18)
The C's were defined in Eq. (3.8) and £ O cbntains the weight factors f(')

appropriate to the outgoing lines of ¢ . Thus, as in Eq. (3.9), the matrix
elements of 7@0 are

| : (=) o () -
(ql'oo'%' l f0| qlancqll) = fql' ...fq‘v' (ql'..‘q/" IO | q‘luua%) .
For Bose-Einstein statistics the operator f in Eq. (5.18) is replaced by b ,

defined in Eq. (3.23).

An alternative way of writing Eq. (5.18), valid for either Fermi-Dirac

or Bose-Einstein statistics, is

O=-% = o[ 2 M- |
9-0 all graphs
linked to)

This expression makes use of the notation of Bloch and deDominieis.

O e -8l - (5.19)

We have previously indicated that the diagonal parts of 0 have to be
treated in a special way. This may be illustrated with the particular example

0 = %; ( q' | O | q) a .1+ a » 1l.e., with an operator which has Jjust one
a'q . 4 '
ingoing and one outgoing line. The ieading term in X is clearly

D rg el o o)
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This does’not conform, héwevéf, to the genergl resultvof Eq. (5.14). The correct
result is obtained by omitting from the sum o#er q .in'Eq. (5.20) those terms
occurring in intermediate or initial states in the [ gl..,gL] . |

The same conclusion may be reached more simply in the following way.
Let us separate from O a typical diagonal term, ioe., one for which some ingoing

line equals some outgoing line (q = qp' = qx)o Then Eq. (5.1) may be rewritten

as

Od = 30(9,) nq ’ v ' ' (5°21)

wvhere we have simply contracted the two operators referring to the same state

(a7 8y, = aq+ 8, = nq) and incorporated all other factors into O(aq).
A : ,

Now,

504 = ml 0,

aN + An «BH
: & {mie” T90@e 1f 1, (5.22)

which leads us to define the following function of q and A\ ,

oN + An -BE
Mg, ) = T e 10@e 1 . ' (5.23)
This quantity may be evaluated by éither Eq. (5.9) or Eq. (5“18).,22 The new
feature implied by Eq. (5.23) is that, in the evaluation of the diagrams of
A(q, A), o is réplaced by (a + A) in the weight factors fq(i)° Carrying
out the differentiation in Eq. (5u22), one obtains the follbwing formula for

the average

0, - 9:1 : @i%}\;&)_ N O (5.2h)
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To illustrate this result, we consider the very simple example,

Now,

¥l 1 l>~=o -2

so that the familar result is obtained by this procedure,

= d
7. 32
For a nondegenerate gas, We use the canonical ensemble (Section IV) and,
by analogy with Eq. (5.18), write

—— ’ ‘ r
— . N .
- = band k .nck s o0 s 00 .
0= X ﬁphs L Z () p |10 &gy ] gk )

& 1 T : o : '

(5.25)

In conclusion we note that the final formulae for the two procedures
described in this section, Eqs. (5.9) and (5.18), are ‘quite different. It is
shown in Appendix A that these aétually glve the same result. In Appendix B
we discuss in more detail the source of the complications that occur when

O has diagonal elements.
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VI. PAIR-CORREIATION FUNCTION FOR A SYSTEM OF INTERACTING FERMIONS

We now illustrate the above discussion of expectation values with the
example of>the pair-correlation function. We consider a system of interacting
fermions and, in doing so, go beyond the familiar results for noninteracting
paxrticles.e5 On the other hand, we treat the interactions only in terms of the
simple scattering graph shown in Fig. 1, and give a definite numerical resuit
for the nondegenerate case. The reason for these restrictions is that we ére
now primarily concerned with illustrating the formal procedures discussed in
this paper. This particular'example has been studied with other methods by
Blattg,+ and Karplus and Watson.,25

