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SOLUTION OF MULTISTAGE SEPARATION PROBLEMS
BY USING DIGITAL COMPUTERS

John H/, Duffin
Lawrence Radiation Laboratory and Department of Chemical Engineering

University of California, Berkeley, California
June 1959

ABSTRACT

Methods of solving various problems in multistage separation
operations are presented, These methods are illustrated by solving
specific problems using both medium (IBM 650) and large (IBM T70l) digital
computers.

Separations by distillation normally encountered in the petroleum
and chemical industries are covered in detail from the initial considera-
tions of variable analysis to the final convergent solution of a given
problem. Various methods of attacking a problem are presented and combi-
nations of these methods that produce convergent solutions are suggested
and illustrated. By means of appropriate equations, an operating unit is
simulated on a computer and its behavior is studied as a steady-state or
convergent solution is approached.

.~ Problems in distillation occur where an infinite rather than a
discrete mixture is used, and methods of attack and illustrations are given
for problems of this type. By using these methods it is possible to simu-
late such complex industrial units as crude;oil distillation columns.

Nonideal equilibrium problems are also covered; methods of attack
are pfesented as well as illustrations for a specific problem.

Since methods developed for distillation operations should apply,
with -eppropriate modifications, to any multistage process, liquid-liquid
extraction is considered finally. A method of attack for problems of this

type is developed and solutions of problems are given,
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I. INTRODUCTION AND CONSIDERATION OF VARIABLES
AND DATA FUNCTIONS

In the past, a largé amount of effort has been expended in
studies of calculational procedures for certain problems in multistage
separation‘processés. In distillation, for example, the classic problem
which has received most attention is the design of a column for a speci-
fied separation of two components of a mixture. For this problem, the
reflux flow is set at a value greater than: the minimum for the separation,

and an attempt is made to estimate the product amounts for all components

other than the two specified. The number of stages required is then
calculated, usually by a stage-to-stage procedure from one or both ends.
of the column, Unfortunately, except for relatively few problems, the
calculations are not easily done, but the hard work of such approaches
is now done by digital COmpufers; If the equilibria are nonideal, the
product compositions cannot be estimsgted with any certainty, and, in ad-
dition, stage-by-stage calculations become complex and difficult. Again,
if the column is produ¢ing more than two products from a multicomponent
mixture, the necessary. estimation of the product compositions is difficult,

In addition to these difficulties, the calculational procedures
developed for the solution of the classic problems are not well adapted
to the solution of other common and equally important problems which arise
in the operating of exlsting columns. Examples of this type of problem
are (a) the analysis of the operation of aniexisting unit to determine
whether a separation might be improved and how this might be done, (b) .the
calculation of the capacity of an available column whén‘put into use for
a specified separation, or (c) the effect of a change in feed stock or some
other variable on a series of intertonnected columns; Any of these prob-
lgms could be of considerable importance in determining the optimum use of
equipment. With the growing prominence of linear programming and opera-
tions research methods, the solution of problems such as these becomes
increasingly important.

Calculation methods for existing columns are presented in this

work. The basic equations and procedures employed in some of these methods
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19

Hummel,

35

have been discussed by Thiele and (Geddes, , Donnell and

Turbin;7 and otﬁers,l’8’lh’;6’23’29 but the usefulness of the methods
has not been widely appfeciated because of “the lack of elaboration of
the techniques of solution, The advent.of small and large digital
.computers has stimulated interest in the solution of these problems -
and has brought to light many difficulties-in'obtaining convergent
solutions for problems involving the myriad variations in column types,
column feeds, produét requirements, ete., which commonlyvoccur in

industrial practice,

Design Variables
The calculation précuedres to be discussed in subsequent

sections offer a means of solution to a wide variety of separation
problems, The very fact that they are so'versatile, however, requires
that in their utilization a thorough understanding be had of the
formulation or setting up of the separation problems. Setting up 6r
describing the fractionation to be calculated is essentially a mlatter
of assigning values to the number of independent variables needed to
define the problem, The calculation then yields the values of all the
dependent variables, | | |

