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ORBIT DYNAMICS IN THE

*SPIRAL-RIDGED CYCLOTRON

Lloyd Smith and Alper A. Garren

Lavrrence Radiation Laboratory
University of California, Berkeley, California

January 12, 1959

ABSTRACT

.,;
o

Formulas are derived for the equilibrium orbit, isochronous condition,

vettical and horizontal betatron frequencies, and for the effects of the 3/3

radial resonance in a three-fold geometry. The magnetic field is represented

by a Fourier series in azimuth with amplitudes expanded in a Taylor series about

the reference radius. The form is such that the various parameters may be

deduced from an arbitrary set of field measurements in the median plane and the

results obtained by direct substitution in algebraic formulas.

*
This work performed under the auspices of the Uo So Atomic Energy Commission .



:~ "

'\



;

UCRL-8598

ORBIT DYNAMICS IN THE

SPIRAL~RIDGE CYCLOTRON

Lloyd Smith and Alper A. Garren

Lawrence Radiation Laboratory
University of California, Berkeley, California

January 12, 1959

INTRODUCTION

There exist in the literature numerous reports on the analytic description

of particle motion in magnetic accelerators with azimuthally varying fields. However,

there seems to be none in which the specific case of a medium-energy cyclotron is

treated in enough detail to yield quantitative conclusions starting, say, from a

set of magnetic-field measurements. In this report are developed explicit formulas

for isochronism, betatron frequencies, and the 113 resonance in the radial motion.

The magnetic field in the median plane is represented by a Fourier decomposition

in angle with amplitudes expressed as power series in radius. The results are

carried only to terms quadratic in the azimuthal variation, but exact in the

number of sectors except for the vertical betatron frequency, which is treated by

the smooth approximation.

MEDIAN PLANE EQUATIONS OF MOTION

We start from the equations of motion in the median plane in which e

appears as the independent variable:

., dr
"'"d'e r tan a ( 1)

do:a:e- := 1 - rll(r, e) sec a .

\

Here a is the angle the orbit makes with the tangential direction, and Il(r, e)

is the curvature of the orbit:
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f.!(r, e) ::::
e

m c v
H (r, e)

z

For the variable, r, we substitute

where

r

is the radius at which the azimuthal average of f.!

( 4)

is appropriate to

the given particle momentum, i.e.,

I

Then f.!(r, e) is expressed as a mixed Fourier and power series:

co
+ l.:

I
a cos n e + b sin n e ]n n

co
+ x L:

I

+ )

2 cox
a'n cos n e + bIn sin n e] + ~ r all cos n e + btl sin n e ]

n n

( 6)

d d Iwhere primes denote (l;{:::: r O -a.r-- . '
r::::r

O

Although the derivatives of the average field should be small (~~2, ~4) for a

low-energy cyclotron, they will be carried as zero-order ~uantities until the

final steps. The expansion (6) is sufficient to include all contributions to

frequencies ~uadratic in the a.zimuthal variations and all contributions to the

nonlinear 3/3 resonance driving terms which are linear in the azimuthal variations.

c·



To the same approximation, the equations of motion can be written:

dx
d-. ::::de a + ax +

(8)

owhere Z, Z' , and Zit are abbreviations for the Fourier series and its first

.r

and second derivatives in x.

EQUILIBRIUM ORBIT ~ ISOC£ffiONOUS COND ITION

The equilibrium orbit can be obtained by successi.ve approximations in the

flutter. To first approximations, with . x :::: xl' and a = a l , vl"e have

and

( 10)

with the periodic solutions:

a cos n e + b sin n e ]n n

00 1
E
1 2

~(1+fJ.')n

00

t n
2

1 n (1 + fJ.,)
a sin n e

n
b cos n e ] 0

n

(11)

( 12)

The differential equations for the second approximations are:
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( 14)

1The solution of (13) and (14) is straightforward but cumbersome to write. The

only feature of significance to the present work is that x2 (but not (
2

) has a

nonzero average value in e :

1
00 1x2 2( 1 + fl')
E 2 {(a a' + b b' )
1 -(l+fl') n n n nn

2 n2
- 1

flit

bn
2

) }

+- 2·2 2 (a+ 2 +
(l+fl') nn -

I

We are now in a position to compute the length of the equilibrium orbit to second

order. The path length is:

