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ABSTRACT 

A great deal of interest has been shown recently in the problem of 

incorporating bound states in relativistic field theories. It is the purpose 

of this article to point out that if one second-quantizes nonrelativistic 

quantum mechanics, it becomes amenable to treatments similar to those 

proposed for relativistic theories. Since nonrelativistic quantum mechanics 

is much better understood than the relativistic theories, it is possible to 

test any suggestions made for discussing the latter problem by applying 

them to the simpler model. In the course of such an investigation it is 

found that a method proposed by Zimmerman for finding the commutation 

relations for the in and out operators contains an error. The investigation 

also suggests that none of the methods so far proposed for introducing in-out 

operators for bound states seems entirely satisfactory. It is suggested that 

the procedure used for the nonrelativistic problem has a natural generaliza-

tion to the relativistic case, and this is outlined. 
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I. INTRODUCTION 

We wish to discuss nonrelativistic quantum mechanics with two-body 

interactions using the in-out operator formalism. 
1 

These techniques are 

now being used a great deal for relativistic field theories. Z, 3 In particular, 

we shall address ourselves to the problem of introducing such operators for 

bound states both because of the intrinsic interest of such a development and 

because an example which can be treated rigorously should help in the evalu-

ation of suggestions for treating the relativistic problem. 

In any quantum-mechanical problem it is necessary to exercise some 

care in defining the appropriate Hilbert space. If the Hilbert space is not 

restricted in some way, it is impossible to obtain an eigenvalue problem.,, 

It is convenient, and appropriate, in nonrelativistic quantum mechanics to 

admit to the Hilbert space only normalizable state vectors. With such a 

restriction on the Hilbert space, it is possible to justify certain manipula-

tion~ of the original operator equations of motion and commutation relations. 

Typically it becomes possible to justify the neglect of certain surface terms, 

or to assure the validity of changing the order of certain limiting processes, 

or to guarantee the existence of certain expressions. The operator 

identities which are obtained with the aid of such manipulations are said to 

~::: 

This work was supported by the U.S. Atomic Energy Commissi!Jn and 

by the U, S. Army, Office of Ordnance Research, 

tNow at Imperial College, London, 
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be valid in the sens:e of weak convergence, That is, they lead to correct 

expressions for matrix elements taken between normalizable state vectors. 

All the equations in this paper are valid at least in this sense. Many of the 

operator equations are true for a less restricted Hilbert space. We shall 

make no systematic attempt to examine the extent to which the normalizability 

condition on the Hilbert space may be relaxed for the various equations. 

This paper is divided into six sections. In Section II the second 

quantized form of nonrelativistic quantum mechanics is outlined. Although 

this procedure should be familiar to everyone, 
4 

the authors discovered in 

conversation that this was frequently not so. Our discussion of this problem 

is formulated in such a way as to provide a convenient starting point for the 

subsequent analysis. The third section is devoted to determining the con­

ditions necessary to insure that the field operators in the theory possess 

asymptotic forms. Appropriate definitions of the in and out operators are 

then given. In the fourth section it is pointed out that the limiting processes 

involved in defining the asymptotic operators cannot be uniformly convergent 

because of the invariance of the theory under time· translation. As a result, 

it is necessary to excercise caution in the order of taking limits. With this 

in mind, suitable methods, based on a suggestion by Zimmermann, for 

finding the commutation relations of the in and out operators are found. The 

fifth section is concerned with the definition and evaluation of the S matrix 

and the final section is reserved for some concluding remarks. There is 

an appendix in which the properties of nonrelativistic wave packets are 

discussed. 
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II. NONRELATIVISTIC QUANTUM MECHANICS 

The second-quantized form of nonrelativistic quantum mechanics is 

described in terms of the field operator l); (xt) and its Hermitian conjugate 

These operators satisfy the equations of motion 

and the equation obtained from the above by Hermitian conjugation. These 

operator equations are defined relative to a Hilbert space for which the 

various operations indicated may be defined. 5 For a large class of potentials, 

this restriction is not severe. However, for singular potentials (for example 

an infinite repulsive core) it is necessary to restrict the Hilbert space in an 

appropriate manner. In what follows we shall assume that such restrictions 

on the Hilbert space are imposed when necessary. 

In addition to the equations of motion, it is necessary to specify the 

equal-time commutation, or anticommutation, relations. Since the case of 

Bose statistics permits a more concise treatment,, we shall consider the 

commutation relations 

(2) 

and 

(3) 

Since the results obtained for Fermi statistics are quite interesting, 

we shall simply quote the results for Fermi statistics. 

