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ABSTRACT 

The possibility of measuring the electromagnetic form factor of 

the pion by extrapolation of the cross section for e 

has been investigated. The method is based on the existence of a pole 

in the electropion-production scattering amplitude as a function of the 

invariant momentum~transfer of the nucleon. The residue of this pole is 

the pion form factor multiplied by a known coefficient. Since the pole 

lies slightly outside the physical region of the invariant momentum 

transfer, an extrapolation of the experimental data is required. An 

approximate calculation of the electropion-production cross section has 

been made in order to estimate the experimental accuracy necessary for 

a significant extrapolation. Accuracy is required which is an order 

of magnitude better than that achieved at present in similar experiments. 
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I" INTRODUCTION 

In recent years much attention has been devoted to the problem 

of the electromagnetic structure of the nucleon. Considerable experimental 

information on this subject has been provided by the experiments carried 

out by Hofstadter and his collaborators on the scattering of electrons by 

1 protons and deuterons. Additional information was derived from the 

measurement of the cross section for electropion production ( e- + p ~ e- + n + n: +) 

2 
by Panofsky and Allton. 

Among the many theoretical attempts which have been made to treat 

the nucleon-structure problem, the most successful have been the two 

recent calculations based on the method of spectral representations (often 

called dispersion relations).3' 4 In this method, however, one encounters 

the difficulty of requiring knowledge of the electromagnetic structure of 

the pion. It is qualitatively evident that the structure of the pion must 

contribute to the structure of the nucleon: If the spatial extension of 

the nucleon's charge and magnetic moment are visualized as due to the pion 

cloud of the nucleon, then the spatial extension of the pion will contribute 

to that of the nucleon. 

Unfortunately, no experiments have been performed which probe the 

pion structure. The scattering of pions on electrons yields no information 

at available energies, because the relatively massive incident pion cannot 

transfer sufficient momentum to make anything but the outermost parts of 

the pion electromagnetic field effective. On the other hand, scattering 

of electrons on pions is not feasible because, of course, no way has been 

found for making targets from pions. The purpose of this thesis is to 

describe a method of using the pion cloud of the proton as a "pion target. 11 
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The procedure to be described is an application of a general method 

suggested recently by Chew and Low. 5 In this case, their method enables 

one to measure the electromagnetic form factor of the pion by extrapolation 

of the cross section for e + -
+p~ n+lt +e. The basic principle 

involved is the possibility of analytic continuation of the electroproduction 

scattering amplitude as a function of the square of the four-momentum transfer 

of the nucleon, 62 • If the initial nucleon has four-momentum p, and the 

* 
1 I h 2 ( ! )2 fina nucleon, p , then we ave 6 = - p - p • It is conjectured 

that at 
2 2 

6 = -JJ. ' the scattering amplitude has an isolated pole whose 

residue is just the electromagnetic form factor of the pion multiplied by 

a known coefficient. It can easily be shown that negative values of 6
2 

are not physically attainable, so that an extrapolation of the measured 

cross section is necessary in order to reach the pole at 2 
= -JJ. • The 

distance of extrapolation is, however, small compared to the physical 

range of 62 • The procedure for determining the electromagnetic form 

factor of the pion is, then, to extrapolate the cross section, with its 

singularities suitably removed, to the point 

will be described in detail in Section II. 

2 2 
15.. = -JJ. This procedure 

Experimentally, it will be necessary to measure the electroproductior. 

cross section as a function of at least two variables, 62 and ~. If s 

is the incident electron four-momentum, and s' is the final, then we have 

2 
~ = -(s- s') • One must know ~ because the pion form factor is a 

function of this variable. In practice, one could determine these variables 

* 
The metric tensor 00 

g = 1, gii = -1 for i = 1, 2, or 3 is used 

throughout. Units are used in which ..fi = c = 1, and usually JJ. = 1, 

where J.1. is the mass of the pion. 
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by measuring the energy and direction of the final electron, plus the 

direction of the final meson. No such measurements have yet been made. 

2 In their recent experiment, Panofsky and Allton measured the electron 

variables but did not detect the meson directly. 

The analytic properties of the electroproduction scattering amplitude, 

which are the basis of the method outlined above, have not been proved 

rigorously. They are, however, a very reasonable extension of properties 

which have been proved for other scattering problems. A plausibility 

argument will be given in Section II A. Such analytic properties .of 

scattering amplitudes have been the object of much study. Their applica-

tion in the form of spectral representations has been successful in 

correlating many experimental data in pion physics. Applications very 

similar to that proposed in this thesis have already been made for the 

purpose of measuring the pion-nucleon coupling constant. Extrapolations 

of both the nucleon-nucleon6' 7 and photopion-production8 cross sections 

as functions of invariant momentum transfer yielded values of the coupling 

constant in reasonable agreement with values obtained by other means. 

In principle, then, the analytic properties of the electroproduction 

scattering amplitude described above tell us that one can determine the pion 

form factor by an extrapolation procedure. In order to assess the practical 

difficulty involved in performing an extrapolation of a given set of 

experimental data, one must estimate the behavior of the electroproduction 

2 cross section as a function of ~ • If the electromagnetic interaction 

is treated in lowest order of perturbation theory, it is apparent that 

the electroproduction and photoproduction matrix elements. are closely 

related. The dispersion theoretical analysis of photoproduction by Chew, 
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Goldberger, Low, and Nambu9 (hereafter called CGLN) has been extended to 

electroproduction by Fubini, Nambu, and Wataghin
10 

(hereafter FNW). The 

calculation in Section III is performed by the use of a modification of 

their theory: The Born terms in the matrix element are written in rela-

tivistic form and, correspondingly, certain recoil-correction terms are 

dropped. 

In Section IV the results of this calculation are interpreted as 

implying that for a significant extrapolation experiments of great accuracy 

will be necessary, accuracy an order of magnitude better than that achieved 

in the electroproduction experiment of Panofsky and Allton. 2 

• 

' 
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II. EXTRAPOLATION PROCEDtlRE 

A. Location of Singularities of Scattering Amplitude. 

Let us consider in detail the analytic properties of the electropion-

production scattering amplitude on which the proposed extrapolation depends. 

