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ABSTRACT 

A recent reformulation of the theory of electron scattering by atoms--in 

which those scatterings, real or virtual, that leave the state of the atom 

unchanged are separated off from the remainder--has been generalized to include 

the effects of the Pauli principle. The case where the Hartree approximation 

suffices to describe the atom is considered in detail, including a calculation 

of the "scattering potential11 to second order. 

* This work was performed under the auspices of the u.s. Atomic Energy Commission. 
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I. INTRODUCTION 

Recently, a new method was introduced for handling atomic scattering 

1 problems. The novel element was a rearrangement of the perturbation series 

for the scattering so that a "scattering potential" was obtained for all 

interactions nqt changing the state of the atom. The scattered particle was 

assumed not to be an electron, so there was no need to consider the Pauli 

principle. 

The purpose of this discussion is to extend the method of I to include 

the effects of the Pauli principle; that is, we now assume that the scattered 

particle is an electron. Previously, methods have been developed for handltng 

exchange corrections for electron-atom scattering within the framework of the 

Hartree-Fock approximation. 2 ' 3 From such studies one concludes that although 

exchange corrections are not of paramount importance for scattering by heavy 

4 
atoms; they are not really negligible, at least for low-energy scattering. 
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II. THE SCATTERING OF A. PARTICLE BY A SYSTEM OF SIMilAR PARTICLES 

We consider the scattering of an electron by aneutral a'i;om having z 

electrons. The essence of the Pauli principle is that all the electrons are 

equivalent, so we shall adapt our nota"~?ion to eXpress this symmetry. 

Thus, we labelthe electrons o, 1, .... z. Then, with Pp/. x£ as the - -momentum and coordinate operators for the Eth electron, and ~ meaning an 
i 

unrestricted summation from 0 to z , the Hamiltonian is5 

where 

and 

H = K +. VN + V , 

K = 

v :::: 

2 

I: K~ I: 
Ri 

= 2m i ~·· i 

I: VN (x.) = 
i -~ 

= I: 
i<j 

' 

(2 .. 1) 

(2.2) 

When an arbitrarY electron, say the £~h, moves freely while the 

remaining electrons are bound to the nucleus, we shall write the Hamiltonian 

as 

= 

Here, K £ has been defined above, and we have 

+ ' 
(2.4) 

where means summation from 0 to z excluding ~ .• 

,. 
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The Hamiltonian Ht differs from H by the interaction between electron 

t and the rest of the system. Calling this interaction Vt , we have 

and (2.5) 

+ -zU) v = 
it 

i 

thereby also defining vt . 

We turn now to the definitions of the basis eigenvectors of the problem. 

If we assume that electron 0 is the incident particle, the atom is described 

by the Schrodinger equation, 

h0 ¢ = w ¢ , n n n (2.6) 

is the (antisymmetric) eigenvector and W the 
n 

energy belonging to the atomic state n. To simplify the notation, we shall 

assume that the electron-spin variables are included with the coordinates 2;i 

by writing x. , etc. 
J. 

If electron t is incident, we operate on Eq. (2.6) with QPO£' the 

operator that interchanges electrons 0 and t ; because we have 

we find 

= w ¢ (t) 
n n · ' 

that x0 now occupies the position formerly belonging to xt . 
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The eigenvector that describes electron £, moving freely with energy 
.. 

€Po == p0 'l~ is 'AP(!} ~£? , ·where 

(2.8) 

and 
··,!· . 

%~ e.. .. . •. (2.9) 

_ For the system comprising an ai:;om plus the ·, . .tth ~electrOn il:l.eident moving 
·' ,t• 

without_ interaction, we have thedescription 

(2.10) 

with 

and 

( 2.11) 

We observe that 

so that,_ as expected, 

Finally, the Schrodinger e~ation; including all interactions, is 

~E - H)j == 0 • ( 2.12) 

Here, I is antisymmetric in.all pairs of electrons. 
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A boundary condition must be added to Eq. (2.12), to fix { uniquely. 