L J ds
2rc

r O J de
o

( 16)

From Eqs. (12) and (15), we obtain

fll) - 2 + flit

-(l+fl')

+ 2 [ a a 'n n
+ b b ' )].n n

(17)
1

The complete second-order solution is given in Appendix 1,
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The second term in the bracket is, of course, d 2 + b 2 ] that is, roughly- [ a ,dx n n

the rate of change of flutter with radius. The correction (17) tends to be small,

.- but not negligible. For example, if there is only one Fourier component present,

representing a number of sectors n = N > > 1, and of amplitude independent of

radius,

= ( 18)

where F
2

is the conventional "flutter factor" (mean square variation in field

at r r o) •

For F2 ,--..../ 0.02, N = 3, the correction is two parts in a thousand for

isochronism.

To the extent that (17) is independent of small changes in the average

magnetic field and can be regarded as a given function of r O' the prescription

for the variation of average field with radius for isochronism can be obtained

as follows:

(J) = 2rcv
L 6L

mC(l + L )

eH(ro)
6L

mOc(l +:r

(20)
{ 1 _ [=o(~ + ¥) J2 } -1/2

where rnO is the particle rest mass. For (J) independent of radius, Eq. (19)

determines H(ro):

or, approximately,

moc (J)
__ [ 1 + 6L + l [32

e L 2
(21)
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The coefficients in the expression of the avera.ge curvature in (6) may

be obtained by differentia.ting (20). Neglecting ~ for this purpose, we find:

I-L'
raH
II dr

2
== P

)+ 2
3p (3 + 5p )

where p is the momentum in units of mOc.

VERTICAL BETATRON FREQUENCY

(22)

Since the frequency of vertical oscillation will always be small compared

to unity, the smooth approximation should be adequate. The linearized vertical

equation of motion is2

wher~ s is distance measured along the equilibrium orbit, and ~ is the

derivative with respect to the outward normal of the curvature of theequilibritun

orbit. To sufficient approximation, we have

1 ~. cos 0: _
r

O
ax

sin 0:

I'

----------_.---
2

+ L;' + + X L;" 0: d r,0
1 - 1 de •

See, for example, E. D. Courant and H. S. Snyder, Annals of Physics L' 1 (1958).
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In the smooth approximation formulas for the frequency of a linear

oscillator described by the equation

we include the terms:'

( g )
2

+ 4 ( g )( ~ ) (26)

It must be remembered that the brackets denote averages with respect to s; the

full result is

I 00

+ '2 L:
1

I <X)

-"2 L:
1

1 00

2 1.':
1

2
n -

1J.1'
1 - 1 ,]+ IJ.

a a" + b bil

n n n n
2

n .. (I+IJ.')

2(e.
n

(a a' + b b' )
n n n n

+ b' 2) ,
n

where some small terms in 1J.,2, etc. have already been dropped. 4

By the use of

I -~(a 2a a' + b b' = -n n n n 2 dx n

----~-----=-

(28)

, For notation and derivation, see L. C. Teng, Rev. Sci. Instr. 27, 1051 (1956).

4
The result without simplifications is given in Appendix 2.
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a a" + b b"n n n n
(a' 2 + b' 2)

n n

and if we neglect [1' , [1" compared to unity, Eq. (27) becomes

a' 2 + b. 2 a' 2 + b' 2
'))2 F2 00 1

ex)

-[1. ~
n n

!: n n
+ + 2 + 2 4z

1 1n n

,

C30)

ex)

where F2
::: l E (a 2 + b 2), the flutter factor.