We define the pair-correlation operator as

i - pt)e - qt)e
il(p-p)ry +(a-ad)r, 1,

1 . — +
O(r, r,) = — L e a, a, a a_ ,
12 N2  pp* P’ ¢° a4 p
qa’
- (6.1)

where N2 is the averag$ of the square of the number of particles. As discussed
in detail in the previous section, the diagonal part of (:) will have to be

discussed apart from the nondiagonal part. The diagonal part of (:) is

Od = _._ge szq b(Q: P}nq np ) . (6°2)
where
b(a, p) = [1-etR-2n ; (6.3)

and r= r, -1, We note b(g, q) = 0, so that the sum in Eq. (6.2) involves
only the terms for which p 76 q.
In treating the diagonal operator ()d we recall the discussion of

the preceding section, particularly Eqs. (5.22) and (5.23). In this case we
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have a sum of products of two-number operators and the expressions are only
slightly more complicated than in Section V. 1In this case we introduce the

function

p

ey N o= Zo(p, G Ay A) exp [ § WUler @ A A ) L - (6.4)

P
and evaluate the average value of C:h with the formula

2
I a . .
Oz = = blp, a) o, fog A, a5 Ny M) (6.5)

|
pq Ap=0,Ag=0

The evaluation of A(p, q; hp, kq) follows directly the development in Section III

for the grand partition function (Eq. (3.12)). The only essential change is the
. + X .

replacement in the statistical factors fk(’) » (Eq. (3.7)) of a vy

a+ N B -+ N B :
( P kp q kq)

-1
Be -(x+X & +A 85 )
fk(-)(P, a A kq) l:l + e %7 P kp  "q kq ] )

p
(6.6)
(+) . _ (=) . |
fk (P: a; )\P:. Kq) = 1- fk (P: q; )\p: )‘-q) o
Thus the function é?b(p, q;’}P, hq), which occurs in Eq. (6.4), is
(o w52, ) = | 2%, & a2 N | (6.7)
}/O > Qs o’ g T > k P, Q5 D’ g . : .

In a similar way the contribution Qd(p, q; kp,_hq) of a graph of type G is
evaluated from Eqs. (3.10) and (5.8)'by»us;ng the new statistical factors of
Eq. (6.6). Finally we note that the differentiations in Eq. (6.5) lead to an

average value for C)i which consists of five terms,
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o} ( ). a2 ¥% ‘<:5§%;> 3 . . 'agéﬁ >
= % blp,q - {:Er——éﬁi— + » - £ Q, + <\ )» T Q }
@] b 0 N O o) g ¢ N Sy, G

A_=0,\ =0
P ’q
(6.8)

In this expression the debendence on (p, q, xp, xq)'has been suppreésed inside
the square bfackets°

In evaluéting the functions A(p, q; Xp, Kq) as the exponential of a
sum of topologically different graphs, we now meke the m;in‘assumption of this
section, which ié to consider only the simple scattering diagram of ?ig. lok Its
contribution Q, was evaluated in Eq. (50;5), and now becomes

(')(p,q; A ,Kq) .

P :. — E (') .
Qe @ Ay A) =-5 2 (kx| v |k k2)fkl (py2s xp,xq)fke 5

kykp

(6.9)

To completé the evaluation of Zj& we need only_perfofm the differentiations
indicated by Eq. (6.8) on 2?% and Q,, which are given in Eq. (6.7) and
Eq. (6.9), respectively. Without going into further detail, the final result

is

N2 q q k.k

; - . . “i,‘ls, ,};
66. = 1= L |:Z°. f(-) e-lg:}'y_s L e
1%2 '

_ , 2
X (¥ Ky [ v | k) k, ) kal(') fkl(+) fke(-) } .
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The statistical factors in this equation are the original ones given in Eq. (3.7),
since now Np = A_ = 0. The contribution of the fifth term in Eg. (6.8), i.e.,

q

the term containing (Bg’axp qu) L Q has been dropped since it is smaller
' G

G 2
than the others by a factor of l//@/" « In the derivation of this result it has

also been shown

—_ | 2
P ooz el e 2 (ki lvik ke (e (g ()
q 9 K,k | 1 1 2 -
‘ 12
(6.11)
- §§ =2 .
In the 1limit of ¥/> » one also verifies = N~ . Finally, for complete
degeneracy, Eq. (6.10) reduces to the familiar formula
— q <
B, -1 2Sm |
= 1 _ o (6.12)
19 < Pp :