As remarked in the introduction, no rigorous proof of these properties has 

been given. However, such properties have often been conjectured; for 

instance, in the two-dimensional spectral representation proposed by 

11 
Mandelstam and verified to sixth order in perturbation theory. Motivation 

for conjecturing them comes from tvro sources: analogy with proved properties 

of simpler scattering amplitudes and analysis of perturbation theory. 
. 6 

Arguments of both types have been given by Chew for nucleon-nucleon 
8 . 

scattering, and by Taylor, Moravcsik, and Uretsky (hereafter TMU) for 

photoproduction. The latter case ce.n be extended very easily to 

electroproduction. Consider the electron interaction only in lowest 

order in the fine structure constant, i.e.; consider only processes of the 

type shown in Fig. 1. To this order, electroproduction is ,just 

photoproduction by a virtual photon. The only differences are that the 

"photon" has a nonzero, imaginary mass (k
2 = -A.) in electroproduction, 

and that the matrix element contains longitudinal as well as transverse 

terms (i.e., k· ~ =/=- 0) . The existence of transverse terms will not 

affect the analytic properties, and the "photon" mass will only cause a 

shift in the position of the singularities. 

The recipe used in the papers referred to above is the following: 

To get·one part of the spectrum consider the intermediate states which 

could be reached if p and p' were incoming particles, with q and 

k outgoing (see Fig. 1; k = s- s'). The lowest of these is the 
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di·screte single pion state, which gives a pole at ~:::,.2 = -ll2 (on which the 

proposed extrapolation is based). The next state is that of two pions, 

which gives rise to a branch point at 

The other half of the spectrum, the crossed spectrum, is found in 

a similar way by considering the states which can be reached if p and q 

are incident. This leads to a pole at (p - q)
2 = ~' where M is the 

nucleon mass,_and a branch point at (p- q) 2 ~ (M + ll)
2

• Now since 

p + k = p' + q , we find that 

(2.1) 

(p' + q) 2; i.e., E is the total energy of the final 

nucleon and pion in their barycentric system (the system in which 

~ ~ 
p' + q = 0). Using (2.1), one finds that the crossed spectrum gives 

rise to a pole at 

= 
2 

ll + f.. 

and a branch point at 

= 

The spectrum of singularities in the 

re-expressed in terms of cos e, where e 
-~--· 

2 
!:::,. plane can be 

~ is the angle between q 

and K in the 
~ ~ 

p' + q = 0 system. With all symbols referring to this 

system, we have 

(2.2) 
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Then in the cos 6 plane the analyticity region is the cut plane, vrith 

poles and branch points as shown in Fig. 2. The quantity E
2 

is the energy 

of the final nucleon. In the limit ~ = 0 the positions of the 

singularities reduce to those of photoprodu?t~on given by TMU. Actually, 

the existence of such a large region of analyticity is not necessary for 

the proposed extrapolation. The method requires only that we have 

analyticity in some region containing the physical region cos e L- 1 

and including the pole at cos e = (~ + aok0V2 I q II k I as an 

isolated singularity. 

B. The Extrapolation Formula. 

If one accepts the viewpoint that perturbation theory can yield 

information on analytic behavior, then the existence of the pole at 

2 2 
6 = -J.l can be demonstrated and its residue computed. It is evident 

that the class of diagrams shown in Fig. 3 gives rise to the pole. It 

is easy to show that no other type of diagram can contain this pole. The 

* contribution of this diagram to the cross section gives, in covariant 

form, 

dcr 
dP = 

* The notation used f~r 
2 gr 

such that g = ~ 

[ 4( q. s )( q. s t ) - J.l~ ] + other terms, 

the coupling constants (renormalized) is 

f = fM g and f
2 

:::::: 0 • 08 • 

(2.3) 
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where I - f(p•s)2 1Yfm2 = M SL ' and where dP is the phase 

space factor: 

dP d3J2 1 d3s' d3g, 84(p + s - p' - s' - q) 8 c.o2 E2 €2 

The symbols e:1 , e:2 are defined as the initial and final electron 

energies. One finds that 

3f I Ci 12 dA. d.E2 an 
dP 

where dQ refers to the outgoing meson. Since dP as defined by 
q 

(2.4) 

(2.5) 

Eq. (2.4) is a Lorentz invariant, this expression must be valid in any 

coordinate system. In the lab system, we have 

dP . 
L 

In Eq. (2.3) two quantities in the numerator, g and F (A.) , 
3f 

are not the most general expressions corresponding to the diagram of 

F . 3 Th ha b i th 1 i t t 1\
2 2 

~g.. • ey ve een g ven e va ue appropr a e o u = -f.l 

in anticipation of the extrapolation to that point. The pion form 

factor, F (A.), 
1{ 

is defined by considering the pion-photon vertex, 

(2.6) 

Fig. 4, with both pions on the mass shell. If we write the contribution 

of. this vertex as jf.L(q1, ~)~ , the most general form of j consistent 

with Lorentz invariance is 

• 
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The continuity equation imposes the further 

requirement (a_- q1)·j = 0, giving F (A.) = G (A.), or -c 1t: 1C 

'rhis definition of the pion form factor is normalized so that F (o) = 1. 
1( 

Equation (2.3) reveals an additional singularity which must be 

removed before an extrapolation can be performed. The factor in brackets, 

which results from taking the trace of matrix factors, has the form, as 

a function of cos 9: P1(cos e) + sin 9 P2(cos 9), where P1 and P2 

are polynomials. Now since sine = (1 - cos2 e)J./2, sine has a branch 

point at cos 9 = 1, preventing extrapolation. We cannot get rid of this 

singularity by division by the factor in brackets, since it can vanish in 

the region of extrapolation and does vanish in the case to be discussed 

in Section III. We·can, however, eliminate this undesirable sin 8 by 

defining a "synnnetrized" cross section. Define a( e) . dg/dP. The 

quantity a(e) does, of course, depend upon variables other than e. 

* Then define the symmetrized quantity 

( a( cos e) ) a( e) + a( -e) 
s (2.7) 

The quantity (a(cos e)) ~nll, of course, be free from the branch point 
s 

* See Eq. (3.48) for an equivalent definition of this symmetrization 

process. 
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at cos 9=l,ana. we can at last write the .extrapolation formula: 

4 2 a2 2 F 2(A.) g . J.L rc 
= 

( 2.8) 

The above discussion has shown that if one knew the value of the 

differential cross section da/dP over some portion of the physical region, 

one could obtain the value of Frc(A.) by analytic continuation of the 

function (~2 + J.t2 ) 2(a(co~ ~)) . The relation between the value of this s 

function at ~2 = -J.t
2, and'the pion form factor is given by Eq. (2.8). 

This is an idealization, of course, since in practice one can know the 

function only to within a c·ertain error arid at a finite number of points. 

One practical procedure that can be employed is to plot the experimental 

value of (~ 2 + 2 2 ' 
J.l ) (a)· and fit a polynomial in cos e to these points 

. s 
7 12 by the method of least squares. ' The residue is then given by the 

value of this polynomial at the pole. Some consideration will be given 

in the next section to the error involved in this method of extrapolation. 

