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ABSTRACT 

Measurements have been made, by double scattering, of all 

parameters necessary to describe completely the interaction of the 

deuteron with complex nuclei, Tensor components of polarization, 

which characterize the scattering of spin-one particles and which 

were unobservable at low energies, were determined to be appre

ciably different from zero, Internal targets at two different positions 

were used to polarize :~earns undergoing differing amou~ts of mag

netic bending in the field of the eye lot ron in order to separate two 

polarization components included in the cos<j> term of the scattering 

cross section for a polarized beam, 

Deuterons of 410 and 420 Mev were scattered from beryllium 

and carbon, respectively, Internal angles of scattering were 10 deg 

for beryllium and 11 deg for carbon; angles of second scattering 

extended from 6 to 18 deg, The usual spin polarization (vector 

polarization) normal to the plane of scattering was found to reach 

a maximum of about ?Oo/o, 

The impulse approximation was employed to obtain estimates 

of deuteron cross section and polarization on the basis of nucleon

scattering data, 
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I. INTRODUCTION 

Although the phenomenon of deuteron polarization is much 

more complex than that of proton polarization, experimental 

research should lead to a better understanding of the spin-orb~t 

interaction between nucleon and nucleus and, more particularly, 

of the relative importance of various effects in the scattering of the 

deuteron. Many studies have been made of the spin-orbit potential 

in nucleon interactions" 
1 

'Experimental work on the scattering of 

deuterons has been rather limited; Baldwin et aL 
2 

measured eros s 

sections and polarizations for various elements at 94, 125, and 

157 Mev, but failed to observe any of the "tensor components" of 

polarization expected for a spin-one particle" Stapp made extensive 

theoretical studies of the application of the impulse appro~imation 

in various forms to deuteron scattering; he found good q,gteement 

with experiment only by assuming that simultaneous scattering of 

both nucleons of the deuteron was an important effecL 
3 

Neither 

his assumptions as to the form. of the nucleon-nucleus potential nor 

the use of nucleon-scattering data gave vector-polarization pre

dictions at all comparable to the large values observed by Baldwin, 

although the tensor components could be estimated as very close 

to zero" Tripp carried out an experiment on the p+p ~iT +-t-d reac

tion_to analyze the polarization of the deuteron for determination of 

the phases of meson-production amplitudes and hence differences in 

p-p phase shifts; on the basis of the work of Baldwin and Stapp, he 
4 

assumed that tensor components were zero" 

Scattering measurements at a deuteron energy above 400 Mev, 

available from the reconverted cyclotron, seemed desirable to 

determine whether the tensor components of polarization might be 

observable; further, a method of separating the two components of 

polarization appearing in the cos<j> asymmetry, heretofore considered 

very difficult, 
5 

had been suggested, a and it was thought th;:;_t the 

complete determination of scattedng-matrix components would be 

a 
By Dr" Ronald Merm·od, now at Cern Laboratory, Geneva. 
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of interest. It was to be expected that the impulse approximation 

would give better agreement with experiment at the higher deuteron 

energy, since nucleon polarization rises rapidly with energy near 

100 Mev and the Born approximation has greater validity at higher 

energies. 

The results of the scattering by beryllium and carbon of two 

polarized beams having different tensor components are reported 

here. An analysis is carried out on the basis of the impulse ap

proximation and comparison made with Baldwin's results. 

It should be a relatively simple matter to extend these measure

ments to lower energies by degrading before the second scattering 

and thus to determine the energy dependence of polarization com

ponents more exactly. Further, useful information on differences 

between p-p phase shifts could be obtained by analysis of deuteron 

polarization in the p+p--+rr + +d reaction at proton energies of 400 to 

740 Mev. 

u ,. 

• 
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II. THEO~Y 

Because the deuteron is a particle of spin one, four parameters 

in addition to the unpolarized cross section are needed to specify 

the intensity after double scatter~ng. These parameters are de

pendent upon the angles of first arid second scattering and may be 

expressed in terms of the expectation values, after single scatter

ing, of certain operators in the spin space of the deuteron. Two 

of them may be determined immediately from differential-cross

section measurements, as was done by Baldwin at lower energies ;
2 

the other two, however, are combined as the coefficient of a cos<j> 

term (where <1> is the azimuthal angle between the normals to the 

first and second scattering planes) and can be separately deter

mined only by double scattering with and without a magnetic field 

between the first and second targets. 

The theory of polarization of the deuteron was given first by 

Lakin
5 

and subsequently treated with a different formalism by 
3 

Stapp. Just as there are four independent matrices necessary to 

specify the scattering matrix of nucleons having a two-dimensional 

spin space, there must be nine linearly independent matrices to 

describe the scattering of deuterons which have a three -dimensional 

spin space. The application of parity and time -reversal restrictions 

reduces this number to five. For the nucleons, the unit matrix and 

the three Pauli spin. operators suffice, but for the deuteron there 

must be included in the scattering matrix not only terms linear in 

the spin operators, but se<;ond-rank tensor terms as well. 

A. Formalism 

A convenient set of operators given by Lakin includes the 

unit matrix, two linear combinations of spin operators, and three 

second.,.rank tensor products of spin operators, as well as the 

Hermitian adjoint of three of these. The advantages of this par~ 

ticular representation are that the operators transform in spin 

space just as the spherical harmonics transform in coordinate 
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space, and further that the second-scattered intensity may be ex
a 

pressed in an especially simple n:1anner. 

These matrices are: 

2 
(S + iS ) 

X y 

s 
z 

T22= 
~ 7 

(S + iS )~ 
2 X y 

T21= - .[3 [ (S + iS ) S + s (S + iS ) ] 
2 X y Z z X y . 

l 
(3S

2 
-2) T2o= ,rz- z 

t 
T = (-)MT M 

J, -M 

·Choice of a particular coordinate system causes some of the 

(T JM) resulting from a scattering process to equal zero. (This 

can be seen by considering an explicit form of M or MM+, as in 

Section C.) An especially useful system is that in which the y axis 

aLike the spherical harmonics, the T JM are an irreducible set of 

tensor operators and hence have especially simple rotation trans-

formations associated with them. 

cussion.) 

(See Appendix B for fuller dis-
• 
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is normal to the scattering plane and the z axis is along the direc

tion of motion of the once-scattered beam. (See Fig. 1.) For this 

situation the state of polarization of the scattered particles is corn

pletely described by the expectation values of four of the TJM 

operators as well as the normalization <T 
00

) ; further, all (T 2~ 
are real, while (T 

11
) is pure imaginary. . 

Lakin constructs a product of the scattered matrix and its 

adjoint MMt which is invariant under space inversion and time 

reversal, and in the reference system defined above he obtains for 

the second-scattered intensity 

r 
I~ ( e 2 , cl>) = I u ( e 2 ) ll + 

where I is the cross section for scattering of an unpolarized beam; 
' u 

c:phs the azimuthal angle between normals to the two scattering 

planes; a (T JM) 
1 

represents the expectation value of the tensor, 

operator T JM after scattering of an unpolarized beam at an angle 

8 l by Target l; and (T JM) i, the same for angle B2 at Target 2. 

(The coordinate system used has its z axis along the direction of 

beam incident on the second target, but the (T JM) for each of 

Targets l and 2 are defined with the z axis along the outgoing mo

mentum because time reversal is used to obtain ther(T 
2
M) 2 of 

Target 2.) 

. The quantity ~T 
11
J is 'referred to as "vector .polarization," 

as it is proportional to \s ) , the polarization normal to the 

scattering plane, while th~ (T 
2
M) are components of "tensor 

polarization" and represent a spin alignment rather than an orien

tation. The latter constitute a second-rank tensor, one of whose 

principal axes is along the direction of spin or parallel to (iT 11) . 
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(a) 
X 

K 

)lo z 

(b) 

MU-17288 

Fig. 1. (a) Coordinate system for single scattering as 
seen in the plane of scattering. 

(b) Geometry of double scattering. 
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This vector polarization is evidently not affected by a magnetic field 

normal to the plane of scattering, but such a field does cause rotation 
;. 

of the polarization tensor relative· to the beam -defined coordinate 

system described above, and hence a mixing ,of the ( T ZM) components·. 

B. De scription of State ~ Polarization 

Description of the state of a particle following a scattering 

interaction may be given by~the use of a scattering matrix M, which 

defines the final state in terms of the initial state, 

.The density_ matrix after scattering then takes the form 

p = ~ f . 
J 

and this gives the expectation value of any spin operator sl-l after 

scattering, 

= 

t· 1-l 
TrMp.M S 

1 

+ TrMp.M 
1 

The initial-density matrix may be expressed in terms of a complete 

·set of these spin operators Rv, under the requireme:ht TrR aRf3f =nl)aW 
as 

1 \ (Rv) 
V·( .~ ' 

p. = \ R I· 1 L ( n. 
1 v 

(n. being the dimensionality of the initial spin space). 
1 

Then the Wolfenstein-Ashkin relation
6 

follows, 

1 (sl-l) f 
Trpf 

(s~-L)f l 
[(Rv)i = = Tr (MR v+ M + sl-l), 

Trp. n. 
1 v 

1 

with R v and sl-l referring to the same set of spin operators for the 

description of initial and final states, respectively. 

From this relation the cross section is found for second scat-

tering, 
+ v TrM.MR; 
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and polarizations or expectation values of spin ope.rators after 

single scattering are 
l 

n. 
1 

In the case of the deuteron, these spin operators Rv and sf.l can of 

course be defined as the T JM of Lakin. 

Evidently, expressions either for MtM and MM+ or for the 

scattering matrix alone would be useful in describing the scattering 
+ 

of a particle. Lakin chooses to define a general form for MM and 

also for M+M on the basis of invariance arguments ;a he forms all 

possible products of the above-described T JM and the spherical 

harmonics Y JM (with arguments derived from ki and kf' incident 

and final momenta) that are invariant under spa<Ze inversion by 

using only those Y JM which are even in ki and k£" He finds the 

eros s section for second scattering as a function of (T JM) 1, 
+ 

Y JM (821'-L and 82 - dependent coefficients of the M M terms by 

substituting the M+M expression into the (sf.l)f relation above and 

taking sf.l equal to the unit matrix; he then notes that time reversal 
. t + 

requires M M to be equal to MM and finds the angle -dependent -

coefficients in terms of the ( T JM) 2 resulting from the scattering 

of an unpolarized beam. (Subscripts refer to the geometries of 

first and second scatterings.) The expression for second-scattering 

cross section which he obtains is as given on page 9. 

Stapp, on the other hand, prefers to define M alone as 

M = A (e) + B. (e) s. + c .. (e) s .. , 
1 1 1J 1J 

aMMt = JO + Jl ~ y 2M (ki) TiM+ J2 ~ .Y 2M (kf) T;M 
M M 

+ J3 L. y 2M (ki' kf) T~M + J 4 ~M y lM (ki x:kf) T~M' where 
M 

Y 
2

M (ki, kt) is a second-degree harmonic, bilinear, and symmetrical 

in ki and kf" 

• 
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with the S .. representing symmetrized products of spin operators. a 
1J ·. 

Inwariance under space inversion and time reversal is again applied 
I 

to restrict the types of terms. As Wolfenstein and Ashkin have 
I , 

shown, only the S.n. term of the class of vector contractions is 
1 1 

invariant under space inversion and time reversal; similar arguments 

show that of all the tensor products only S .. n.n., S .. P.P., and S .. K.K. 
1J 1 J 1J 1 J 1J _} J 

terms are possible if n is the normal to the plane of scattering, p 

the sum of initial and final momenta, and K the difference of initial 

and final momenta. (The nK tensor changes sign under space inver

sion; the nP tensor, under both space inversion and titr;Je reversal; 

and the PK tensor, under time reversal.) Thus the most general 

scattering matrix satisfying invariance requirements is 

M = a (8) + b (8) S.n. + ~ (8) (n.n. - 1/3 0 .. ) 
1 1 ~ 1 J 1J 

+ d (8')' (P.P. - K. K~ )1 S .. 
' 1 J 1 J ~ 1J 

Although this scattering matrix gives a rather complex expression 

for cross section in second scattering, it is useful for evaluating 

polarization compon~nts in terms of scattering:;;;matrix elements, 

which may be related to the scattering matrix for nucleon-nucleus 

interaction. 

C. Cross Section for Second Scattering 

Although Stapp's notation is more cumbersome than Lakin 1 s, 

his formalism gives a better understanding of th.e origin of the cj>

dependence of terms in 1
2

. He defines the scatte,ring mattix as 

given above. The vectors entering into this matrix are represented 

in Fig. 1a, their definitions being 

a s .. -
1J 

n = unit vector along ki x kf' 

P = unit vector along ki + kf' 

K = unit vector along kf - ki. 

1/2 (S. S. + S. S.) 
' 1 J J 1 

- 2/310 ... 
1J 
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In term;, then, of the xyz coordinates defined by the first scattering, 

as above, the vector components used in the scattering matrix for 

the second target may be represented as the following functions of e 
and cp, 

nzx - - sin cp, 

. e = s1n z cos cp, 

p = 
2x 

() 
cos-·-_; cos ""· . 2 't' 

nzy = cos cp, 

K . e . "" 
2 y = s1n 2 s1n 't'• 

P e . "" 
2 y = cosy s1n 't'• 

n2z = 0; 

K2z 
e = cosz-; 

H I
2 

(8, cp) is now determined by taking I
2 

= Tr M
2

p 1 M~ , 

with p 
1 

the density matrix after first scattering, Stapp's form of 

the scattering matrix characterizing the interaction at Target 2 

may be substituted to give 

I2 = Tr f[a + b S · n2 + c(n.n. -0 .. /
3

)2 S .. l l J lJ lJ 

+ d (PiPj - KiKj)
2 

Sij] ll p,_ [a* +b,:'s. n
2 

+ c,:, (ninj 

+ d,:< (P.P. - K.K.)
2 

S. :n = a 2 + 2/3 b
2

+ 4/3 Re a>:b Tr (p~S · ~) · 
l J l J l~ j '1 t. 

It is evident that the third term is proportional to (sy ) 1 (sy)z coscpa 

or to(iT ~1~ ~T 1}, )z_ cos cp. Also there is a cos cp term proportional 

to (sxsz} 1 or to\T 21 ) 1 , which derives from 

Tr {p 12 Rea* d (P xp z- KXKZ) sxf- (sxz )I 2Re a* d sin ~ cos ~ cos .p. 

Further, such terms as Tr {p 1 d
2 

(P P - K K )
2 

s
2 

} will reduce to 
X Z X Z XZ 

the form cos
2

cp{(s 
2

) 1 , part of which is proport~onal to(T 22 ) 1 
y >',< 2 2 2] cos 2<j>·; and Tr p 

1 
2 Rea d (P - K ) S will be of the form 

z z z 

(cos~·~ - sin
2 ~) (s;) 1 , or proportional to a(T 20 ) 1 term independent 

of <j>. 

aTr (p 
1 

Sy) gives the expectation value (sy )r and its coefficient Re ;:<b 
is proportional to the~y) 2 that\would result from scattering an 

unpolarized beam from the second target. 
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D, Single Scattering 

If the coordinate system con-~idered has its y axis alony; the 

normal and 1ts x and z axes in the plane of scattering, then \S ) 
y 

is the only component of spin polarization produced in the scattering 

of an unpolarized beam; i.e,, (sx) = (sz) = 0. Further, it can be 

shown that the polarization tensor has one of its principal axes along 

they axis, or that ~ys) = ~ysz)= 0, This can be demonstrated 

formally by using either Stapp's or Lakin's expre s sian for MMt. a 

The vanishing of these expectation values follows from the require

ment that the terms in M be invariant under the parity operation. 

In the coordinate system with the z axis paralle 1 to the scatter

ing normal, the requirements that~)and~~equal zero after the 

scattering of an unpolarized beam yield particular forms for the 

deuteron spin functions. b One solutiqn is 

[ 

iA. ] 
XA = ;e . 

-lA. 
and the other is [(co~ 6/2)e~~A] 

-ae (sin 6/2)e 

f 

- 2 A 2 r 
where a and j3 are real and 2 a +p = 1, These wave' functions are 

of interest in that the phases can be inter'preted in terms of a mag

netic field H applied along the z axis for a time t by solving the 

equation (with f.! the magnetic moment of the deuteron) 
,uH 

A.=-+ t. -pS H X = i ti X z z 
to find 

ti 

aFormulae giving the reduction of spin-operator products are in 

Stapp's thesis, 
3 

p. 119 . 

b 
These XA and XB functions can, of course, be put in the same 

form as the Lakin or the Baldwin spin functions. (See Appendix B.) 
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Solution A may be interpreted as representing spin oriented 

in the plane of scattering with probability 13
2 

and spin oriented par

allel or antiparallel to the normal with probability a
2

; the probability 

of finding an average spin orientation along the z -axis normal thus 

is zero. For Solution B, spin is oriented on the average at an 

angle to the normal, so that the probability of finding spin along the 

normal is cos 0. For this case, 

1/2 

(szz) = 

(sxx) = 

1' 

1/2 (1 +·sin_o co~s 2X.), 

(sYY) = 1/2 (1-sin 0 cos 2~), 

( (sx) + fvoy)) = - 1y'4 sin 0 sin 2 A. 

(These values, or !heir reciprocals, ·when plotted to give (s
2

) or 

l/ (s
2

) in the x-y scattering plane, give an ellipse whose orienta

tion relative to the direction of the motion of the deuterons is deter

mined by the value of A or of H t associated with the bending after 
z 

scattering. See Fig. 2.) 