The physics of the problem dictates the boundary condition: as ~ approaches oo, 

for £ arbitrary, ! approaches the asymptotic form 

'lj1 ~ 8£ I Po n0 ) £ + (electron £ outgoing scattered waves). 
(x£ ~ oo) (2.13) 

(£ = o, •• . &-) 

Here, p0n0 labels the incident wave, while the factor o£, given by 

for £ = 0 

(2.14) 

= -1 for 

insures that the first term of Eq~ (2.13) is antisymmetric in all pairs of 

electrons. We should, perhaps, write f as i , to show which incident wave 
Pono . 

is the source function, but we prefer to leave the subscripts understood. 

The basis vectors I p n )
0 

are orthonormal, 

( p' 
0 .. 

n' I p n ) 
0 

= e , o , 
PP nn 

, 

and form a complete set for the expansion of any vector, e.g. L (x
0

; x
1 

••• x~), 

which is antisymmetric in any pair x1 ..• x~ but has arbitrary symmetry in x0 : 

I: 
pn 

I P n ) C 
0 pn 

In what follows, we shall often wish to form antisymmetric expressions 

from the I p n )
0 

• This can be accomplished by using the o£ defined above 
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and the (?
0

£ . defined previously. For ex~le, let Q(x0; x1 ~ uX.;) · be symmetriC 

in a!lY pair x
1

4<>.xz but of arbitrary symmetry in x
0

o Then, if ¢(x1 ••• x~) is 

antisynnnetric in any pair of variables, it is easily verified that 

= 

(2.15) 

is antisymmetric in any pair of its ~ + 1 variables. 

The use of f to calculate scattering cross sections has been discussed 

6 . f by Takeda and Watson, wh0 show that since is antisymmetrized we need 

calculate the flux of scattered 0 electrons only. That is, all particles 

enter the problem symmetrically, hence each particle has the same flux, and the 

total flux is ·z + 1 times the flux of any one. This holds for both the incident 

and scattered fluxes; therefore, since only the ratio appears ·in the cross section, 

this may be computed by calculating the flux. of particle 0 alone. Or, we may 

regard 0 as a distinguishable particle in obtaining the scattering cross 

section from i . 
The flux of 0 electrons scattered is calculated from 

!: 
p,n 

I p n >o o< p n I···I > ' 
(2.16) 

where f contains b0th incident and (outgoing) scattered waves. The contribution 

of the latter to Eq. (2.16) is 

n 

iknxO 
e 

T <~o) ¢ n . n 
r 
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.• where n labels the atomic state, kn is the momentum. carried by the scattered 

particle, and T is the scattering amplitude. Let the incident flux of 0 . n 

electrons be p
0

jm ; then the scattering cross section for leaving the atom in 

the state n is 

dO' 
- = an (2.17) 

where S represents the appropriate sum and average over final and initial spin 

states. 

It is apparent from Eq. (2.16), that we may obtain the cross section 

from 

v(p n) .::: 0 < P n I f > (2.18) 

That is, we may use a representation that treats particle 0 as distinguishable 

from the other particles. (It will turn out to be a matter of practical 

convenience to use this representation.) 

Because f is antisyrnmetric, the fUnction 1jr(p n) satisfies a number 

of important symmetry relations. Indeed, these represent sufficient conditions 

that a wave function has been obtained that is consistent with the Pauli principle. 

First, we have, for t = o, 1, 2, ••• a, 

(2.18A) 

From this, we find trivially that, for j, t = o, 1, 2 ••• s, 

j( P n I f> = (2.18B) 

From (2.18A) we obtain the important relation 
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(2.18C) 

When it is sufficient to use Hartree wave functions as approximations to 

the rx 
!"n ' we can considerably simplify our formulaeo Let, then 

1 (2.19) 

Here cP is a general permutation of the x 9 s, and e:cf> , as usual, is ( ±1) 

depending upon whether the number of interchanges is even or odd.~ The g 0 s 

are single-particle Hartree orbital states, and the index n refers to the set 

(-J
1

ooo"J ). . z 

An operator that projects onto the Hartree orbital states may be 
.• , 

introduced: 

(p' I A~(O) I p) 

(2.20) 

Then, in an obvious notation, we obtain · 

1: (p v I Ay < ~) I P ). 11r< P n) = o , 
p ' . . 