C. Kinematical Considerations. 

In order to perform the proposed extrapolation, it is necessary 

to know the cross section as a function of both the extrapolation variable 

~2 and the variable A. on whiph the form factor F (A.) depends. Since rc 

anN-particle (incoming plus outgoing) scattering problem is a function 

of )N- 10 variables (neglecting spins), electroproduction is a function 

of five variables. A convenient .choice for the other three variables 
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... ... 
is E, the total energy of the pion and nucleon in the p' + q = 0 systemj 

TL' the laboratory kinetic energy of the incident electron; and ¢, defined 
... ... 

in the p' + q = 0 system by 

cos¢ = (k X t) • (k X q) 
... ... -!> ... 

lk.xsllkxqf 
(2.9) 

In principle these three variables could be integrated out and the cross 

section measured as a function of 6
2 and A only. In practice, it may be 

most convenient to determine all five variables; for instance, by knowing 

the incident-electron energy and measuring the distribution of mesons as 

a function of direction, in coincidence with final electrons of given 

direction and energy. Then in performing the extrapolation all variables 

except 6
2 

must be held fixed. The ques~ion then arises: what values of 

E, TL' ·and ¢ are most favorable to the extrapolation procedure? 

To answer this question we must be able to estimate the error 

associated with extrapolation. Let us assume that the extrapolation will 

be done by fitting a polynomial in cos e 

by the method of least squares. 12 Then we can use a well-known formula 

to calculate the error. 

Let be the position of the pole as a function of cos e. 

Then define 

X cos 9 

In the 
.... ... 
p' + q = 0 system, we find 

2 
+ iJ. = 2lqllklx 



-15-

We wish to extrapolate the function 

- , ... ,, ... ,2 2 f(x) == ( 2 q k, ) · x ( o) . s ( 2.10) 

to the point x = 0, tpe position of the pole of ( o) • The error in the s 

least~squares polynomial at the point x = 0 is given by 

where 

l:::ao 

h 
mn 

N 
L: 

i=l 

m+n X , 
i 

and where p , which depends upOn the goodness of fit, is ~ 1. 
12 

(2 .11) 

(2.11') 

The summation i'n Eq. (2.11') extends over the points at which f(x) is 

known, and ~- is the experimentally determined standard deviation of 
]. 

f(x) at x .. 
]. 

In order to use Eq·. ( 2 .11) to determine the dependence of 

!:::a
0 

on the experimental parameters, we must make some assumption about 

the behavior of th~ ~- 's. Let us assume that there is a constant standard 
]. 

deviation in the cross section (o) for all values of x. 
s 

This seems 

to be the most reasonable ·assumption to make in the absence of detailed 

knowledge of the behavior of ( o) • 
s 

This assumption implies that the 

standard deviation ~i of f(x) is 

~i = 

Then if p = 1, Eq. (2.11) becomes 

68.0 = (2.12) 

t 
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mn 

N 
L 

i=l 
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m+n-4 x. 
~ 

(2.12') 

Notice that the error ~0 is proportional to the absolute error in the 

measured cross section, and to the factor -J (H~1 ) 0; which depends only 

upon the dis-!;ance of extrapolation and the distribution of points in the 

physical region. 

It is qualitatively evident that the error will rise with the 

distance of extrapolation. Let us calculate the distance of extrapolation 

as a function of E and A· Equation (2.2) shows that the pole occurs at 

(2.13) 

Holding A fixed, one finds that all quantities on the right-hand side 
.... ~ 

are known functions of E. One can easily show that in the p' + q = 0 

system the following relations hold: 

VI .... 
12 M2 E2 = E - (j)2 = g, + 

v1 
-+ 12 ~ El = E ko = k + 

The distance of extrapolation as a function of E, for two values of A 

is shown in Fig. 5· 

In order to evaluate the dependence of 6a0 on the distance of 

extrapolation, we must calculate -1 
(H )oo· If we assume that we can fit 

f(x) with a polynomial of the fourth order (S- and P-waves only), 
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then H is a five-by-five matrix. The inversion of this matrix was mn 

performed by a machine calculation for various distances of extrapolation 

for the arbitrary case of eleven points xi spread evenly over the physical 

region. The results are summarized in Fig. 5a, where 6a0js is shown as 

' a function of E for A, = 10. . If s does ·not vary much with E, higher 

values of E are clearly favored by this consideration. 

A second consideration is the size of the residue at the pole. For 

a gi-ven 613.
0 , the size. of the residue determines 'the per cent error. From 

Eq. (2.8) one sees ·that :for a given value of f.. and T1 the residue is 

proportional to 

( 4( q o S )( q 0 S I ) ·~2 f.. ) 
s 

In Fig. 6 this factor is plotted against E for two extreme values of ¢. 

If one chooses ¢ = 0 or ~,: the size of the residue decreases with E. 

This decrease is, however, greatly outweighted·by the more rapid decrease 

of 6a0 A· with E shown in Fig;, 5a. The conclusion indicated is that 

unless experimental conditions create very strong variations with E in 

the absolute accuracy attainable, high values of E are desirable. 

On the other hand, if E is too high, one will be forced ~o use 

a polynomial of higher than fourth order to fit f(x); i.e., D-wa.ves will 

become important. The machine calculation of (H-1)00 showed that the 

error increases markedly with the order of the polynomial~ The error 

was calculated in the same manner as for Fig. 5a for the point E = 9.66 . 

for fifth- and sixth-order polynomials. For the fourth-order polynomial, 

Fig. 5a shows ~:::a0js = 134. For the fifth-order, we found DB.0/s = 345, 

and for the sixth-order, ~0/s = 952. 

.... 

t 
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By machine calculation of the error for several specific distributions 

of points x", some qualitative conclusions were drawn concerning the most 
J. 

favorable distribution. First, it seems desirable to have measurements 

spread over as wide a region as possible, preferably the entire range of 

cos e. Second, it seems desirable to concentrate most of the points close 

to cos 9 = 1.. For example, at E = 9.66 we saw that for eleven evenly 

spaced points 6.ao/s = 134. For nine points at cos 9 = 1, 0.98, 0.94, 

0.87, 0.71, 0.26, 0, -0.71, and -1, vre found 69.0/~ = 95. Third, it is of 

course desirable to have as many points as possible. For 6, 11, 14, and 

21 evenly spaced points (E = 9.66, fourth-order polynomial); 6a0/~ = 423, 

134, 100 and 75, respectively. 

It is beyond the scope of this work to provide a definitive answer 

to the experimental question of the optimu.rn values of the parameters for 

the purpose of the extrapolation. An attempt has been made in this 

section to discuss the most important factors. In Section IIID a 

calculation will be made of the electroproduction cross section in order 

to translate Eq. ( 2el2) into a..l'l est:i..mate of the maximum per cent error 

compatible with a significant extrapolation. It is desirable, of course, 

to carry out this calculation at the most favorable value of the parameters. 