‘ Although it is quite as important as the calculation, the
subject of problem description has, until recently, been néglected in
distillation literature. Gilliland and Reed,l3 and Kwauk20 have pre-
sented papers giving a rigorous treatment of problem description, and
Robinson and Giﬂjﬁhﬁ?gvtouch on the subject in their book. The great
bulk of the liferature has been concerned with development of calcu-
lation methods suitable to the design of columns, and the problem set
up to test the methods has almost inevitably been the same, viz., the .
independent variables have been two separation specifications, the re-.
flux or reflux ratio and the stipulation that the feed plate was to
be located at the optimum point., Here, then, calculations are made
primarily to obtain values for the number of enriching and stripping
stageé; although they also yield the separation that will result for

each component of the feed. This problem has been illustrated so often
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that its formulation is intuitive to one working in distillation design.
However, the simple, general rule which governs what and how many vari-
ables are independent and must be set to define a separation problem is
not well known, Therefore it becomes desirable to state and discuss
the rule, The rule as discussed here is, in essence, the same as the
elegant formulations of Kwauk but is much easier and quicker to apply.

Associated with any fractionation problem is a number of
variables which describe the column and its oﬁeration. These variables
are flows, temperatures, separation speclfications, number of stages,
column diameter, and in general, any quantity that satisfies the re-
quirement of describing the column or its operation. Obviously, not all
these variables are Iindependent and can be arbitrarily set, and the
number of independent ones changes with the column used and the operation
performed. A simple general problem-description rule, called the
'Description Rule, can be state@d, and the rule will hold for any multi-
stage contacting unit., It is as follows: To completely describe the
separation operation, a number of independent variables must be set equal
to the number that can be set by construction or controlled by external
means, Setting a lesser number in the problem description yields an
infinf¥ude of answers in solving for values of the remaining variables,
whereas setting a greater number may lead to no answer.

The use of the rule is extremely simple, but the terms vari-
ables which can be set by construction or controlled by external means
are unfortunately vague and can best be clarified by use of examples,

A simple distillation column is shown in Fig, la, and the process of
drawing the figure is tantamount to construction., Any feature of the
columﬁ drawn has been set by : construction and hence is an independent
variable, Not all the features of the column, however, enter the
fractionation equations which can be written, and so these extraneous
features can be neglected., The important independent variables that
can be set in the figure are the numbers of theoretical stages in each
column section. The fractlonation equations written must, of course,

recognize such a structural stiplulation as a partial condenser, but
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the influence of the bulk of the étructural detalls on the fractionation
can at present be only implicitly expressed in the estimate of the over-
all stage efficiency for each section, _

In addition to being able to construct the column of Fig. la
with any desired number of theoretical sﬁages in the two sections, there
are a number of variables which can be externally controlled and which
can be determined by simply looking at the figure. It is apparent that

. an arbitrary smount of feed material may enter the column, that (with-
in limits) an arbitrary amount of energy or heat may enter the reboiler,
and also that an arbitrary amount of energy or heat may be withdrawn at = .
the condenser. There are, then, three addiﬁional independent variables,
Lastly, it is apparént that the pregsure at some point in the column can
be arbitrarily set and controlled and that the feed may have any compo-
sition and energy content. h

The total list of independent variables which must be fixed
to completely describe the problem is then

Number of independent

variables
: N-1
Feed composition (N components) 1
Feed amount 1
Feed enthalpy 1
Condenser duty 1
Reboiler duty 1
Theoretical enriched stages 1
Theoretical stripping stages 1
T = N+6 .

Defining the fractionation problem with the N+6 specific in-
dependent variables above would almost never be done., In general, from
the variables listed, setting the condenser and reboiler duties is of
least interest, and setting the other variables is also of little inter-
est. Instead, it is usually preferable to SPecify something about the
separation. Of course this can be done, since, for thls example, all
the listed independent variables can be replaced, in describing the

problem, with an equal number of any other independent variables;
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variables are chosen which are most pertinent to the problem at hand,
The Description Rule serves to tell how many of these independent
variables must be set; The ones'used are then, at least in part, a
matter of free choice, 7