·The polarization tensor is to be interpreted as the statistical 

distribution of deuteron spin; expectation values of IS ) , (s ) , 
. \.: ZZ · XX 

and (sy) indicate the probability of finding spin aligned along the 

various axes. Hence, for Solution A above, (szJ = 2a
2

, al-

though (s ) is.· zero; for the second solution' rs ) = 1, 
z . I ) \: zz . 

while (sxx) and \Syy vary from 0 to 1 depending on the 

quantities sin 0 and cos 2cj>. 

The ( T 
2
M) tensor components have the following physica 1 

interpretations in the scattering of an unpolarized beam: (T 20 ) 

indicates the probability of finding spin aligned along the z axis; 

< T 22) the preference for spin alignment along the X rather 

than the \axis; and ( T 21 ) , the amount by which the orientation of 

the (sisj) ellipse axes in the plane of scattering differs from that of 

the x-z sca;tering coordinates. These cone lusions are based on the 

facts that' \ T 20 ) ia dependent on (s;) , ( T 22 ) on ( s! ) - (s~) , 

• 
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z z 

,,-- ---, f '--:.:.-=.- ~=:;:spin S 

(Sz)=Scos8 

X 

l_----J----~ y 

X 
(a ) (b) 

MU-17289 

Fig. 2. (a) Classical representation of a general type 
of wave function (x B) for spin-one particles. 

(b) The projection of (s2
) or 1/ (s2

) in the 
x-v scattering plane . 
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and < T 21) on ( SxSz) ; <T 20_) has further significance in rep

resenting the extent by which the occupation of the m = 0 state 
s 

for the z axis differs from the unpolarized value of one -third. 

E. Pure Polarization States 

As is stated by Lakin and as can be shown by use of the spin 

operators and wave functions in Appendix B, the cos <j> term of the 

polarized cross section for B 1 = e
2 

reaches a maximum of 3/2 

cos <j> if the first scattering puts all particles into the pure spin 

state x+ 1 (or x_ 1 ) along the normal (y axis). The limit of 3/2 for 

e can also be obtained by noting that the unpolarized cross section 

(Iu) must be 1/3 the polarized cross section at <j> = 0 (1
0

) if the 

polarized beam contains only spin-up particles and these are all 

scattered left. Then 

e = 
1o- 1180 

2 I 
u 

10 
= = 3/2. 

2/3 10 

The tensor components describing the once -scattered incident beam 

\n this case have the values 

(TlO) = 

~T 11) = 

~20) = 

,(T 21) = 

(T22) = 
'" 

0 

5/2 

1 ---
2,.[2 

0 

-N4 

or ( Sz) = 0, 

or (sx) = 0, (sy) = 1, 

or (s;) = 1/2, 

or (sx)/ = - ( Szx) 

or (s~ )-(s~) = 1/2 - (s~) = -1/2. 

Thu~ all spins will be found in a cone along the +y axis; 1/4 of them 

will be along the +z or -z axis, but with average s . = 0, and 1/4 
z 

along the +x or ;.;;x axis with average S = o; while 1/2 will be aligned 
X 

along the y axis. The f axis is a principal axis of the polarization 

tensor and indeed is the smallest of the three axes of the polarization 

ellipsoid representing this tensor. (See Appendix D. 2.) 

• 

/ 
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(<:? 
1 

<~ - ~) ) The ellipsoid has the form of an oblate 
\s;; . 

spheroid. 

the y axis 

and hence 

Magnetic -field rotation of the tensor 

does not change the values of (s;), 

leaves the ( T ZM) unchanged. 

or ellipsoid about 

< s2 ) , or ( s2 
) , 

X y 

The cross -section cos 2<j> term attains a maximum for the 

case of a pure X b state. < sy) then = 0, as do also (sx) and( sz). 

The values of tensor components indicate that the spins of all 

particles lie in the plane of scattering, but are quite randomly aligned. 

Again the polarization e llips aid is circularly symmetric about the 

y axis--i.e.,· (sxz) + (szx) = 0--but it degenerates into a 

cylinder, as l/(s~) 1s infinite. 

F. Tensor Rotation 

Two effects enter into the transformation of the (TJM) . One 

of these is the rotation of the coordinate system resulting from deflec

tion of the deuteron by the magnetic field; the other is the precession 

of spin axes in the plane perpendicular to the field direction. For 

relativistic partie le s, the latter must include the contribution of 

Thomas prece s sian. 
7 

(See Fig. 3a) The deflection of the deuteron 

in the x-z plane is given by: 
eH 

w t=1/y---
c yc lot ron Zmpc 

t = 1/y w . t = '1'1 )armor .,. 

The preces sian of the spin or maQ..netic moment is: 

·wprecess t = [ ~d wlar,;,or + (l - y) wcyclotron] t, 

where fJ.d is the magnetic moment of the deuteron in terms of the 

nuclear magneton. Thus the angle through which the spin of the 

deuteron (or more exactly the ·axes of the polarization tensor, as 

the spin is on the average parallel to the field) is turned relative 

to the final direction of motion z' is: 

X. = ( w w ) t - -y (" 1 ) -n precess- cyclotron - r-- ., 

= 1.22 (.8565- 1) 11.::.-1/6 ,. 
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Px I 

Px 

(a) (b) 

Fig. 3 (a) Rotation of deuteron spin under the action 
of a magnetic field. Here z and z 1 are the initial 
and final directions of motion of the deuteron. 

(b) Section of polarization ellipsoid in x-z 

M U -17,290 

plane of scattering, describing the state of polari
zation after single ,scattering of an unpolarized 
beam. The axis p is paralle 1 to k 2 . for the dee-
target beam; the axfs p11 is parallel f6 k

2
. for . z 1 

the meson-target beam. (See Fig. 1.) 
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The quantity TJ is positive if deflection is clockwise along the negative 

y axis. (This i.s the ca~·b for deuterons scattered left i-n a field di

rected along the positive y axis,) 
. t'· 

The equations expressing the rotat~d ( T 2 M)' 

terms of the original ( T 2M) may be written 

quantities in 

= X a.M~'M 
M 

where the _a.'s are trigonometric functions of the angle X. or of the 
J 

angle of deflection of the beam. Explicitly, tl~e equations ar'e 

= a.oo (T 20) +. a.o1 (T21) + a.o2 ( T 22) 

(1-3/2 sin
2

X.) (T 20)- (3/2) 
1

/
2

sin ~X. (Tz 1 ) 

+ (3/2)
1

/
2 

sin 
2 

X. ( T 22 J 
= 1/2 (3/2)

1
/

2 
sin 2 X. (T20 ) + cos 2 X. (T 21 ) 

- 1/2 sin 2 X. (T 22) 

(T 22 )' = 't/2 (3/2)
1

/
2 

sin 
2 

X. (T20 ) + 1/2 sin 2 x.(T 21 ) 

+ 1/2 (1 + qo~ 2 
X.) (T 

22
) 

(Note that the sign of each sin 2 X. term is opposite to that given by 

Baldwin. 
2

• 8 ) Several methods may be used to derive these equations, 

the simplest being that of expressing an S.S. tensor in terms of the 
. 1 J 

complete set of T JM matrices and then transforming this tensor by 

rotation of the ..§ , § , and S (or ~. y, and ~) basis vectors about x y z · · 
they axis. (Se~ discuss·ion in Appendix D. l,) 

To show that the trans{o.:tmation represented by the ;above; equa-

t . . . 1 h . f ~R
1 

1 . . h 1ons 1s equ1va ent tot e rotation, o t ·e po ar1zatlon tensor or t e 
' 

ellipsoid representing this tensor (see Appendix D. 2 and Fig. 3b), 

it is useful to consid~r the special case of a pure spin state m = 0 s 
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along the x axis; this situation gives zero values for (iT 1) and 

for e , but a maximum value for f when double sc~tter ng at the 

same angle is performed. As can be seen by simple calculations 

with the x eigenfunction of S , the expectation values of spin 
0 X 

products are 

(s~) = 0 

(s~) = 1 \ 

(s;) = 1 

(sys~ = ( sysz) = (sxsz) = (szsx) = 0. 

The reciprocals of (s~), < S~ ) , and< s; ) give the el,lipsoid 

axes and in this case produce a degenerate ellipsoid, namely, a 

cylinder of radius 1 extending to plus and minus infinity along the 

x axis. 

If this cylinder is rotated through an angle A. (change of spin 

direction relative to partic1e motion) equal to 90 deg, the newel

lipsoid should be a cylinder of radius 1 extending to infjnity along 

the z axis. Then the spin-product expectation values are 

(s~) = 1, 

(s~) = 1, 

(s;) = 0, with expectation values of other_ products still zero. 

The tensor compone~ts ( T 2.M ) may be expressed in terms of these: 

(T2o) = 1/..rz ... ~ (s! ') - z), 

(T21) =-.JJ;z (~"")~ ( Szx) + .i (s s ) + i ( sz sy )) , y z 

(Tz2) 
~~--

= /2 ( (s~ ) (s~,) )· 

"· 
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The values of ( T 
2
J before magnetic -field rotation were 

(T
20

) = 1/~ (3-2) = 1/~ 

(T21) = 0; 

(T22) = -:@i. 

The final value of (s2
) 

1 

after rotation gives 
z 

( T 2 0 ) I = 1 I ,J2 ( 0 -2) = _rz. 
This agrees exactly with the ( T 

20
) 

1 

found from the first of the 

rotation equations above with A. = 90°, 

(T
20

)
1

= (1-3/2) (T
20

) + .J3T2 (T22) = -2/ff; 

and calculation of the other ( T 
2

M ) 
1 

values shows the two methods 

to be equivalent. 

G. Restrictions of Time -Rever sal In variance 

Invariance under time reversal is satisfied for scattering 

processes if the scattering matrix as a function of the time-reversed 

momenta and spins is equal to the adjoint of the original scattering 

-matrix, 

M ( - p 2 ' - p 1 ' - S) = M t (p 1 ' p 2 ' S) . 

Then it follows that 

-- t--' 
Tr M!p, S) M (p, S) 0. 

1 

t - - - -= Tr M (-p, -S) M (-p, -S) 0., 
. - 1 

where 0. is any spin operator used in the description of scattering. 
1 

A more general statement for scatterings complicated by the action 

of a magnetic field is the requirement that the transition probability 

for the forward process equal the transition probability for the time

reversed process 9 : 

T M t M iA.SyM Mt -iA.S 
r 2 2 e 1 1 e Y 

-iA.S 
e y, 
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where M 1 i~ the scattering matrix associ~ted with Target l and M
2 

the scattering matrix associated with Target 2, while the rotation 

operator eiA.Sy describes the action of the magnetic field between '" 

scatterings l and 2. Both of these conditions require that terms odd 

under time reversal, such as SPK, not be included in the scattering t;: 

matrix, and with parity conservation give the form of M presented by 

Stapp (or of MMf discussed by Lakin)o 

Operators which are odd under the parity operation have expec

tation values after single scattering which are zero (Section IL D) if 

terms violating parity conse.rvation and time-reversal invariance 

are not permitted in the scattering matrix M. The same sort of 

conclusion cannot be drawn for operators changing sign under time 

reversal. In the n-P-K coordinate system (defined in Section II. C), 
---- .._._ --

the scalar product S .. P.K. = (S· P) (S· K) + (S· K) (S· P) or SPK is 
lJ 1 J 

odd under time reversal. This means tha~ it cannot appea'r in the 

scattering matrix M. However, perm is sib le terms of M can ·com

bine in the product MM+ to give a nonzero expectation value for SfK 
after single scattering; i.e., the SnSKK and SnSPP terms of MM 

reduce to SPK and therefore give a quantity proportional to the Stapp 

coefficients b( 8) x- d( 8 ) rather than zero for Tr MMt SPK' 

The orientation of the principal axes of the polarization ellip

soid in the plane of scattering would have been along the P and K 

directions, had SPK been required to be zero by time -reversal 

invariance; instead, the orientation should in general be at some 

angle to these directions 0 This angle can be only poorly estimated 

by the impulse-approximation evaluation of the coefficients in M; 

it was fourid experimentally to be about 40 deg (see Fig. 16). 
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III. EXPERIMENT 

A. Introduction 

A double scattering is necessary to determine the polarization 

components produced in scattering an unpolarized beam of particles. 

As has been shown in previous sections, the cross section for deu

teron second scattering (without magnetic bending between targets) 

is 

1p (02,$) = 1u (02) [I+ (T20) I ( T20)2 + 2 (<iTII )l(iT11)2 

-(T21 ) 1 (T21 ) 2 ) cos$+ 2 (T22 ) 1 (T22 )z cos 2$]!; 

or, more simply, 
/ ]. e cos <j> + f cos 2 <j> 

where the parameters d, e, and f contain products of the polariza

tion components which would be produced by scatterings of unpolarized 

beams at first and at second targets. Evidently there is, in addition 

to a left-right asymmetry arising from the cos <j>term, a vertical

horizontal asymmetry coming from the cos 2 <j> contribution. Further, 

the polarized-beam cross section averaged over all <j> is larger than 

the unpolarized beam cross section by the factor d. Measurements 

of the polarized cross section for at least three values of <j> and of 

the unpolarized cross section are necessary to determine the quanti- !, 

ties d, e' and f for a particular e2 0 

The usual double scattering is not sufficient, however, to 

determine all tensor components, as it does not separate (i~ 11 ) 
and( T 

21
), the vector and tensor polarization parts of the p\arameter 

e. To do this, it is necessary to perform a second scattering of two 

different polarized beams, one of which has been appreciably changed 

by the action of a large magnetic field between first and second 

scatterings. The (T JM) 1 in the above expression then become 

the ''rotated" components discus sed in Section II. 
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An essential part of the work reported here (the suggestio,n 

of Dr. Ronald Mermod) was the use of the magnetic field of the 

cyclotron to produce two external beams of differing polarization; 

there were utilized internally first a left-scattering target and then 

a right-scattering target, with the latter located some 230 deg back 

of the former so that scattered beams of the same momentum and 

magnitude of scattering angle passed through the exit channel to 

undergo a second scattering in the cave, (See Figs, 4 and 5) As 

has been shown, the rotation of the deuteron polarization tens or 

relative to the direction of motion is given by y (f.L-1) or about 

-1/6 times the angle of deflection; hence, bendings produced by the 

large magnetic field of the cyclotron (23, 000 gauss) acting over 

considerably different distances were necessary to produce sufficiently 

different degrees of mixing of the tensor components and, through 

the comparison of the differing asymmetries, to permit re'asonably 

good determination of ( T 21 ) " 

One set of measurements was made with beryllium targets in 

which the internal scattering angles were 11 deg and the energy of 

the scattered beams was about 410 Mev, A later set was made-~ith 

carbon tar gets, l:mt with 10 -deg scattering angles and higher energies 

of about 420 Mev. Second-scattering angles ranged from 6 to 18 deg 

and included the diffraction minimum (14,3 deg for beryllium and 13,0 

deg for carbon). In both cases, the cross-section parameters d, e, 

and f were all found considerably different from zero; this was not 

-.,_so at the lower energies of 124 to 157 Mev, at which Baldwin et al. 

found nnly the quantity e different from zero and attributed this 

mostly to (iT 
11
), 2 . 

:ft had been supposed that carbon might show different polari

zation effects from those obtained with beryllium, since it is a spin

zero nucleus while beryllium is not; however, the angular variations 

obtained were quite similar, with the patterns for carbon a little more 

compressed; e values for carbon were generally somewhat lower than 

for beryllium (see Fig, 14), 
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184-inch Cyclotron 

De 

agnet pole 

Fig. 4. View of cyclotron and paths of polarized beams. 
Designated in the figure are: d, dee target used 
for first scattering; m, meson target used for 
first scattering; R, regenerator; M, magnetic 
channel; S, steering magnet; Q, 4-inch quadrupole; 
c , premagnet collimator; and cs, snout collimator. 

p 

MUB-277 
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Dee target Meson target 

MU-17291 

Fig. 5. Pictorial representation of dee- and meson
target double scatterings. Cones represent 
s~attering of particl~s in~o ~ngl~ e2 at Targ~t 2, 
w1th the darker portlons 1nd1catlng greater ln
tensity of particles. The value of the deflection 
angle 'Tl is given in the XI y 1 z1 system in each 
figure. 

. .. 
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An attempt was made to scatter a beam from a target in the 

steering· magnet (Fig. 4) in order to eliminate the effects of the 

magnetic field and perhaps also some systematic errors. However, 

this 'was found impractical because of an appreciable high-energy . 

tail and also considerable low-energy contamination. (The unwanted 

particles appeared to derive from deuteron stripping; the method did 

subsequently prove useful for polarizing full-energy or degraded 

protons.) 

B. ·Geometry .of Internal Scattering 

The first target used, the so-called "dee target, 11 was located 

at an azimuthal position of 74 deg with respect to tpe center of the 

dee and at a radius of 81 irt. (Position d, Fig. 4). The target was 

placed radially just inside the region where regeneration starts. 

