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ABSTRACT

Formulas are derived for the equilibrium orbit, isochronous condition,
vertical and horizontal betatron frequencies, and for the effects of the §/5
radial resonance in a three-fold geometry. The magnetic field is represented
by a Fourier series in azimuth with amplitudes expanded in a Taylor series about
the reference radius. The form is such that the various parametérs may be
deduced from an arbitrary set of field measurements in the median plane and the

results obtained by direct substitution in algebraic formulas.
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INTRODUCTION

There exist in the literature numerous‘reports on the analytic description
of particle motion in magnetic accelerators with azimuthally verying fields. However,
there seems to be none in which the specific case of a medium-energy cyclotron is
treated in enough detail to yield quantitative conclusions starting, say, from a
set of magnetic-field measurements. In this report are develdped explicit formulas
- for isochronism, betatron frequencies, and the §/5 resonance in the radial motion.
Thé magnetic field in the median plane is represented by a PFourier decomposition
in angle with ampliﬁudes expressed as power series_in radius. The results are
carried only to terms quadratic iﬁ the azimuthal'variation, But exact in the
‘number qf sectors except for the vertical betatron frequency, which is treated by

the smooth approximation.

MEDIAN PTANE EQUATIONS OF MOTION
We start from the eqpations of motion in the median plane in which 6

appears as the independent variable:

gg = 1 tan - (1)
—%%-. = 1 -ru(r, 8) seca . (2)

Here o is the angle the orbit makes with the tangential direction, and u(r, 6)

is the curvature of the orbit:
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“(TJ 9) = P HZ(I', 9) ° (5) 0
For the variable, r, we substitute . .
r = ro(l + X) , (4)

where o is the radius at which the azimuthal average of p is appropriate to

the given particle momentum, i.e.,

ro’quO, ) = 1 . , ’ (5)

Then up(r, 6) is expressed as a mixed Fourier and power series:

e x2 XB 0o
_ ' n X VBt y .
T u(ro, ) {1 +p'x+yp 5t R % [ a cos n 0 + b sinn 6 ]

@ = @© ,
+ x%[a' cosn@+b' sinnd] + = % [a" cosné@+Db" sinn 6 ]
1 n n 2 3 n n

+ ... ), ‘ (6)
where primes denote L r -4 d2 =T 2 ,92_ ete.
dx 0O dr ? axe 0 ar ’
r=r, r=ro

Although the derivatives of the average field should be small 'Ov 62, Bu) for a
low=energy cyclotron, they will be carried as zero-order quantities until the
final steps. The exbansion (6) is sufficient to include all contributions to
frequencies quadratic in the azimuthal variations and all contributions to the

nonlinear 5/3 resonance driving terms which are linear in the azimuthal variations.
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To the same approximation, the equations of motion can be written:

5
d o
a% = a o+ oax o+ > (7)
L 4o (1 + p)x +5° + (p' + B )x2 +x(z° + 21) + gi + (1 + ')Egi'
w® " " A= 2 -
20 Low i sy L O 0 L ux0 v 3 \
+ x ( I+ % ) + R el (8)

o . . ; . .
where 7, %', and X" are abbreviations for the Fourier series and its first

and second derivatives in x.

EQUILIBRIUM ORBIT; ISOCHRONOUS CONDITION

The equilibrium orbit can be obtained by successive approximstions in the

flutter. To first approximations, with x = Xy and O = Q., we have
dx :
1
e - % (9)
and
dDﬁl o)
o — = 1
5 (1 +p)x, +5, (10)
with the periodic solutions:
0o 1 .
X, = by 5 [ a  cos n 6 + b sin n e ] (11)
1n" - (1 + )
? n
a = =% -3 [ e sinn6 - b cosno I (12)
I n” = (1 +p)

The differential equations for the second approximations are:



..5..
dx2
W@ C Y% T Hx (13)
2
dor
- —2 v 20,0 4 B L O . 5
35 = (1 + )x2 + X (' + 5 ) o+ 5= 4 xl(z + ), (14)