We next evaluate the contribution from the nondiagonal part of the
pair-correlation operator. We ‘shall use the second method of calculating
average values described in the preceding section and summarized by Eq. (5.18).
The only nonvanishing graph involving a single scattering is illustrated in
Fig. 4. In accordance with the discussion in Section IIT the contribution of
this diagram is obtained from

e"Bz

( Xy a‘Oz.(K - %Tvik 2>G ’

(6.13)
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' where Gl is the gréph in Fig. 4. When Eq. (2.4) is substituted for V and

Eq. (6.1) for.(:) and the contour integration is carried out, this becomes

D (Ve ()0 (0

c.(k. k) = = bk
1V%1 *o . )

Ky mi)(fm | v | k, k
£ m :

1

(6.14)

Here b is simply the coefficient of the operatdrs appearing in the definition
of () inEq. (6.1),

, ik - k")x, +(qg=qg")r,]
b(k' ¢t kq) = e ARSI T (6.15)

The last factor in Eq. (6.1L4) comes from the contour integration. The complete

nondiagonal.contribution is then obtained by summary over kl and k2 :

- b(k, ky, m8)(dm | v | K, k) | f' (=) ¢ (=) o () o ()

klke‘em e£+em=ekl-ek2 .-l 2

We note that when these last summations are introduced, the two terms of
Eqg. (6,1&) give equal contributions. This may be shown with the help of the V

relation ( i )
-B €, = €
(-) by (+) . (=)
Kk fﬂ e | = fkl fz | s

and by relabeling the sums in Eq. (6.16). Finally, this expression may be
simplified by using Eq. (2.5) for (4m | v | k, k;) and Eq. (6.15) for

b(kl k., mf), and by replacing sums by integrals in the usual way,

2
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= v 2 5 a3 3 5
Ond=..-§--(-2:—)—9-fdkl -fdk2 [ d72 [ da’m B(§1+1§2-£-~1§)
W5 (Vg ()0 (0 D vy - D - )
k1 k2 : g m ez + €n ~ ekl - ekz
(6.16)
Here w represents the Fourier transform éf the potential v ,
w(g) = f d3r v{a) e-igffv . ' - (6,17)

The complete expression fof the pair-correlation function is the sum of
the diagonél and nondiagonal contributions, i.e., the sum of Eq. (6.10) and
Eq. (6.16). We shall now obfain a‘quantitatiQe estimate of the pair-corrélation
function by making the further appfOximation of nondegeneracy. Thﬁs the

statistical factors are now

MOBUERAES L g (+)

k k_.f_‘_il

In addition we shall ignore the exchange part of the potential.

The diagonal contribution, Eq. (6.10), now assumes the form

_— ’ oz . 2 2
Oyfr) = 1- }1:; [(2:)3 [ &% etErte-T q

-1k er + 2 - 2.2 + k.9 ¢
- BW(O) -(—E-i—)-s f dakl f d3k2 e 1= 1 2’ . ,

(6.18)
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and Eq. (6.11) beéomes

— 12 | 2 2
= NQ oy 2 d3 a-7v q
N (v ). [z;;;g ] a7q e»

- 2 2
‘ 2 - k k
- Bw(0) 2—5;6 I d5kl i daka‘ e T i 2 )

(6.19)

The length Yy 1is defined as
2 .., 2 ‘
TS = BE/2m) .

The square brackets in E.. (6.18) is the same as that in Eq. (6.19) except

for the depehdence on 5> E>mt this dependence may be removed by completing
. | o | 2, 2

the square in the exponentials in Eq. (6.18), and leads to a factor e-r,/kr

for each bracket. There Eq. (6.18),15»sim§1y )
D ' 2/ 2 o ' _
Our) = 1-e7/2 D (6.20)

The second term is & quantum-mechanical correction arising from the repulsive
effeét of the exclusion principle. It is important only for particle

separations of the order of the deBroglie wave length, i.e., for r ~v 7.