The strong regenerator field perturbation (centered at an azimuthal 

angle of 116 deg and extending 8 deg in either direction) and also the 

field variation in the magnetic channel leading to the exit pipe required 

some careful orbit plotting for the determination of the desired target 

position. (See Fig. 6. ) 

Since polarization theory and Baldwin's results indicated that 

maximum polarization occurred at approximately the same value 

of KR (with K the momentum transfer and R the nuclear radius) for 

various energies and target nuclei, an estimate was made from 

Baldwin's data that the scattering angle for maximum polarization 

at some 400 Mev would be 10 or ll deg. To avoid regenerator 

action, but obtain maximum energy, 81 in. was chosen as the 

greatest permissible radius. These choices of scattering angle and 

radius then determined the target azimuthal position and the mom en

tum of the scattered beam; orbits showed that a beam of 

Hp = 1. 70 x 10
6 

gauss -in. scattered at 11 deg from a target located 

at 721: degrees azimuth passed through the magnetic channel into the 

exit tube and through the beam -defining pre magnet collimator 0 

Measurements inside the cyclotron tank indicated that the 

dee target could be positioned to an accuracy of better than 1/2 in. 
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28~------~--------~------~--------~--------~----~~ 

4· 

At regenerator, 8=116° /~ 
I t 

I t 

I ' / i 
-------------------------------4', ,. 

'~\ 
\ 

Before channe I, \_ ,.; 
8= 131° 

Magnetic channel, 8 = 143° 

0~------~--------~--------~--------~--~--~--------~ 
0 ~ @ 00 00 

Radius (in.) 

Fig. 6. Radial variation of cyclotron magnetic field. 
(Measurements taken in October 195 7. ) The 
eros se s indicate the position of the scattered 
beam ate= 116 and at()= 143 deg. 

120 

MU-17292 
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radially and azimuthally. The uncertainties in scattering angle 

arising from target radial and azimuthal positioning errors ·were 

0.12 and 0.03 deg; the uncertainty due to a spread of perhaps 3 x 10
3 

gauss -in. in momentum acceptance of a 2 -in. -wide premagnet collimator 

was 0.50 deg; and the error due to radial oscillations was perhaps 

0.13 deg. Thus there was an rms uncertainty of 0.53 deg in the 

internal scattering angle. The radial position of a copper collimator 

("probe") put at 105 deg azimuth to stop regenerated beam served 

as an experimental check on the orbit of the scattered beam from the 

dee target. 

The "meson target" (thus named because of its customary use 

for meson production) was loc.ated so as to scatter right through the 

same exit channel, again from a radius of 81 in. Several. orbits 

at 1. 71 x 1 o6 gauss -in. momentum were extended back from the dee

target position to determine the azimuthi=Ll setting of the meson target 

necessary to send an 11 -deg scattered beam through this dee position 

at 11 deg to the equilibrium orbiL (The azimuthal constancy of the 

cyclotron field between dee and meson targets assured an 11-deg 

meson-target scattering angle for an 11-deg beam angle at the dee

target position.) A variation of 4 deg in azimuthal setting of the 

meson target was found to give a 1-deg change in acceptable scat

tering angle. 

In practice, the final position of the meson target was deter

mined by maximizing beam intensity as a function of azimuthal 

position after setting the 105 -deg probe as'req uired by the dee

target beam; this differed slightly from the orbit -defined posit ion in 

the case of beryllium, but the discrepancy could be well explained 

by a slightly lower momentum (1.70 x 10
6 

gauss-in.). The rms 

el.':t'or in scattering angle was estimated to be perhaps 0.60 deg, 

only slightly greater than that of the dee -target beam because of 

the focusing action of the field. 

The general character of the plotted orbits is shown in Fig. 4. 

The highfield gradients of the regenerator and magnetic -channe 1 
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regions gave good momentum selection. To determine that the meson

target beam passed through the dee-target position, an attempt was 

made to clip the beam at that azimuth; however, the scattered beam 

from the clipper obscured the effect in meson-target beam. The 

position of the meson target, the beam momentum, and the probe 

position were considered sufficient confirmation of the orbit. 

C. Polarized Beams from Beryllium Targets 

In the first 'phase of experimental work done with beryllium, 

the internal beam had a calculated energy of 44 7 Mev at 81 in. radius. 

Because of radiaL oscillations, the incident beam energy was perhaps 

10 Mev lower; ionization loss in the 1 -in. target was about 18 Mev 

and recoil loss 3.7 Mev. -A range curve of the dee-target scattered 

beam (See Fig. 7a) showed it to have a mean energy of 410 Mev with 

a spread of ±2.5 Mev. The energy of the beam scattered from the 

meson target was 411 Mev with a spread of ±43 Mev. The degraded 

regenerated beam matched the dee -scattered. beam almost exactly; 

its energy was 410 Mev with a spread of ±2;1 Mev (Fig. 7b). 

In order to stop the regenerated circulating beam, which was 

perhaps fifteen times as large as the scattered beam, it was nee- "' 

essary to position a copper block on the main probe at 105 -deg 

azimuth, the block having a 1.5 -in. Ddiameter hole to pass the 

scattered beam. This probe reduced the regenerated beam by?-

factorofmorethan 1.6x105 . . 

The procedure in obtaining the dee -target scattered beam was 

to optimize the steering ~magnet current, to adjust the probe position 

for maximum beam intensity, and then to reoptimize the steering 

magnet. (See Figs. 8 and 9.) The meson-target beam required 

in addition considerable exploration o,f radial and azimuthal positions 

after the copper probe had been set as required by the dee target. 

(See Fig. 10.) Azimuthally the meson-target beam was especially 

well defined; with a half width of 3.0 deg; while the dee -target beam 

was much broader (with a peak found at 74 deg, as predicted by 

or?its). The 4:-in. focusing quadrupole magnet in the exit channel 

r 
. .J 

(' 
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Energy threshold 

•• \ 
L· 
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Average energy-., 

t 
0~--~--~~--~--~~--~--~~--~~\~~ 
0 80 

absorber 

Fig. 7. (a) Range curve of beam scattered by dee 
target (beryllium). The energy was found equal 
to 410 ±2. 5 Mev, and the extrapolation factor 
was 2.28. The energy threshold indicates the 
amount of absorber (except for recoil correction) 
used for scattering measurements.' 
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MU-17294 

Fig. 7. (b) Range curve of degraded regenerated 
beam. The energy was found equal to 410 ± 2.1 
Mev. This beam was used for beryJlium scatter
ing measurements. 
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Fig. 8. Variation of beam intensity with radial position 
of copper: probe. The dotted curve represents 
one -tenth the intensity of the regenerated beam 
observed with dee and meson targets withdrawn. 
Circles designate the dee -target beam; triangles, 
the me son;..target beam. The position of the. hole 
in the probe was at a radius 5/8 in. greate:r than 
the indicated reading; the edge clipping the re
generated beam was at a radius of 5 in. less than 
indicated. 



Q) -0 
"-

t:J) 
c: -c: 
:::J 
0 u 

-36 -I 

;· 
0 '-------'---
240 280 300 

Steering- magnet current ( mv equivalent) 

MU-17296 

Fig. 9. Dependence of scattered-beam intensity on 
steering-magnet current. Circles indicate the 
dee -target beam; triangles, the me son-target 
beam. 
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Fig. 10. Optimization of meson-target position. The 
dotted curve represents beam intensity for all 
energies; the solid curve represents only particles 
of range greater than the energy threshold of Fig. 7a. 
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was set by maximizing the beam after choosing approximate currentE: 

calculated for a focus just beyond the point of entry into the cave. 

Beryllium targets measuring 1 in. in the beam direction, 1 

in. radially, and 1/2 in. vertically were used to obtain the polarized 

beams. The premagnet collimator (designated as c in Fig. 4) had 
. . p 

a 2x3-in. horizontar-vertical opening; and the snout collimator (c 
s 

in Fig. 4) was 1 in. in diameter and 46 in. long. Beam intensities 

obtained were 

for 

for 

. 5 
dee target, 1.9 x 10 /sec; 

5/ a. meson target, 2.3 x 10 sec. 

For measurements· oLunpoJarized cross sections, a regen-
6 

erated beam of about l. 1 x 10 /sec was used. 

For characteristics of the various beams analyzed, see 

Table I. 

a 
The fact that the meson-target beam intensity was greater than 

the dee-target intensity could perhaps be explained b\y a focusing 

action of the eye lot ron field between meson-and dee -target positions 

and perhaps also by slightly greater circulating beam intensity near 

the r.r1eson-target location. 
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·Table I. 

Beam characteristics 

.~ 

Dee -target Meson-target Degraded 
scattered scattered regenerated 
beam beam beam 

A. Beryllium targets 

Position 74? 81.0" 205.5? 81.0" 

Scattering 
0 0 

angle 11.0±0.5 11.0 ± 0.6 

Hp (gauss -in.) 1. 70 x· 106 . 6 
l.70x10 

Energy (Mev) 410 ± 2.5 411 ± 4.3 410 ± 2.1 

· Intensity 
(10 5 /sec) 1.9 2.3 u.o 

B. Carbon targets 

Position 78?81.7" 213? 81. 7" 

Scattering 
0 0 

angle 10.0±0.6 10.0 ± 0.7 

Hp (gauss -in.) 1.75 X 10 
6 . . 6 

1.75x10 

Energy (Mev) 416 ± 2.7 422 ± 6 425 ± 2.1 

Intensity 
(105/secJ 0.65 0,93 1?.0 
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D. Polarized Beams from Carbon Targets 

Extreme difficulty was encountered m extracting polarized 

beams for carbon measurements because of changes in the cyclotron 

magnetic field. After beryllium measurements were concluded, 

partial shorting of a coil in the main-field windings for the bottom 

pole face had necessitated shunting of the lower coils; main- and 

auxiliary-field values required for a good regenerated beam had 

changed.. The regenerated beam was found to have increased in 

energy from 455 to 465 Mev. Changes in field gradients over the 

scattered-beam orbit could be only roughly estimated; with further 

shunting of the main field and careful tuning ·(phases and amplitudes 

of the reeds controlling the rf voltage), a meson target polarized beam 

of intensity almost comparable to the beryllium -scattered beam was 

obtained. The momentum having been determined for this beam, an 

orbit was plotted back from the exit channel through the experimentally 

determined probe and meson-target positions. The scattering angle 

at an 81 -in. radius was found to be 10 deg rather than. 11 deg, as a 

slightly higher -energy beam was selected by the magnetic channel 

than for beryllium. Corroboration of approximate orbits drawn with 

~stimated field values was obtained when a beam was extracted from 

the dee target set at the position predicted for a 10-deg scattering. 

Energies of the polarized beams from the dee and meson targets 

were 416 and 422 Mev, respectively, with energy spreads comparable 

to those for the beams of earlier measurements. Other beam 

characteristlcs are given in Table I. The carbon dee target measured 

5/8 in. radially, 3/4 in. vertically, and 2 in. azimuthally; the carbon 

meson target had the same radial and azimuthal measurements, but 

extended 2 in. vertically .. 

E. Energy Degradation 

In this experiment, polarized and unpolarized beams were 

not matched exactly in energy and energy spreads. Greater values 

of d and f required less concern over such techniques than in the 

experiment of Bald-;,in et al~ The maximum energy difference was 

'· 
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9 Mev and the maximum difference in spread (6 oO -2 01) Mev 0 

Degrading of the regenerated beam from 455 to 410 Mev for 

the beryllium experiment was accomplished by placing several inches 

of polyethylene absorber at the entrance to the snout collimator 

(Position p, Figo 4)o In one set of carbon measurements, degrading 

with copper absorber placed in the degrader box (Position q) was 

found to produce a beam undergoing greater attenuation than normal 

in the telescope absorber (probably because of protons originating 

from stripping in the degrader)o Satisfactory unpolarized carbon 

cross sections were obtained by again degrading with polyethyle~e 

in the snout collimator from an energy of 465 to 425 Mevo 

F 0 Apparatus 

The scattering table used was similar to that described in a 

t f 1. 1 . . k 1 0 "t . d . d d repor o ear 1er po ar1zahon wor ; 1 perm1tte 1n epen ent 

variation of the polar and azimuthal angles 8 and <Po Rigidity of 

the table was such that when the counter telescope was rotated 

through azimuthal angles from 0 to 360 deg, front and rear cross 

hairs were displaced by less than 1/64 ino; as the 0-deg line for 

the scattering arm was also closer than l/64 ino to the line defined 

by the cross hairs, counter misalignment due to deformation of the 

scattering table during rotation should not have been more than 0002 

dego Unlike the situation in nucleon scattering, the 001-deg error 

in the setting of the polar angle 8
2 

could produce errors in the deu

teron eros s -section parameters, since the ratio of polarized to 

unpolarized cross sections entered into the determination of each 

quantity. 

To achieve the high azimuthal symmetry of incident beam espec

ially necessary in deuteron measurements (done at four <j> angles) and 

also to obtain good energy definition, a 1-ino snout collimator was 

use do The second target was generally 1/2 ino thick, with an 

additional 1/4 or 1/2 ino added to increase the intensity at larger 

angles of scatteringo 

The counter telescbp;e consisted of three plastic scintillators 
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viewed by 1 P21 photomultiplier tubes; the defining counter measured 

1x6 in. and was placed 43.5 in. from the target. Sufficient copper 

absorber was put between Counters 1 and 2 (its position later being 

changed to that between Counters 2 and 3 in carbon measurements) 

to stop most of the inelastically scattered deuterons, the amount 

being varied slightly with scattering angle to compensate for changing 

recoil loss in the target. The scintillator of Counter 1 was 1/2 in. 

thick; Counters 2 and 3 were 3/8 in. in thickness. Counter 1 was 

centered on the scattering arm to within 1/64 in. 

The various factors entering into the angular resolution of the 

counter telescope were well matched for scattering from the 1/2 -in. 

target. The uncertainty in angle 8 due to multiple scattering, to 

finite counter width, and to beam width were 0.38, 0;38, arid 0.53 

deg, respectively, for an rms uncertainty of 0. 75 deg. (See formulae 

in Pettengill thesis. 
11

) The resolution of the counter system without 

target was determined experimentally and checked very well with 

the theoretical estimate made: 
1. 5 J,....w_,f~+-w---:::-~ 

= = 0.57 dego 
62 in. 

Here w 1 is the beam width at the collimator; w 2 , the width of the 

defining counter; and 62 in. , the distance from collimator to defining 

counter. For comparison, the half widths of the regenerated beam 

profiles given in Fig. 11 were found to be 0.52 and 0.62 deg. Reso

lution in the direction of <j> variation was, of course, much poorer 

because of counter dimensions; however, the cross section varied 

much less rapidly with <j> than with 8. 

G. Experimental Procedure 

After the optimizing of various internal parameters such as 

target position and steering -magnet current, the snout collimator 

was aligned by using x-ray film to obtain as homogeneous a beam 

as possible. As in previous polarization experiments, a transit 

was placed at the back of the experimental cave for the purpose of 

aligning the scattering table. Approximate alignment was 
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Fig. 11. Profiles of regenerated beam in horizontal 
plane (solid curve) and vertical plane (dotted 
curve); 0 8H and 0 8V are to be compared to an 
estimated resolution of 0.57 deg. Displacement 
of centerlines from 0 deg indicates the amount of 
realignment that was necessary. 
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accomplished by taking x-ray pictures of the beam at the front and 

back of the table, fixing the transit at the centers of the pictures, 

and moving the table to bring the cross hairs marking the axis of 

rotation into coincidence with the transit line. The front of the 

table was then assumed well aligned and the rear brought into more 

nearly exact alignment by equalizing counting rates both horizontally 

and vertically at small values of 8; for homogeneous beams, this 

was done without a scattering target, while for a less uniform beam, 

the target was put in place and alignment made on multiply scattered 

partie les. This ~beam profile was taken with telescope absorber of 

an amount used for small-angle scattering. The estimated accuracy 

of alignment was 0.06 deg with the x-ray pictures and 0.03 deg with 

counters; the latter was fairly consistent with observed differences 

in the ll-deg unpolarized cross -section measurements at various 

<j>angles. (SeeFig. 12.) 

A range curve was taken at low beam with counters at zero 

deg by varying the amount of copper absorber in the telescope, and 

the "energy threshold" necessary to eliminate most of the inelastic

ally scattered particles was determined. (See Fig. 7.) The pro-
2 

cedure followed was to set the copper absorber at 2 g/cm less 

than the knee of'the range curve for the ll-deg scattering and then 

to add or subtract small amounts to compensate for recoil loss in 

the target. 

As the -geometry of scatterib.K;was such that most of the 

background, presumably from the snout collimator, could be ex

pected _to pass through the target, an amount of absorber equivalent 

to the target should have been placed in the telescope for measure

ments with the targ·et out. This was done for the set of scatterings 

with carbon targets and was found to have an effect of not more than 

a few percent in the cross section. 

Two scintillation counter:;;, l in. and 5/8 in. thick, were 

placed in the beam incident on the second target as monitors when 

low intensity was desired; this was the case when the counters were 

delayed and plateaued, the range curve. was taken, or the table was 

•· 
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Fig. 12. Unpolarized eros s section vs. azimuthal angle 
<j> at a scattering angle of ll deg. Circles rep
resent beryllium measurements; squares, the car
bon values. No correction has been made for 
absorber attenuation. 
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aligned. (For the first two situations, these monitors were unnec

essary and were replaced by Counters 1 and 2 of the telescope when 

absorber was put between Counters 2 and 3, as was done for carbon 

measurements.) The usual intensity of incident beam used for these 

measurements was about 500 counts per second; this gave an inap

preciable accidental rate, as there wex-e 30, 000 to 40,000 resolving 

times a second for the Garwin coincidence circuit used. 