In order to consider a more familiar parameter, let us introduce the 

equivalent photoproduction energy kph' defined by 

The quantity kph is the energy a photon must have in the laboratory 

in order to produce a pion-nucleon final state having total energy E 

(2.14) 

in the barycentric system. On the basis of the considerations discussed 
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irt this section, a reasonable guess for the most promising value of kph 

is z 500 Mev. The corresponding value of E = 9. 66 will be used in the 

calculation in Section IIID. 

As a final kinematical consideration let us deter.ffiine the possible 

range of ~ for a given E and TL. In order to derive this range, note 

the relationship of ~ , E , 2 and 6 to laboratory quantities, denoted 

by the subscript L: 

~ = 2 TL €2L (1 - cos w) ( 2.15) 

E2 = ~ ~ + 2M(T -L €2L) (2.16) 

62 = 2M(E2L - M) (2.17) 

Here ~ is the laboratory angle between the initial and final electron 

directions. In Eq. (2.15) the mass of the electron has been neglected 

compared to its momentum. From Ecqs. (2.15) and (2.16) we find 

= 

For a given ~ , the maximum value of E2 is obtained for backward 

scattering, ~ = ~. Conversely, ~ = ~ also gives the maximum value 

of ~ permitted for a given E and TL {see Fig. 7). By increasing 

TL one can obtain higher values of ~ • 

( 2.18) 

.. 
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III. ESTIMATE OF ELECTROPRODUCTION CROSS SECTION 

A. General. 

In order to assess the difficulty of carrying out the proposed 

extrapolation, one must estimate the electroproduction cross section as a 

function of cos e, with the parwneters ~ , E , T1 , and ¢ heJd fixed. 

A general treatment of the electroproduction problem has been given by 

Dalitz and Yennie13 (hereafter DY). The most recent calculation, based on 

the photoproduction theory of Chew, Goldberger, Low, and Nambu, 9 was made 

by FNWe In this section a treatment will be given which relies heavily 

on the aforementioned papers, but which treats somewhat differently the 

corrections due to the finite mass of the nucleon. 

Define the T matrix 

= 
4 0 • iO (p 8 + n + S8 fi ':1. 

( 3.1) 

The T matrix element can be expressed in terms of the current j 

associated with the transition from nucleon to final pion=nucleon state: 

T 
e g 

r 

This form applies to both electroproduction and photoproduction. In the 

latter case, € is proportional to the polarization vector; in the former, 

e has to lowest order in e the value 

e U( S I) r U( S) 
i = 
~ A, 

The conservation of charge, expressed as a continuity equation in momentum 

space, requires that 
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k•e = k·j = o ( 3.4) 

By means of these relations the time components of j and e can be 

expressed in terms of their space components. This will prove convenient 

in adapting photoproduction results to electroprOduction. The relation 

between the two processes becomes clear if one separates the space part 

-+ 
j of the current into a longitudinal component 

( 3-5) 

... 
and a transverse component jt such that 

-+ 
j = + ( 3.6) 

Then using (3.4) one can write 

T = ( 3· 7) 

This result exhibits clearly the difference between the electropion- and 

photopion-production matrix elements: Whereas photoproduction depends 

only on the transverse current, having ~ = 0 ; electroproduction depends 

also on the longitudinal current. 

Following DY, (3.7) can be written in the compact form 

...... 
(3.8) j•e = ill•€ 

' .. ... -+ -2 -+ where mt 
..... and m.e ~ ko j .e Jt 

Remembering the definition of dP given by (2.4), one can write: 

do 
dP = 

2 
E I T I 

N,e ' 
(3.9) 

... 



-. 

-22-

where the sum is to be taken over initial and final spin states of the 

electron and nucleon. The sum over electron spins can be performed 

* immediately, giving 

8 2 2 a g (3.10) 

where the sum ~ is to be taken over the initial and final nucleon states, 

and where 

= 

m
2 

l:: u( s) r~ u( s') u( s') yJ u( s) 
e 

The cross section can tten be written simply 

dO' 2 2 
( ~) 2/ 

a ~ 
dP = 2 ' :rr M sL A. 

where E is defined by 

f A.-1(2M)2(~)2 E 
.t jJ L~~ = J~ 

N 

(3.11) 

(3.12) 

( 3·13) 

(3.14) 

If j is known, £ can be evaluated by using (3.12). It is sometimes 

convenient, however, to use the form (3.8), which leads to the expression 

* The summation convention is used throughout. Greek indices are 

summed from 0 to 3; Latin indices, from 1 to 3. 



if = 

= 

(~/E) 
2 

(~/E) 
2 

+ 

+ 

ml !: L .. m. 
N l.J ]. J 

{2 
....... 

I !: S•mt 
N 

.... -+t ...... 
2 Re (s•mt )(k•m) 

2 ...... , 
k·m 

k 2 
1 0 
2 lkl 2 
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2 
2:;>.,. 

2 ... 
I + mt 2 

1Eq2 - r;· 1
2 

lki2 

[ -1 + 

( j.l5) 

The foregoing formulation of electroproduction is completely general, 

except for the excellent approximation of neglecting contributions of higher 

order in a • In order to handle the remaining problem of obtaining an 

expression for the nucleon-meson current matrix element j , it will be 

necessary to invok~ much poorer approximations. 

B. Dispersion Theory of Photoproduction and Electroproduction. 

The most successful calculation of photoproduction, given in CGLN, 

is based on the method of spectral representations. This calculation was 

extended to electroproduction by FNW. At the values of the experimental 

parameters suggested in Section II c, namely TL = 700 Mev and kph = 500 

Mev, the approximate solutions of the dispersion equations given in CGLN 

cannot be expected to· be very accurate. The solutions are based on 

neglecting terms of higher than first order in 1-L/M, a./M, and -I k- 1/ M. 

When kph = 500 Mev and X = 10, ;lki/M = · 0. 56. An indication of the 

accuracy of the CGLN formulas can be obtained by comparison with photo-

production data. Although photoproduction of neutral pions from protons 
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is in excellent agreement with the CGLN theory up to 450 Mev lab energy, 14 

Uretsky et al find a definite disagreement in positive pion production at 

. 15 290 Mev. The disagreement becomes worse as the energy increases; at 

400 Mev the measured value in the backward direction is only about half as 

large as the theoretical value. A summary of the comparison of theory and 

experiment in positive pion production is given by Fig. 8 of the paper by 

Lazarus, PanofskyJ and Tangherlini.
16 

The lack of quantitative success of 

the photoproduction theory at high energies need not discourage us much 

here. The theory gives a semi-quantitative fit, which should be quite 

adequate for the purpose of estimating the difficulty of the proposed 

extrapolation. 