2 1 n n

The effect of a spiral angle is exhibited more explicitly by writing the

Fourier components in the form

a (r) cos n e + b (r) sin n e ::: A (r) cos n [ e .. JO. (r) ] . (31)n n n n

Then we may write

a (r) ::: A (r) cos n JJ: (r)
n n n

whence we have

b (r) ::: A (r) sin n § (r),
n n

a 2 + b 2 ::: A 2
n n n

and for Eq. (30)

and a' 2 + b' 2 ::: A' 2 + A 2 n2 ¢, 2 ,
n n n n n

ex) 00 A 2 tan2 y
2 A 2 2 1 n n

-[1' + F + ~ tan y + 2' !: 2·
1 n n 1 n

ex)
1 + 1 )A' 2+ ~ ( -2" 2n4 n1 n

ex) A 2

Z n ( 34)
n2

1
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d - ( )where tan '1 = r -d~ r;n r n i.e. , '1n is the spiral angle of the ~th Fourier

component. If there is only one harmonic, n = N, present, Eq. (34) reduces to:

2 2 F2 2 A,2
-~' + F (1 + 2 tan '1) + -- tan '1 + ~ (1

N
2 rP

1+ -)
2N

2

A 2
n

Any of the smaller terms in Eqs. (30) or (34) may be significant since one

generally attemp"Gs a near cancellation of the dominant terms in order to minimize

flutter and spiral requ~rements.

RADIAL BETATRON FREQUENCIES

The radial frequency will be close to unity, so that the phase advance of

the oscillations per sector will be quite large in the cases of interest. Instead

of the smooth approximation, we shall use a method designed to give the correction

to the frequency from unity, exact in the number of sectors and quadratic in the

field variations. The first step is to linearize Egp (7) and (8), that is,

replace and retain only terms of first order

in £

x by x + s and a: by a: + '1\eq eq

and ~ • Equations (7) and (8) become: .

and

+ x '1eq
2

+ a: '1eq

_~ (1+"')£+2("'+~2")x £+(!:o+E')£+a: 'I"l+(l+~f) [ 21:+2x a: 'I"l]de r- r- eq eq'l 2 D:eq S eq eq'l

1 0 ,,"I 2 3"" 2+ 2 x r:: [E' + - !:"] + a: on 2: + r- X r:: + r- X I:eqs 2 eq'l '""2 eq ~ '""2 eq!> ,
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where x (8) and a (8) describe the equilibrium orbit. If we change variableseq .eq

once more, replacing ~ by

:rc = Tj[l-1: a 2
2 , eq , (38)

the variable :rc is directly related to the radial component of momentum, and the

equations take on a more symmetric form: '

dde~ = n:[l+x +.2 a 2, + I:aeq 2 eq d !O eq

d:rc
- de = n: a + ~ [(1 + Ill) + (21l' + IlII)X + r..0 + ZI + X (2r.. 1 + L:")eq eq eq

1 2
+ - (1l'/1 + .31l1l )x ]2 eq

( 40)

These equations of motion follow from a Hamiltonian:

( 41)

Here the equilibrium orbit has been replaced by the first- and second-

order approximations of Eqs. (11), (12), and following, but retaining terms

only up to quadratic in the field variations. The Hamiltonian can be further

abbreviated by noting that oscillatory terms contribute to the frequency only

as the square of their amplitude, so that it is legitimate to drop the oscillatory

parts of terms already quadratic in the Fourier coefficients. Thus we have
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( 42)

where a bar denotes, as before, an average in azimuth.

Ti1e problem, then, is to determine the additional effect of, the oscillatory

first-order terms on the frequency. To this·· end we proceed by using a generating

function to establish a change of variable which will remove the first-order terms

from the Hamiltonian. Using a function of the old coordinate and new momentum,

we have

S(~, p, e) s p [ 1 + c(e) ]

and the relations

oS
q = op ,

The change of variables is

1C
?,JS

= df ( ~.4)

~ = q [ 1 - e + e2
] - p [ A- AC ]

1C = P [ 1 + e - AB ] + q [ B - Be ]

Equation (45) follows from Eq. (43) to second order if A, B, and e are first-

order oscillatory functions of e. The transf'ormed Hamiltonian is

H'(q, p, e) H [ ~(p, q), 1C(p, q), e ] oS
+ de (46)
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The algebraic manipulation required to write out Eq. (46) explicitly is

rather formidable; what emerges is that if A, B, and C satisfy the relations

d.A
de = -x - 2 C1

and

dB
de -(21J.' + 1J.")x + 2(1 + IJ.')C - 2:.

0
- 2:.'