In scattering measurements, an argon-filled ion chamber was 

used as monitor; the multiplication factor for this chamber was 

calculated to be 1240 for 410-Mev deuterons on the basis of cali-
12 

bration information of earlier proton work. With the scattered 

beams obtainable;, this gave an electrometer charging rate of one 

full-scale deflection per 3.5 minutes, with fulhscale being equivalent 

to O.Cl104 f.L coulomb of accumulated charge (designated loosely as an 

"integ.rated volt" or "I. V. "). Corrections for ion-chamber drift 

were made, and amounted to: as much as 3o/o of the actual beam rate 

for the scattered beams. 

To eliminate low-energy particles scattered from the end of 

the snout collimator, 6in. of copper and lead shielding with a 2 -in. -

square hole for the beam was placed between the snout collimator 

and the target. 

H. Counting Procedure 

The object of double scattering was to. determine the cross

section parameters d, e, and f as functions of e
2

• Meas.urements 

of the unpolarized-beam cross section were made first at a scattering 

angle of 11 deg with <1> = 0 deg (left), 90 deg (up), 180 deg (right), 

and 2 70 deg (down) to check scattering table alignment. (See Fig. 12.) 

With good alignment, as for beryllium unpolarized measuren""ents, 

scattering measurements for only one <1> were considered sufficient 

for the unpolarized cross section at other scattering angles e2; 

for small-angle carbon scattering, the values of iu (8
2

) used in 

calculations were averages obtained from measurements at all 

<j>. For the polarized beam; of course, measurements had to be 



• 
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made at the four azimuthal angles for every 8
2

, Results for 8
2 

equal to 8 1 were determined especially carefully,- as the ( T M) 
values obtained from these were to be used\ in finding· ( T JM) (8) 

from measurements at other 82 • 

Three counting rates were measured at each (8, <j>) setting: 

"target in" with normal delay, "target in" with 76 nsec delay 

added to one counter, a and "target out," Accidentals were generally 

about 5% of the normal-delay measurements, while the background 

was about 10o/o, In the beryllium measurements, accidentals were 

improperly taken; the proton delay of 5,2 shakes was used andre

sulted in an almost negligible rate. Unpolarized-beam results 

obtained later as a check indicated that the accidentals should have 

been higher by about 11% of the effect for the unpolarized beam and 

3o/o of the effect for the polarized beam, Corrections in d, e, and 

f were made accordingly: 

J. Results of Second Scattering 

The subtraction of accidental and background counting rates 

from the "target in" measurement gave the actual rate of scattering 

by the tar geL Results for the polarized and unpolarized beams at 

the '-:arious <!>angles were used to obtain the desired cross-section 

parameters at each angle 8
2

: 

d = I /I - l 
p u 

= 

e= (Io-I180)/2Iu' 

4 I 
u 

f = (Io + I180- I90- I270)/4 Iu 

a76 nsec is the time between two rf fine-structure pulses of deuterons, 

Accidentals were measured by delaying the first counter with respect 

to the adjacent second and third counters when the absorber was be

tween Counters 1 and 2 and by delaying the rear counter with respect 

to Counters 1 and 2 when the absorber was placed after Counter 2, 
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The subscripts designate the angle <!> or r:'efer to polarized or un-, 
polarized measurements. (Note that the formulae given by Baldwin 

for e and f, the latter being his quantity B, are incorrect, since 

the first should contain 1 +:d+f and the second 1 +din the denominator; 

he did, of course, find d and, :'£ to be zero within experimental 

error. ) 

For the scattering of the polarized beam, a plot of the cross 

section versus azimuthal angle at a scattering angle of 8 deg (Fig. 13) 

shows a large left-right asymmetry; f, the cos 2<j> coefficient, on 

the other hand, is given by the difference between the horizontal 

and vertical averages and is rather small. The "left-right" 

asymmetry IQ - I180 used in nucleon scattering here is equal to 
I + I 

0 180 I+I -I -I 

/(1 -"d f) d h "h .. 1 . 1" 0 180 90 270 e ,. .+ , an t e or1zonta -vertlca asymmetry 1 +I +I +I 
·o 180 90 270 

equals f/(1 +d). These quantities are given with statistical errors 

for beryllium and carbon scatterings in Table II. 

Because each of the desired quantities d, e, and f contains 

the ratio between polarized and unpolarized cross sections (which 

appears in d in such a way as to make this particular quantity 
,. 

ve'ry sensitive to any error), a serious problem arises. Careful 

extrapolations to zero absorber to determine the actual elastic

scattering cross sections (i.e., corrections for nuclear attenuation 

in the telescope absorber) or some sort of normalization of un

polarized to polarized cross sections: must be made. The former is 

ordinarily subject to considerable error; in the beryllium measure

ments reported here, the extrapolation factors (ratio of counting 

rate with zero absorber to that with absorber used in scattering 

measurements) for polarized and unpolarized beams differed by about 

10o/o and were found to produce a considerable effect in the quantity d. 

The variation of extrapolation factors was investigated to 

some extent. Displacement of the snout collimator by 1/8 in. 

caused a 6o/o change in extrapolation factor; extreme changes in 
I 

counter geometry had no effect. That the alignment of the beam 1n 

• 
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Fig. 13. Polarized eros s section vs. azimuthal angle 
for scattering from beryllium at an angle of 8 deg. 
The solid line represents dee -target scattering; 
the dotted line, meson-target scattering. 
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Table II. 

Asymmetries in polarized-beam scattering 

Here e/(1+d+f) is the usual "left-right" asymmetry; £/(1+d) is 

"horizontal-vertical" asymmetry. Errors are statistical. 

<S' 
.. 

Dee target Meson target 
. ( 

62 e/(1+d+f) £/{1+d) e/ (1 +d+f) £/(l+d) 

Beryllium. 

60 0.411 ± .016 -0.003 ± .012 0.487±.013 o.os(L±::. oo8 

80 0.555 ± .014 1).055 ± .009 0.562 ± .:011 0.041 ±. 008 

10° 0.432 ± .024 0.070±.021 0.488 ± .016 0.078±.012 

11° 0.322±.016 0.069±.012 0.448± .010 0.065±.010 

12° 0.294±.034 0.073 ± .025 0.312±.022 0.085 ±. 017 

14° 0.213 ±. 032 0.105±.:024 0.185±.026 0.087±.020 

16° 0.206 ± .030 0.101±.024 

Carbon 

60 0.320±.013 0.040 ± .010 0.444± .010· 0.035 ±. 009 

80 0.402 ± . Q,~) 0.096 ± .024 

90 0 . 3 2 9 ± . Q·2.J 0.125 ± .O.T9· ·· 0 . .45'.8 ±.,.~'0 2 3 0.054±.017 

11° 0.167±.030 0.095 ± .025 0.258 ± .026 0.098±.021 

13 ° 0.114±.047 0.022 ± .035 0.201 ± .033 0.06 9:±. 025 

16 ° 0.170 ± .084 0.089 ± .075 0.212±.040 0.065 ±. 030 

18° <;. 0.182 ± .042 0.105±.035 
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the snout collimator was important was further indicated by the 

fact that extrapolation factors for scattered beams centered about 

one value and for regenerated beams centered about another value 

slightly higher. 

Thus the use of absolute cross sections to find d, e, and f 

seemed rather questionable. As a better alternative, the assumption 

was made that the polarized and unpolarized cross sections at 6 deg 
a 

should be equal, and the unpolarized cross section was normalized 

to the polarized for all e. Figure 14 shows the angular dependences 

of the quantities d, e, and f which were obtained through normal

ization and also extrapolation of cross sections; the differences in 

(l+d), e, and f values for the two methods were about 2.5o/o for 

beryllium and 3.5o/o for carbon. Had d been taken as small and 

positive instead of zero at 6 deg, f would also have been increased, 

since f/(l+d) depends only on I (8 2 , <j>) and is unaffected by normal

ization of Iu to Tp; a behavior c~oser to sin
2 e for (T 20) and ( T 22) 

then could have been obtained. 

The unpolarized cross sections as functions of scattering angle 

are given in Fig. 15. These were obtained by substituting for the 

integrated-volt monitor unit (I. V.) the equivalent incident intensity 

of 5.24 x 10 
7 

particles. The unpolarized cross section for scat-

. tering by beryllium in a later run agreed with the values given in 

Fig. 15 to within 3. Oo/o at 8 deg and 12 o/o at ll deg; better agreement 

could probably not be expected in view of the uncertainties discussed 

above. 

K. Energy Asymmetry, Beam Contamination 

Comparison of the range curves taken of the dee -target beam 

at e = 0 and e = l 0 deg left indicated that the beam was low in energy 

aThis assumption wa,s based on the fact that in first Born approxima..:. 

tion, <T 
2

'd is proportional to terms in sin
2 e (Stapp, 

3 
pp. 77 and 99), 

but is probably a little extreme. 
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Fig. 14. (a) Cross -section parameters vs. scattering 
angle, with total errors, for the beryllium dee
target scattering. Solid lines refer to values 
obtained by normalization; dotted lines, to values 
from extrapolation of eros s -section measurements. 
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Fig. 15. (a) Cross section for the scattering of un
polarized deuterons by beryllium at 410 Mev. The 
heavy curve represents experimental results, for 
which errors were less than the size of the points 
plotted. The H designates ca~culations done in the 
impulse approximation with Ha{ne:t proton ampli
tudes, the solid curve including the effect of 
simultaneous scattering. The B indicates impulse
approximation results obtained with Bjorklund 
amplitudes for proton scattering (solid curve) and 
neutron scattering (dotted curve); both include 
simultaneous scattering. Triangles show the 
negligible effect of including the deuteron D state 
in the Hafner calculations. 
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Fig. 15 (b) Cross section for scattering of unpolarized 
deuterons by carbon at· 425 Mev. Experimenta 1 
results are indicated by the heavy line. The H 
designates calculatwnal results from the impulse 
approximation with Hafner proton amplitudes, 
the solid curve including the effect of simulaneous 
scattering. 
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on the left or <j> = 0 side. The decrease in average range (corrf\cted 

for recoil loss q.t 10 de g) showed that I0 - I 180 or the quantity e re

quired a 4% correction for this effect. 

The ratios of counting rate at the energy threshold to that at 

the average--energy were compared for e = 0 and 10 deg left. The 

amount by which they differed indicated that, for 10 deg, there was 

an 8o/o inelastic contamination of the beam above the energy threshold. 

However, on the basis of Tripp's determination of th~ negligible 

effect of inelastic contamination .on asymmetry results with nucleons, 
1 

it was concluded that the inelastic part of the deuteron beam probably 

had little effect on measurements except perhaps in the region of the 

diffraction minimum. 

L. Errors 

Errors in d, e, and f derived chiefly from three sources: 

statistics of counting, comparison of polarized and unpolarized 

beams, and misalignment qf the scattering apparatus. Systematic 

errors as well as statistical are given with values of :a, e, and 

f in Table III. ~xpressions for evaluating errors from the three 

sources mentioned are given in Appendix E. 

In the normalization of the unpolarized cross section to the 

polarized, error was introduced by the statistical uncertainties of 

and the 6 -deg cross- section measurements. Relative error in I 
u 

hence (1+d), e, and f due to normalization amounted to 6o/o for 

beryllium and 2.2o/o for carbon results. 

The expected misalignment of tlle scattering table in polarized

beam measurements could be estimated by observing the horizontal 

and the vertical misalignments evident in unpolarized-beam cross 

sections. For beryllium measurements, misalignment observed at 

e = 11 deg was only 0.012 deg, while for carbon, it was at least 0.06 

deg. Misalignment of the snout collimator also produced asymmetric 

effects in scattering which were included in these estimates; and 

the misalignment error indicated was perhaps an over -estimate for 

the polarized beams. 



Table III. A. 

Cross-section parameters with total errors for scattering from beryllium at 410 Mev 

Dee -target scattering 

Error in dd Error in e 
d Error in fd 

e2 statistics r-ormal- misalien- d + L'>d statistics normal- misa lign- e +toe statistics normal- misalign- f + L'>f 
ization rnent 

rms 
ization ment rms 

ization rnent 
rms 

60 0.0629 0.0615 0.0016 0.00 ± .088 0.0305 0.0253 0.0252 0.411±.047 0.0127 0.0002 0.0016 -0.003 ± .013 

80 0.0204 0.0611 0.0070 -0.006 ± .065 0.0146 0.0359 0.0186 0.583 ± .043 0.0099 0.0031 0.0070 0.050±.013 

10° 0.0437 0.0636 0.0048 0.034±.077 0.0279 0.0287 0.0163 0.467±.043 0.0156 0.0044 0.0048 0.072 ± .017 I 
U"l 

11° 0.0208 0.06 70 0.0029 0.090 ± .070 0.0194 0.0231 0.0130 0.376 ± .033 0.0131 0.0046 0.0029 0.075 ± .014 ...0 

12° 0.0527 0.0687 0.0029 0.117±.087 0.0636 0.021 7 0.0132 0.354± .068 0.0411 0.0050 0. 0 02 9 0.081 ± .041 

14° 0.0731 0.068"i 0.0013 0.117±.100 0.0543 0.0156 0.0083 0.254 ± .05 7 0.0371 0.006 7 0.0013 0.109±.038 

Meson-target scattering 

Error in dm Error in e 
m Error in frn 

60 0.0620 0.0615 0.002 7 0.00±.087 0.0336 0.0314 0.0267 -0.510 ± .053 0.0083 0.0030 0.0127 0.050 ± .009 

80 0.0152 0.0707 0.0068 0.149±.073 0.0149 0.0413 0.0214 -0.671 ± .049 0.0092 0.0029 0.0068 0.047±.012 

10° 0.0470 0.0750, 0.0055 0.234 ± .089 0.0326 0.0399 0.0200 -0.650 ± .055 0.0151 0.0059 0.0055 0.096 ± .017 

11° 0.0208 0.0769 0.0047 0.250 ± .080 0.0177 0.0374 0.0174 -0.609 ± .045 0.0119 0.0051 0.004 7 0.083 ± .014 

12° 0.0660 0.0860 0.0043 0.398±.109 0.0390 0.0291 0.0153 -0.473 ± .051 0.0240 0.0073 O.O'l43 0.119± .025 

14° 0.0826 0.0785 0.0020 0.277±.114 0.0406 0.0159 0.0109 -0.259± .045 0.0263 0.0079 0.0020 0.128 ± .027 

16 ° 0.0959 0.0841 0.0011 0.367± .128 0.0492 0.0192 0.0078 -0.312± .053 0.0341 0.0085 0.0011 0.137± .035 



Table III. B. 

Cross-section parameters with total errors for scattering from carbon at 420 Mev 

Dee -target scattering 

Error in d Error in e 
d Error in fd 

82 statistics no·rmal- misalign- d+lld statistics normal- misalign- e tL\e statistics ·normal- misalign- f + bf rms rms rms ization ment ization ment ization ment 

60 0.0214 0.0214 0.0054 0.00± .031 0.0162 0.0071 0.0452 0.333 ± .049 0.0098 0.0009 0.0054 0.040±.011 

80 0.0290 0.0224 0.0088 0.046 ± .038 0.0297 0.0099 0.0406 0.461±.051 0.0241 0.0022 0.0088 0.101±.026 

90 0.0352 0.0229 0.0098 0.068 ± .043 0.0342 0.0085 0.0409 0:396 ± .054 0.0210 0.0028 0.0~98 0.133 ± .023 

11° 0.0321 0.0234 0.0050 0.094 ± .040 0. 0 36 7 0.0043 0.0317 0.201±.049 0.0266 0.0022 0.0050 0.104± .027 I 
0' 

13 ° 0.0441 0.0219 0.0019 0.023 ± .049 0.0495 0.0026 0.0196 0.119± .053 0.0352 0.0005 0.0019 0.023 ± .035 0 

16° 0.0858 0.023 7 0 ... 0002 0.109 ± .089 0.1016 0.0044 0.0104 0.205 ± .102 0.0797 0.0021 0.0002 0.099± .080 

Meson-targ'et scattering 

Error in dm Error in e m Error in fm 

60 0.0165 0.0165 0.0078 0.00 ± .025 0.0151 0.0071 0.03 70 -0.442 ± .041 0.0094 0.0007 0.0077 0.024±.012 

90 0.0309 0.0200 0.0083 0.200 ± .038 0.0366 0.0091 0.0252 -0.555 ± .045 0.0273 0.0010 0.0080 0.061±.028 

11° 0.0285 0.0215 0.0035 0.284 ± .036 0.0378 0.0060 0.0182 -0.363 ± .042 0.0287 0.0019 0.0035 0.113 ±.029 

13° 0.0519 0.0308 0.0037 0.424±.060 0.052 7 0.0066 0.02 74 -0.306 ± .060 0.0357 0.0021 0.0037 0.098 ± .036 

16° 0.0597 0.0311 0.0013 0.440 ± .067 0.0646 0.0070 0.0109 -0.326 ± .066 0.0430 0.0020 0.0013 0.093 ± .043 

18° 0.1188 0.0304 0.0008 0.407±.123 0.0722 0.0061 0.0031 -0.281 ± .072 0.0499 0.0032 0.0008 0.149 ± .050 
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One other source of systematic error not inclusl-ed in Tabie II 

was that resulting from the uncertainty in internal scattering angle. 

For the quantity (iT 11 ) , which changed by l3o/O and l4o/o per deg 

for carbon and beryllium, respectively, this amounted to about a 

7o/o error in the dee -target and a 12o/o error in the meson-target 

scattering. 