The Hilbert space appropriate to the problem is most readily 

introduced in terms of the positive definite number operator, 
6 

N (t) o 1 ~ .p* (::o,t) .p (:::_, t). ( 4) 
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The following commutation relations are easily proven: 

[N(t), ~(~, t)] - - ~(~, t) (5) 

and 

(6) 

From the positive definiteness of N(t) and these commutation relations, the 

existence' of a vacuum state with the following properties is easily inferred: 

N(t) vac) = 0, (7) 

and 

~ (~, t) I vac) = 0. (8) 

The requirement that the vacuum state thus found be unique and time-indepen-

dent, so that Eq. (8) holds for all times, is sufficient to define the Hilbert 

space. We consider then the set of normalizable state vectors formed by 

applying the operators ~'\~t) and~(~, t) to the vacuum. Thus, a typical state 

vector would be 

I vac), (9) 

where the function G is suitably restricted. 

In the usual approach to nonrelativistic quantum mechanics one does 

not generally consider state vectors which are formed by the application to 

the vacuum of creation operators for different times. We shall find that the 

simplest procedure is to consider first only the case in which all the times 

are equal and then express states such as given in Eq. (9) in terms of the 

equal-time states. 

Consider the set of operators 

~ \ (t) = j dx i a (:><: t) 
~::: 

~ (x, t), (10) 

where the set of functions J (x, t) forms a complete and normalizable set 
a- . 
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of wave packets having the properties 

and 

} d><_ j: (~t) j ~ (~, t) = 6 a~ 

. '* ~ j. (x, t) f (x 1t) = 5(x-x 1 ). 
aa- a- --

The time dependence of j (xt) is given by the free-field equation 
a-

i 
a . 

1ft j. a (~, t) + 
? 

a~ 

j (xt) = 0. 
ax2 a-

( 11) 

{12) 

The construction of such a set of functions and their properties is discussed 

in an appendix. In what follows we need their asymptotic properties, which 

are that, for large I t I, 

(13) 

;;-
where j. is the Fourier transform of ..j and is therefore also a square integrable 

function of its argument. Also for large I x I, j (x, t) goes to zero. 
- a-

>!<: 

The equation of motion for l\J (t) is then easily found to be 
a .. 

* J (t ). 
a 

(14) 

In deriving Eq. (14) we have used the asymptotic properties of-f (xt) and the 
a-

normalizability of the state vectors in order to justify the neglect of the 

surface term 

a 2 j (xt) 
a-

It is possible to write Eq. (14) in the integral form 

t1 

.p*a(t 1)-.p*a(t2)=i} dtJ*a(t) 

t2 

>!::: 
l\J (xt) } . (15) 

( 16) 
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Since J':'a(t) has a destruction operator at the right, 

* J a (t) I vac) = 0' 

and therefore the state 

is time -independent. These states are normalized so that 

The set of states I a) forms a complete set for all one-particle 

normalizable states. Consider the state 

with 

finite. Then we have 

where 

Hence we obtain 

with 

and finite. 

g(x, t) = L: g (t) f (x, t) 
- a a a -

gn (t) = f d'5_ J* n ('5_t) g('5_t), 

lg(tl) =1:n fd'5_gn(t)fn('5_t) y,*('5_t) !vac) 

= L:aga(t) I a) ' 

The two-body states can be treated in a similar manner. We 

consider the Schr'odinger equation 

(17) 

(18) 

(19) 

(ZQ) 

(21) 

(22) 

(23) 

(24) 

(25) 
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<I> (~. y_, t) = 0' 

t'hen form the operator 

. ~ * 2 (t) =(2! f I .1~ 1 dy <!>(:><:, y. t) ~ * (:><:t) ~ * (yt). 

.The equation of motion for l(; 
2 

(t) is 

-i· 
8
8
, ~ *2(t) =(2! )- 1/ 2 J~ dy dz ~ * (!Stl ~ *(ytl ~ *(;:. t) 

[V(z-x) + V(~-y_)] l(;(~, t) <j>(~,y_, t) - J>!'
2

(t). 

;{26) 

(2 7) 

(28) 

~~ 

The current J 
2

(t) has a destruction operator on the right as a result of the 

fact that <j>(~, y_, t) satisfies Eq. (26). The neglect of surface terms which is 

involved in deriving Eq. (28) can be justified as before. The integral form 

of Eq. (28) is then 

* dtJ 2(t), (29) 

and as before, the state 

(30) 

is time-independent. 

For a certain class of interactions, the solutions of the Schrodinger 

equation (26) can be divided into two groups corresponding to bound states 

and to scattering states. The scattering states are conveniently labeled by 

their behavior at large times, 

The bound-state functions are conveniently written as the product of a 

function of the center-of-mass coordinate and a function of the internal 

coordinate 
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(32) 

where the J 1 s form a complete set of wave packets satisfying the equation 

(i a + 1 82 - En2) j a2 (R, t) 0 at 2 
aR

2 = (3 3) 

and 

[ -2 82 
+ v (.!'_)] <j>(E 

2
, p) = E 

2 
<j>(E, p). -2 

a ..e. 
a - a 

(34) 

The set of energies Ea
2 

is that set for which Eq" (34) has normalizable 

solutions with symmetric functions 

(35) 

It is well known that the set of bound- state wave functions and either the in 

or the out functions form a complete set of properly symmetrized functions 

for the spatial dependence" 

\ 

It is appropriate then to label the operators defined in Eqs. (27) and 

(28} and the states defined in Eq. (30) by (for example) the set a2 and aj3 in. 