1
( 47)

dC
de = ( 1 + IJ. ')A - B - 0:

1
,

then the transformed Hamiltonian is free of. first-order oscillatory terms, and

takes the explicit form, correct to second order,

2
if = .£....

2 + 2 xlC + c2 ""2
(1 + IJ.')A

2
a IJ.'" + 31J."

+ 2" [ 1 + IJ.' + (21J.' + 1J.")x2 + 2 X1
2

+ 2 xiE' + X 2:."
1

"2
(1 + IJ.')C + q p [ xlB - (1 + f.J.' )AC + BC + 0:1C ]

( 48)

Equation (48) does not depend explicitly on e, and so represents a more or less

familiar simple harmonic oscillator. The square of the frequency is equal, in
2 2

the approximation considered, to the product of the coefficients of P2 and ~

..) 2
r

+ 2 x l 2:.'

"2 *2
(1 + IJ.')A + B
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The coupled E~ (47) can be solved readily enough (see Appendix 3).

Finally, if we regard ~') etc., as small, Eq. (49) becomes

-:) 2 ==
r

3 00
1 + "I + 'l:',.. '2~"

1

:2
n

2 2
(n - l)(n - ~-)

(a :2 + b 2)
n n

1 d 00 5 n2 _ 8
+4dx>: 2 2

1 (n 4)(n 1)

2 2(a + b )n n
d2ooa2+b2

1 n n

+ "4 d:l i n2 _ 1

00
3

+ '2 :E
1

22
a l + b l

n n
-;-r- 2
(n - l)(n - 4)

or in the form of Eq. (31),

-)2
00 n2 A 2 00 2

1 + ~I
3 !: n 1 d

E
(5n - 8) A 2== + '2 2

1)(n
2 + 4" dx 2 2r

1 (n = ~.) 1 (n - 4)(n - 1)
n

d2 A 2 2 tan
:2

1 00
1

00 n I'n A 2I: n :E+ "4 '-'" +
dx

2 2 2 :2 2 n
1 n - 1 1 (n - l)(n - 4)

A I 2
~ 00

+ -2'/ ~~ n2-'-~2~--

1 (n- - 1)(11.- 4)

The net gain over the smooth approximation lies in the explicit appear-

ance of the factor 2(n - 4), introduced by the generating function. For

three-fold symmetry, several iterations of the smooth approxime,tion would be

required to reproduce these terms as a power series in 71N.
Values computed from Eqs. (50) and (35) for the vertical frequencies

have been compared for three-fold and four-fold measured field with the values

obtained from the MUM "Ill-Tempered Vii 704 code, indicating agreement

satisfactory for practical purposes. (~le hope to write a later report comparing

such results in detail.)
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RADIAL INSTABILIIJ.Y

We shall consider specifically the radial, nonlinear 3/3 resonance, which

arises in and is commonly believed to be a major objection to a three-fold

geometry.

In order to trea.t this problem it is necessary to adjoin to Eqs. (36) and

(37) the terms quadratic and cubic in g ana. 1) and attempt to solve the

resulting equations. Since the linear problem alone y'ields a motion which

contains the periodicity of the r~,gnet structure as well as the slower oscillation

of frequency given by Eq. (50), additional nonlinear driving terms arise from

this self coupling. It is therefore more convenient to start from the transformed

Hamiltonian, which describes a pure oscillation, and add to it the relevant

non-linear terms. If the Hamiltonian (48) be denoted now by HO' then the total

Hamiltonian, ~,turns out to be

I 2 I ::5 IJ." 2
+ 2 (1 ~ C)q P - 2 Ap + [ B - (IJ.' + ~ )A ] q P

+ l:'

where A, B, and C are the functions of e in the linear generating

function (43). For solving the nonlinear problem, we shall follow the method

of "variable constants'" that is, let

q a (e) sin [y G + 1\r(e) ]
r

ana.