Incorrect quadrupole focusing or snout-collimator misalignment 

was observed to produce a slightly elliptical deformation of the normally 

round beam pattern incident on Target 2; the possibility of error from 

this was investigated. For an intensity pattern having a 11 quadrupole 

moment" with separation of 1/32 in., it was found that any vertical

horizontal difference was negligible and corresponded to a misalign-
- ' -5 

ment for the scattering table of 5 x 10 deg. 

Also, if the center of gravity of the beam were as much as 

~/64 in. displaced from the cross hairs at the front and at the rear 

of the scattering apparatus, the error in angle was only 0~08 deg, 

and correction of rear -end alignment with the use of counter measure

ments as described above generally reduced :thi;s by a factor of ·at 

least two. 

One notable deviation from expected results was a difference 

between 90- and 2 70 -deg measurements for the polarized beam. 

This was observed first in scattering from the beryllium dee target, 
~--' 

for which 90-2 70 deg differences were four to seven standard de vi-

ations for angles of scattering ranging from 6 to 14 deg, Relative 

differences appeared essentially independent of angle; after sub

tra~ti:on of the known error due to misalignment, vertical asymm.etries 

[for beryllium were found to average about 7±4o/o. Within experimental 

error,. no differences were observable in meson-target measurements. 

In carbon scatterings, there again were found 90-270 deg differences 

ior the dee-target beam and practically no differences for the meson

target beam. The asymmetri~s after subtraction of misalignment 

errors were found to average about 2.5%. 

The possibility that the spin (1/2) of the beryllium nucleus 
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might cause these deviations from expected cross-section behavior 

can be ruled out on theoretical grounds. Thus it would appear that 

there was some systematic error inherent~in dee:...target scattering 

.and perhaps associated with vertical. misalignment of the fixed 

entrance end of the snout collimator ;a such effects mightbe expected 

to differ for beryllium and carbon scatterings beu·9-use of slightly 

different conditions, such as source size and position and orientation 

of beam in the exit channel. Since errors in the 90- and 270-deg 

measurements cancelled approximately when they were summed for 

d and f evaluations, no attempt was made at further investigation 

of the differences. 

In summary, many possible sources for experimental error 

were investigated. These included counter and eros s -hair alignment 

relative to the scattering apparatus, .c0unte'r ·geometry, internal 

target positions, accidental counting rate, beam attenuation of the 

te lese ope absorber (extrapolation factor), and beam -energy asymmetry. 

Extreme changes in counter geometry produced no effect in the range 

curve; that accidentals were correctly sugtracted w·as verified by 

obtaining the same cross -section values at several beam levels. 

Measurements at <j> angles of 45, 135, 225, and 315 deg agreed very 

well with those at the usual angles. Double scatterings using a 

beryllium internal target and carbon second target gave consistent 

results with the separate sets of measurements for each element. 

(Section IV. K) 

ali the nonconservation of parity should, be possible in strong inter

actions, a reasonable explanation of dee-target vertical asymmetries 

and meson-target vertical symmetries would be the production of a 

small component of polarization in the plane of scattering (violating 

parity restrictions) such that the difference in relative spin rotation 

angle A., equal to 60 deg, would cause this component of polarization 

to have a near -maximum value for dee -target scattering· and a near

minimum value for meson-target scattering. 
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IV. ANALYSIS OF RESULTS 

A. Cross -Section Parameters 

Measurements of cross sections for each of the two polarized 

beams gave values of 
I 

d = ( T 20)1 (T 2o)z_' 

e = 2[ ( iT 11) 1 (iT 11) 2 

f = 2 (T22)~ (T22 )2 

where the subscripts 1 and 2 refer to internal scattering at angle 

8
1 

and external scattering at angle 8
2 

and primes indicate transfor

mation of the original tensor polarization components by action of 

the cyclotron field. The beam from the· dee target was scattered 

left and underwent a deflection of about 66 deg before second scattering; 

the beam from the meson target was scattered right and was deflected 

through an angle of about 272 deg. (See Fig. 5.) At the second tar

get, more particles were scattered left than right for the dee-target 

beam (positive asymmetry), and tnore scattered right than left for 

the meson-target beam (negative asymmetry), as viewed in the usual 

coordinate system with the y axis parallel to the dee -target scattering 

normal. 

Since the normal to the plane of scattering at the meson tar

get was opposite to that at the dee target, the coordinate system for 

the former was obtained by rotation about the z axis of the dee -target 

system and had its y axis directed downward. Thus if the angle of 

deflection l) was defined as positive for the usual left scattering in 

the cyclotron field, it was then negative for a right scattering; ~. 

the angle of spin rotation relative to partie le direction, was negative 

for the left scattering and positive for the right scattering. Values 

of ~ were -9.4 and +39 deg for the dee and meson targets, respec

tively. 
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The effect of the cyclotron field the~_)¥-as to mix the ( T Z,M) 
tensor components of polarization produced by the first scattering. 

With the above values of A. used to calculate coefficients, the "rotated" 

components characterizing the beam at the point of second scattering 

could be expressed in terms of :the ( T ZM) for angle B1 from the 

equations give in Section II. F. 

An alternate method of finding the rotated ( T 2~ is the use 

of the .x-z plane ellipse (Fig. 16 and Appendix D). (T 20), is de-

pendentun (s~), (T 22) on (s!), and (T 21) on (sxsz); 

thus their behavior may be easily determined by taking the inverse 
I I 

squares of the rotated p and p intercepts for evaluations of 

~ 20') and ( T 2 ~) , re:pective~y, and by substituting some associ-
' I ( t ) ated p z and p x into the equation of the ellipse for T 2 i . 

As an example of the use of the ellipse, consider the carbon, 

Case B value of (T 20) without magnetic field rotation; it is -.405 

and gives a Pz intercept of 

1

1/Js
2 l 

1.45' = = z .J(f) .4 76 

since 

(T2o) = 1/:n- Q (s~) - 2). 

. Rotation of 39 deg corresponding to meson-target scattering brings 
I 

the axis into approximate coincidence with the major axis of 

the ellipse: 

1/Jsz z 
= 1.58 

and 

= 1/Jz ( 3x.400 -2) = --0.565. 

(TJii·s incre.ase in the magnitude of ( T 20) compared to the unrotated 

value is reasonable, as ( T 20 ) or d is observed experimentally 

to be greater for meson-target than for dee-target scattering.) 

\ 
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'Fig. 16. Polarization ellipse in the plane of scattering. 
This was determined with tensor components from 
carbon measurements with systematic errors. 
Soli\ cu;rves represent Case B solutions for negative 
(T zql (curve 1) and positive ~T 20) (curve 2)~· the 

d'6tfe0. curve represents Case Pi w1~h negative T 2~ . 
The principal axes of the Case B ellipses are eslg
nated by a and 13. 
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The same answer is found by substitution in the formulae given 

above: / 

(Tzo) I = 0.158 (;;,..405)- 1.22 x.255 + 0.687 (-.235) =-:0.536 

As viewed in the coordinate system of meson-target scattering, 

l(l = (iTll)l (iTu) 2 - (T21); (TZI) 2' 

where ( T 21 ) 
1 

is calculated with positive X:. (No sign c~rrection ha~ 
to be made in the' dm and fm expressions, as ( T 

20
) and( T 

22
) 

are even under rotation about the z axis. To eliminate (iT 11) products 

from the e parameters obtained from experiment, the expression 

for e;d was subtracted from that for I em I for each value 8
2

: 

2 

The difference between rem I and e d was in general sufficiently 

great to yield afairly precise value for (T 21 ). 
I 

B. Solution of Equations for ~ = 8 l 

Double scattering with the two different internal targets gave 

six measured quantities at each angle 82; the values at ez = el 
(11 deg for beryllium and 10 deg for carbon measurements) then . 

yielded six quadratic equations in the four unknowns <iT 11), ·< T zoJ, 
(T 21), and( T 22 ) . Reduced to five equations in three unknowns, 

these were: 

dm=(Q.158(T 20) --Lzz (T 21} +0.687 (T22)) (T 20 ) 

fm/z =(~.344 (T 20)+-0A96(T 21 )+·-o.7zo (T 2 ~) (T 22), 

deml_ed)/Z =~p.855 (T 20) + 1.04 (T21)+-C.698 (T 22)) (TzU· 

dd =(~-936 ( T 20) +p:494 <T 21) + o.o5z ( T 22)) (T20_) , 

fd jz =·(6:~.oz6 ( T 20}-o.zoz ( T 21 )+'<l'.979 ( T 22)) (T 22) , 
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where the rn and d superscripts designate meson- and dee-target 

values and the coefficients pertain to the scatterings done with 

carbon. 

The ( lernl - ed)/2 equation contains the difference between 

dee ·-target and meson-target rotated (T 21 ) 
1 

components as indicated 

above. Substitution of the numerical values for the (T JM) of carbon 

obtained from the given system of equations shows that it was possible 

for the I ern I and ed quantities to differ a,ppreciably in magnitude: 

= [o.zs5 -(- 16o)] x o.z55 = o.l14. 

Experimentally determined values for em /2 and e d /2 were 

-0.235±.040 and 0 .140±.035. 

The dd and dm quantities were subject to considerable error, 

especiallybecause of the difficulty in matching range curves of 

polarized and regenerated beams (Section III. J). Thus there was to 

be expected considerable error in (T 20). However, IBM calculations 

showed that these uncertainties in d and d 1 affected inappreciably 

the results obtained from the search program. In other words, the 

more accurate determinations of e and f were dominant in the 

analysis and served to determine (T20 ) even if the d measurements 

were ignored. 

As the system of equations for the (T ZM) at the angle 8 1 was 

overdetermined, different procedures for solution were found to 

give slightly different results. Three methods were utilized: 

simultaneous solutions of pairs of equations; use of direct expressions 

for (T JM) involving dd/dm and fd/frn ("13'1 0 -formulae" given in 

Appendix F); and the applicatiol1 of ax 
2 

search program. The second 

method, although most direct, gave a rather biased set of results 

because of the large errors in the d and f ratios. 

The best method of solution appeared to be the X 
2 

fit, similar 

to the Fermi phase -shift determination in pion-nucleon scattering; 
13 

applied to the problem here considered, it required the determination 
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of that combination of (T 2 M) values for which 

(x~xp Axi "~ale ) 2 M = t} 
i 

( = X 2) 

· exp 

was a minimum. Here x
1 

represents each of the five d, e, and f 
i . 

quantities given above, x and . D.x
1 

. being experimental measure.:. 
. exp exp 

ment and error and x
1 

1 
the corresponding calculated quantity for 

a particular set of ('"~;M) values, 

To find first an approximate set of sotutions,(T 21) was 

plotted as a function of (T 20) for each of the five quadratic equations 

in (T ZM) given by the_ measured parameters and with several 

values assumed for (T 
22

) ; i.e., two-din1ensional cuts perpendicular 

to the ( T 22 ) axis were taken in the three -dimensional (T 2M) 

surfaces representing the five given equations. (See Fig.' 17.) This 

preliminary use of a graphical met_hod of solution was found helpful 

in making systematic errors evident. For example, the sensitivity 

of d and d' values to normalization of cross sections was reflected 

to some degree in the divergence of the associated curves from tho·se 

. of other experimental quantities. 

Some calculations to minimize M were done by hand (Fig. 18), 

but final solutions were obtained with slightly greater accuracy by 

setting up an IBM search program. All IBM work was done with 

the d, e, and f quantities at e
2 

= e1 obtained by normalizing to 

give equality of polarized and unpolarized eros s sections at 6 d~g. 
Effects of normalization are indicated in the curves used in the 

graphical analyses of beryllium data, only the d and d' values 

showing appr~ciable differences with and without normalization. 

IBM fits to data at e1 were n:ade with statistical errors and with 

systematic plus statistical errors, where the systel;r:l;~J:i.:c included 

normalization and misalignment errors as given in Table III. 

Best-fit ( T JM) values and their rms errors (~H the various 

cases considered in IBM calculations are shown in Table IV. The 

Case A IBM solutions were quite comparable to the "simultaneous-

... 
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Fig. l 7. (a) Plots of <T 
2 
~ vs. (T 

20
) representing 

cross-section parameters for beryllium scattering 
at angles 8 1 =8

2
=11 deg. Signs are those of Case B. 

Normalized data were used except for the points 
designated by circles, which were obtained with 
nonextrapolated, unnormalized data, (Appreciable 
differences were observed only for the d quantities.) 
The solid (and the unnormalized) curves were 
obtained with (T 22) =±0.20; the dotted curves, 
with (T 22) =±0.25: (Values do not agree exactly 
with finai'results because the relativistic Thomas 
precession was not included in calculation of the 

\T JM).) 
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MU-17307 

Fig. 17. (b) Plots representing cross -section parameters 
for beryllium scattering at angles 8 1 = 8

2 
= 11 deg. 

Signs are those of case A. Normalized aata were 
used except for the points designated by circles. 
The solid (and unnormalized)curves were obtained 
with.(T 2z) =±0.225, the dotted curves, with 
(T 2~ = ±0. 20. 

... 
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60~--------------~------------~~----------~------~ 

·'\. 

• 

0~----------~------------~----------~----~ 
-0.15 -0.20 -0.25 

(T21) 

-0.30 

MU-17308 

Fig. 18. Variation of M with the tensor component(T
2
V 

in fitting beryllium unnormalized data (wiJ.h ) 
statisti7,al ~r~rs) at 11 d,r.g. Va~ues of \T 20 = 
0.495, \T 22; -0.22, andvT 1 ~ - ±0.52 were 
used. 
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Table IV. 

Best-fit values and associated M values for e
1 

= e
2

, deter-

mined with cross -section parameters calculated from normalized 

measurements. (Solutions with the same magnitudes but opposite 

signs for the (T ZM) components are also possible.) 

Beryllium (8 = 11°) Carbon (8 = 10°) 

Case A Case B Case A Case B 

With systematic and statistical 

errors in ,d, e, and f 

(T zo) -0.305 ± .. 070 -0.446 ± .050 -0.420 ± .090 -0.405 ± .030 

(I' 21). 
+0.210 ± .025 +0.215 ± .035 +0 .230 ± .030 + 0 .2 5 5 ± . 0 2 6 

\1' 22l +0.230 ± .012 -0.185±.015 +0.260 ± .025 -0.235 ± .014 

(iT 1 ~ ±0.494±.012 ±0 . 50 2 ± . 0 1 0 ±0 .425 ± .024 ±0.465 ± .020 

--~----------~----------------------------------------------

M 7.61 3.43 

Q(>M) 0.02 0.18 

With statistical error in d, e, and 

(T2o) 

\Tz1) 

\T22) 

~T1~ 

M 

Q(>M) 

-0.402 ± .022 

+0.233 ± .013 

+0.206 ± .010 

±0.498 ::i: .007 

38.4 

0 

-0.438 ± .007 

+0.257 ± .018 

-0.196 ± :oo9 

±0 . 5 1 5 ± . 0 0 7 

14.3 

.003 

fa 

31.3 

~o 

-0.450 ± .038 

+0 .226 ± .026 

+0 .244 ± .021 

±0 .4 3 0 ± . 0 14 

27.3 

0 

1.80 

0.41 

-0.405 ± .015 

+0.270 ± .026 

-0.240±.011 

±0.465±.014 

2.01 

. 36 

a· 
These results differ more from the systematic fits than they should 

because the relativistic Thomas precession effect was not included in 

calculating the rotated tensor components. 
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equation" and the "j3'y0-formulae" solutions; but the Case B com

bination of signs also appeared acceptable and indeed proved to be 

the better choice, as indicated by the M values of Table IV. 

C. Search Program 

For normally distributed errors in experimental measurements, 

the probability that M lies between M and M+dM is approximately 

1 
-M/2 e 

if M
0 

is the number of degrees of freedom or the number of obser

vations minus the ~umber of determined quantities. 
14 

(See Fig. 19.) 

The average value of M obtained for many sets of measurements is 

M
0

; the probability that M is greater than a certain value M' is 

Q(>M') = r 
) M' 

PM (M) dM 
0 

and for M
0 

= 2 is given in Table IV for the M values found for 

each set of ( T JM) solutions. 

Large M values iQ.dicated that actual errors were considerably 

greater than statistical; but with some systematic errors included, the 

M values were close to 2 for a few cases considered. The values 

found for Q (j)i\.1') showed that the Case B solution was definitely pre

£erred to Case A for carbon and at least as good as Case A for 

beryllium. 

The (T JM) values found by the IBM search program did not 

differ greatly with the inclusion of systematic errors from values· 

found with statistical errors alone. Solutions are indicated on the 

( T 
2 
J vs. ( T ZO) plots of Fig. 17. To ascertain that the IBM 

solutions were not appreciably affected by the large uncertainties 

in dd and dm, these quantities were remo-ved from calculations 

and the search program used to satisfy the remaining three equations. 

There was found only a negligible effect on ( T 
20

) and none on ( T 21 ) 
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19 .. M distribution. M is the number of degrees 
of freedom, or the numCber of observations minus 
the number of determined quantities. 

., 
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--...... -~ ... -- .... , ·--
(T2~ (T 2~ <T22) 

with dd, dm -OA05 0.255 -0.235 

without dd, dm -OA05 0.255 -0.230 

(Values obtained are for the carbon, Case B solution with systematic 

errors.) 