It is then possible to prove that any normalizable two-particle state vector 

in the Hilbert space, i.e., 

Jd'5_JdyG('5_yt, t') ~ *('5_t) ~ * (yt') I vac) 
can be expressed as a linear combination of the set a2) and aj3 in) 

(36) 

One 

;:C 
need only note that the time of the operator tjJ (yt 1 ) can be changed to the 

time t by using the completeness relation for the one-particle states, and 

the proof then proceeds as in the one-particle case. 
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III. THE IN- OUT OPERA TORS 

Let us now inquire into the question whether the field operators 

approach limiting operators for large times. Because of the translational 

invariance of the theory, it is clear that if such limits exist the approach 

to the limit cannot be uniform. We shall first look at the one-particle 

* operators L\J (t). 
a 

It is clear by inspecting Eq. (16) that the existence of such limits 

~::: 

depends on the time dependence of the matrix elements of the current J (t). 
a 

If these matrix elements decrease sufficiently rapidly with time, it is 

possible to define the operators 

dt' /' (t 1 ) 
a 

(3 7) 

and 

L\J >:<a· t= lim L\J,:, (t) = L\J >:c (t) 
ou t -too a a 

(38) 

The matrix elements of the current operator can be estimated as 

follows. For convenience we repeat the definition of the current, which is 

J* a(t) = Jru._ jdy_ >¥ *<:::_t) >¥ *(y_t) V(::;_-y_) >j>(y_t) J a (::;_t). (39) 

* The matrix element of J (t) for which L\J destroys a particle in the state 
a 

* a 1 and the L\J 1s destroy two particles, which at large times in the past were 

in the free states 13 and 13', behaves for large negative times like 

eff : V(x-y) j 1 (yt) J (xt). 
-- a - a-

The time dependence of this matrix element depends on the potential, and 

we consider a delta- function potential to get an estimate for short- ranged 

. 1 7 potentla s. 
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In this case, the matrix element behaves like 

j <i><_ 'I j a (:><:t) 1
4 

· 

Using the estimate given by Eq. (13) and changing the variable from x to 
X 

k =-=­- 2t we find 

I T (k) I 4 
. 

a. -
(40) 

For such a time behavior, the integration in Eq. (37) is permissible and the 

in operator may be defined. 

The behavior of the matrix element when the potential has a long­

ranged tail may be estimated by coosi.derir:g V(~-y) '"' I x-y 1-n. Considering 

the same case as before and using the same procedure, we find 

(41) 

It is clear from this that the in-out operators cannot be defined for Coulomb 

potentials or for potentials which fall off for large separations, more slowly 

than the Coulomb potential. For the Coulomb potential the time integral in 

Eq. (37) would be logarithmically divergent. 

We may also consider the situation in which the two operators 

annihilate a bound pair of particles in the final state. In this case the time 

dependence of the matrix element is independent of the potential and is 

given by . 

( J)- t-
3

/
2 j dp $(p) V(p) jdk If* aZ (~) ~a!!:) ~ (!<_) I· (42) 

For suc.h matrix elements it is always permissible to extend the range of 

integration to ±oo . 

In summary, we have demonstrated that it is permissible to intro-

duce the one -particle in- out operators for potentials which decrease 
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sufficiently more rapidly than the Coulomb potential for large separation. 

The same conclusion is reached for the two-particle operators, and the 

argument can obviously be extended to operators creating a large number of 

particles. 

The properties of the one- and two-particle states which we have 

established may be summarized as follows. These states are time-independent. 

Ia) ::: l\;>:' a (t) I vac) 
)lt:: 

I vac) 
~r ) = l\; a in = l\; a out I vac ' (43) 

la2) 

_,_ 

vac) 

_,_ 

I vac) 
>lt: 

out I vac) 
-·-

a2 (t) I -·- (44) =l\; = l\; a2 in = l\; a2 

and 

al3 in) =l\;':'al3in(t) lvac) ' 
(45) 

al3 out) = l\;>'r al3 out(t) I va0 (46) 

but 

(47) 

:::C 
Since the operators l\; . are obviously time-independent, it is 

a 1n 

clear that l\; * . l\;*P. . I vac) is independent of time. If we express the 
a 1n 1-' 1n 

* * operators l\; . in terms of the operators l\; (t) and note that 
a 1n a 

l\;>:'
13

(t) I vac) = l\;*
13

(t 1 ) I vac) , we find 

l\; ,:,a in l\!*13 ln I vac) ::: { l\; >!<a (t) l\;>!< 13 (t) 