Returning tq the nondiagonal contribution in Eq. (6.16), two integrations

can be done immediately with the aid of the transformatioh

k.= K+k, k.=ke-k, L=g'«k', and m=«k'+k'. The result is

S
a = - _Y.a_ ( .B_. ) e20£ | 25 l L _.J_‘.. ’ I | : (6 21)
T TS (2x)? \/ 2 7 . a
3 5 - 22 . ikex 3 ik'x "
I = [a'sv(s) [ak e T A%k 62 s . (6.22)
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We have used Eq. (6.17) for the Fourier tfansform of the potential and pﬁt

The integration over k' 1is

X1~
© ik'x . .
- 2ni f ak!' k! e - _]_.: (231)2 .l ( elkx + e"ikx ) ,
X g k' - k2 2 p 4

where the contour corresponding to the principal value has been chosen. The

integration over Xk can also be carried out and the final result for I is
3 — _ ~x2 2Y2 _
I = ngl—, 7/(%5— [ a7x v( | r-x| )'i e // . (6.23)

If we are interested in correlations for separations considerably larger than 7,
ve may regard v as constant in doing the integration and obtain a closed form

for the integral:

I = n<7/-g- %) (20)? w(zx) . | . (6.24)

The completé calculation of the nondiagonal contribution also requires
evaluation of the chemical potential «a from the total number of particles.
Neglect of the first-order effect of the potential in Eq. (6.19) leads to

2 (A=l

(2n)? T

-«
e =

. , (6.25)

2!'4

Collecting all these results, one finds the nondiagonal contribution to the
pair-correlation function to be simply v(r}/kT. Adding this to the diagonal

part for r > > 1 , one has for the pair-correlation function

O - 1-v(r)/(<r : | (6.26)

This is just the classical result and it serves to verify the techniques

introduced in the preceding section. In addition it should be noted that the
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reéult of Karplus and Watsqn??lfor the noﬁdégenérate case mayvélso be éhown to
lead to'this result. | - | |

“Iﬁ qbnclusion we shouid like to point out that the entire discussion of
this paper.fefers to general annihilation and creation operators satisfying the
commutatiOn‘relations for Fermi and Bose statistics, and not just to those
referring to free-particle states. They may, for example, refer to collective

27

variables such as those lntroduced by‘Bogolubov26 and Sawada. This'problem

will be studied in detail in a separate publication.
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APPENDIX A

We domonstrate here (for Fermi-Dirac statistics) the equivalence of the
two methods given in Section V for evaluating € . An analogous demonstration
can be given for the Bose-Einstein case. The contribution of a typical graph to

Eq. (5.18) may be written

£ - f £
1. -8 J |
T=§ﬂ—3-fdzZQ(-f)(mz+io,l)---(—-z+%,J), (A1)
where
Ao,l':_: EouEi (A.2)
and.
e = lolualvia]|v]3 ...tx{v]o. (A.3)

The label zero refers to the initial sfate, and the intermediate states are
enumerated with the integers from 1 to J . In the carrying out of the
compafison, sums are not made over the intermediate or initial states in this
expression. The factors fo, fl...fJ represent the appropriate statistical
factors f(i) .

The analogous term in Eq. (5.9) is

(0) »_ 1 -Bz o £y 5
@ o faePio [( 3 ) e )|

In addition to this, there are J other terms obtained by cyclic permutation

of the factors in Q . A typical permutation of Eq. (A.4) is
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4o
- (2) |
a8 o L azeP? ff]'—'izj—l——-(J-£+1|V|J-£+2)
- end 2% .
. (£) | (£)
X +AJ"”+2 (J-2+21VIa-2+3) ... —=
2 ¥ Oga8+1, J+b+2 : J+0+1, J
. (£) ‘
X =% (olol@alv]|2a)..(g-2]|v]|JT-2+1) .
J+4+1, O

(g |vi]o)

(a.5)

Now, the matrix elements of V and O in this expression may be combined and

set equal to Q , defined by Eq. (A.3), so that one has

(2) 1 _(8) 1 (£) 1
5 T z + A ee f z + A
z J=b+l, J=£+2

If the new variable,

1 _
2 = 2 *+ Ly, 0

is introduced, the energy denominators in Eq. (A.6) may be rewritten as

1
2t + Ab, J+E+1

1 1 1
H 1 'y
2! 2l + by g 2 by o

1 1
]
2" + 8, gepe1 2 %0, Jes

e

3
.z'+AOJ °
2

J-4+1, J-4

(A.6)