Also, to determine that the four cases (two sets of Case A 

solutions with opposite absolute signs and two sets of Case B solu

tions with opposite signs) represented all possible solutions to the 

data, the fd /2 equation (which has a negligible (T 
20

) (T 
22

) term) 

was used to plot a:- ( T 
22

) vs. (T 21 ) curve on which any solution 

had to lie for an arbitrary value of (T 
20

) . Then M was computed 

by IBM program for successive points along the curve between limits 

(T 
21

).;:: ±4"'3: Only one minimum M was found, for negative or 

for positive (T 20), on each of ~he two curves representing the two 

roots of (T 22) obtained from f /2. Calculations with and without 

dd and dm gave identical solutions. All cases were computed with

out dd and dm. The four minima found corresponded very closely 

to the four Case A and Case B solutions. 

D. Error 

After a best fit has been obtained for experimental data giving 

a minimum M, an "error matrix" G can be defined
15 

such that 
rs 

for variations e and e in the determined quantities (here the 
r s 

(T 2~ ) designated by r and s, M becomes 

M=M .. +L m1n 
e e G 

r s rs 
r, s 

The 1nverse of the error matrix is given by 

(G -1) 
rs = (ere s) = 

J de 1 de 
2 

de 
n 

J de de · · · de l 2 n 

-M/2 e e e 
r s 

e 
-M/2 



-75-

and its diagonal elements are the mean-square errors of the quanti

ties determined by minimi~ing M. 

f 
-l . 

An IBM program was set up to compute rom the G express1on 

above the statisti~al and total errors in the (T ZM) found by the 

search program. As is shown in Table III, the largest is about 

20%. 

E. Restriction of Solutions 

By choosing a particular coordinate system, namely, that 
' 

with the z axis normal to the plane of scattering, Lakin obtains 
' ' 

a sim-ele forrp for the density matrix in terms of just three of the 

(T JM) components. By considering the ~limitations on the possibl~ 
statisticaL wei'ghtE! of the pure states of polarization, he is able to 

impose a restriction on the(TJM) compon~nts resulting from single 

scattering S\lCh that any possible state must fall within a truncated 

cone def1ned i~ Lakin's < T l 0) - < T zoJ ~·:~zz) space. (Appendix C.) 

The inequality to be satisfied is 

(Tio)
2 

+ [rJZ (Tz~f ~ 1/3 [ (rzo) 
2 

+ ,JT ]. 

In order to apply this to the solutions obtained above, one expresses 

the TJM . of Lakin's system in terms of Sx, Sy, and Sz (These 

are .-S , S , and S , resp· ectively, in the usual scattering coordinate 
X Z ' y • 

system with the S and S taken along the.;pr:ineinal 'axe;s of the 
X Z r- " 

polarization ellipse in the plane of sc;:attering to give a real quantity 

for (T z)) 
To this end, i_t is convenient to construct the section of the 

~is) ellips;id:in the plane of scattering. (See Appendix D· 2 and 

Fig. 3.). Substitution of the CCI.se B solutions for (r JM) in the 

equ~tion for the tensor ellipsoid x-z section (usual coordinate system), 

1 = (s~) + ( (sxsz) + (szsj) 
gives the curve of F'ig. 16. The principal axes of the ellipse, 

a and 13, corr~sp~md to Lakin's x and.y axes, 

of the inter'cepts are his ( S~ )' and (s
2

). 
' y 

and the inverse squares 

As indicated in the 
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figure, the major and minor axes of the ellipse are interchanged by 

a reversal in sign of all the (T ZM) . 
For Case B solutions {ffiM best fit), the (T JM) of Lakin's 

system assume the following values .for scattering at 10 deg by 

carbon: 

' 

B Solution with 
negative (T zcf 

(T 1 ~= 0.649 

,.J7' (T 
2
)= 0.392 

(T 20)= 0.490 

B Solution with 
positive (T 20) (in usual system) 

0.649 (in Lakin's system) 

-0.472 

-0.489 

For Case B solutions, the inequality is definitely not satisfied for 

positive (T 20), ~ut i.s a. ve~y reason.ab~e relation fo.r ne7ative (T 20). 

For Case A, the mequahty 1s not sat1sf1ed for negahye \ T 20) ; but 

its restriction is just barely met by the solution for positive (T 20 ) . 

Conclusions are the same for both beryllium and carbon scatterings. 

Quantities appearing in the inequality are tabulated for all possible 

solutions to beryllium and carbon data in Table V. 

F. Born-Approximation Predictions of Tensor Components 

It has been shown that an inequality of .Lakin may be applied 

to determine the absolute signs of tensor components. This predic

tion of sign and further the prediction of behavior at small angles 

are possible also through use of the impulse approximation. 

The thesis of Henry Stapp treats the impulse approximation 

(see Section V} in the first Born approximation, the first Born 

approximation with the D state of the deuteron included, and the 

second Born approximation; a Gaussian nuclear form factor and an 

integral form of the deuteron wave function are used to estimate 

parameters of the scattering matrix. 
3 

The first Born approximation 

(with simultaneous scattering included} using deuteron-scattering 

amplitudes obtained directly from proton and neutron amplitudes is 

sufficient to fit cross sections at low energiesa and also vector 

aSee introduction of article by Stapp
3 



• 
Table V. 

Quantities characterizing (T J~ fits. 

Occupation of 
Terms of Lakin inequality m = 0 spin state s --

Relative Abs~lute 

<~ (~ (T 22) )2 ( ( T 2 0) + ..J 2)
2 I 3 (T 2~signs (T 20' sign l/3 - N(O)/N 

Beryllium 
Case A + 0.488 0.2 91 0. 797 +0.061 

0.488 0.254 0.550 -0.061 

Case B + 0.503 0.168 0.311 -0.212 

0.503 0.158 1, 16 +0.212 
l 

--3 

"'' I 

Carbon 
Case A + 0.361 0.406 0.773 +0.051 

0.361 0.327 0.570 -0.051 

Case B + 0.420 0.222 0.285 -0.231 

0.420 0.154 1.21 +0.231 

.. 
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polarization at high energies; it appears that inclusion of D state 

in the deuteron wave function is unnecessary, but that use of the 

second Born approximation is probably required to bring predictions 

of <T 
20

) and <T 22) into better agreement with experiment. . 

In the first Born approximation, the scattering matrix is the 

usual expression proportional to the matrix element of the central 

plus spin-orbit potentials taken between initial and final states. 

It is necessary to include the D state to obtain tensor terms c (8) 

and d (8) of the scattering matrix, 

M = a (8) + b (8~ S · n + [ c (8) (N.N. sc . 1 J 

+d(9) (P.P.-K.K.}] S ... 
1 J 1 J 1J 

In this approximation, c (8) is found equal to d (8), but very small 

m comparison with a (8) and b (8). 

The second Born approximation is the evaluation· of the matrix 

element 

+ 
Hf H . m m1 

E-E + i E 
m 

between initial and final states; it indicates that at small angles 

there is dominant a particular tensor term, such that c (8) equals 

-d (8). 

In the first Born approximation, Stapp found 

2 2 . 2 8 
c (8) = d (8) = 1/6 k r 

0 
a (8) sm T, 

-13 
where k is the incident momentum of the deuteron and ro = 1.4x10 em. 

For 410-Mev deuterons, this is 9.0 a (8) sin
2 ~ ; and with the approxi

mate expression a forb (8) of 107c'~ k
2 

a sin ([, (T 
20

) and ( T 22) may 

be calculated from Eqs. (25) and (28) of the Stapp artie le: 

ain first Born approximation, b(8) = iA. 2 
c 

2 
k a (8) sin 8 r=O 

r=O 
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t(e) = .J2 <T 20) (e) = (1/Iu) {2 cos e Re [ d (a+c/3 + ib tan e)*] 

-2/3 Re [ c(a+c/3(]- 1/3 dd * - 1/3 bb * + 1/3 cc''} , 

( ) 
{ 

[ 
>;cl 

wJB) = 2~ T 22 >!<1(8) =>!< (1/Iu~!< -2 :OS B Re d(a+c/3 + ib tan B) j 

-2 Re [ c(a+c/3) J- dd - bb + cc } , 

At small angles, these 

(T2o) 

expressions become 

(8) = (1/I ) (-32 a
2

8
2

), 
u 

(T22) (B) = (1/I ) (-44 a
2 tl); 

u 

in scattering from beryllium, they yield the values 

(Tzo) .=:::. -0.16 and (T 22 ) ·.:::: -·0.22 for B 
0 

and = 4 lab, 

(T zo) :::.-0.27 (T2z) .::::-0.38 fore 
0 

and = ll lab. 

Comparison with experimental results shows that Stapp'S; first Born

approximation estimates of ( T 
20

) and ( T 
22

) are too large at 

small anglesand for (T
20

) too small at larger angles. However, 

this approximation definitely substantiates the choice of one of the 

Case B solutions as preferable to Case A. 

The second Born a\proximation: should not appreciably change 

the estimate of the < T 22 ; polarization component at small.angles; 

this results from the fact that c (8) and d(B) are found to have similar 

magnitudes, but opposite signs, so that the first two terms of the 

(T 22) expression above should cancel; and these are the chief tensor 

contributions at small angles, (T 20 ) will, however, be affected by 

second Born -approximation contributions to its first two terms. At 

larger angles, ( T 22 ) will not become so large negatively as in the 

first Born approximation because the positive contribution of cc':' 

becomes 'large.as Im (a) goes to zero. (The behavior of deuteron 

amplitudes is assumed similar to that of proton amplitudes. See 
16 

Fig. 20 for plots of proton-carbon scattering amplitudes .. J 
In cone lusion, it can be said that the first Born approximation 

predicts a sin
2 

B dependence for both ( T 
20

) and <T 
22

) at small 

angles; the second Born approximation predicts the same )T 
22

) 

but a more complex behavior of < T 2J , approaching a sin 8 

dependence only for moderately large angles. 
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Fig. 20. (a) Spin-independent proton-carbon scat
tering amplitudes at 220 Mev. These were 
obtained by Hafner through fitting a Woods
Saxon potential to his experimental data with a 
WKB analysis. There is indicated also gR for 
neutron scattering, the amplitude differing most 
from that for proton scattering. 
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Fig. 20. (b) Spin-dependent proton-carbon amplitudes 
obtained by Hafner at 220 Mev. 
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G. Physical Interpretation 

An examination of the physics of the scattering process may 

help further to select a unique set of (T JM) signs. Such an argu

ment has been appealed to before in choosing the sign of (iT 11 ) 

to be positive on the basis of the type of interaction observed in 

shell-model spin-orbit coupling. 
4

• 
17 

Here certain conclusions may 

be drawn l}POn consideration of the occupation of quantum -mechanical 

states and the behavior of the cross -section parameter d with in

creasing scattering angle. 

Some indication of the proper (T JM) signs is given by the 

values of (T 20) and <T 22) ~nder the assumption that there are 

possible only the three pure spin states associated with the normal 

to the scattering plane. The occupation of the in = 0 spin state 
s ' 

associated with the y axis in the usual coordinate system can be 

shown to differ from the unpolarized vc:llue of 1/3 by an amount 

1/3 - N(O)/N = l/3 (3 ( S~) -z) 
or l 1 

1/3 - N(O)/N =-~ <T zz) :~· - <T 20) · 
~ 3rJ2 

For the sign combinatipn Case A, N(O)/N is very close to 1/3, while 
/ 

for Case B, it is 0.55 or 0.10 for the two choices of absolute sign. 

(See Table V.) As is further confirmed by estimating the occupation 

of the +1 and -l spin states through the combining of the measured 

(iT 11) with N(O) values, neither set of s~gns for Case A seems to 

give unreasonaple results, but for Case B only the negative <T 20) -

negative < T 22) solution appears acceptable, the fractional occupations 

being 

N(+) N(-) 

N N 

N(O) 

N 
= 0 0 7 0 ~ 0 0 2 0 : Q~.l 0 0 

It has been shown through analysis of experimental data that 

the major and minor axes of the polarization tensor ellipse in the 

x-z scattering plane differ appreciably and for some sign choices 
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indicate a predominant spin alignment along the X or z axis. It 

seems possible to relate the direction of predominant spin align

ment to the behavior of the cross-section quantity d (or of(T 20) ) 

with variation in scattering angle; d is observed to increase from 

practically zero, or perhaps slightly negative values, to appreciable 

positive ones as 8 increases, To explain this increase in polarized 

over -unpolarized cross section, there should be a predominant spin 

alignment transverse to the direction of motion, giving a greater 

effective geometrical cross section than for the unpolarized beam. 

(This assumes single scattering or the us,ual impulse approximation. 
3 

Stapp says that simultaneous scattering predominates at large angles, 

but calculations indicate this to be less important than his formulae 

suggest.) 

The. deuteron is a prolate spheroid with its long axis coinci

dent with the axics: of spin, the length being 1.14 times the average 

radius of the deuteron; in a simple picture, one can think of the 

loosely bound nucleons as being placed one after the other along the 
/ 

spin_ axis. Then it is evident that with this axis preferentially trar.{~-

verse to the direction of motion, there is greaterprcbability for pol

arized than unpolarized scattering and hence a positive value for d. a 

The above argument does not support the positive < T zoJ signs 

of Case A, as (s~) / (s!) is 0.86/0.71. For the negative (T 20) -

negative ( T 22) set of Case B solutions favored by the IBM fit and 

Lakin inequality, it can be seen from the polarization ellipsoid 

section in the plane of scattering thaf there is some preference for 

alignment along the x axis in that plane; also, there is predominant 

an alignment normal to !the plane. ( (s!) = 0.63 and ( S~) = 0, 90, 

while (s~) = 0.48.) Thus, for this set of solutions, the polarized 

should be greater than the unpolarized cross section, as observed in 

experiment. 

a ( T 20) = 5z (3 (s~) -2), which indicates z -axis alignment, would 

tend toward a maximum negative value with increasing d. 
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H. Choice of Signs 

It has been shown that experimental results determine the 

relative but not the absolute signs of the (T 2J polarization com

ponents. In fact, even the relative signs were not definitely deter

mined, and two possible sign combinations were found, because of 

the small magnitude of cross te12'ms in the e-d-f quadratic equations. 

Thus it has been necessary to discuss theoretical and physical inter

pretations of the various sets of experimentally possible solutions. 

In conclusion, there have been a number of considerations 

mentioned that should permit a definite statement as to the absolute 

signs of the tensor components. These support predominantly Case 

B relative signs with ( T 20) and ( T 22 ) both negative and ( T 21 } 

positiVe. Only the !3 '{ 0 formul.ae> which involve considera~le error, 

tend to favor the positive (T 20) signs. The negative < T 20 } -'Case 

B solution must be chosen on the basis of 

(a) minimization of M, 

(b) application of Lakin inequality; 

(c) predictions of Stapp's Born approximation, 

(d) physical interpretation bf spin alignment, 

(e) results of impulse approximation with the use 

of nucleon-nucleus scattering amplitudes 

(Section V) 

J. Determination of.: . .(fJ!~ (@) 

The experimentally determined functions of second scattering 

angle, d, f, and I emes I -edee; \ontain products of the variuus 

(T 2M) (82 ) and the rotated (T 2M)
1 

(8 1 ) .. For the beryllium 

measurements, 

d (82)= (T20) '(Ilo) (T20) (82), 

f ( e 2) = 2 ( T 2 2) 'i ( ll o) (T 2 2) ( e 2 L 

lemes(82) l-edee(82) = 2[ (T2lyl:d(llo)- (T2l>';,m(llo) J (T21) (82). 
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Also, 

e ( 8 2.) = 2 [ - , ( T 21) 
1 

( 11 °) ( T 2 1) {(:1 2 ) + (iT ll J (11 °) (iT ll) ( 8 2 ) .] 

The rotated (T 
2
M} 

1 

{811.) quantities can be obtained either from the 

x-z ellipse or from their expressions in terms -of the untransformed 

( T 
2
M) and functions of the tens or rotation angle A. ; another method, 

:simply the division of parameters obtained at e
2 

= 8 1 by the <T JM) 
(8 2 ) obtained from the search program, was thought preferable in 

_perhaps minimizing systematic error. (T JM) (8) values were then 

calculated from the d, e . and f values for various e
2 

; and averages 

of dee- and meson-target results were plotted with the total errors 

of Table III. (Fig. 21 and 22.) 

K. Consistency of Results 

The sets of measurements for beryllium and for carbon were 

made at different times and under somewhat different cyclotron field 

conditions; orbits had been known quite exactly for the beryllium 

measurements, but were less dependable for carbon because of la~k 
' 1 

of exact field information following the change. Thus it seemed of 

considerable importance to compare beryllium and carbon results . 

. This was done by determining cross -section parameters for 

a beryllium -carbon double scattering {beryllium as first target and 

carbon as second target) at three different values of e2 ; two of these 

measurements were taken in the carbon run and one in the beryllium 

run. Tensor components giving internal_consistency for beryllium

beryllium and for carbon-carbon results were used to calculate the 

beryllium -carbon parameters; and these were found in good agreement 

with measured values. (See Table VL ) 

•. 
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Fig. 21. (a) Polarization components for 410-Mev 
deuterons scattered by beryllium. Errors on 
experimental points include statistical and 
systematic effects. Impulse -approximation 
calculations were done with Hafner proton amplitudes. 
The vertical arrow indicates the position of the 
diffraction minimum. 