The solution of (13) and (14) is straightforward but cumbersome to write.® The

(but not ag) has a

only feature of significance to the present work is that Xy

nonzero average value in 6 :

- 1 0 0) 1 ' ’ '
X.2 [P i 5 5 (a a + b b )
2(1 + ut) 1 n° - (1 +p*) n n non

(an + bn2) . (15)

}
We are now in a position to compute the length of the equilibrium orbit to second

order. The path length is:

2

| 21t 5 ’ 2n oy
L = [fds = [ vdo V 1+ tan” « = r. [d9 {1 +=x, + %X, 4+ ~=— )
0 1 2 2
0 0
- 1-=2
= 2x T [ 1+ X, + 50 ] . (16)
From Egs. (12) and (15), we obtain
@ 2 1"
AL 1 1 n(2 =-p') -2+ 2 2
on - z 2 2 [ &, T Py ]
™o M1 +u') =1 5% o (1 4+ ) n® - (1 +p')

+ 2[a a' + Db_Db' ) .
n° n n o n

(17)

1 .
The complete second-order solution is given in Appendix 1.
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The second term in the bracket is, of course, g; [ a7 + bn' ] , that is, roughly

the rate of change of flutter with radius. The correction (17) tends to be small,
but not negligible. For example, if there is only one Fourier'éomponent present,

representing a number of sectors n = N>> 1, and of amplitude independent of

radius,
2 2
AL 1 %W Py Ff (18)
- L U B S
Qﬁro 2 N2 NE

where F2 is the conventional "flutter factor" (mean square variation in field

at r = ro).

For F2 ~ 0.02, N = 3, the correction is two parts in a thousand for
isochronism. |

To the extent thatl (17) is independent of small changes in the average
magnetic fleld and can be regarded as a given function of ro, the prescription
for the variastion of average field with radius for isochronism can be obtained

as follows:

1/2

2
AL
. L ey eH(rO) ) eH(ro) | . [(Dro(l 5 )1
T L AL\ AL - e ’
me(1 + T ) moc(l + 5 ) (19)

where m_ is the particle rest mass., For ® independent of radius, Eq. (19)

6]
determines H(r.):
0 -1/2

(20)

ALy 12
H(ro) = Oe (_']_ - %L_ ) 1 = lj(f‘.g_%_;&l}

or, approximately,

m.Ccw
H(I‘O) = "“‘é‘*m[ l+& + =B ] . (21)
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The coefficients in the expression of the average curvature in (6) may

be obtained by differentiating (20). Neglecting %% for this purpose, we find:

y _ ordi _ 2
W= g P
2 2 '
p' = p (1 + 3p7) : (22)
4 2
p = 3p (5+5P ) )

where p is the momentum in units of moca

VERTICAL BETATRON FREQUENCY
Since the frequency of vertical oscillation will always be small compared
to unity, the smooth approximation should be adequate. The linearized vertical

equation of motion is2

.g_z-g.ﬁzzo, (23)
S

where s is distance measured along the equilibrium orbit, and g% is the

derivative with respect to the outward normal. of the curﬁature of the equilibrium

orbit. To sufficient approximation, we have

r

oy 1 op sin o 0 . 12 "
s }-(; 35-: COS O = = 35- = p,(l--e-otl)+ u_(xl+x2)

d .0
(Zlfa'gl._ .

(24)

‘ 7 o
3 |- "o
4+ B+ 5 xl + Xl =

2 .
See, for example, E. D. Courant and H. S, Snyder, Annals of Physics 3, 1 (1958).
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In the smooth approximetion formulas for the frequency of a linear

oscillator described by the equation

dez '
— gls) z = 0 (25)
ds '
we include the terms;?
VP e Ce) + (e v ety - (26)

It must be remembered that the brackets denote averages with respect to s; the

full result is

I 2 pto 3 W ‘
)2 1 @ n'“n(l+‘§“"§1+u') 2 2
2 = —H' + =§ Z 5 (an’ + bn)
1 [ n° = (2 + ') ]
Mn \r’
o [1- - ]
- % X 5 L (an a'  + b b'n)
1 [0 = (2 +p")]
n 13 ' '
e 1 ¢ (n2 - bty 2 , 2
-—"2-2 ) +§va—rw——(an+bn),
1 n - (1 +npt) 1 n
(27)
where some small terms in M'E, ete. have already been dropped.
By the use of
1 4 2 2
' ’ ’ = im eemem
a a'  + b bl 5 dx(an + bn) (28)