(2.21) 

if the Hartree orbital state y is contained in the set n • The operator 

vs 
A (O) = E A./o) 

..);:-.J 1 
(2.22) 

is a projection operator on the set of orbital states in n o In Eq •. (2.21), 

A~(o) and t may be !egarded as operators in th~ space of functions n • 
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In this sense, Eq. (2.21) is equivalent to the operator equation, 

0 ( 2.,23) 

The wave function 

has recently been used, by Coester and KUmme1,7 in a context similar to ours., 

These authors, however, did not discuss means of actually satisfying the symmetry 

conditions (2.18 A, B, and c). 

III. DERIVATION OF THE SCATTERING EQUATION 

6 We shall now follow the argument of Takeda and Watson to devise a 

formally correct integral equation for the scattering problem. This is easily 

done--the major task confronting us is to show how this equation may be used. 

Let us first introduce several quantities: 

a:::::E+i'I)-H 

a + + i 11 (3.1) 

Next, a set of wave functions f£ is defined by 

(3.2) 

The wavefunction t£ represents the scattering of the £th electron by an 

atom containing the remaining electrons. Clearly, in f£ the £th electron 

is treated as distinguishable from the others. Thus f£ has the symmetry 

properties of the [ Q ¢ ] used in Eq. (2.15). It follows then that the 
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' . 
correctly antisymmetrized wave fUnction f ' '. ~ 

for the problem is 

i = ( j.j) 

Having once obtained the f~ , the correct vavefUnction is easily c~nstructed. 

The scattering cross section is then obtained by the use of the arguments 

associated with Eqs. (2.16) and (2.17). 

It is of interest, however, to obtain a single integral equation for 

t itself. To do this, we first write Eq. (3.2) in the form 

(;.4-) 

We then multiply by 8~ and sum over all ~ to get: 

af = 

or 

! = ( ).6) 

Here we have 

= 

because 
. . 

a~ I Po n0 )~ = in Po n0 )~ 

From this derivation, one sees that Eq. (;.6) is actually independent 

of the choice of · 0 as the subscript, and that any other choice, £ , would 

lead to an'equation of identical form. 

·• 
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Equation (;.6) may be rewritten in the representation of Eq. (2.18): 

( ;.8) 

Here we have 
2 

a0 ( p n) ::.. E + i Tl - W n = ~ , 

which is, of course, independent of the subscript 0 • 

One may readily verify that the integral equation (;.6) [ or the 

equivalent Eq. (;.8)] generates, by iteration, the properly antisymmetrized 1. 
Also, the advantage of employing (lja0 ) as the propagator is apparent, since 

this is diagonal in the representation Eq. (;.8). This advantage was obtained 

at a considerable price, however, because now neither e0 nor (lja0) v0 f is 

individually antisymmetrized. {This may be easily seen, for instance, by 

observing the form (2.18C) for the antisymmetry condition.) Equation (;.6) also 

has a singular behavior when the limit Tl ~ oo is taken. 

An immediate simplification of Eq. (;.8) is possible in the approximation 

that the atomic nucleus has a mass very large compared to m: 

where 

Z (p I YN I p') l!r(p' n) , 
p' 

(3.10) 

The sum over all values of (p, n) in intermediate states counts each 

antis~etric state (z + 1) times, as is well known. (Alternatively, we may 

say that a physical state (p n) may be obtained by putting any one of the 

(z + 1) particles in the state p , the remaining being in the atom.) This 
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complicates sums over virtual states unless one uses considerable. care. 

Now, the potential v0 in Eq. (;.8) may be multiplied on the right by 

any projection operator onto the antisymmetrized sub~space for the (z + 1) 

electrons. It will prove convenient to replace v0 by 

(1- ~.) 
:r: v Oj -• 2 J ' 
j 

( ;.11) 

where we define ~00 to be the.uriit operator. Clearly, we have 

so Eq~ ( 3.8) is unchanged on replac,ing v
0 

by u
0 

• -We ma;y now drop the factor 

of 1/2 above if we restrict intermediate state sums so that the states of the 

pair (o, j) are not counted twice. With this understanding we replace' Eq. (3.11) 

by 

( 3.12) 

We emphasize that Eqs. (3.11) ~d (3.12) are entirely equivalent. Equation (3.12) 

is more convenient, however, since we do not wish to distinguish between the 

states of a_scattered pair of electrons (o, j). 