- 1 L dt· 1 
(48) 

jvac) 

It is easy to show directly that the right-hand side of Eq. (48) is time-

independent. We may also determine the wave function 

-1/2 
in (~, y_ t) =(2! ) ( vac, (49) 
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for the state. We find 

t -, 1 dt' j d"- 'r' G(:><_. y:, "-'. r' . t- t • l v!:><_• -r' l lo: !r'tl ~~ !r'tl, (sol 

where 

G satisfies the equation 

(52) 

and the boundary condition 

G'(~, y_, ~·, y_•, 0):: o(y_-~ 1 ) o (~-y_•) + o(y_-y_') O(x-x 1
). (53) 

These equations are sufficient to determine G and to permit the identification 

of <j> ~R . with the usual time- dependent wave function satisfying boundary 
'-'1-' 1n 

conditions at t -+-co. It is therefore the same function as occurs in E.:j. (31 ). 

Because of the completeness relation for the two-particle states, 

this is sufficient to establish the identity 

(54) 

The relationship 

(55) 

is also easily proven. 



-15- UCRL-8595 

IV. COMMUTATION RELATIONS OF THE IN-OUT OPERATORS 

In attempting to determine the commutation relations of the in and 

out operators it is necessary to exercise extreme care in taking limits. 

Because l\J (t) does not converge uniformly to l\; . for t -- oo, the order of 
a a 1n 

limiting processes is important. When the product of two operators is 

considered, there is a concealed infinite process which is the sum over 

intermediate states. As a result, it is possible to have two operators each 

approach zero and yet have their product remain finite. The simplest example 

of this is the commutator [l\;(~t), l\J>:<(~'t)] , which is independent of time 

:::c 
even though the matrix elements of l\J and l\J go to zero as I t 1- oo • For 

nonrelativistic theories it is only the ordering l\; l\J which causes difficulty. 

The other ordering (normal product ordering) is simpler because the operators 

must destroy particles already present in the initial or final states. However, 

care must be exercised even here since the product of operators l\Jl\J can 

destroy either two free particles or a bound state, and these two cases can 

give rise to different asymptotic behavior. It should be noted that in making 

estimates we have always considered the operators in their normal product 

order. 

Consider two operators A(t) and B(t) which posses limits 

A ::: lim t - ± oo A(t), and similarly for B (t). Following Zimmermann 1 s 
out 
in 

suggestion, we consider the integral 

]

+ 00 

dt 

00 

_r dt' T (A(t) B(t 1 )) = 

+oo 

J dt 

-00 

l
+oo 

a 
at 

dt dt' 

[A (t), B(t)] 
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T(aA(t) 
\ at ' 

+ 1 dt r(t). BB(t)J 
at 

1 dt 
a 

[A(t), B(t)] 1ft 
+co +co +co 

= 1 dt 

!00 
dt' T ( BA(t) BB(t')) 1 dt [ BA(t) , B(tl at · at' at 

-00 ;::co 

(56) 

Changing the order of operations interchanges the roles of A and B; one then 

finds 

a 
dt at 

~~--

+ 00 

T (A(t) B(t'~ - 1 
-00 

+O? 

J 
a 

[A (t), dt at 
-_ 00 

+ .00 

dt :, 1 
-00 

B(t)]. 

Upon evaluating the left-hand side of Eq. (57), one obtains 

A (B - B ) - (B - B ) A 
out out in out in in 

a 
dtl atT 

(57) 

This simplifies to the difference of the commutators of the out and in fields, 

s o that we have 
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too 

[Aout' Bout] - [Ain' Bin] = j dt ;, [A(t), B(t)]. 

In a similar way we find 

l+oodi a 
t ~ 

00 

+oo 

L 
+oo +oo 

.0 
dt at 

-00 

T (A(t), B(t') C(t")) 

j dt :, j dt' a~• T (A(t) B(t') C~t")) 
-00 -00 

-lt<oo 

= j dt -:, T ( [A(t), B(t)] C(t")) . 

-00 

Upon evaluating the left-hand side, one obtains 

+oo 

[A t' B t] c ( t II) - c ( t II) [A. ' B. ] = 
OU OU 1n 1n j~ dt 8

8
1 T ( [A(t), 

UCRL-8595 

(58) 

(59) 

B(t)] C(t "~, 
{6 0) 

Let us now consider the significance of Eqs. (58) and (60). In 

evaluati'on of the left-hand side of these equations, the limits t, t 1-±oo are 

taken independently; it is therefore possible to identify the limits with the 

corresponding in or out operators. On the right-hand side the operators 

appear at the same time. However, they appear in an equal-time commu-

tator, and this is usually easy to simplify. 

When Zimmerman considered equations analagous to Eqs. (57) and 

(59) he indicated that the right-hand sides of these equations were zero. 