~ Practical limitations enter, however, in the selection of
independent wvarisbles, because the éalculations are too difficult to
carry out unless certain variables are set. Thus it is imperative that
variables describing the feed and also the column-pressure variable be
set in order to do calculations, and it becomes convenient in thinking
about the Description Rule to consider these as élways set, as indeed
they are in almoét all practical problems. For the column of Fig. la,
the last four variables of the above list are avallable for replacement
by other varisbles in a specific problem description., . .

| The Description Rule 1s Jjust as easily applied to more complex
operations, As a further example, Fig. 2a shows a distillation column
with a side stream, S, withdrawn from a stage (sDp) in the enriching
section, Agsin, the column may be fed with feed of .any amount, .compo-
sition, and enthalpy, and may be operafed at any pressure; these inde-
pendent variableé can be considered as arbitrarily set. From inspection

of Flg. 2a, the remaining independent variables are-

Number of independent

variables
Condenser duty 1
Reboiler duty 1
Enriched stages 1
Intermediate stages _ 1
(between side-drawn and feed
stages)
Stripping stages 1
Side~drawn smount 1
=6 .

Thus, there are six independent variables (in addition to feed variables .
and column pressure) compared to four for the column asnd operation of

Fig. 1la,
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Probsbly the most complex column and operation that will nor-
ﬁally encountered is & crude-oil distillation column, a somewhat sim-
plified illustration of which is shown in Fig. 2b. Again, all the feed
variables and the column pressure sre set, and the remaining variables
are written down by simply inspecting the figure and noting the points

that may be controlled.

Number of independent
variables

Main stripping-steam amount
Main stripping-steam enthalpy
Side stripping amount

Side stripper-steam enthalpy
Enriched stages

Intermediate stages
Stripping stages
Side-stripper stages
Side-draw amount

Condenser duty

Reflux amount

PRHERFRPRPRERR

2:11

The Description Rule may be applied with ease to any multi-
stage operation such as distillation, absorption, extraction, etc., and
will yield the number of independenf variables that must be set in
defining a problem, However, as pointed out, the variables listed in
applying the rule are those which are fixed either.through construction
or through direct external control; these are not necessarily of great-
est interest in the definition of a specific pfoblem. When they are
replaced with other independent variables, four considerations enter:

(a) The replacemeﬁt variables must be independent;

(b) The variables listed in the problem description must be set at
values which lie within the limiting range of possible values; .

(e) Because.all the remaining independent variables can usually be
‘replaced.by others (more convenient or more pertinent), theré,is not a
-completely free choice of substitution;

(d) Those variables should be chosen which allow a reasonably easy
calculation of a prbblem, Each of these considerations needs further

discussion.
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Varisbles are independent if they are not defined through a
mass balance, an energy balance,-or a fractionation equation defining
the relation between concentratioﬁs, stages, and flows, The column of
Fig. la serves to illustrate these points. Consider the column 6perat-
ing to separate a given amount of feed (an.N-component mixtufe of speci-
fied composition and enthalpy) into a top product d and a bottom
product b. It is apparent that the émount of component, 1, in the
top product, d(xl)', and the amount of the same component in the bottom

d
product, b(xl)b, are not both independent, since we have

F(xl)F = d(xl)d + b(xl)b.

However, one of the two [say, d(xl)d] is independent. In the same way
as for other components, d(xz)d, d(XS)d’ and-d(xh_)d are independent
variasbles, since they are not connected through mass balances. It might
" be assumed that the amounts of all othef components in the top product
are also independent, but the Descfiption Rule allows only four inde-
pendent variables; the remaining variables are thus dependent through
fractionation relations, ‘ .

Variables may alsc be dependent through energy balance. This
éan be determined for specific varibales only by writing the appropriate
energy balance., However, because composition, amount, and tempersature
are needed to define an éhthalpy flow, and since it is uncommon to set
all these variables, this is seldom of concern, To illustrate again
with Fig. la, it is possible (although it seems at first glance unlikely),
to set arbitrarily the temperatures of any four stages, since they are
all independent variables. However, such a fractionation-problem defini-
tion would bé unusual to say the least.