Now we may write Eq. (;.8) as 

(3.13) 

In matrix form this is 

+ (p I vN I P') onn' ] l)r(p' n') 

(3~14) 
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The convention for carrying out intermediate-state sums that was introduced in 

connection with Eq. (3.12) must be kept in mind. 

To proceed, we follow the method of I. Equation (3.13) may be written 

a.s 

f = F fc ' ( 3·15) 

where 

fe 
1 v(o) tc = eo + 
ao 

( 3.16} 

1 y..o) 1 F F = 1 + ~ [Uo + vN(xo) - ' 0 

and 

As was shown in I, the function (3.15) satisfies Eq. (}ol3) for an 

arbitrary V(O). Again, as in I, we shall impose on the ''potential" t/(O) 

the condition that it be diagonal in the states n of the atom. The actual 

form chosen· for t)(o) will be given presently. 

To simplify fc, we rewrite Eq. (3.16) as 

fc :::: 
1 
do ao eo 

1 
I: 8 .t I Po no >.e = 

do a£ 
£ 

( 3.18) 

1 
I: 8£ d.t fc(.e) = 

do ' .t 

where 

( 3.19) 
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and 

ic(.e) = 1 

<r; 
(3.20) 

= rft) fc(£) 

Because r .e) is diagonal in the appropriate set of states n ' we 

conclude that 

1fc (.e) = (Po X. (xo) ¢n (xl •.• x) .e Po . . o 6 ' 
( }.21) 

where 

Here is the matrix element of ~0) associated with the atomic state 

and X is that solution of Eq. (3.22) which has outgoing scattered 
Po 

waves: 

X (x0 ) = A (x0) + {outgoing scattered waves) • (3.23) 
Po Po 

Physically therefore, X (x0) describes the scattering of particle 0 by the Po . 
equivalent single-particle potential ~(O). 

Returning to Eq. (3.18), we introduce the quantity 

- Cv -0 
( 3.24) 

Substituting for d,e into Eq. (3.18), we obtain 

fc = ( 3.25) 

• • 
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With a convenient choice for the potential ~(o), we now have a definite 

perturbation prescription for evaluating f . We may anticipate that At , 

which arises only because of the Pauli principle, will often be small. 

IV. SIMPLIFICATION WHEN ATOMIC STATES ARE 

DESCRIBED BY HARTREE WAVE FUNCTIONS 

For many scattering problems, such as we are considering, the properties 

of the scattering medium may be specified with much less accuracy than is 

required for the wave function of the scattered particle. The reason for this 

is that frequently only the state of the scattered particle is observed in 

any detail. For example, Hartree states often may be used for the scattering 

medi~ even when such an approximation for the scattered particle would be very 

inaccurate. (We note that, in practice, Hartree wave functions are usually the 

best available~) 

In this section, we shall therefore assume a Hartree model for the atom 

in order to simplify the scattering equations of Section III. We may, if 

desired, use any model of the atom for the final equations that we shall derive. 

This is reasonable, because the Hartree assumption is used only to derive 

exclusion-principle corrections to the theory of I. 

We shall first note that it is desirable to choose ~(O) ·so that 

X represents the actual elastic scattering of the electron by the atom. 
Po 

When .x0 is large, we have 

= + 

so the differential cross section for elastic scattering by the atom is 
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( 4.1) 

To achieve this we extend the definition of the X to include the 
p 

bound Hartree orbit;al states g.y • Let 
' 

determine the g's where B(t) is the Hartree potential. Let us next impose 

on V 0 ) . the eondi tion that it have the fo~8 

cJ<o) = (1 ... A(o))?}(o) + A(o) [B(o) + vN(xo)] 
' 

(4.3) 

where A(O) is defined by Eq. ( 2.22). Equation ( 4.3) ensures the orthogcmality 

of the xp and the g-.): 

= b.) ( gJ , X . ) = . € ( g_ 1 , X. ) • 
. . p p y p 

Since we have . b~ ~ 0 and e > 0 , the orthogonality follows. 9 
p 

We shall now define our Hartree approximation. We_ suppose the 

( 4.4) 

as defined by Eq., (4•3) etc. are the.Hartree potentials. This means that we 

must replace V t by rJ< t) for all values of t. When this is done, the 

expression (3.24) evidently vanishes, as does the second term in Eq. (3.25). 