Operating on this assumption, the present authors were led to the conclusipn 
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that the states lim t-+ oo lj; >.'<af3 in (t) I vac > and y;':'a in y;':'f3 in I vac) 

were orthogonal. Since this could not be reconciled with the fact that 

these states are identical, a more careful evaluation of the argument given 

by Zimmerman was found necessary. 

The difficulty involved is partially one of interpretation. The second-

order time derivative of a time-ordered product involves delta functions and 

their derivatives. One consistent mathematical, interpretation of such func­

tions is in terms of distribution theory. 
8 

A distribution is a sequenc'e of 

good functions. Good functions are functionswhich go to zero faster than 

any power and are differentiable to all orders. With such an interpretation 

it is correct to say that the right-hand sides of Eq. (57) and (59) are zero. 

However, because of the presence of the good functions, the contributions 

from the end points also vanish and one is led to the empty relation that 

zero equals zero. It is clear that one does not wish to use distribution 

theory. 

It might seem that a similar objection could be made to the deriva-

tion given here. This is in fact not true, for the delta functions implicit in 

our derivation were used as a shorthand notation. That is, in the sequence 

+oo 

Aout B(t")- B(t') Ain = 1 dt a: T (A(t) B(t'~ = 

+oo 

= L dt T~a~:tl B(t'l) + [A(t'), B(t'l] 

the ambiguous middle term correctly joins the well-defined expressions on 

the left and right. For a completely clean mathematical statement of the 
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content of Eqs. (57} to (60}, one should consider the identities 

r dt r dt' 
-00 -00 

T (BA(t} aB(t 1
) _\ = 

\Bt at' ) 

and 

[
+oo dt'rdt T(aA(t} aB(t')\ 

at at 1 
) 

-00 -00 

T ~aA(t) 
\. at 

a B(t) 
at I 

aB(t') 
at I 

C(t")) 

c (t ")) . 

(61} 

(62} 

The existence of A t' A. , B t' and B. guarantees the correctness of ou 1n ou 1n · 

these relationships, and the evaluation of these integrals provides a precise 

meaning to the equations we use. Nevertheless, we shall use Eqs. (58) and 

(60) as a convenient mnemonic 9 It might also be remarked that Eqs. (57) 

and (59) are valid for finite regions t 2 ...,... t, t 1 ""'"" t
1 

and that they then yield 

results which are trivial. 

Let us now apply these equations to specific examples. Consider 
,., 

A(t) = lj; (t), B(t) = lj; '~ (t}, C (t) = lj; (t). Then Eq. (58} yields 
a ~ a 

+oo 

[>!>a out' >~>*~out] - [>j>a in' >~>*~in]= 1~ dt a
8
t 0 a~ = O. (63) 

Using this result to simplify the left-hand side of Eq. (60), we obtain 

::: 

>:~ 

Similarly, by letting C(t) = lj; (t), we obtain 
'{ 

(
0 lj; (t II)) 

a!) '{ 
::: 0. (64) 
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(6 5) 

Since the operators Lj; (t) and Lj;':' (t) form an irreducible operator ring, 
'I 'I 

Eqs. (64) and (65) imply that [LJ;a. out' Lj;':'f3 out] is a c-number and hence 

equal to its vacuum expectation value. We thus obtain 

(66) 

It is easy to demonstrate 

(67) 

That is, the one-particle in and out operators satisfy free-field commutation 

relations. 

Let us now apply the same technique to the two-particle in and out 

operators. That is, let A(t) = LJ;a. 2 (t), B(t) = Lj;':'f3
2

(t) and C(t) be successively 

Lj; (t) and Lj;':' (t). It is convenient to examine first the equal-time commutator 
'I 'I 

-} [Jru,_ dy_ $ * a 2 (><:, y_ t) ~ i><:t) Hy_t). 1 dz dw ~ * (zt) ~ * (wt) $~ 2 (z w t)] 

~ ]""- dy $ * a2 I><: y_ t) $~ 2 <><:• y_ t) 

+ 2 1 "'5_ dy_ d~ ~ * (><:t) ~ "(y_t) $ * a 2 (y_, ~· t) $~ 2 (><:, ~· t) 

~ b a 2, ~ 2 + 2 1 d><: dy_ d~- ~ * i><:tl ~ (y_t) $\2 (y_, ":• t) $~ 2 <><:· ~ t ), (68) 

where we have put the operators in a normal product order. It is now 

possible to estimate the asymptotic behavior of the second term on the 

right-hand side of Eq. (68). Because of the exponential drop-off for the 
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relative coordinate for the bound- state wave function, it is possible to 

replace~ by~· (~ + 'f_)/2 by~· etc. in the arguments of the wave-packet 

terms. We then find that this term behaves asymptotically like 

(6 9) 

and hence can be neglected in the integral. Proceeding in this way, it is 

then possible to show 

)::: 

[l\;a.2 out' l); ~2 out] = 0a.2, ~2' (70) 

10 * and so on. By letting A('t) = l);a.
2

(t) and B(t) = l); ~(t), one is led to 

(71) 

Similarly, all the commutators of one-particle in operators and two-particle 

in operators commute. 

and l); * . l); * P. • I va c ) a. 1n t-' 1n 

. * \ 
From this we conclude that the states l); a. 2 in I vac/ 

11 are orthogonal. 