5 For notation and derivation, see L. C. Teng, Rev. Sci. Imstr. 27, 1051 (1956).

The result without simplifications is given in Appendix 2.
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1 d2 2 2 2 2
1 1 _ L o - ' '
a a" + b b = 3 2(a_n +bn) (an +bn) (29)
dx
and if we neglect p', " compared to unity, Eqg. (27) becomes
5 5 00 a'ne + b'n2 ] © a' 2 + b'n2
VZ=~M'+F+Z 5 +°§EWT~"
1 n 1 n
2 ® a e + b 2
1 d a n n
v ir2-2 .8 =2,
dx 1 n
(30)
o)
vhere F°© = % % (a._° +b.2), the flutter factor.
2 7 n n

The effect of a spiral angle is exhibited more explicitly by writing the

Fourier components in the form
an(r) cos n 6 + bn(r) sinn @ = An(r‘) cosn [ 6 -ﬁn(r) 1. (31)

Then we may write

an(r) ': An(r) cos nﬁn(r) R bn(r) = An(r) sin n & (r),
| (%2)

whence we have

:;12+‘02=A2 and a'2+b'2-A'2+A2n2¢’2,
n n n n n n n
(33)
and for Eq. (30)
o0 oo A tan” ¥ 0
2
\)ZQ=—u'+F2+ZAn2tan27n+%2 5 +Z(J§+1)A'n
1 : 1 n 1 n 2n
2
2 o0
1 d a n
+-E[2wa;°a“;§] Z"n_g-‘”} (54)
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where tan Yy, = T §;1%4105 i.e., 7n is the spiral angle of the nth Fourier

component. If there is oniy one harmonic, n = N, presenﬁ, Eq. (54) reduces to:

2 2
1é2 = -p' o+ F2(l + 2 tan® y) + EE tan® A (1 + 12 )
N N . 2N
1 a & ., 2 |
+——§.[2—-a~§~-——§]An . (35)
Ly dx

Any of the smaller terms in Egs. (30) or (34) may be significant since one
generally attempts a near cancellation of the dominant terms in order to minimize

flutter and spiral requirements.

RADTAL BETATRON FREQUENCIES
The radial fregquency will be close to unity, so that the phase advance of
the oscillations per sector will be quite large in the cases of interest. Instead
of the smooth approximation, we shall use a method designed to give the correction
to the frequency from unity, exact in the number of seétors and éuadratic in the
field variations. The first step is fo linearize Egs (7) and (8), that is,
repléce x by xeq + & and o by‘ aeq + q and retain'only terms of first oxder

in ¢ and 7n . Equations (7) and (8) become: -

ac 2 |

= = o+ aqu LE U I A (36)
and
i/ ' vy B ° 4 A+p') o 2

5 (1L + pr)e + 2(p + 5 )xqu + (27 +3)e + aeqﬁ + 5 [aeq £+ 2 Xeq aeqn]
1 o T auwm 2 3" 2
¥ Puned 11 LA i
+ 2 xqu (=Y + 5 & ] + aéqﬁ 5o+ 5 %eq £+ =5 xeq t ,

(37)
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where xeq(e) and aéq(e) describe the equilibrium orbit. If we change variables

once more, replacing 1 by

2

g 1 (28)

1
©o=all- 3%

the variable =a 1is directly related to the radial component of momentum, and the

equations take on a more symmetric form:

d 2 : : :
a% = [ 1+ Xeq * g Ceq 1+ & Pog (39)
W s« + ot [(L+p') + (20 +pM)x +3° + 5 +x_ (220 + 27)
dae eq H H H eq ' eq
A O T B (%0)

These equations of motion follow from & Hamiltonian:

3 2 e2

= L = R [] t " .
H = 3 [‘1 X H X, + 50 ] + 5 [ (2 +p®) + (20" +p )(xl + xg)

+ 224 Z'.+ x. (22 + 2") + l(u'” + BuM)x 2 ]+ e[ o +a ] .