}fow, we have 

(4.5) 



UCRL-8774-

-18-

since tc is antisymmetric in the Hartree approximation. Also, we saw in Eq. 

Since commutes with d0 , this means that we can replace Eq. (3.17) for 

F by 

( 4-.6) 

At this point we can follow the steps of I precisely and write, first, 

and then 

( 4-.8) 

Here P is an instruction operator which forbids repetition of states n 

of the atom when we expand Eq. (4-.7) in powers of u0 • (A word of caution is 

necessary here. We do not distinguish between the states of two particles 

which have just scattered. This means that neither of them must go into a 

state forbidden by P.) 

To continue, we write 

F = 1 + ;O P U0 F , 

where the (1 .. A(o)) has been momentarily dropped to simplify notation. Now, 

the exact y is 
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if we keep the A~ terms.. After a little algebra~ we obtain 

(4 .. 10) 

where 

t::. t (~) - F 1._ ( r; . ) { (1 - P) [ - r; 
" c do ~~ o · j.:f o, ~ 

+ v/<o) J 

+ 

We see that 8 f vanishes in our "Hartree11 approximation. In this 

approximation, then, we have 

f = fc(o) +. 2(F- l)fc(o) (4.12) 

if we calculate the flux of scattered 0 particles only. Here fc(O) gives 

the elastic and 

the· inelastic scattering. (The factor of 2 arises because we have dropped 

an exchange term for the first scattering. The operator (1 - <?
0

.) makes 
J . 

this exchange term redundant.) 
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V. THE SCATTERING POTENTIAL 

We now illustrate the considerations of the last section by calculating 

the potential o;/< 0 ) to second order. Aside from the vN and B(O) terms, to 

first order we have 

\ 

The nonexchange part is 

where 

f v(x - y) p(y) d3y , 

p(y) = E ~ (y) ~ (y) 
y 

The ecchange part is, approximately, 

(5.1) 

where E' is restricted to spins parallel to that of the incident electron. 

Now we use the approximation, 

* ~(y) g0 (x) ';::j p(y) T}(x - y) , ( 5.3) 

where 

<< 
A} 

r 
pf 

( 5.4) 
T}(r) = 1 for 

2 

= o for r << Al 
pf 

, 

and Pf is the Fermi-momentum within the atom. 
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Thus we obtain 

'• . . .. 2 . 
This form of the potential has been obtained by Slater using the Hartree-Fock 

method. The significance of the 'I) term is that the charge density of those 

electrons whose spin is parall~l to that of the. scattered electron should vanish 

near the point ~. 

The second~order potential is 

I_ {0) -
2 -

where, to this order of accuracy, · d0 ,-v a0 • Now, the excited states n 

differ from 0 by the substitution of y 9 for one' of the gammas in 0 • 

Hence, if we consider all such substitutions, the .matrix elements of u0 between 

the state 0 and an excited state n have the form, 

< q, n I u0 I P.. o > = I: [ < q r 9 I v I P r) - < q r ~ I v I r P > J , 
r 

where the sum on r runs over the orbital states of 0 , and yv is the 

excited orbital state (y9 +-· any r). Also we have 

{q T 9 
, v, p r) = I X* {x) X 9*{y) v(x- y) X (x) X {y)d3x d3y' 

q r P r 

etc. Then we obtain 
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r 
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z (1- A(o)) [(p r 1 v 1 q r') 
q > r' 

UCRL-8774 

X[(qr' lv jpr)- (qy' 1v lrp)] 

(o) { , (1- A(o)) , 
= E E I: (1- A ) l (p r 1 v 1 q r ) a (q r') (q r 1 v 1 p r) 

r q r' o 

- (p r I v I q r') 
(1 • A(:O)) , 
. ao ( q r ' ) ( r q I v I P r) f 

The first term represents the usual potential induced by the pol~iz

ability of the atom. When transformed into coordinate space, and at large 

distances from the atom, it has the form1 

(5~10) 

where P is a constant. The exchange term falls off exponentially with distance 

from the atom, so it is important only at points within the electronic orbitso 
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