If we had used Zimmerman's result it would not have been necessary 

to consider the asymptotic behavior of the commutator, and the operators 

':c >::;: 
l); 

2
(t) and l); P. • (t) would have been on an equal footing. 

a. at-' 1 n 
One would then 

be forced to the absurd conclusion that the states l); >:< P. • • I vac) and 
· at-' 1n 1n 

l);,:, . l); * P. • I vac) were orthogon.al. To see why such a conclusion cannot 
a. 1n t-' 1n 

be drawn, let us consider A(t) = l);a.~ in(t}, B(t}, = l);,:,a.•~• in(t). As before, 

the appropriate commutator [A(t), B(t)] is given by 

o 1 0Ar-u + o Alo 'P. + 2 jdx dy dz l);,:<(xt) l);(yt) <j>* 11'\ 1 . (y, z, t) <j> A . (x, ~. t); 
a.a. t-'t-' at-' a. t-' - - - - a. t-' 1n - - at-' 1n - -

when the asymptotic value of the. second term is examined, one obtains terms 

of the form 
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fx f* (_><_t) "!a (xt!!Jy_ J* ~,(y_t) I (yt) jz I\, (zt) /~ (z, t). 

This term behaves like a constant and therefore contributes to the integral. 
12 

Hence the commutators in question are not c-numbers, and the commutators 

* 
[waf3 in, in' lj; a 1f3 1 in, 

>:< 

in] and [~ af3 in, out' lj; a 1f3 1 in, out] 

are not equal. The operator lj; nA . t is the limit t - +oo lj; A . (t). 
""~-' 1n ou at-' 1n 

It can 

be expressed simply in terms of lj; 1 t lj;A 1 t and the S matrix, which we 
a ou t-' ou 

will now discuss. 

V. REDUCTION FORMULAS AND THE S MATRIX 

It is now possible to define the S-matrix in the usual way as the inner 

product of the in and the out states. Thus, a typical S matrix element is 

given by 

< a 1f3 1 out, f3a in) = S(a 1f3 1
, f3a). (72) 

One can calculate such an S-matrix element by techniques similar to 

those used in relativistic field theories. We consider 

I dt (a' out, f3a in) - (a', 4;!3 1 out' f3a in). 

in' 

(73) 

After simplifying the left-hand side and rearranging terms, one gets 
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S(a 1f3 1
, f3a) = 6 

aa 1 

too 

i L dt j dxy <a' I /* ~, (xt) 4> * (yt) V (.><c- y) 4>(yt) .; (.><ct) I ~a in) , (74). 

Expressing this in terms of wave functions, we get the familiar result 

S(a 1f3 1 , f3a) = {a1f3 1 in, f3a in)- ~· .r· (yt) f* rt (.><ct) 

+ {:' 1(xt) (:'P.,(yt)\ <j> P. . (xyt) V(x-y ). 
a - t-' - J at-' 1n - - -

(75) 

It should be c}ear also that the techniques developed here can handle 

the question of rearrangement collisions very naturally. We do not intend, 

however, to add to the already extensive literature on this subject. 
13 

The extension of this method of evaluating S-matrix elements to 

systems with many particles is straightforward. One can in such cases 

get a rather rich variety of equivalent expressions for the S-matrix elements 

by performing the reductions in different ways. 

VI. CONCLUSIONS 

We have already adequately discussed the question of determining 

the commutation relations for the various in and out fields. The net 

effect is that the theory is described by a set of independent free-field 

operators ~ · ~ 
2 

. , ~ 
3 

. . .. and their Hermitian conjugates. 
14 

a 1n, a 1n a 1n 

The theory can also be described in terms of the out operators, and the 

physics iis introduced by trying to find the relationship between the in and 

out descriptions. 
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Our introduction of the bound- state in operator differed in some 

ways from the approach developed by Zimmermann. We will now discuss 

these differences and why we were obliged to proceed as we have. 

Zimmermann introduces an operator analagous to 

(76) 

with its associated current 

i a l)J ( pt) ~: J ( p t). at a2z- a2z -
(77) 

<:;
1
onsider now the matrix element 

')'"' "'<: 

I a2(R, t) cp ,,j32(_e) r~2(Rt). 