1 2 1 1 2
(k1)

Here the equilibrium orbit has been replaced by the first- and second-
order approximations of Egs. (11), (12), and following, but retaining terms
only up to quadratic in the field variations. The Hamiltonian can be further
abbreviated by noting that oscillatory terms contribute to the frequency only

as ‘the square of théir amplitude, so that it is legitimate to drop the oscillatory

parts of terms already quadratic in the Fourier coefficients. Thus we have
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2 - . , 2
= X X 2502 £ ' ; "y Lo tw = 2 .
H = 35 [ 1+ X, v 50,7 4 xl] * 35 [ 1+u ‘+ (20 +p )x2 + 2(“ + 3u )xl
ey - o 2 i 1"
+2x) I o+ ox ST+ 5 o+ B+ (2ut + )xl ] + algn s

(42)

where a bar denotes, as before, an average in azimuth.

The problem, then, is to determine the additional effect of the oscillatory
first-order terms on the frequency. To this end we proceed by using a generating
function to establish a change of variable which will remove .the first-order terms

from the Hamiltonian. Using a function of the old coordinate and new momentum,

- we have

s(¢, p, 8 = epl1+c(e) ] + 5= p° + =24 (43)

and the relations

ds / B (1)

The change of variables is

e
i

ql1-C+C®]-pl[A-=-AaAC]
| (45)

2
i

pl1+C-AB]+q[B-BC]

Equation (45) follows from Eq. (4%) to second order if A, B, and C are first-

order oscillatory functions of 6 . The transformed Hamiltonian is

H(q, p, @) = H[ &p, a), n(p, @), @ ] « %% . (146)
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The algebraic menipulation required to write out Eq. (46) explicitly is

rather formidable; what emerges is that if A, B, and C satisfy the relations:

dA
a-é- = —Xl -2 C 3
g;:g = —(2”" + p,")x + 2(1. -+ U.')C - Zo - Z' s (47)
dae 1
and
ac ' -n .

then the transformed Hamiltonian is free of first-order oscillatory terms, and

takes the explicit form, correct to second order,

o — — —
w _ Db e é 2 " 2 -
H = 5 [ 1+ X, + 5 " + 2 xlC + C° = (L+pu")A" ]
gE ¢ ' nyo ptt o+ 3" 2 '—ET ——T
* 3 [ 2+ +(2u" + 4 )x2 + B xT 2% + %%
- 5 = L o
+ 2 B + B° - (L+u")C¢™ ] + gopl xB - (1 + p')AC + BC + a,C ] .

Pa

(48)

Equation (48) does not depend explicitly on ©, and so repreéents a more or less

familiar simple harmonic oscillator. The square of the frequency is equal, in
2 2
D

the approximation considered, to the product of the coefficients of = and 5 ¢

2 _ v g "y 2q° Zul +ptt 2 Z 5
VI_ = 1l4+p' +(L+2u" +p )x2 + 5T+ ( 5 ) 1+ 2xE"

v—

+ x2" + 2xC + 2 alB - u'Cg - (1 + u')A2 + 32 .

B
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The coupled Egs (47) can be solved readily enough (see Appendix 3).

Finally, if we regerd u', etc., as small, Eq. (49) becomes

, 00 2
?Lg = 14 pu' + % X 5 2 5 (an2 + bne)
1 (2° - 1)(n° - L)
2 2
1 4 o 5 ne -8 o o 1 d2 0 an + bn
M - - 5 8, *Py) * f 5 I 5
1 (n” = 4)(n" = 1) : dx™ 1 n~ -1
~ 00 a'n2 + b'ﬁg
1 (n" = 2)(n" = 4)
or in the form of Eg. (31),
2 2
® n A 00 2
)42 = 1w+ g z 2 = 2 * % §§ z 2(5n - g) An2
1 (0" - )(n" - 4) 1 (n° - 4)(n" -~ 1)
2 2 2
1 d2 (e¢] An 3 0o n tan "n 5
TE T 3 M- 5 A
dx~ 1 n° -1 1 (n" = 1)(n" = 4)
Q0 Al e