Let us now consider those aspects of the dispersion theory of 

electroproduction which are most important for our calculation, refer.:ring 

the reader to FNW for a more detailed account of the mathematical procedure. 

The existence of a dispersion relation for the electroproduction scattering 

amplitude has been proved by Oehme and Taylor. 17 The dispersion relation 

expresses the scattering aiDJ>li t·ude as the sum of an integral over a 

spectrum of masses of possible intermediate states plus a term that is 

just the renorma.lized Born approximation with appropriate form factors. 

* The Born term contribution to j is: 

* 
The notation is such that (y·p - m)u(p) = 0 and 

= 
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.) 
[Ta' T3] ( 3.16) 

{2e 
..) - e F ( 2q - k) 

1{ 
(pI) jB = u i r 5 2 2 

6 + J..L 2 

r·(p + k) +M l•' 
v ,s 

+ 'l'3 
,v 

iP kp] + T
3 

e 
r:; J..L J..L 

- i r 'T + 
5 2 -Ivf a (p + k) 2 2 

v [ •' ,s . ,v 

a~P kp] r·(p - q) + M 1 + T
3 

e 
r..; + 

J..L + 'U· J..L 
ir

5
}u(p), 3 T 

(p - q)2 - if 2 2 a 

where 

ev's(A.)· = e[ F1P(A.) ± F 1 n(A.)_] - for v 

( 3.16') 
1-L,v,s(A.) ' F2p(A.) ± 1-Ln F2n(A.) + for s • = J..Lp 

The form factors F
1

, 2 are the customary nucleon form factors introduced 
. . 18 I 

in co1~ection with electron-nucleon scattering, and J..L ~ 1.78 e/2M 
p 

is the anomalous part of the proton magnetic moment. The first term in 

Eq. (3.16), arising from the diagram of Fig. 3, contains the pole on 

which the extrapolation is based. Note the presence of the pion form 

factor, which was set equal to unity in FNW. This first term is the meson 

current contribution, whereas the second and third terms, arising from 

the diagrams of Fig. 8, are the nucleon current contribution. 

The Born terms jB do not satisfy the continuity equation (3.4). 

One finds 
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As pointed out in FNW, this situation can be corrected by the formal 

addition to jB.) of the term 

Since ~ ~ -k2, this term will cancel the nonzero contribution of 

Eq. (3.17). Moreover, pecause of Eq. (3.4), the contribution of Eq. (3.18) 

to electroproduction; i.e., to j•€, is zero. This formal device, or an 

equivalent one, is nevertheless necessary if one wishes to make use of 

formulae such as Eqs. (3.7) and (3.15) which simplify the computation. 

Specializing now to the production of positive pions from protons, 

we consider first the contribution to jB of the terms proportional to 

e (rather than to~). These are: 

- y 

.J 
F ( 2q - k) 

1( 

"2 2 
L:> + ~ 

- i y 
5 

' y •(p - q) + M 
"Y F n 

1 (p _ q)2 _ M2 

y • (p + k) + M 1 
yY F p 

E2 _ M2 1 

The form factor F1P is quite well known from the electron-proton 

scattering experiments by Hofstadter and collaborators. n For F1 , the 

( 3.19) 

n assumption F1 = 0 will be made. Present experimental results indicate 

that no large error is made by this assumption at the value 

' = 10 ,2 ( 26 -2) 19 
"" I"" · = 5 x 10 em • 
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Having set F1n = o, let us express the remaining terms in Eq. (3.19) 

by means of Pauli spinors, using the representation 

= v ( 1 + r5 ~-R ) I r ) p p ' (3.20) 

where I r ) is now a two-component Pauli spinor characteristic-of spin 

state r, where VP = [(M + EP)/2MJ
1

/
2 

and RP = 'Pj(M + EP). With this 

... -+ substitution, the Born terms associated with e become, in the p' + q = 0 

system, 

{

F
1

p c; _ F (2q- k) -cr.·ur .. It) 
V- ( I 1t q -1:: 

i vl 2- f - 2 2 
E + M 6 + 1-1. 

( 3.21) 

In the dispersion-theory analysis of photoproduction in CGLN, an expansion 

in powers of 1-1./M is made, and only the zeroth- and first-order terms 

are kept. The zeroth-order ter.m in Eq. (3.21) is 

-t o 1 I 
JB,e = 2M ( f F 

1t 

.............. -+J ( 2q - k) a. ( q - k) 

(q - k) 2 + 1-1.2 . 
(3.22) 

This term is an important contribution to the expression (14) of FNW for 

electroproduction. Additional contributions come from the first-order 

terms in 1/M of Eq. (3.21), as well as terms arising from the nucleon 

magnetic moment part of jB. The most important additional term is 

the magnetic-dipole amplitude leading to a resonant ffnal P state with 

.. 



20 
total angular momentum 3~2 and isotopic spin 3/2. The resonant amplitude 

arises primarily from the nucleon moments. The meson current also produces 

resonant terms, proportional to the factors FM' FQ' and FL of Eq. (13) 

of FNW but these are much smaller for the case to be calculated here and 

* ~ will be neglected. The resonant magnetic dipole part of j for positive 

pion production is then 

-+ E D 
< f I [ ... -+ -+ ... -+ -+-+k) I > ' jM .. M 2M 2qX k i(cr.k)q + i cr( q.k ] i 

where 

D IJ.v~Al io33 
sin o

33 6 f
2 

I -q 1
3 e 

The phase o
33 

is the pion-nucleon scattering phase shift at the 

corresponding energy. 
... 

( 3-23) 

(3.23') 

Several features of jM deserve some comment. First, all momenta 
,..; ... 

must be evaluated in the p• + q' = 0 system, which corresponds to the 

barycentric system in photoproduction. In a more general Lorentz frame, 

the multipole expansion20 on which the relations in CGLN depend is not 
... ... -+ .... 

valid, because another vector in addition to q, k, cr, and € (for 

instance, the total momentum of the system) would appear in the expansion. 

Second, the factor E/M in Eq. (3.23) is necessary because the CGLN 

formulae include a factor M/E (see CGLN, Formula 7.1) from the 

photoproduction phase space. Since the current j, as defined by 

* Corrections to the Born approximation values of the S-wave and small 

P-wave amplitudes will also be neglected. 
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Eqs. (3.1) and (3.2), does not contain phase~space factors, the factor 

M/E is necessary. Third, the quantity ~v in Eq. (3.23) is defined as 

~ v(A.) = ~ ~ v(A.) + e v("A)j2M • The additional e v/2M arises from a group 

of the 1/M corrections to the zeroth approximation to the e Born terms, 

Eq. ( 3.22). 
.... 0 .... 