-87-

0.8 ,.---...,..--.,-----,-----,.1--,..--...,---,----,---,-----, 

.& • Experimental paints 

0.6f- t:,. o Impulse approximation 
-- with simultaneous scattering 
---- without simultaneous scattering 

-

-0.8 

- I.Ot;_---~I __ L-1---::'1--~ 1 __ '=----1-~--L-1--"':---.J_ I _ _, 
0 2 4 6 8 10 12 14 16 18 20 

Scattering angle 8 (lab) (deg) 
MU -17313 

Fig. 21. (b) Polarization components for 410-Mev 
deuterons scattered by beryllium. Errors on 
experimental points include statistical and 
systematic effects. Impulse -approximation cal
culations were done with Hafner proton amplitudes. 
The vertical arrow i~icates the posit. ion of the dif
~raction minim~m .. T 2 ~ is zero in the usual 
1mpulse approx1maho . 

• 
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22. (a) Polarization components for 420-Mev 
deuterons' scattered by carbon, with impulse
approximation predictions from Hafner proton 
amplitudes. Total errors are indicated. The 
arrow designates the diffraction minimum. 
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Fig. 22. (b) Polarization components for 420-Mev 
deuterons scattered by carbon, with impulse
approximation predictions from Hafner proton 
amplitudes. Total errors are indicated. The 
arrow designates the diffraction minimum. 
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Table VL 

Beryllium -carbon double -scattering results 

Cross -section Scattering angle, 8 lab parameters {de g) 

6 11 14 

measured 0 ± .022 0.142±.032 
d 

calculated 0 0.197 

measured 0.5:72 ± .017 0.354 ± .039 
e 

calculated 0.552 0.520 

measured 0.041 ±:,011 0.060 ± .026 
f 

calculated 0.026 0.075 .· 

measured 0.199 ± .--Q34 
e 

l+d+£ calculated 0.177 

measured 0.088 ± .027 
f 

·-l+d calculated 0.058 

Errors indicated are statistical only. 
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V. IMPULSE APPROXIMATION 

A. Born Approximation in Scattering ~Nucleons 

A complex spin-dependent potential is necessary to account for 

the observed polarization of nucleons scattered by nuclei. The general 

f . . . . b . 18 orm representing a scatter1ng 1nteract1on may e. wr1tten as 

V (r) = V c (r) - a , V p x P~~j , 
where V (r) is a complex central potential, 

c 

~ p represents the gradient of nuclear density, 

a and p are the spin and momentum of the incident 

nucleon, 

'T is the proton Compton wave length. 
c 

Expressed in its more usual form, with V (r) as the spin-orbit 
s 

interaction, the potential is 

V (r) = V (r) - 1/r 
c 

_d v_d_,s r_(_r_> a , T (: ) , 

I 
The V (r) must have real and imaginary parts to acco\mt for 

c 
scattering and absorption proc.esses; further, an imaginary part is 

n~cessary to produce the interference with the spin-dependent term 

which is manifested in polarization phenomena. Extensive optical

model studies have been made to determine the general form and 

magnitude of the central potential. 
1 

The existence of a spin-orbit term is suggested by the observ

ance of spin-orbit couplipg in bound nuclear systems and by the 

presence of the Thomas term in atomic interactions; also, it can be 

shown by optical-model considerations
19 

that the term is a necessary 

consequence of the spin dependence of nucleon-nucleon interactions. 

The spin-orbit potential was first proposed by Fermi as giving rise 

to polarization phenomena, and its form has since been determined 

by many authors through analysis of scattering data. 

, .. 
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The ~orn approximation» which is valid for energies greater 

than 300 Mev, for forward scattering angles, and for light nuclei, 

permits the determination of the scattering matrix from the inter

action potential: 

f (B) = M 
sc = (-z:2) f ~£ V ~i dT, 

with m the nucleon mass and ljJf and ljJi the final and initial wave 

functions. If the scattering matrix M is defined as 
sc 

M = g ( K) + h ( K) a · n, 
sc 

and if there is made the usual assumption that V (r) and V (r) c s 
have the same radial dependence, the quantities g(K) and h(K) are 

seen to take the forms 

<f·Iih- ( m) 
- 2 Tri'i2 

Thus there 

~i ~2~) 

~ i tz=2
) 

results 

g (K) ~t:z) 

2 
"A 

c 

I 

-ikf · r 
e V (r) 

c 

-a ,... ..,.. f -:lK·r -
• Ki X Kf e V S dr. 

-iK· r 
v (r) dr e 

c 

r=O ~i7:2 k2 (K) IV sl h (K) = sin e g 

jvcl 
c 

r=O 
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(Stapp chooses to define the spin-orbit potential as_ V s = G Re V c, 

and finds that G . is approximately 20 for fits tq proton data at 

300 Mev and aq.out 24 for deuteron data at 165 Mev.i. The 410-Mev 

deuteron measurements reported here give a G value of :about 19.) 

B. Born Approximation in Scattering of Deuterons 

The impulse approximation can be applied to deuteron scattering 

by assuming _char.ge independence and a Hamiltonian of the form 

~= T1 + T2 + ud (r12) + v1 (r1' p1,a1) + v2 (r2,p2,a2), 

or 

with 

Qt O = T 1 + T 2 + U d and ~1 =V 1 + V 2 ' 

where the 1 refers to ·Nu:dteon 1 and the 2 to Nucleon 2 of the. deu-

teron; ud represents the int.eraction between the- two nucleons, and 

V, :the interaction between the nucleon and the nucleus. The idea of 

the impulse approximation .is contained in d{ 1 , whose form indicates 

that an impulse given by the nucleus to either Nucleon 1 or 2 produces 

scattering of the whole deuteron (unless dissociation occurs), but has 

no direct effect on the partner nucleon. 

As a first approximation, the internal wave function X (r 12 ); 

is assumed to represent just the deuteronS state. Then, with the 

assumption that . V 1 is equal to V 2 and that the nucleon potential 

has the form given above, the scattering matrix in Born approximation 

becomes 

= ( md ~ f dr 1 dr 
2 

X ;:. 
2;TTfi j 

, [v(r 1)+V(r
2
)] 

f 
ik. 

e 1 

,# 
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or 

Md = f l/
2 

(K) [2gd(K) + hd (K, k) S 0 n] 0 

(This corresponds to Stapp's M = a + b S o no) The sticking factor 

f(K), whose square root is the Fourier transform of the square of 

the deuteron ground-state wave function, 
20 

represents the probability 

of the deuteron's staying intact during the scattering process o 

Evidently the gd (K) and hd (K) of the deuteron scattering 

matrix can be expressed in terms of the nucleon scattering amplitudes: 

=(kkdn~ hd (K, kd) j 

Thus the values for gd and hd (hence those for Iu and the polari

zation components) may be predicted from known values for gn and 

h ; the nucleon data used should be for nucleons of momentum about 
n 

half that of the deuteron and scattering angle twice as large, so that 

the momentum per nucleon and the total momentum transfer are the 

same in both nucleon and deuteron scatterings 0 

By using the above expression for 

T JM expectation values, 

M 
sc and the expression for 

Iu (T JM) = (l/3) Tr (MMtT JM)' 

it can be shown
2 

that in first Born approximation, 

I 

I~ = (l/3) Tr MtM = f(K1 [4 g~ + (2/3) h~] , 

Iu (iT 1 J= f(K) (2/..[3) 2 Reg~ hd= (,.,{j/2 Iu (sy) 

2 
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C. Determination of gd and hd in First Born Approximation 

Cross.-section and polarization data from the scattering of 

nucleons can be used to determine the values of nucieon and deuteron 

scattering amplitudes if there is some means ot estimating the 

relative phase of the spin-independent and spin-dependent nucleon 

amplitudes. Alternatively, nucleon scattering amplitudes may be 

obtained directly from phase shifts determined through the fitting of 

a potential to scattering data. 

Various methods were -used to estimate the phases of the 

.J amplitudes for nucleon scattering by beryllium and carbon at 220 

Mev: comparison of potentials from Riesenfeld-Watson calculations~, 

H f . l d 16 b h s b d l 
21 

a ner exper1menta ata, and the Fer. ac ·~ er er -Taylor mo e . 

The average phase differe1;1ce between spin-dependent and spin

independent amplitudes at small angles was about 20 deg . 

.J.:_, Calculations for deuteron cross sections and. polarization com

ponents were carried out for the complete range of experimental 
' 

angles with nucleon scattering amplitudes obtained from Hafner at 

Rochester (Fig. 20) and Bjorklund at Livermore. (See Figs. 21, 22, 

and 23.) Both used a Woods-Saxon potential to fit experimental data, 

but with somewhat differing parameters: 
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Fig. 23. (a) Calculated polarization components for 
410-Mev deuterons scattered by beryllium. 
Bjorklund amplitudes for proton scattering were 
used in the impulse approximation with simultaneous 
scattering included. 
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Fig. 23. (b) Calculated polarization components for 
410 -Mev deuterons scattered by beryllium. 
Bjorklund amplitudes for neutron scattering were 
used in the impulse approximation with simultaneous 
scattering included. 
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/ 

Hafner Bjorklund Rljt.senfe ld- Watson 

Re v 10 Mev '2 _, Mev 3,5 Mev 
c 

Im v 25 16 13 
c 

Re v 225 450 45, 
s 

Im v 0 -Z40 -61 
s 

a 
(1 .09 A 1/ 3 -a) 'f> 1,0 A 

1f 3f ro 

a 0' 1 f 0.5 f 

Ri,senfe ld- Watson potential wells determined by superposition of 

nucleon-nucleon amplitudes are in.dicated for comparison, The 

Hafner amplitudes gave a considerably better fit to the Rochester 

nucleon-nucleus cross sections than did the Bjorklund amplitudes, 

which were too small at all angles; the former also gave a some

what better fit to nucleon polarization, 

Calculations to determine the characteristics of deuteron 

scattering were done first in the simplest approximation with only 

the S-state deuteron wave function and without the inclusion of 

simultaneous scattering effects. These results are indicated in 

Figs. 18a and 18b. The deuteron cross section as calculated with 

Hafner amplitudes was larger than experimental measurements by a 

factor of five or six at small angles in the simplest approximation 

for both beryllium and carbon scatterings, 

Deuteron cross -section results for beryllium using Bjorklund 
' 

amplitudes dropped much too rapidly with angle. However, cross

section and polarization calculations with Bjorklund proton and neutron 

amplitudes did indicate that charge independence could be approximately 

aNote that the value of r
0 

used is small. Hafner found it to give a 

low absorption cross section and suggested that his choice of Im V 

as zero had perhaps required a small r 0 to fit cross section and 
s 

polarization. Bjorklund~ however, also found a small r
0 

necessary 

even with a nonzero Im V . 
s 
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assumed, even though Coulomb interference was effective out to 

rather large angles. The real part of the spin-independent amplitude 

was funrl to go negative (at angles be low the diffraction minimum) and 

the real part of the spin-dependent amplitude somewhat reduced for 

proton in comparison with neutron scattering; but real amplitudes 

were much less than the unchanged imaginary parts of the amplitudes 

at all angles except very small ones 0 Thus Coulomb interference had 

very little effect on polarization, where it entered. into the product of 

two small terms, and no appreciabl.e effect on cross sectiono In 

other words, the Coulomb effect was inappreciable because the phases 

of the scattering amplitudes were close to 90 dego 

The magnitude of (iT n) was well predicted by the impulse 

approximation <:tt small arigleso ( T 22) was given reasonably well, 

and the sign and general behavior, if not the magnitude, of (T 20 ) 

were corroborated (agai.n indicating Case B signs to be preferable 

to those of Case A)o (T 
21

) was zero without simultaneous scat

tering 0 

Do Higher-Order Approximations 

Tensor terms in the scattering matrix resulting 1n appreciable 

tensor poLarization components arise either from a higher-Order 

Born approximation or from the inclusion of the D state in the deu

teron wave function used in the first Born approximation. In the 

latter case, the scattering matrix takes the particularly simple form 

M = a (e) + b ( 8) S
1
. n

1
. + c (e) S. . K. K. , 

s c lJ 1 J 

with a (B) and b (8) as given above in terms of the gd (8) and hd (8) 

amplitudeso (K represents the unit vector in the direction of momentum 
. . 3 

transfero) The sticking factor becomes much more complex and 

includes various orders of Bessel functions taken between S:.. and 

D-state wave functionso 

Calculations utilizing the D -state wave function were done for 
·, 

tW'o angles of scattering and gave results for cross section and polari-

zation components differing inappreciably from those for the S-state 
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wave function alone. 

Tensor terms of the scattering matrix arise also from simultan

eous scattering of both particles in the deuteron with a contribution 

to the.t:ransition matrix element proportional to V 
1 

V 
2 

in addition to 

the linear combination of V 1 and V 
2 

describing scattering in the 

usual impulse approximation. Stapp treated this effect in some 

detail with the use of time -dependent perturbation theory and found 

expressions for the additional elements of the scattering amplitude; 

he determined simultaneous scattering to be the dominant effect at 

large angles and was able to obtain good agreement with experimental 

...c,ross section at low energies (near 150 Mev) only with the inclusion 

of this effect, which increased the large -angle and decreased the 

small-angle estimate of scattering. 
3 

Stapp's formulae were used to calculate the contributions of 

simultaneous scattering to the amplitudes for deuteron scattering 

from carbon and beryllium at 420 and 410 Mev, respectively. Re

sults obtained for cross ~'section a~d polarization components'. as 

calculated with the Hafner proton data and with the Bjorklund proton 

and neutron data, are given in Figs. 15 and 21 through 23. Calcu

lations with the impulse approximation including simultaneous scat

tering are not given beyond the diffraction minimum, as unreasonable 

results were obtained--probably because the assumptions made by 

Stapp that the amplitudes for nucleon scattering aid not change phase 

rapidly with angle were not good in the region of the diffraction 

minimum. 

Inclusion ·Of simultaneous scattering effects reduced beryllium 

and carbon cross sections to within a factor of 2.5 to 3 of experiment 

at small angles a:nd'brought agreement at moderate angles. However, 

the inclusion of simultaneous scattering effects gave rather poor results 

for tensor components of polarization. < T 
21

) values I?redicted were 

much smaller than experimental results. 
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VI. CONCLUSIONS 

A. Values of Tensor Components 

The vector polarization (iT 11) , pr~j:->ortional to tb.e probabihty 

of finding deuteron spin normal to the plane of scattering, reaches 

a maximum at 8 deg; with behavior similar to that of the quantity 

e; its value indicates that the maximum ( S ) polarization is 73o/o 
y . 

for beryllium and 62% for carbon. Although scattering could not be 

done at angles smaller than 6 deg, measurements suggested that 

(iT 1J probably rises rather rapidly with angle, as in Baldwin 1 s 

experiment at lower energies. (iT 11) for the varic:ms energies of 

scattering on beryllium and. carbon is plotted as a function of angle 

in Fig. 24. Figure 25 gives its .dependence on the quantity KA 
1

/
3 

(proportional to momentum transfer times nuclear radius); this 

graph shows that at the higher energies, (iT 1 J is displaced from 

the function of KA 
1

/
3 

obtained at the lower energies
8 

and is perhaps 

less uniform for different scatterers. 

For deuterons of about 100 to 150 Mev, { T 
21

) was estimated 

by Stapp as less than 15% of the quantity (iT 
11

) and was assumed 

equal to zero by Baldwi? and Tripp for purpose of calculations. Here 

it is evidently a considerable fraction of the vector polarization, as 

much as 30 to 40% at moderate angles of scattering. The tensor 

components (T 
20

) and (T 
22

) also assume values appreciably 

different from zero; they increase uniformly with scattering angle, 

( T 20) approaching 70% and < T 
22

) going to approximately 30o/o at 

16 deg. 

B. Utilization of Results 

Complete knowledge of the tensor components in deuteron polar

ization provides a useful tool for the. determination of transition 

amplitudes in the reaction 

+ p + p .... 1T + d. 
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-·--·---

Fig. 24. Vector polarization/iT 11\ vs. scattering angle 
for various energies and targVt materials. 

MU-17318 
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Fig. 25. Vecto~ polar\jf3tion (iT 11 ) vs. momentum 
transfer times A . 
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If only S-and P-wav,e pions are produced, five parameters serve to 

describe the three. possible types of transitions and thus to give 
. 4 22 23 

information on differences between p-p phase sh1fts. ' ' These 

five ·quantities can be taken as the parameters a and 13 of the 

total eros s section in terms of the center -of -mass pion momentum ;a 

the A defined by the unpolarized differential cross section 

(a (8)::::. A + cos
2 

8) in the center -of-mass "system; the Q which 

derives from the asymmetry of pions produced by an incident 

unpolarized beam (e = PQA sin 8/ A + cos
2 

8); and finally a quantity 

w0 which enters into the expression for vector polarization (iT 11) 

of the outgoing deuterons produced by an unpolarized proton beam, 

Analyses for these last quantities were performed by Crawford and 

Stevenson
24 

and Tripp 
4 

at proton energies of 315 and 340 Mev; the 

latter was forced to accept an estimate by Stapp that ( T 
21

) was 

much smaller than (iT 11) , as he·coulcl analyze only for a combination 

of these components by utilizing Baldwin's results. 8 

+ 
Deuterons of 435 Mev would be produced by the p + p - rr +d 

reaction with the 740-Mev protons now available at the cyclotron. 

However, a determination of deuteron polarization using the known 

analyzabilities of carbon or beryllium at 410 to 420 Mev would be of 

no valu.e unless the p + p - rr + + d formalism could be revised. As 
2l. 

suggested by Wolfenstein and confirmed by Akimov, Savchenko, 

d ·s k ... 25 an oyo o, the D-wave production of pions becomes important 

above 400 Mev, as shown by the variation of asymmetry with ang.le; 

·and further it becomes impossible to describe the p + p- rr + + d 

cross section as aT) + 13113 
for a pion momentum above , = 1.2 

(or proton energy above 490 Mev), Thus the pctrameters defined 

above can no Longer describe the reaction. 