(51)

The net gain over the smooth spproximation lies in the explicit appear-
ance of the factor (n2 - k), introduced by the generating function. For
three-fold symmetry, several iterations of the smooth approximation would be
required to reproduce these terms as a power series in %/Na

Values computed from Egs. (50) and (35) for the vertical frequencies
have been compared for three-fold and four-fold measured field with the values
obtained from the MURA "Ill-Tempered V" 704k code, indicating agreement

satisfactory for practical purposes. (We hbpe to write a later report comparing

such results in detail.)
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RADTAY, TNSTABILITY

We shall consider specifically the radial, nonlinear 3/5 resonance, which
arises in and is commonly Believed to be a major objection to a three-fold
geometry.

In order to treat this problem it is necessary to adjoin to Egs. (36) and
(57) the terms quadratic and cubic in & and n and attempt to solve the
resulting equations. Since the linear problem alone yields a motion which
contains the periodicity of the magnet structure as well as the slower oscillation
of frequency given by Eq. (50), additional nonlinear driving terms arise from
this self coupling. It is therefore more convenient to start from the transformed
Hamiltonian, which describes a pure oscillation, and add to it the relevant
non-linear terms. If the Hamiltonian (48) be denoted now by H,, *then the total

Hamiltonian, HT , ‘turms out to be

\ a
_ 1 2 1,5 R S W
Hy, = H, + 3 (1L + C)a p~ - 5 Ap” -+ [ B« (p' + 5 A ]l g + 5 P
1 L 1 i I 0 o 1o
+ g P oty (n + &§~ Ja. o+ [ (u' + %59 + g(u" + ﬁ?“ R
'J." 5
f - 1 L s
+ 3(ur +55 )¢ 1a7/3 (52)

where A, B, and C are the functions of © in the linear generating
function (43). For solving the nonlinear problem, we shall follow the method

of "variable constants"® that is, let

A (8) sin [V, 0 + (8) ] (%)

0
1

and

() cos [ ¥_ 6 + ¥We) ] , (54

o]
]
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setting y; = 1 except where it appears in the argument of trigonometric
functions. In the equations of motion, new for the amplitude, A , and the
phase, V¥ , only terms are kept which will contribute either to the nonlinear
driving force or to a dependence on amplitude of the natural frequency. Thus,

from Eq. (52), we obtain

2
ad
= = - £%— [ cos ( v; & +¥) + 3 cos 3 vé e + V) ]
CZE
17
g ] % A L g (b + ﬁgn )x, - g C ] cos 3 v; e + V)
+ g [ @, - A - 2B ] sin 3( Vr e + V) ; (55)
and

%% = % A [ sin( Y0 +¥) + sin 3(‘»4 6 +v) ] - ﬁ%; 1 % I

i
+ g(u" + E§L)X1 - % ¢ ] sin 3( vr 0 + V) - g [ @ - A - 2B] cos 5()4 e +Y)) .

(56)

The first term on the right in Eqs. (55) and (56) is the largest, but
because it oscillates rapidly it contributes only in a higher order and only
affects the frequency [ %g ] . In the present case, the higher-order
contribution unfortunately serves to cancel the last term on the right side of
(56), so that to the épproximation.used, there is no dependence of frequency on

amplitude. The second members of Egs. (55) and (56) contain the driving influence
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of the resonance; the third harmonic component of the bracketed oscillatory
functions éombipes with the sine and cosine of 3 ); ® 1o produce trigonometric
functions whose phase varies very slowly, giving rise to the possibility of phase
locking and slowly accumulating changes in amplitude. If we keep only these

secular terms, Eqs. (55) and (56) become:

2
da. a S '
o = e (lesrs e esa  Teos [5(Y, - 1o+ 3]
.,[b"3+5b'3+3b3]sin[5(7)1,~1)9+5‘1’] (57)
and
d\lf__ a8 1" [ .
® = -1 (g5 8’ 58, ) siml3(Y, - 10+ 5]
b LD 45045, Jeos [3(0), -1 +3¥ 1) (58)

where aB, b5’ etc., are the field components first defined in Eg. (6).
Recalling from Egs. (31) to (33) that a'5, a"B, b'B, and b"3 include not
only amplitude variations with radius but spiral angles as well, it is apparent
that the magnitude of the driving force depends on an algebraic combination of
almost all the magnet characteristics; i.e., flutter, spiral angle, rate of
growth or decay of flutter, rate of change of spiral angle, and so on.