p :::: a (e) cos [ y e + 1Jr(@) ] ,r
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setting Yr = 1 except where it appears in the argument of trigonometric

functions. In the equations of motion, now for the amplitude, a , and the

phase, *, only terms are kept which will contribute either to the nonlinear

driving force or to a dependence on amplitude of the natural frequency. Thus,

from Eq. (52), we obtain

cos ( .,) e + 'if) + 3 cos 3( ') e + 'If) ]
r r

,

and

+ ().4
2

{[ l 2::" + EI + -23 (fJ." + fJ.11I )x _.2 c ] cos 3( y e + 'If)
2 312 r

+ ~ [ a1 - A - 2B J sin 3( Yr e + V) }

3 2
+Ib Ul

+ sin 3( -J. G + 'If) ]
r

.(1
- -4

(56)

The first term on the right in Eqs. (55) and (56) is the largest, but

because it oscillates rapidly it contributes only in a higher order and only

affects the frequency [~~] 0 In the present case, the higher-order

contribution unfortunately serves to cancel the last term on the right side of

(56), so that to the approximation used, there is no dependence of frequency on

amplitude. The second members of Eqs. (55) and .(56) contain the driving influence
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of the resonance; the third harmonic component of the bracketed oscillatory

functions combines with the sine and cosine of 3 Yr 6 to produce trigonometric

functions whose phase varies very slowly, giving rise to the possibility of phase

locking and slowly accumulating changes in amplitude. If we keep only these

secular terms, Eqs. (55) and (56) become:

a 3 ] cos [ 3( Yr - 1)6 + 3 *]

[b" + 5 b i + 3 b ] sin [ 3(..Jr - l)G + 3 jr ]1
3 3 3 J

and

where a3' b
3

, etc., are the field components first defined

Recalling from Eqs. (31) to (33) that a 13' ali 3' b i 3' and

+

{ [ ,& "3 + 5 &' 3 + 3&· 3 ] sin[)( Yr - 1)6 + 3 jr

b" 3 + 5 b' 3 + 3 b
3

1 cos [ 3( ,)r - 1)0 + 3 jr J}
in Eq. (6).

bit

3
include not

only amplitude variations with radius but spiral angles as well, it is apparent

that the magnitude of the driVing force depends on an algebraic combination of

almost all the magnet characteristics; i.e., flutter, spiral angle, rate of

growth or decay of flutter, rate of change of spiral angle, and so on.

The system of Eqs. (57) and (58) can easily be integrated once. lJ.'he

result is:

{ [ ,a "3 + 5 ,& '3 + 3& 3 sin [ 3( Yr - 1)6 + 3 jr ]

+ [bll + 5 b ' + 3 b ] cos [ 3(..) - 1)e + 3 * ]] -2("/ -333 r 2 r
21)a. == const.

(59)
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Equation (59) is of the form

0-3 D sin X = + const. , (60)

where D is the square root of the sum of the squares of the bracketed

coefficients and X the phase shifted argument of the trigonometric functions.
;J -1

rThe problem is really characterized by a single parameter, namely D'

the ratio of the deviation of the linear frequency from unity to the amplitude

of the driving force. It is convenient to rewrite Eq. (60) as:

sin X =
24( Y - 1)

r
D

1 const
a + 0-3

(61)

Figure 1 shows a sketch of Eq. (61) for various values of the constant.

Since Eq. (61) is an integral of the motion, the succession of values of Cl and

X which an individual particle takes on are constrained to follow the curve

on which it starts. It can be seen that there are two classes of orbits, those

with initial conditions to the left of the heavy curve are bounded in

amplitude, while all others lock into phase X = 0 with indefinitely growing

amplitude. The maximum amplitude of the bounded region is, from Eq. (61),

0-max +

l6( Y - 1)
r
D

, (62)

,.-

and the maximum amplitude for which the motion is bounded regardless of initial

phase is

amax
10-
'2 max +

(63)



Amplitudes less than a
max -

under the action of the driving force.

be put in a neater form:

UCRL-8598

are bounded, but might as much as double

With the help of Eq. (62), Eq. (61) may

sin X 3
= 2 [-~Ctmax +

-1
] -} canst. [ _....f:!_

Omax +

-3
] (64)

Figure 2 shows a plot of Eq. (64) for a few vaJnes of the constant,

plotted this time in terms of particle displacement and slope by re-introd~lcing

Eqs. (53) and (54). The angular orientation of the figure is not fixed; it

depends on the relative size of ~he bracketed terms in Eq. (59).