(A.7)

(A.8)
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At the same time, the following equation holds:

oo B(E . =E) .
oBZ% e-Bz'(‘e ‘U T+8+1 0" | (4.9)

N

Because we have

RO Tl YNNI €9

K © k ’
the second factor in Eq. (A.9) may be used to convert the f£,'s in Eq. (A.6) into
the f£....f. of Eq. (A.4). |

0 dJ
Finally, the complete term associated with the second method is

J
(£) -1 1 Bz 1 1 1
X T =-B[Qf...f]-—-fdze o ——,,, ——
4=0 0 J 2ni 2 z + Ab, 1 z + Ab, J
1 1 l
+_
Z

This may be rewritten as

Yl ]y faze®? <

Nl

(A.iO)

which, after partial integration, is simply T. We have thus shown that the terms

of Eq. (5.9) combine in groups to give the terms of Eq. (5.18).
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APPENDIX B

We attempt to clarify here the complications which arose in Section V in
handling diagonal terms in the operator O . For purposes of illustration, we

consider the evaluation of the grand partition function for the Hamiltonian

(B.1)

V = Z b .

‘Here each bk is a real number representing the "potential energy" of a particle

with momentum k. This example is chosen because the grand partition function
may be evaluated directly to give

- B +b v
9\=H[l+ea (& k)]. (B.2)

k

We now evaluate ?«-\ by the methods of Section III, using Eq. (2.20),

which now takes the sgpecific form

-BH -BK P)
o zl?zg--. gg(k, DI (8.3)

e

Here, for ilk 1, 2 3 ..., we have

1 . _
gk, B) = zx [d =3 v oy, (B.4)
and for ﬂk =0,

glk, 0) = 1 . (B.5)

Equation (B.3) is easily verified directly, since we have
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-8 b ' v
Zoa(k, 8) = & _k R (8.6)

Now, following the notation of Section ITI, one obtains

9,: Tr [ eaNe-BH] = } z ' H c(z, Bk),, ' (3.7)

O 8y,80,-.0 %

where (for L =1, 2, 3 ces)

ok, &) = E%{ [ az 971;:1 bkk' fk(-) ‘ | | (.8)
i 2z
For vzk =0,
c(x, ) = 1 y (3.9)

Then sum over these factors is easily carried out,

-8 bk

1
]
Rnad
m

/Eo ok, 4) = 1+fk(") Le

1+L , . (B.10)

where Lk is simply the second term of the result. Equation (B.7) is clearly
equivalent to Eq. (B.2), since

a -8 a-ple +b)
[1+e K 1] (1 + L, ] = 1 + e % . kT

;

the first factor on the left comes from the 9__0 in Eq. (B.7).
To see fhe relation of this development'to the exponential formula of
Section III, we consider
101+ = 1+ X% + b)) + z + e .
-H[ B ! k& K'< k" e e k'< k"< k' B e B

(B.11)
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Now, if terms such as Lke are negligible, we may write this as

H[l+1k]

1
| lf*'ﬁlk»*'?':(ﬁl'k)J"”

(B.12)

2 (E ) -

This shows the relation to the graphical analysis of Section III, since each Lk
is a sum of connected graphs. The factorials here arise just as they did in the
sums of Section III.

The error in Eq. (B.12) may be seen by examining
2
zn'[q{(1+1k)]=lz{:zn(.1+1‘k)=§[Lk+ (1,9 1 . (B.13)
For

2
pX Ij << Z g
k k

the expression (B.12) is valid. This condition is satisfied when the b are
very small. The corresponding case in Sections III and V obtains when the matrix
elements of V and (J are individually very small (for example, of order

’1/’1 ), a finite result being obtained only on performing a sum.
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* FIGURE CAPTIONS
Fig. 1: Contour of integration C for Eq. (2.8).

Fig. 2: Typical low-order graphs in the expansion of (E - H)dlz (a) simple

scattering graph; (b) repeated scattering of two particles, (c) example

.of a disconnected graph.

”'Fig. 3: Generalized scattering operator with )] ingoing and )) outgoing

lines.

Fig. 4: Simple scattering graph linked to the pair-correlation operator7CD .
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