The two terms jBe and jM are the most important contributions 

to the electroproduction amplitude j. To estimate the cross section on 

the basis of these two terms alone would, however, involve the neglect of 

terms such as mjM and I , ~ I / M which are not negligible. The 

expressions of CGLN and FNW include.correction terms which arise from 

evaluating Eq. (3.16) in first order in 1/M. The result for positive-pion 

production (FNW Eq. (14)) is, after making the approximation discussed 

b f tt . F F F F n - 0 a eve o se ~ng Q = 1 = M = 1 _ : 

* ill 

• -+-+ s ~ 
~ 0'•€ ~ 

p ............ 
i e F1 (cr·q)(k•€) 

2M m* ' 

plus a term coming from Eq. (3.18), which was inserted to satisfy the 

continuity equ£ition. Here m* = E - M. 

An alternative procedure, which will be employed here for 

including recoil corrections, is to replace the zeroth approximation 
... 0 ... 
jBe by the complete covariant expression jBe given by Eq. (3.19) or 

(3.21); i.e., set 

( 3.25) 
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The first-order term in 1/M of includes the last term of Eqo (3.24), 

and includes that portion of the second and third terms which arises from 

the Dirac moment of the nucleon. If we assume, consistent with electro­

nucleon scattering experiments, 19 that F1P = F
2
p = F2n:: FN, we find 

that 

s 
f.J. = (1 + ~ 

t 
+ ( 3.26) 

Since + g = -0.13 we see that a relatively small error will be 
n 

made by neglecting the ano~lous moment part. 

Thus expression (3.25) includes, to a good approximation, the 

1/M terms of (3.24). In addition, by avoiding the expansion of in 

powers of 1/M, it includes some of the higher-order corrections which 

have been dropped in (3.24). One might hope that these corrections which 

have been included are the more important ones. The magnetic dipole 
... 

amplitude jM already includes recoil corrections to some extent when 

one uses experimental values from pion-nucleon scattering for the phase 

shift. In fact, the CGLN formula for photoproduction of neutral pions, 
... 

which is dominated by jM' has been shown to agree well with the 

experimental data15 up to 450-Mev photon laboratory energy. 

In order to gain further confidence in the use of the amplitude 
... 
jM at energies well above resonance and at values of ~ up to the 

value ~ = 10 to be used here, let us examine the portion of the CGLN 

theory that gives rise to the specific form of First we must define 

the notation used for photoproduction by CGLN. Denoting the complete 

photoproduction amplitude by ~r' i.e., 
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_I = L: 
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... 
~ i I < r I fr I 

2 
i ) 1 

one can write, neglecting D waves and higher,
20 

1 
+ 

+ 3i 

1 q·k X -: + i cr• q X (it X €)] M 1 
1'2 

( 3.27) 

(3.27') 

The energy-dependent amplitudes M1j and E1j refer to production by 

magnetic and electric radiation, respectively, leading to final states of 

orbital angular momentum 1 and total angular momentum j • Each amplitude 

can be further decomposed·into a sum of multiples of the three independent 

isotopic spin amplitudes, defined as 

J!3 
( +) 1 

2 [ 1'!3' 1'3 ]+ 

J!3 
(-) 1 

2 [ 1'(3' T3 J 

J-!3 
( o) 

T(3 

where !3 is the isotopic spin index of the pion. For positive pion 

production, the matrix elements.of ~(±,o) are ~(+) = 0, 

~(-) = ~(O) =· ~ Now each amplitude Mlj' Elj' can be decomposed 



into a sum of multiples of ~~(±,o); for example, 

= M (+) n(+) 
£j cr 

(-) ~(-) + Mn. ,r,J . 
+ Mtj ( 0) & ( 0) • (3.29) 

Comparison of Eqs. (3.23) and (3.27) shows that the photoproduction 

JM is ~(±). The important conclusion in 

CGLN concerning this amplitude is that
2
the part of ~(±) which is 

2 

amplitude corresponding to 

induced by the nucleon magnetic moment (this is the dominant part) is 

proportional to the corresponding P~wave pion-nucleon scattering amplitude. 

To reproduce the precise statement of proportionality, let us note the 

definition of amplitudes for pion-nucleon scattering in the barycentric 

system: 

dO' 
:rr 

<in = ' 

where, neglecting D waves and higher, 

Jrc = 

fp.! 
2 ... ... ....... -+ 

fS~ + l'ql2 (~·ql + i O'·~X ql) 

+ 

fp.2 
2 

rq:l 2 

The isotopic spin decomposition has the form 

1 
+ 2 (T~, 

(3.30) 

' 

where o and ~ are the isotopic spin indices of the initial and final 

mesons. Then in terms of these amplitudes the solution found to lowest 
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order in 
(±) 

J/M in CGLN (Equation 13.1) for the nucleon moment part of ~1 
2 

is 

1 
qk 

(±) 
~2 

2 
= 

~~e definition (3.30) 

implies that fpL(-) 
2 

= 

~P - ~n 
( 3.31) 

of f£j' together with the unitarity of the S matrix, 

can be written (keeping only the T = ~ state) 

( 3· 32) 

The relations (3~31) and (3.32) show the origin of the expression (3.23) -for jM , except for the form factors and normalization peculiar to the 

electroproduction case. 
... 

If we wish to use the form of jM given in (3.23) at energies well 

above the (3.3) resonance energy, the important question is: How large a 

deviation can we expect from the simple proportionality (3.31) when higher­

order terms in J/M become appreciable? A partial answer to this question 

can be obtained by considering the deviation from Eq. (3.31) of the Born-

term contributions to ~L . and fpL • By the straightforward but lengthy 
2 2 

process of projecting out the P~ part of the pion-nucleon-scattering 

Born approximation, one obtains, neglecting D waves and higher, 

( 3·33) 

* (.1) = E - M, and 

' 
Expanding in powers 



of ~M, one finds 

(±) ,B 
fp.2. 

2 
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+ 0( 1 ) 2 
M 

(3-34) 

The electroproduction and photoproduction Born terms are of two 

kinds: those proportional to the electric charge and those proportional 

to the anomalous magnetic moment. For electroproduction, which reduces 

I easily to photoproduction by setting ~ = 0, the contribution to MP.2. of 
2 

the nucleon current part of the electric Born terms is 

~ 
2 

qk 

where 

(±),B,e 
v 
+~ 
- 3 FP4 

2 

An expansion in powers of 1/M gives 

~.2. 
2 

The 

(±) ,B, 1-L 

~.2. 
2 

l~llitl 

(±),B,e 

v * = +!:._ f ( (J) ) 
- 2M :;n* l - 4M + o( ~) 

M 

anomalous-moment Born-term contribution is~ 

1-l'v g M vl v2 

~+ ko 
± = + 

3E(2El w2 - 1) 2(E1 + M) 

( 3· 35) 

( 3· 35') 

for electroproduction, 

ko w2 

l)l ' 2( 2El (J)2 -

(3.37) 



which becomes, in a ~M expansion, 

(±),B,i-1 
~2 

2 

l<illkl 
,v f = ±.~,.;.fl._~_ 

* 3m 
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+ 0( ~) 
M 

Recalling that. 1-lv(A) we see that the simple 

proportionality, 

1 (±) ,B 

~2 
2 

( ±) ,B 
fp..2 

2 

is exact to order ~M with r = 1. Calculating the exact r from Eqs. 