(78) 

This matrix element has an oscillatory time dependence given by the factor 

exp [i(EI3
2 

- Ea
2

)t]. In Zimmermann's paper he considered the special 

case in which there is only one bound state and hence E aZ = E
132

. For this 

special case the oscillatory part of the current disappears, and one can 

expect that the remaining matrix elements of the current go to zero 

sufficiently rapidly at large times to justify the introduction of the in-out 

operators. His procedure, however, is not readily extended to the case of 

more than one bound state. It is our opinion that the interpretation of such 

oscillatory integrals with the aid of an "adiabatic" cutoff procedure is not 

valid mathematics and is violently out of keeping with the gener?l techniques 

adopted here. This is particularly true since the energies Ea
2 

and E
132 

d . t 15 are 1scre e. 
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If, for the special case of one bound state, we followed Zimmerman 1 s 

procedure, we would introduce the in operator lj; 
2 

. (p), which is 
a z 1n -

related to our lj; 
2 

. by 
a 1n 

Zimmermann would then eliminate the dependence on E. by dividing both 

sides of the equation by <j> a
2 

(_e). Since this is a nonlinear operation, it 

(79) 

makes subsequent manipulations very difficult. Our procedure has been to 

multiply both sides by <j>~" a
2 

C.e_) and integrate over E.· This has the advantage 

that it is a linear operation and that because of the orthogonality of the <j> 1s, 

the unwanted terms exhibited in Eqo (72) all drop out. 

Nishijima 
16 

follows a somewhat different technique, although he 

eliminates the internal coordinate dependence by a procedure similar to 

ours. However, he does not find it necessary to impose any restrictions 

:::< 
other than normalizability on his function <j> 0 Although we have not been 

able to understand clearly the relation of Nishijima 1 s procedure to ours, 

we believe he also will have troubles with Eq. (72) when there are several 

bound states 0 

The general lesson to be learned from the above remarks seems 

to be that, except for the special case of only one bound state, it is necessary 

to have some knowledge of the internal wave function before it is possible 

to define in- out operators. The properties of the wave functions which have 

been most useful are their completeness and orthogonality. The complete-

ness relation can be deduced by taking the vacuum expectaticn value of the 

operator identity 



UCRL-8595 

[~ (:><_', t), [;\> (y't), 4> * (yt) ~ * (:><_!) 1] • 6 (x-x') 6(y_-y') + 6(:><_-y') 6 (:><_'- y). 

(80) 

The orthogonality relations can be obtained by noting that for matrix 

elements between two-particle states the operator 

(81) 

is equivalent to 2! . 

The first 'expression ('Eq. 80) can be taken over directly for 

relativistic fermions, and the second has its analog because of baryon 

conservation. The consequences of Eq s. (80) and (81) are much more 

diffic~.lt to ascertain for the relativistic problem, because the baryon 

number operator has negative as well as positive eigenvalues. For example, 

in the nonrelativistic case the only term that contributes to Eq. (80) is 

( vac, lj;t(;t(;*lj;>:' vac) , whereas all orderings contribute for the relativistic 

problem. 

If it is desired to use Eqs. (80) and (81) in a relativistic problem, 

then one is led to consider equal-time wave functions, 

( vac, lj;(~t) lf;(yt), a2) 

Although this seems a highly nonrelativistic procedure, it is not 

necessarily undesirable. Hall and Wightman
17 

have shown that for a 

relativistic problem, the matrix element 

(82) 

(83) 

can be determined if the matrix element with equal times is known. They 

could prove such results for matrix elements with up to four operators. 
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In their proof they used only such properties of the theory as restrictions 

on the permissible spectrum and causality requirements. For the nonrelativ­

istic problem, a similar result is true with any number of operators. In 

proving this it is necessary to use the equations of motion. It is not un­

reasonable to hope that a similar result might be true in the relativistic 

problem. In any case, for the two-baryon problem, Hall and Wightman's 

theorem guarantees that no information about the system is lost by consider­

ing the equal-time wave functions. 
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APPENDIX 

Wave Packets 

The wave-packet functions f (x, t) can be determined in terms of 
a-

any complete and ort_hog_onal set of functions J a(~, 0 ). A suitable choice for 

the j (x, 0) would be, for example, the solutions of the harmonic-oscillator 
a-

problem. 

where 

The functions J (xt) are then defined by 
a-

Jn(:>O,t) = jdx' H(:>O-:>O',t) jn(:>O',O), 

H(x,t) = (2nf 3 jd!5.ei!5.·:>5c- ikzt 

. ( 2 ) . r ~ 1T 

= ~ (nt)-3/2 / 4t - 4 . 

(AI) 

(A2) 

(A3) 

It is easy to see that the orghogonality and completeness conditions imposed on the 

wave packets are time-independent. The asymptotic behavior of the wave 

packets is now easily determined. Neglecting constant factors, we obtain 

/'> 

2 
. x m 
llt 

e J~· exp 

ix 1 
mx 

t J (x'O) 
a-

(A4) 

(AS) 

where J is the Fourier transform of J (x, 0). The dependence on the mass 
a a-

is indicated. The asymptotic behavior is easily understood. The probability 

of finding a particle at the point~· tis proportional to the prorability that 

the particle initially had the correct momentum to get to the point :?5. from 

the origin in a time t. Because of the dependence on ~/t, the wave .-:>acket 
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spreads out, and the over- all time dependence compensates for this 

spreading out in such a way as to permit the conservation of probability. 