The system of Egqs. (57) and (58) can easily be integrated once. The

result is:
{1 3+5\a54--51&5]35.11[5(7/r“1)9+5\'l]

+ 3 b5 ] cos [ 3( ‘)/r « 1) + 3% ] ) - ’2(7{« - l)-‘a_2 = const.

+ L'+ 5 b
(59)

3
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Equation (59) is of the form
af D sinX = 2 ))r- DA® + const. , , (60)

where D is the square root of the sum of the squares of the bracketed

coefficients and X the phase shifted argument of the trigonometric functions.
-1
The problem is really characterized by a single parameter, namely L 5

the ratio of the deviation of the linear frequency from unity to the amplitude

of the driving force. It is convenient to rewrite Eg. (60) as:

sin X = Ef£~2%%:-il L gomst (61)
A a’
Figure 1 shows a sketch of Eq. (61) for various values of the constant.
Since Eq. (61) is an integral of‘the‘motion, the succession of values of ({ and
X which an individual particle takes on are constrained to follow the curve
on which it starts. It can be seen that there are two élasses of orbits, those
with initial conditions to the left of the heavy curve are bounded in

amplitude, while all others lock into phase X = 0 with indefinitely growing

amplitude. The meximum amplitude of the bounded region is, from Eq. (61),

16(y - 1) ,
szax + m—-“_%}——-af ’ : | (62)

and the maximum amplitude for which the motion is bounded regardless of initial

phase is

A -z : - (63)
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Amplitudes less than 6Zmax _ are bounded, but might as much as double

under the action of the driving force. With the help of Eq. (62), Eq. (61) may

be put in a neater form:

sin X = g [ Zi%jz ].'“l + const. [ =w~éz;- ]“5 : (6L)
max + max +
Figure 2 shows a plot of BEq. (64) for a few values of the constant,
plotted this time in terms of particle displacement and slope by re-introducing
Egs. (53) and (54). The angular orientation of the figure is not fixed; it
depends on the relativé size of the bracketed terms in Eq. (59).

For a given magnetic field, (A , Ba. (63), can be computed from

max =
field measurements. If it is comfortabiy large, one méy feel safe from resonance
troubles. If fhe amplitudes expected iﬁ the machine fall in the unstable range,
all is not lost, for the rate of growth of amplitude may bevsufficiently slow
that in the finite time for acceleration no substantial herm is done. The rate
of growth may be overestimated from Eq. (57) by choosing the most unfavorable

phase of the trigonometric funcihions, which is the one into which the phase will

eventually lock (see Fig. 1). Equation (57) becomes

ad e adl ” 2
~ -

TR T 5 & v, (65)
where, D is the driving awplitude of Eq. (60), and n is the number of turns
in the cyclotron. The fractional amplitude increase per turn is then

ad — (A D

i (66)

e

For example, an amplitude of one=fourth inch at a radius of 10 inches means

[2_ = ﬁs . For D A/ 2, Eq. (66) gives
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A more precise evaluation of the seriousness of the effect could be
obtained by returning to Egs (57) and (58) and letting the mechine parameters,
and )/r , vary with 6 <to represent the variation of the driving force with
changing eguilibrium radius. This would require mumerical integration of
Egs. (57) and (58); for the effort involved it might be almost as simple to
compute exact orbits including energy gain. We would prefer this approach,
relying on the'analytic expressions of this section as a guide in understanding
the results of numerical work.