(3.39) 

(3.33), (3.35), (3.37), and (3.39), one finds for photoproduction at 260-

and 400-:t-.·lev laboratory energies that r = 0.990 and 1.007, respectively, 

whereas for electroproduction at kph = 500 Mev and A = 10, r = 0.932. 

Thus in photoproduction the simple proportionality of the Born terms is 

retained vrell above the (3.3) resonance energy; even for electroproduction, 

up to at least the stated values of kph and A, the value of r 

set equal to unity with sufficient accuracy for our purposes. The 
..... 

expression (3.23) for jM will therefore be used as it stands. 

can be 

One further comment should be made about the expression (3.25) 
-+ -+ 

which will be used for j , namely, that the inclusion of both jBe and 
.:.. 
jM results in counting one term twice. We have seen above in Eq. (3.35) 



that contributes to the amplitude 
(±) ,B,e 

~2 . This contribution 
-1> 

2 
is included in jM and should therefore be subtracted out of 

-!> 
Equation (3.35) shows that the quantity that should be subtracted from j 

is 

Numerically this term prov-es to be :no more important in the case to be 

considered than many terms already neglected and will therefore be 

neglected also. 

C. Calculation of the Photoproduction Cross Section. 
-+ 

The formula. (3.25) for j developed in the previous section avoids 

expanding the electric Born terms in powers of 1/M and may therefore include 

nucleon-recoil effects more accurately than the CGLN formula. Since 

definite disagreement has been observed in positive-pion production between 

the CGLN formula. ru1d experiment,l5,l6 a calculation has been w~de at a 

laboratory energy of 400 Mev to see :Lf Fo::rmula. (3.25) leads to better 

agreement. Unfortunately this does not seem to be the case. The calcula-

tion, which will be described in this secti.on, led to an angular 

distribution almost identical to that predicted by the CGLN formula. 

Retaining essentially the CGLN notation, one finds from Eq. (3.25) 

that the amplitude for positive-pion production is: 



= 

e f 
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(.1)* + ·ri cJ.t 
1 +-. 

2M 

+ q · k X £ [ A.h ( -+) + ~ ( 2Fp.2 + F 1 (-)) 
-' 2 p2 

(3.40) 
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The only quantity in this equation which has not been defined above or in 

CGLN is Fpl(-) , which is proportional to the contribution of the nucleon= 

current ele~tric Born term to the NPl(-) amplitude. The value of Fp!(-) 
2 2 

can be found straightforwardly but turns out to be quite a long expression. 

Since Fpl(-) is only a small correction, it will be sufficient to set 
2 F 1(-) 

P- = F~' 
2 

an equality which holds only to lowest order in ~M. 
2 

The differential cross section can be obtained from Eq. (3.40) via 

the relation 

dO' 
-I. = em 

2 

' 

where Z refers to a sum over final nucleon spin states and an average over 

initial spin and polarization states. Comparison calculations of darfan 

have been carried out at a photon lab energy of 4oo Mev by the use of 

both Eq. (3.40) and the CGLN Formulae (22.6~7) with the value for o
33 

given by the Chew-Low effective-range formula, 9 

3 ro* (1 
* (J) 

(J) 
r 

) ( 3.41) 

The phase-shift analysis by Chiu and Lomon21 finds the Chew-Low formula 

accurate up to a scattering energy of 220 Mev (370 Mev in photoproduction) 

2 if ro ~ 2.1 and f = 0.08. The small P=wave phase shifts, which are r 

not so well known, were set equal to zero in the calculation. The s-wave 

phase shifts22 

fUnction N(-) 

o1 = 0.173q and o
3 

= -O.llOq were used, and the unknown 

was set equal to zero. The results and the experimental 

points of Walker et a1. 23 are shown in Fig. 9. The use of Formula (3.40) 

results in no improvement over the CGLN formula for this case. 
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Nevertheless the formula developed in this paper may be significantly 

more accurate in the electroproduction case, where recoil corrections can 

be more important. The theoretical curves in Fig. 9 agree well with the 

corresponding curve of Lazarus et !!.16 The slight difference which exists 

is probably due to the fact that Lazarus et !!· made a different assumption 

about the small P-wave phase shifts. 

D. Calculation of the Electroproduction Cross Section • 
... 

Having developed and investigated a formula for j , we are ready 

to proceed to a calculation of the electroproduction cross section. This 

calculation is necessary in order to be able to estimate the experimental 

accuracy necessary to perform the proposed extrapolation. 

Since the machinery for the calculation has been set up in 

Section III A, we need only insert Formula (3.25) for J into Eqs. (3.12) 

to (3.15). The results will be expressed in terms of the dimensionless 

quantity §, which is related to the cross section by Eq. (3.13) • 
... 

Separating § into the part coming from jBe , from jM , and from the 

cross term, we write 

The magnetic dipole term ;fM can be evaluated easily by substituting 

Eq. (3.23) into Eq. (3.15), which gives 

where D is defined by Eq. (3.23'). 

( 3 .42) 

( 3.43) 
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The Born term part of ff can be evaluated covariantly by 

substituting Eq. (3.19) into Eq. (3.14), by the use of Eq. (3.12). The 

result is: 

F 2 
:n: [ 4( q. s )( q. s' ) - A. ] 

(t? + 1)
2 

~(p' ·k) 

/:12 
+ 4 ~ (p.s)(p·s') + 2(p.s)(p'.s) + 2(p•s 1 )(p'.s') 

+t [ 2(p'.k)(p.s)(p.s')- (p.k)(p.s)(p'.s') 

- (p·k)(p.s')(p'.s)] J 

(1:12 + p' ·k)h(p) - (p·k) h(p') ] • 

In this formula the assumption has been made tl1at F1n(A.) = o, and 

F 1P(A.) = F 2P(A.) = F 2 n(A.) ::; FN(A.), and the abbreviation 

h(p) = 
has been introduced. 

Finally, the cross term is 

(3.44) 

(3.44') 
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= 
2M v

1 
v

2 
ReD 

217il lk'l sin e 
{ 

2 2 2 

Iii lk'l (3 - cos
2 

e) { 

2 2 . 