The second consideration is sometimes of concern, because it is
not always easy to find the limits within which certain variables must be
set. Again, the column of Fig, la, separating an N-component mixture,
serves as an illustration. For purposes of this illustration, a useful
variable for describing the séparation of a specified component is

introduced, vizﬁ, the recovery fraction of that component in a product.
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The recovery fraction of component "i" in the top-prnduct is defined as
the fraction of that component in the feed which éppears in-the top

product, and therefore for component "i" the recovery fraction becomes

d(xi)d/F(ii)F and is assigned the symbol (/i)d. The ‘recovery fractionv
of a component .in any other product, in this case the bottom product,

' is defined in & similar manner: (/i)b = b(xi)b/F(xi)F’ If (as here)
there are only two products, then we have (/i)d + (/i)b = 1, and only
one of the variables is independent. , .

A set of independent variables describing the problem might
then be (/1),, (/2)g, (/3),, and reflux smount. Although these can all
be set arbitrarily -— that is, they can take on an infinitude of - .
values — there are certain limitations on these faiues. If the vapor-
liquid equilibria for the system of components are not highly nonideal
and components 1, 2, and 3 are progressively less volatile, it is
apparent that (/l)d,must be greater than (/z)d, which in turn must be
greater than (/3),. If (/1) g 2nd (/_2) 4 are set first, they are limited
only to values between O and 1. If reflux quantity is set next, it is
limited to values between the minimum necessary to effect the specified
7separation on 1 and 2 and infinite reflux, If reflux is then set at
some value within these limits, (/3)d is now limited to values within
those obtained with either a maximum number of enriched stages or a
maximum number of stripping stages (usually an infinity of steges in
either section). These limits could all be obtained ny calculation,
and if a seperation problem were to be described by the four varilebles
used above, it would be necessary to be certain that the values chosen
were within the allowed 1imits. Fortunately, in the description of
most fractionation problems, the independent variables employed are
such that the limiting values for them are determined fairly easily and
the problem can usually be set up very quickly,

The third-consideration states that although all the variables
obtained through,theiDescription Rule are independent, they are not
necessarily all replaceable with a completely free choice of other inde-
pendent %ariables. This can best be shown by considering columns a, b,

and ¢, of Fig., 1, for which it will be understood that all feed variables
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and the pressure have been set. The only difference among these columns
is that la has a partial condenser, lb has a total condenser, and lc has
a total condenser plus a reflux cooler. The Description Rule will cor-
rectly predict the number of remaining indépendent variables that must
be set to define a problem for each of these columns, These variables

are shown in Table I,
' Table I

Independent varisbles from Description Rule

(in addition to feed variables and column pressure)

Figure la _Figure 1b_ _ Figure lc
Enriching stages Enriching‘stagés Enriching stages
Stripping stages : Stripping stages Stripping stages
Reboiler duty, QR Reboiler duty, QR Revoiler duty, QR
Condenser duty, QC Condenser duty, QC Condenser duty, ch
Reflux amount, r Reflux amount, r

Reflux cooler duty, Qr

Regarding column la, all the variables listed in Table I have
direct bearing on the'fractibnation being done,'i.e., if any one of the
variables is changed, the separation will be changed, If the feed
contains four components (1, 2, 3, 4, or more), then each of the varia-
bles listed could be replaced with the recovery fraction of one of the
components or with varisbles that are fimctions of concentrations, such
as four stage ﬁemperatures. Thus, in theory at least, it would be
possible to design a column like la to perform a set separation on four
components., :

" With the column of 1b, it might be expected that five inde-
pendent recovery fractions could be set, and (in like manner) six for
lc. However, it 1s possible to represent 1b and lc by the column shown
in 1d. 1In this last column the reflux stream has been separated from
the top-product stream,as in feality this is what is occurring for the
reflux streams of 1b and lc, since fhey can be considered as following