Finally, we give the parameters in the driving terms in the alternate

form (32):
85 = Ay cos 59 ,
a'5 = A'5 cos 384 - 3 A3 tan v sin 3 &
a"5 = A"3 cos 3 - 6 A'5 tan ¥ sin 3 F - 9 A.5 van® Yy cos 3
+ 3 A3 [ tany - (tan v)' ] sin 3 &
b5 = A5 sin 3 &
w3= NBMﬂ5ﬁ+3A5mnsz5ﬁ
b"5 = A"5 sin 3+ 6 A‘3 tan ¥ cos 3@ - 9 A5 tan? v sin 3 @

= 38, [ teny - (tanv)' Jcos 30 .
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tan2 Y in a'_ end b"_ is usvally considered to be

The term 9 A 3 3.

3

the most important, but this may not be the case if, for instance, &n increasing

or decreasing flutter has a large second derivative.
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APPENDICES

Appendix 1: Equilibrium Orbit

The complete first- and second=order formulas for the equilibrium orbit

are:
Xeq = Xl + X2 + e o0
aeq = (Xl -+ 052 + e

es) ah cos 8 +b sinn €
Xl = z 5 I

1 n° = (1 + pt)

e o]
1 1 -
X, = we——————— [ 2(a_a'_ +Db_b')
2 Ml +u') 1 0% (1) aonoonon

2 o0
N -2 + p" 1 1
( 11 + b ) ] + 'I; %

0% - (1 +p') =l [0 = (1 + )10 (n+m) = (1 +pu')]

4

2
o 2+ m - 2+ p (a & ~ b, bm)]cos(n + m)e
- (1 + )

X [2(an a'mw b b’ ) +

2(a b’ + b al ) + b 0+ nm - 2 k' (a b + Db a )]oin(n + m)e
e (1 +pu*)

/

|
¥ ?
[Q(an a' + b b m)

@ 1
+ =% ) .
o 02 (1 + ) 1l(ne mPe (1 + pt)]

2 .
bm™ - m o« 2 4 " -
+ (an a  + b bm) ] cos(n -~ m)e

me - (1 + u*)

) N bPe e 2+ ' (b a

+ [2(b_a' - a bf
n m n 2 _ (1 + )

-8 bm)]sin(n - m)e



n

Pof
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o0

P B (b cos n 6 - a sinn ©)

1 n°-(1+p) B a

(¢ )
% Z 2 2 2 (an b'm'-l_ bn a'm)
LI 0" = (1 +p")(a +m)" = (1 +p*)]

2 1
+ 5 1 %(hm2+nm-=2+u")»m[(n+m) "(1"'“)]
. n+m.
m = (1 +pt)

X (an b, + by am) :| cos(.n + m)e

1
mE - (14 )

" ot
* [(bnbm andm) * %(4m2+nm-2+u")

n-+mnm

2 .
om(n +m)” - (1 +p )]\> (bn b -8 am) } sin(n + m)e

w
Z

ne=1m (b v b! )
nfm (22 (1 + ) )(a-mn (1 + 0] [“am T

1 1,, 2 " ml(n =« m)2 - (1 + u')]>
+ =(m e mm = 2 + pt')-
m2-(1+u')(2 " o |

X (bn b -8, am)} cos(n -~ m)®

1 1 2
+ (a a' + b Db ) - = (L}m - - 2 + !J-")
{ n o m n o m m2~(1+ui) (2

N= m

_m[(nwm)e - (l‘l‘u')]) (an a‘m+bn bm);| sin(n»-m)@
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Appendix 2;: Vertical Betatron Frequency

The complete expression for Vza is:

o0 2
1 n 2 2
ks B -3 (an +bn)
, 1 n - (1 +puY) i
2
1" 2
+ %(“' +15~L: ! - an +bng)
M 1 {n" = (1+p')
2 2
2 es) + b
- 2+u: LR () : } 5 n n 5
2 l+|J. 2 2(1“{"].1,) l[n“(l'l‘u')]

u\2 oo a.2+b2 o] a.2+b2
(") n n RPN n n
S el - v~ = ()T B o 5
"1 o (n” - (14 pt)] 1 n'n” = (1 +p)]
o0 (09
,_l ,_];_ |2 !2 H ] '2 72
+22in2 (an+bn)~2u Zl“.;;g(an +bn) .
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Appendix 3: Details of Calculation of Vr