• 

The following symbols were introduced: 

( 3.45') 

The last term in Eq. (3.45) is the contribution of Eq. (3.18), the term 

that was added to jB to restore gauge invariance. The same result can 

be obtained by modifying the analysis following Eq. (3.4) to take account 

of a nonzero k·j 

... 
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A numerical calculation of these formulae as a function of 9 

has been made for the case discussed in Section II c, namely 

kph = 500 Mev, or 

;.::!, 700 Mev. 

Two values of the angle ¢ (defined in E~. (2.9)) were used: 0 ¢ = 0 and 

¢ = 180°. From electron-nucleon scattering experiments the value of FN 
1 

was chosen to be FN(lO) = 0.62. 

To carry out the calculation it was necessary to estimate the value 

of the phase shift 8
33 

at E = 9.66, which corresponds to pion-nucleon 

scattering at 350 Mev. One cannot use the Chew-Low formula (3.41) at 

such a high energy. At 307 Mev, Chiu and Lomon21 find a significant 

deviation. This is illustrated in Fig. 10, which shows the points of Chiu 

and Lomon and one point by Willis24 at 500 Mev (e
33 

= 157.3°). In order 

to estimate the phase shift at 350 Mev, the points have been joined by a 

smooth curve and the value 8
33 

= 145° read off at 350 Mev. This crude 

estimate should be ~uite ade~uate for our purposes. 

To make the dependence on the unknown form factor F explicit, 
1{ 

let us write 

(3.46) 

The calculated dependence of A, B, and C on 9 is shown in Fig. 11 

for ¢ = 180° and in Fig. 12 for ¢ = 0°. The physical meaning of the 

two values of ¢ is illustrated in Fig. 13. Comparison of the two cases 

reveals the fact that A depends very strongly on ¢. The origin of 
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this strong dependence is the ter.m in brackets in the following expression 

for A: 

A = 
M 2 

4 ( E ) - "' ] . (3.47) 

The ter.m A is of course the pole ter.m which has been discussed, but the 

extreme ¢ dependence noted above will be smoothed by the extrapolation 

procedure suggested in Section II B. Recall that it is necessary to 

symmetrize the cross section as prescribed by Eq. (2.7) in order to 

eliminate a branch point. The symmetrized £ can. equivalently be defined 

as 

ffs<e, ¢) - .f<e, ¢) + j(e, ¢ + rc) (3.48) 

This symmetrized fa is then the average of the ¢ = rc case of Fig. 11 

and the ¢ = 0 case of Fig. 12. 

Before going on to the consideration of J?s and its extrapolation, 

let us note the dependence of the electroproduction cross section on the 

parameter Frc(lO), with FN(lO) = 0.62). Several cases are plotted in 

Fig. 14. One interesting feature of this graph is that for any curve 

F (10) = ~' where ~ ~ 0.85, there is another very similar curve 
1( 

corresponding to a different value of F ( 10). 
1( 

This is illustrated in 

Fig. 14 by the curves for Frc(lO) = FN(lO) = 0.62 and for Frc = 0.20. 

Finally, Fig. 15 shows the calculated behavior of the extrapolation 
2 ' 2 

fUnction (~ + 1) ~ at the end of the physical region. 



-44-

IV. CONCLUSIONS 

We are now able to apply the error estimates developed in 

Section II c. For example, recall that for one case in which the cross 

section was measured at nine specific points, the error was found to be 

~0 ~ 100 ~ If 6a0 is the error in (~2 + 1)
2 ~ at the point 

~2 = -1, then ~ is the error (assumed constant) in ~ at each measured 

point. From Fig. 15 we see that if 6a0 ~ 2 the extrapolation yields 

no useful information. This requires a constant absolute error in ~ 

less than 0.02. Fig. 14 shows that if F = 0.62, this means a percent 
~ 

error ranging from 2% at e = 0 to 6% at e = 90° and 20% at e = 180°. 

Even this estimated upper limit of accuracy is considerably better than 

that achieved by Panofsky and Allton2 in an electroproduction experiment 

2 in which only E and A (not 6 ) were determined. Thus it appears that 

the proposed extrapolation, although possible in principle, will require 

experiments of great accuracy. 
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FIGURE LEGENDS 

Fig. 1. Electropion production, considered in lowest order in a . 

Single lines are electrons; double lines, nucleons; wavy lines, 

photons; and broken lines, pions. 

Fig. 2. Poles and branch points in the cos 9 plane. The scale of the 

figure is appropriate to the values E = 9.66, ~ = 10. The 

Fig. 3· 

right~hand pole is the one at ~2 = 2 
-f.l, • 

2 2 T11e class of diagrams giving rise to the pole at 6 = -f.l. • 

Fig. 4. The pion-photonvertex. 

Fig. 5. The distance of extrapolation as a function of E for two values 

of A.. Also shown in kph , the equivalent laboratory energy in 

photoproduction (E2 = Il + 2Mkph). 

Fig. 5a. The dependence of the extrapolation error L:lao/~ on E. 

Fig. 6. The variation of the symmetrized residue at the pole as a function 

Fig. 7• 

of E for various ¢ at TL = 700 Mev and A. = 10. 

2 E vs. A. for TL = 700 Mev for various values of the laboratory 

scattering angle w of the final electron. Points above the 

line t = ~ are not kinematically possible. 

Fig. 8. The diagrams giving rise to the nucleon-current Born terms in 

the electroproduction dispersion relations. 

Fig. 9. Photoproduction at 400 Mev. Solid line: prediction of modified 

CGLN formula 1 Eq. (3.40). Dashed line: prediction o'f CGLN 

formula. Experimental points are those of Walker et !!.!• 23 
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Fig. 10. The phase shift o33. Point at 500 Mev by Willis; 24 others by 

Chiu and Lomon. 21 The dotted curve has been drawn to estimate 

o
33 

at 350 Mev. The solid line is the continuation of the 
. 2 

Chew-Low fit to the low-energy region, with f = 0.08 and 

ill = 2.1. 
r 

Fig. 11. The dimensionless functions A(e), B(e), and C(e) defined by 

for ¢ = 180°. 

Fig. 12. The functions A(e), B(e), and C(e) for ¢ = 00, • 

Fig. 13. Illustration of the two cases ¢ = 180° and ¢ = 6° in terms 
... ... 

of momenta in the system in which pt + q = 0 • 

Fig. 14. .A: plot of the dimensionless function §, proportional to the 

electroproduction cross section, for E = 9.66, A. = 10, 

TL = 700 Mev, ¢ = ~ , and various values of the pion form 

factor. 

Fig. 15. The calculated behavior of the extrapolation function 

2 2 (6 + 1) ~ at the end of the physical region for the case 

discussed. 
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