For a given magnetic field, O-max _ ' Eq. (63), can be computed from

field measurements. If it is comfortab~W large, one may feel safe from resonance

troubles. If the amplitudes expected in the machine fall in the unstable range,

all is not lost, for the rate of grmvth of amplitude may be sufficiently slow

that in the finite time for acceleration no substantial harm is done. The rate

of growth may be overestimated from Eq. (57) by choosing the most unfavorable

phase of the trigonometric functions, which is the one into which the phase will

eventually lock (see Fig. 1). Fjquation (5'7) becomes

da,
dn

21f deL
~ ----dEl

2TaD

where D is the driving anlplitude of Eq. (60), and n is the number of turns

in the cyclotron. The fractional amplitude increase per turn is then

aD ( 66)

For example, an amplitude of one-fourth inch at a radius of JD inches means

/} 1
L/L=40 For D N 2, Eq. (66) gives
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A more precise evaluation of the seriousness of the effect could be

obtained by returning to Eq,s (57) 8,nd (58) and letting the machine parameters,

and V ,vary with e to represent the variation of the driving force with
r

changing equilibrium radius. This would require nmnerical integration of

Eqs. (57) and (58); for the effort involved. it might be almost as simple to

compute exact orbits including energy gain. We would prefer this approach,

relying on the analytic expressions of this section as a guide in understanding

the results of numerical work.

Finally, we give the parameters in the driving terms in the alternate

form (32):

a f.3 = Af3 cos .3!1 - .3 A
3

tan y sin 31

"a .3
2

A"?; cos 3 ff - 6 Af." tan r sin 3:) = 9 A7j tan y cos .3 $
~ , ~

+ .3 A.3 [ tan 1(' ~ (tan r) f ] si.n .3 §

btl .3 = AIi .3 sin .3 J.rO + 6 Ai.3 tan r cos .3 if - 9 A.3 tan
2 y sin .3 jl

.3 A.3 [ tan y .. (tan y)' ] cos .3 § .



2The term 9 A
3

tan y in
Ii

a 3 and b"
3

UCRL-8598

is usually considered to be

the most important, but this may not be the case if, for instance, an increasing

or decreasing flutter has a large second derivative.
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APPENDICES

AI?l?end~ 1: Equ!!.ibrium Orbit

The complete first- and second~order formulas for the equilibrium orbit

ex + a
2

+
1

00 a. cos e + b sin n ez n n

1 n2 - (1 + ~,)

1

4(1 + ~I)
[2(a a' + b b ' )

n n n n

3n2 _2+ Illl 2 2
+ ~ (a + b ) ]

n2 _ (1 + ~,) n n

00
1 ,.. 1

+ 4" L. 2 2
n,m=l [n = (1 + ~I)][(n+m) - (1 + ~I)]

b b ' )n m
4 2 2 IIm + nm - . + ~ (+ - -aa-

2 (1 ,) n mm - + ~

b b )]cos(n + m)e
n m

4m
2

+ run - 2 + ~II+ [2( a b I + b a' ) + f) ( a b +
n m n m m~ ~ (1 + ~I) n m

b a) ]sin(n + m)e }n m

" 1 Cl) 1

+ t ~ [n2 _ (1 + ~I)][(n- m)2,.. (1 + ~~)]

r
~ [2( a a Y + b b' )l n m n m

4 2 2 II
+ [2( b a I _ a b I ) + m - urn - +-1:':. (b a _

n m n m 2 (1 ') n mm - , + ~

+
4m2 2 II- nm -_ + ~ (a a + b b) ] cos(n - m)en m n m

a b) ]sin(n - m)e]n m



+

+

X (anb", + bn am) ] cos(n + m)e

[(bn b'm - an a'm) + m2 -\1 + ~,) (~(41)12 + DIU - 2 + ~")

_m[(n+m)2_(1~\ (b b -a a)] sin(n+m)el
n+m ) n m n m J

{ [(bn a'm - an b'm)

+ [(a a' + b bY )n m n m

2_~in - ml: -
n- m

X (b b - a a)] cos(n - m)en m n m

2 .-1: (~ (4m
2

- nm - 2 + ~")
m - (1 + Il Y

)

(1 + H' n\ (a a + b b)] sin(n - m)e}
) n m n m
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Appendix 2: Vert.!9::.1 B~~ron Frequenc,r

The complete expression for is:

1
- '2

2n (a 2 + b 2)
n n

001 + I!' _ I!Ii
2( 1 + I! v)' !:

1

a a' +b b l

n n n n

n2 _ (1 +1-1')

00 a, a' + b b'
'1 'I:" n n n n+ I! ,{.;, .,-:...::--~-----"2 2

1 n [n - (1 + I!I)]

2

00 a a' + b b i

n n n n
Z ~- -,--
1 n [n

2
- (1 + I!')]