The explicit solution of coupled Eq. (47) is:

® 1 |
A = 2 % = =5 [ a'n sinn € - b'n cos n © |
1 n wh(l-%p,')

+ %9 b n2 + 2(2p + u')
1

5 5 { a, sinne - bn cos n 6 ]
n[n” - (1 + p*)][n" = ¥(1 + p*)]

00 2
B = 3 B - 2(1 + pt)
1

n[n2 - 4(1 + p%))

[ b’n cos n O - a'n sinn 6 ]

(¢ 0] "R 2 - ' ] [
+ E 1 [1 P B LR B 21t ul) | b cos n e
1 ") n® n” - (L +p') | L

-~ a8 sinn 9},
n

00
- . : . 1 i ]
C = ? 5 [ a 1 cosyn & + Db' sinné ]

(o's] 2 "
- % -3 1 22 -2t J [‘an cos n®+b sinn ]
1 0% - 41 +p") n” = (1 +p')
With these equations together with Eqs. (6), (11), (12), and (15) for
o, X5 @, and Eé, respectively, the average values entering into

Eqg. (49) may be computed. One then obtains for 7&2 the complete second-

order expression (we use the abbreviations 02 =1 + u', h2 = 2u' + p'):



+

4

+
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2
00 2 2 2
+ ' o+ % (an2 + bng) 2n 55 1o+ A n2 = gg~
1 2(n” = 4o®) n~ nf -0
n2 1+ 23_ n2a2cr 1+ 3pt 4+ p" 3n2w2+u"
= -
(n2 - '62)(11‘“ - hcre) 0 n“ = ¢ b " (an2 - 02)2
2, 2 u” 2
B g gt 20°(n" = 1 4 5 ) Ei an + 22
W - PP (02 - PP - 1) 2\ - 3D (e - D)
3 2 ¢ poy 2 _ ad® A% 1P 2g°
£o 2n? + % (a_a +bnb'n) 121’2- 1+ = ;‘,‘
n~ - o lJn (n° = 4o®) n- n-o0
n2-202 1+ 3p' + u" _'___‘1____’ l___)ﬁnmece
2 2 2
(3:12 - 02)(n2 - 40’2) 2.0‘(n2 - 0‘2) n® - o° n° n° - o°
¥ . 12 n it
202(5n2 + 2}\.2) ] ©0 @ +bn> L ®a an+bnbn
3 2 g, t 3% 55
1 (n ho™) “1 (n® - ¢%)

1’12(1'12 - 02)(n2 - 4o%)?




Figure 1:

Figure 2:

Plot of the Punction sin X = .-g ( ma“
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FIGURE CAPTIONS.

-] - =3
) -x (g )
maxX + mas +
for various values of K. The left-hand portion of the curve for

K = % (heavy line) divides the stable from the unstable regilom.

Plot of X = 7 L sin% V8o le = a% = amma’ cos %
amzz + mex + ’ mnax + max +

for the integral curves of Fig, l. If these cwrves are to represent

the progression of x and %‘2@5 at 8l= Oog 12009 and. 24()@‘9 the curves
b"_ + 5b'_ + 3b
2 3 ] .

Bt x 5a%., + Za
5 ) 3

should be rotated clockwise by an angle % ‘tan”l [

2\,
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This report was prepared as an account of (Government
sponsored work. Neither the United States, nor the Com-
. mission, nor any person acting on behalf of the Commission:

A.

-

Makes any warranty or representation, express
or 1mplied, with respect to the accuracy, com-
pleteness, or usefulness of the information
contained in this report, or that the use of
any information, apparatus, method, or process
disclosed in this report may not infringe pri-
vately owned rights; or

B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any
informdtion, apparatus, method, or process dis-
closed in this report.

As used in the above, "person acting on behall of the

Commission" includes any employee or contractor of the

Commission to the extent that such employeec or contractor

prepares,

handles or distributes, or provides access to, any

information pursuant to his employment or contract with the
. Commission.