a closed cycle about the column tops, In all three cases, then, the
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reflux streams have the same effect in produoing liquid floﬁ‘off the
top'stage. Also, in 14, the top product has been shown as condensing
in a separate condenser. Thus, if the top product and reflux leave
their condensers at the same temperature, 1ld becomes equivalent to 1b;
and if they leave at different temperatures, 1d is equivalent to 1lec,
It is apparent that the top-product condenser of 1d has no influence
on the fractionation, since it is:completely removed from it. Also, it
is apparent that the émount'of reflux flow around the closed loop of 14
is irrelevant, to the fractionation. The only variable relevant to the
fractionation is the refluxing condenser'duty, Qr’ or the heat extracted
at the top stage; this can be. accomplished with an infinitude of external
reflux flows, depending on subcooling, Hence, this heat load can be re-
placed in both 1lb énd lo by a separatlon variable or -- what is the same
thing -- the condenser load of which it is a part can be replaced. |
Alternatively, the variables associated with the condenser might be

taken as reflux amount and reflux temp.eraturé , in which case one or the
other could be replaced by a fractionation variable but not both. In
all three cases, then (la, lb, and lc), only four separation variables
can be set. ‘ ‘ ’

With the columns.of 1lb and le, if the reflux amount were set,
it would still be necessafy to set the reflux temperature in the problem
description., In lc, in addition to the reflux temperature out of the
condenser, the reflux temperature froﬁnthéhcoolem-would also:have to..i-
berset s oL '

Problem descriptions in ﬁhich recovery fractions for several
components. are to be set would be very uncommon, and actually these
requirements cannot uéually be met'ih»opération if the feed conditions
are invariant, Design equations do not correspond to operation because
of lack of knowledge of plate efficiency, hence the operation must be
adgustable to correct for this lack., By adjustﬁént of condenser and
reboiler duties, two separation varlables can be controlled. Within
-limits that are normally quite restrictive, additional separation vari-
ables can be controlled by changing feed enthalpy or feed stage location
or by adding or removing heat within the fracticnating par
i.e., in reb01ler vapor, in reflux from a partial condenser, or within

the column proper.
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The fourth conslderation, that the variables chosen must be
such as to lead to a reasonably easy calculation, is probably the most
important., If the variables are chosen to do thils, the first two
conslderations are usually easily satisfied, since simplicity of calcu-
iation and simplicity of problem description usually occurs simultane-~
ously. .
In discussing the courth consideration, it might be best to
direct emphasis to the type of problems to be discussed in subsequent
sections of this work, The problems to be discussed are those for
which a column already exists or for which column design is to be ef-
fected by use of the alternate method of calculating the separation
obtainable from a serles of likely columns and picking the one giving
the desired separation, In the setting up of fractionation problems
of this type, then, the numbers of theoretical stages in each column
section are always independent variables and are set in the problem
description. If the calculation is to be done Wf%h any ease at all, as
already noted, all feed variasbles and column pressure must be set, The
number of independent variables remaining usually 1s small. TFor the
column of Fig. la there are only two; in more complex columns there are
still relatively few remaining. Howevef, as the calculations presented
later will show, it is almost imperative that only one of the remaining
varlables be chosen as a separation variable for an individual component
or the temperature at a particular point in the column, and that the
remalning variables be chosen primarily as flows, In this case the
independente and possible range of values of the variables are easily
determined,

_ With these restrictions, it might seem that the usefulness of
the methods to be presented would be sefiouslyvlimited, However,
although the restrictions are sweeping, the calculations can still be
applied to a very large number of problems. In fact, they can be ap-
plied to any problem and can be used with considerable facility on

problems that are virtually impossible by other procedures.



Data Functlons
In the calculatlons to be presented in subsequent sections,

two basic types of data are required., The first is equilibrium data
expressing the ratio of the mole fraction of a cémponent in the vapor
"phase to its mole fraction in liquid phase when both phases are in

equilibrium; this ratio is

e

where y = vapor-phase mole craction of component "i",

MM

liguid-phase mole fraction of component "1,

equilibrium constant for component "i".