The oscillatory dependence is necessary to insure that the local expectation 

value of the moment operator asymptotically approaches m~t. 

Similar expressions for bound- state wave packets can be obtained. 

It is necessary only to replace the mass m by the total mass of the bound 

state and to multiply by an oscillatory term exp (-i E t). Since in any 
an 

matrix element the total mass in the initial state must equal the mass in 

the final state, the strongly oscillating phase depending on x
2 

/ t always 

cancels; it therefore does not contribute to the reduction of matrix elements 

at large times. 



-30·- UCRL-8595 

REFERENCES AND FOOTNOTES 

1. Lehmann, Symanzik and Zimmerman, Nuovo cimento l, 205 (1955). 

2. R. Haag, Phys. Rev. 112, 66 9 (1958 ). 

3. W. Zimmermann, Nuovo cimento 10, 597 (1958). 

4. L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1959) 

pp. 336-348. 

5. That is, matrix elements of 4; must be twice differentiable with respect 

>'< 
to its spatial coordinates, and the matrix elements of the 4; '4;4; term 

must be such that the integral exists. 

6. We indicate a time dependence for the number operator although in the 

context of this paper the number operator does not depend on time. 

However, in a formulation where the state vectors are not normalizable 

(plane wave states for example) it is possible to base the theory of 

the S matrix on the time dependence of N(t). This is the usual procedure 
. 

since N(t) is expressible in terms of the flux operator. In the 

formulation adopted here, contributions from spatial surface terms 

are eliminated, but it becomes necessary to consider surface 

contributions to the time integrations. 

7. The estimate thus obtained can easily be seen to be valid for the con-

tribution to the matrix element from a region of space where ~-y_ is 

restricted to a finite volume and the center-of-mass coordinate inte-

gration goes over all space. 

8. M. J. Lighthill, Fourier Analysis and Generalised Functions (Cambridge 

University Press, 1958). 

9. It is clear that a second consistent mathematical use of the delta 

function is as a mnemonic. 



-31- UCRL-8595 

10. The commutation relations given by Eq. (66) and the statement that the 

in operators correspond to free-field operators can be put in a more 

familiar form by introducing the operator lj;. (x, t) = ~ J (x, t) lJ; .• 
1n - a a- a 1n 

In a similar manner for bound states it is possible to introduce an 

operator lj;E . (xt) = ~ J (xt) lj; . corresponding to a descrete 
1n - · an an an, 1n 

internal energy E. The sum over wave packets corresponds to a sum 

over those wave packets associated with the energy E through an 

equation such as Eg. (33). The operators thus introduced satisfy 

free-field equations and the usual free-field commutation relations. 

11. Similar results hold for Fermi statistics. Thus we may consider the 

set of in operators corresponding to one-particle states and to many-

particle bound states. These operators may be divided into two classes 

corresponding to association with states having an even or odd number 

of particles. It is then found that the even operators commute with the 

odd operators. The set of even operators satisfies free-field 

commutation relations. The set of odd operators satisfies free-field 

anticommutation relations. That is, the set of operators behaves 

like a set of independent free..ofield operators with the even operators 

corresponding to bosons and the odd operators to fermions. Relations 

analogous to Eqs. (57) and (59) may be found, but one must consider 

separately the various possible combinations of even and odd 

operators. 

12. That is, at t - - oo it approaches one constant, and at t - + oo it 

approaches another constant. There is then a contribution to the 

integral equal to the difference of these two results. One can carry 

this process through in detail and show that the result is consistent 

with lim t - oo .1. (t) - ,1, ,1, 
- '~'a.f3in -'~'ain'~'f3in' 



-3 2- UCRL-8595 

13. For an excellent discussion of scattering theory and in particular of 

this question, see K Gerjuoy, Annals of Physics 2_, 58 (1958). 

14. Thus the operator l(! (xt) can be expressed as a sum of normal products 

15. 

of in operators and the coefficients are readily determined once all 

the matrix elements of Lj;(xt) are known. Also the constants of the 

motion are readily expressed in terms of either the in or the out 

operators. Thus, the Hamiltonian is a sum of free-field Hamiltonians 

* 1 * and the number operators is N ~~ ~ l(! l(! + - ~ l(! l(! 
a a in a in 2 a2 a2 in a2 in 

+ ... 

Since such a procedure would introduce o(E aZ-Ef3
2

) and for discrete 

energies, this has no happy interpretation. 

16. K. Nishijima, Phys. Rev . .!l..!_, 995 (1958). 

17. D. Hall and A. S. Wightman, Kgl. Danske Videnskab. Selskab, 

mat-fys Medd. 31, paper No. 5 (19 57). 

Information Division 
br 