Breakdown of the formalism at very high energies does not, 
+ however, preclude the possibility of extending knowledge of 1T - d 

transition amplitudes and p-p phase shifts above 400 Mev. Scattering 

aFor S- and P-waves, a (TJ) = aT)+ 1311 3
, with T) the pion momentum in 

units of m c. 
lr 
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of deuterons on carbon at an energy of 420 Mev, degrading, and ana

lyzing at a much lower energy of 235 Mev could be done to obtain 

values of polarization components which would be useful for analyzing 

the p + p- TT++d reaction at proton energies of 415 Mev. The 

quantities a, j3, A, and Q are already knqwn at th. is enerJy; A 

is approximately 0.22 and Q is 0.45± .08. 
26 

A maximum \iT 11) 

would be obtained at a center -of -mass ang'le of about 60 deg, for 

which the deuteron would. be emitted at an angle of about 7 deg in 

the laboratory system. The ( T 21) produced in the reaction cpuld 

be estimated in terms of (iT 11) ; and with knowledge having been 

obtained separately of the analyzing'('!' 
2 
V and (iT 11) , the (iT 11) 

produced in the p + p - TT + + d reaction could be definitely determined. 

Other polarization components could also be utilized for analysis. 

Usually there is calculated from the quantity A a value for the param

eter X, where the cross section for P-wave mesons produced is 

a .z X + cos
2 

8. ( T 22 ) , which is proportional to X/ A at 8 = 90 
.P 
deg, might give a value for X more nearly exact than asymmetry 

experiments with polarized protons.· (Crawford and Stevenson found 

X= 0.082±.054 from the latter.) (T 22) should have an appr:~iable 
value of ap2roximate ly 0.3-13 at a proton energy of 440 Mev; 

however, (T 
22

) for the analyzer (e. g., beryllium or carbon) would 

very likely not have a value greater than 0.25 at a reasonable deuteron 

analyzing angle. (T 
20

) measured at 8 = 0 deg could also give X/ A 

and would be approximately equal to -0.6,.[2, but somewhat larger 

errors would be involved in the analysis;, as it depends on absolute 

eros s section. (T 21 ) rpeasurements probably would not be helpful. 

In conclusion, deuteron polarization components at the energies 
+ reported here are not directly useful for p + p :- TT + d work unless 

the theory can be reformulated. Double scattering as described in 

this report could yield useful information through a degraded second 

scattering for p + p -+ TT + + d analysis near 400 Mev; or remeasurement 

of tensor components at about 150 Mev through a degraded second 

scattering could be utilized to check the 315 -Mev ap.alysis with greater 

accuracy. 
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APPENDIX A . 

.. 
F·ormulae for Nucleon and Deuteron Scatteron 

As an aid in c'omparing nucleon and deuteron polarization on 

a mathematical and physical basis, the more important formulae 

are here summarized. 

Gene'ral Formulae 

Density matrix de.scribing final polarization state of a beam of 

partie les: 

(s·~) t or _Mpi M . 

Expectation value of any operator in terms of density matrix: 

= 
Tr(pA) 

Trp 

Wolfenstein-Ashkin relation 
6 

de scribing beam after scattering: 

= 
1 

n. 
1 

Here n. is the dimensionality of the initial spin space, M is the 
1 

scattering matrix, and R or S is a set of basis operators in terms 

of which the density or scattering matrix may be expressed (for 

example., the Pauli matrices or the T JM). 

Nucleon Formulae: (spin-zero nucleus) 

I 
Density matrix: p = 2u (1 + L (:i) 

I 
ai) = z u (1 + p 

Polarization of singly scattered beam: P = 
. y 

(with N+ the number of particles with spin up; 

N , the number with spin down). 

a). 

... 



.. 

/ 

-108-

Cross section after second scattering: I2_ 

IL- IR 
Asymmetry: e = P

1 
P

2 
= 

IL + IR 

=::I {1+ecos8). 
u 

In terms of quantities obtained from impulse approximation, 

M = g {8) + h (8) a 0 ii , 
sc 

p = 
y 

>:< 2 2 
2 Re g h/ {g +h ) 

Deuteron Formulae (spin-zero nucleus) 

Density matrix: p = 1/3 ~ ( T JM) 
JM 

Polarization of singly scattered beam: 

(with N
0 

the particles having spin in 

plane of scattering)o 

p = 
y 

Cross section after second scattering: I2 = Iu (1 +d+ e cos <P 

+ f COS 2 <j>) o 

Asymmetry of second scattering: 

e = 2 (<iT!l)J (;T 11\ ~. (T 21 \ ( T21 >z) 

:where equals p 
2 y 

In terms of quantities obtained from impulse approximation, 

M =a+bS·n+C .. S .. or :::..f
1

/
2

(K) j;L2gd+hdSo;J, 
sc lJ lJ 

Iu - f {K) [4 g~ + 2/3 h~J , 

i 
\ 
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(f (K) being the sticking factor). 

Polarization expressions may be written in terms of spin wave 
., 

functions: 

(:i) T). = for the ith nucleon, 
1 

X· = (:i1 for the ith deuteron. 
1 

1) \a~ 

Then ~ ,t a T). ~ ~; ~-0~ T). L i2 
i2 

y 1 1 . al - a2 
pn i 1 

= = = 
y L. ,! [ t ~ i2 + 

i2 
T). , . T). al a2 

i 
1 1 

i 
1. 1 

.and ~ t 0 0) 
~ xt s xi o o o xi ~ i2 i2 

X· i 0 0-1 a 1 - a3 
pd y 1 = = = 

y 

~ xt ' \. t L i2 i2 i2 
X· L xi X· al +a2+a3; 

1 1 

i 

with the sums taken over all particles in the beams. 

.. 
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APPENDIX B. 1. 

Operators in the Deuteron Spin Space 

Usual Spin Operators 

T JM (Irreducible) Operators 

[

1 0 OJ 
T

00
=1= o1o 

. 0 0 1 

2 

'T10 =k 

,[3 
(S +iS ) = --

X y 2 

s 
z 

[
0 1 OJ 
0 0 1 

0 0 0 

s = z 

1 
s s = -

X Z .J"2 

1 
s s = -~z 

Z X '\/C. 

t 
=-T1,-1 

[
1 0 OJ 
0 0 0 

0 0-1 

'l~1 0 0~ 0 0 0 

0 0 1 

[

0 0 OJ 
1 0-1 

0.0 0 

[

0 1 j 
0 0 0 

0-l 
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--2 
(S + i S )

2 
= 

X y [
0 0 1]. 
0 0 0 

. 0 0 0 

= Tt 
2, -2 

,• 

[
o 1 ol 

= -# 0 0 -1 

0 0 0 

= - Tt 
2' -1 

T =.2_ (3 s2 - 2) =..!.__ 
20 ,ff z ff [

1 0 OJ 
0-2 0 

0 0 1 

• 
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APPENDIX B. 2. 

Eigenfunctions _in t!le Deuteron Spin Space 

It is coqvenient to know the eigenfunctions of the spin oper

ators in a representation having the z axis as the axis of quanti

zation. These may be found by solving eigenvalue equations or by 

transforming the usual Sz eigenfunctions by performing 

about the x or y axis; for example, 

X'(= exp (iS 8) X~ = t,J + (cos 8 -1) s2 + i sin 8 S J 

a rotation 

1 X 1 \ X X 
I 

z 
X· 1 

The eigenfunctions found are giyen in the followi~!g table. Those 

associated with S give the spin functions used by Baldwin, 
7 

while 
y 

the usual S eigenfunctions are special cases of the functions 
z 

discussed by Lakin. 

Eigenvalues Operators 

+l 

0 

-1 
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APPENDIX G, 1. 

Density Matrix 

The density matrix in the representation in which the z axis 

is the axis of quantization and is parallel to incident momentum, 

but the y axis is the normal to the scattering plane, takes the form 

p = 1/3 

.1 

=t''-3 
. I 

-4( (T 1 ) + ( T z ~ l - .[2 (T 2~ 

.rr-(T22) 14(-<TJ+(TJ 

(Iu is taken as 1; (T 1 ~ does not appear because it is zero in this 

representation), The deuteron wave function in this system for 

tin1e = 0 ( or~A. = !J- H t/1'1 = 0) as expressed by Baldwin2 is . z 

i 
(a -b) 

= a+b 

i (a-b) 

and follows from the c,ombination of y-axis wave functions (Appendix 

B. 2) given by 

;r; = .. ,.,.-2 ( y iA. + b X y '-iA. + . Y) 
~ 1 "' c. -a X+ 1 . e -1 e c X 0 .. 

• 
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Taking c as zero and hence eliminating the trivial 'case when (s ) 
y 

must equal zero gives the self -adjoint form of the density matrix: 

i.J2 (a2 -bz -a2 - bz 

* * +a b - ab ) * >.'< +a b + ab 

1 
'.f":> 2 2 

-L"''/2 (a -b i,Jl (a
2 

- b
2 

p = 
2 * * -a b + ab J * * -a b + ab ) 

2 2 
-a - b 

* * fa b f ab 

where the definition of· p given in Section II. B has been used. 

Comparison of these two forms of the density matrix yields 

values of the tensor components for special states, .for example, 

the +1 state when b = 0 and a = 1/~ (Compare Sectio~ II. E.) 
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APPENDIX C. 2. 

Lakin Inequality 

In another representation, that with the z axis a long the normal 

to the scattering plane, the density matrix takes quite a different 

form and permits the derivation of an inequality given by Lakin and 

useful for restricting the values of tensor corri'ponents. If the pure 

states of polarization are described by 

~1 = Xo, 

~2 = AX+ 1 + B:X._1 

* * ~3 = B x+1 -A X -1 ' 
with x+1 , x 0 , and x_ 1 the eigenstates of Sz, and if these 

states have statistical weights of A1 , Az_ , and A3 , the density 

matrix has the form 

AA2+AB2 
>!< 

- A
3
B*A 

2 3 0 A
2

AB 

p = 0 A1 0 

~:c * A B
2 

A A
2 

A
2

BA - A3A B 0 
2 + 3 

Equating terms in this matrix to those in the T JM representation 

and noting that (T 11) = ( T 21) = 0 (also making A and B real 

by choosing the X and Y axes in the plane of scattering as the tensor 

principal axes) gives 

1/3 (1 +If (T 10) 

1/3 (1- Jf 0- 10) 

+Jz. (T 20)) = 

+Jz (T20))= 
, A2 . 2 
/\.3 + A2 B ~ 

= ff{A - A ) AB, . 2 3 'J 
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Obviously, then, since 

This inequality is represented by Fig. 26, which shows the cone 

containing all possible states. Pure states are at extreme points 

on the cone, as indicated . 
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Unpolarized 

-V2 

MU-17320 

Fig. 26. Lakin cone showing restriction of (T JM) 
values in the spin space defined by the 2ho1ce 
of z axis normal to the scattering plane. The ljJ's 
refer to the pure polarization states described in 
the Lakin artie le. · 

(; 

.. 
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APPENDIX D. 1. 

Rotation ~f the Polarization Tensor by~ Magnetic ~ 

Three methods may be used to transform the (T JM) : 

(a) Finding the expectation values of spin operators as 

. transformed in coordinate space with the use of precessed spin wave 

functions; L e., making separate spin-system and coordinate:- system 

transformations. 

(b) Transforming the ( T JM) directly for a relative spin rota

tion A = y{jJ.-1) TJ by means of the Kramers method of transforming 

the spherical harmonic Y JM' which uses the analogy between the 

three -dimensional rotation of the Y JM and a two -dimensional trans-
J+M J-M . 

formation of £ TJ , where £ and TJ are un1t vectors of the 

spinor plane. (;An equivalent method is the use of the £Y rotation 

matrix given by Fano and Racah. 
2 7

) 

(c) Expressing s 1sj (like Stapp's .s1sj' but without his 

-2/3 cfij) in terms of the T JM and carrying out an orthogonal 

transformation representing rotation through the angle A. 

The last is most easily understood physically. Just as a spin 

vector expressed in the x-y-z coordinate system can be transformed 

for rotation A about the y axis by taking 

[c~s' 0 -s~n'] [:~] l 

I I 
s-- La. S or s = 1 

1 1m m 
m s1n A 0 COSA 

so the tensor spin products can be transformed with the same 

matrix A: 
I , , 

(S.S.) =~\a. a SS. or 
1 J L L 1m mn n J 

I -1 
(§ ~)- = ~ (~~) A . 

The first problem is to express SiSj in terms of T JM. 
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By using 

s2 + s2 + s2 = S (S + 1) = 2 
X y Z 

and 

S S - S S = i S , etc., 
X y y X Z 

it can be shown on combining the T JM and T J -M terms·, that 
' 

s s = 0 
X y 

I 

Carrying out the above transformation, one obtains (S S) in terms 

of the original E ~ {T JM) and trigonometric f~nctions of A.. 

Equating the T JM expression for each (~ ~) term to the associated 

(T JM A.) expression then gives the formulae included in Baldwin's 
' appendix (though with opposite signs for the sin 2A. terms). · For 

example, the S S element gives 
X Z 

(1/~) (- <T 2 ~
1 

- 2 <!~+J)= [ -P/~) (T 2J + (1/.Jj} <T 22)')(sin 2X:/2J-.. 

+ (1/rJ3) ( (T 2 J -2 (T 11)) sin
2

A. + (1/r./3) (- (T 21) - 2 (T 1 )) cos
2

A.. 

Thus, 

(T21)' = (T2 -;; (l/2) ~sin 2A. +(T21) cos 2A. -(T2 ;)(sin 2A./2). 

f' 
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APPENDIX D. 2. 

Polarization Ellipsoid 

The ellipsoid representing the polarization tensor provides a 

simple way of performing the above transformation by geometry 

rather than algebra. This ellipsoid is analogous to the moment of 

inertia ellipsoid. 

The moment of inertia for rotation of a body about an axis n is 

I = I x
2 + Iyyy

2 + Izz z
2 + 2 I xy + 2 I xz + 2 I yz, n xx xy xz yz 

and if an ellipsoidal surface is represented by 

+ 2 I p p 
xy X y 

with p = n/~ then I for this particular axis n can be 

found by taking l/p
2 

in the direction of n. 

Similarly, the spin tensor SS can be represented by a surface whose 

equation is 

1 = (s~) p~ + (s~) p; 
The effects of rotating the polarization tensor (with a magnetic 

field) about one of its principal axes can be easily determined by 

consideration of the effect of rotation of the ellipsoid cross section 

in the plane perpendicular to this axis. (See Fig. 3 b.) 
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APPENDIX E. 

Errors in Cross--section Parameters 

The expressions for the d, e, and f cross -section parameters ~~ 

were given in Section III. J. Errors ~ntering into the determination 

of these quantities were caused by three factors: statistics, normal

ization, and misalignment. 

For statistical error, the usual expression for error in a 

quantity A dependent up~on vajliables xi was used: 
2 \ aA 2 

(~A) = L -- (.C:.X-.) . 
. axi 1 
1 

This resulted in the following expressions for the errors in the 

quantities d, e, and f: 

.C:.d = 1 /I 
u 

~e = 1/2Iu J(~I0)2 + (.C:.Il80)2 +'(2e)2 (~Iu)2 '· 

~f = 1/4Iu J (~10)2 + (6I18d/ +(6I90)2+ (.C:.I270)2+ (4f)2(.61)2· 

The polarized and regenerated beams differed in their degree 

of contamination by low-energy particles, and in calculations which 

compensated for this by "normalizing'' the unpolarized to the polarized 

cross sections by the ratio of values at e
2 

= 6 deg (where d could 

be cons-idered almost zero), the erro·r. was at least that resulting from 

th'e statistical uncertainty of the ratio of the 6-deg cross sections. 

If Ip /1u was equal to r + .C:.r , the relative error in 1 +d, e, and 

f due to normalization was 6r /r . 

·For error in alignment, 1
0 

and I
180 

and also I
90 

and I2 70 
could not be considered as independent variables, as the as·sociated 

errors were determined by horizontal and by vertical alignments, 

respectively. The effects of the latter cancelled, since 

a I90 = -~ 12 70 ; and because the unpolarized eros s section 
ae ae . 
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was corrected for misalignment on the basis of the <P -dependence 

at one 8 (beryllium) or by averaging over <P for every 8 (carbon), 

only the horizontal setting for the polarized beam caused error" 

The expressions for the misalignment errors obtained were 

1 
C:,.d = £:,.£ = ' 

C:,.e = 
1 

2 I 
u 

41 
u 

( a
8

e 

(a 
8

e 

+ 
a 

a e 

_a_ Irso) ·.e:,.e, 
a e · 
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APPENDIX .F o 

Formulae for T JM (EJ 1 ) in Terms of Cross-Section Parameters 

where 

("f3yO· Formulae") 

~ = ~~0-d~ a~o) (a~2- :~ a~2) -(a~2 - ::a~J 

~ = (a~2 - :: a~J ~~C :: a~J- (a~ 1 ~::a~!) 

d,m 
E = d,m 

alO + d,m 
all + d,m 

a 12 

with the a coefficients defined as functions of tensor rotation angle 

by 

(Section IL F) 
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Although these expressions gtve direct (T J~ evaluation, they are 

not very useful because of producing considerably biased results 

owing to the combination of d and f errors. 

~ 
I 
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