1 00
h
1

a ali + b b"
n n n n

2
n -(1+1!')

"

.'

(1!1I)2
2 b 2 00

2 b 200 a + 2
a +n n n n

+ I: = 21! ' (1!1i) E
l~[ 22 -2 2 2 2

1 n [n (1+[.1')] 1 n n - (1 -I- 1-1')]

1 00 1
(a'n

2
+ b'n

2
) - 21!'

00 1 (a' 2 b l 2)+
2

:E "2 I: J} +
1 1 n nn
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Appendix 3: Details of Calculation of Vr

The explicit solution of coupled Eq. (47) is:

A =
00 1

2 E
1 n

1 a' sin n El
n

b' cos n e ]
n

00 2 ( )+:E 3 n + 2 21J.~_+~IJ.;...".t- _

1 n[n
2

- (1 + 1J.')][n2 - 4(1 + IJ.Y)]
a sin n e

n
b cos n e ]

n

B b' cos n e
n

[ 1 + .'!J.L 'J-!!~

a Y sin n e ]
n

2
n - 2(1 + 1J.1)-····2'---·_··_-

n - (1 + fJ.')
cos n 8

c = a' cos n e
n

an sin n eJ

+ b' sin n El]n

_ ~ 1 [ 2~
2

- 2 + fJ. " J
1 n

2
- 4( 1 + fJ.1) n - (1 + fJ.')

a cos n e + b sin n e ]
n n

With these equations together with Eqs. (6), (11), (12), and (15) for

:E' , :E" , 0:Xl' l' and x2' respectively, the average values entering into ".

Eq. (49) may be computed. One then obtains for -}2
r

the complete second-

order e)~ression (we use the abbreviations
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n - 20_
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n - Cf
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n

+ -2 . 2 2 2
(n - 0 )(n - 40 )

3n
2

- 2 + f..l"

(n2 _ cr2 )2

2 2 f..lii
20 (n - 1 -I- "2 )

( 2· 2)2( 2 4 2-)n - 0 n - cr (

2 2 .) 23n + 2",
-~ 2 2 2
n(n - 40 )(n - cr )

00

+ ~ (a at + b b t )
1 n n n n

J

+
2 2

n - 20
222 2

(n - 0 )(n - 40 )

1 + 3f..l t + fill
- ~2 2

2cr (n - Cf )

1
+ ----2 2
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1- A..2 ~)
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FI&'URE CAPIJ;iIONS.

Figure 1: Plot of the function

for various values of Ko 'The lef't""rumd portion of the cUlrwe for

1K :::: '2 (heavy line) divides the sta.ble from the unsta.ble region"

Figure 2: Plot of' ViS 0

dx 0 0 OJ
the progression q:f' x and de at @1= 0 » 120 » e.nd 2110 ft the

bi! + ",>1- V ~,

1 -1 } /u ~
should be rotated clock.1tYise by an angle 3' tan [~}13 -I- 5:& I, +
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A. Makes any warranty or representation, express
or implied, with respect to the accuracy, com
pleteness, or usefulness of the information
contained in this report, or that the usc of
any in formation, apparatus, method, or process
disclosed in this report may not infringe pri
vately owned rights; or

B. Assumes any liabilities with respect to the use

of, or for damages resulting from the use of any
information, apparatus, method, or process dis

closed in this report.

As used in the above, "person acting on bPilal f oJ the
Commission" includes any employee or contractor of the

Commission to the extent that such employee or contractor
prepares, handles or distributes, or provides access to, any
information pursuant to his employment or contract with the
Commission.
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