1

X
K

The constant K is, in general, a function of temperature,

pressure, and composition. However, the composition dependence of K
is usually neglected on the basis of the assumption that hydrocarbon
mixtures behave in an ideal manner in the liquid phase. When mixture
compositions are sueh that ideal behavior can no longer be assumed,
special means are availasble for calculating K values, and these cases
are covered in Section VII of this work. Liquid-liquid extraction
calculations will also be considered, and here again equilibrium data
are needed. In this latter case, nonideal conditions in both phases
is almost a certainty, and K-value determinations once more must be
done in a special manner, as will be shown in Section VIII, For the
remainder of the calculations covered in Sections 11 through VI, K
values will be assumed to be a function of only temperature and pressure,
) Generally, in distillation work, columns are designed in such
a wéy that pressure drop experienced in passage through the column is
quite small, When the pressure drop is small, 1t 1s possible to assume
that, for all practical purposes, the column is operating at a constant
pressure arbitrarily set at that obtaining at either end of the column
or at some average of these values, The assumption of constant pressure
ieduceswthe K valué. to -depéndénce oﬁ temperature only.

It should be noted that these assumptions, although they are

reasonably good in most hydrocarbon calculations, are made primarily to
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facilitate the setting up and prpgramming of a problem for solution on a
d}gital computer., The pressure dependence of K.as well as the composi-
tlon dependence could be retéined in any arbitrary functional form desi-
red, and convergent solutions to problems would be available no matter
what these forms were, These forms would, however, tend toward a high
degree of complexity and would involve much additional compuitational
effort and require large blocks of addltional computer storage space.

In most cases, elther the lack or inaccuracy of available data does not
Justify thils additional effort, and calculations based on the above as-
sumptions will be quite satisfactory for practical engineering solutions
to given problems,

Assuming that K values are functions of temperature only; it
remains, then, to determine a functional form which will best répreseht
available literature data, The form used will have no effect od the
ability of proposed calculational methods to glve convergent solutions,
therefore the prime considerations for any functional form is ease of
programming and minimum storage for computer use, Most equilibrium data

can be fitted to a polynomiasl function for each .component in the form

2 n
Kyp =04 +ByTy + 14T 5 coe T 7, (1.2)

where o, , Bi, Yys °-° are characteristic of the component "i" and the
total pressure. It has been found, however, that data plotted by an-
equation of a type first proposed by Calingsert and Davis6 gives es~
sentially a straight line Whenvplotted on semilog paper. The equation

is : ’
4
InK, = To5" *B; o _ | (I.3)

where A, and B, are characteristic of component "i" and the total pres-

sure, ai abovejand_T is expressed in °F, The constant 400 1s an arbi-
trary one selected only because when it is used the plotted data give
the best straight-line fit across the desired system temperature range.
Equqtion (I.3) is used in this &ork and the Ai and Bi were determined

by plotting equilibrium data from one of several sources,3'0’15’25{’26’38
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and determining those values giving the besﬁ_fit across the temperature
range expected in a given problem, If it is desired to acédunt_for the
slight curvature evident in such plots, Eq. (I.2) may be used with that
polynomial power which gives the best fit.

The second type of basic data requifed is enthalpy data, As-
with K values, the assumption of ideal behavior is made so that heats of
solution (data for which are generally not available) can be neglected,
Enthalpies, also, are functions of composition, temperature, and pressure;
and since pressure has been assumed constant, the functional form used
will in&olve only composition and temperature, Once again, pelypomials

may be used to represent available data as follows,

hip ='li + kiTp +'jiT§ (1.4%)
and

H_ =w +uT +s,T , ' (1.5)

ip i i'p i'p

where

hip = liquid~-phase enthalpy for component "i" at

temperature Tp for any stage p,
Hip = vapor-phase enthalpy for component "i" at

temperature TP for any stage p,

and the constants Jj, 12 ki’ ll, 849 ul‘ and w, are characteristic for
component "i" and the total pressure, and T is defined as (°F + 400) in
order to be consistent Wlth Kndata temperatures

Data taken from Maswell 25 were replotted to obtain values of
the coefficients in Eqs, (I.4) and (I.5), and only a slight curvature
was found when the data were plotted over system temperatures used. As
a result, Egs. (I.4) and (I.2) were used with the coefficients J; and s,
set equal to O, If it is desired to account for the slight curvature
~ in such plots, these latter coefficients may be retained and evaluated.
The form of the function used will in no way affect the convergence
ability of the calculation methods to be presented,

The remaining coeffieients (ki’ li’ ui, wi) Were determined by

fitting the best straight line to the replotted data of Maxwell for the
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temperature range expected in a given system, The mixture enthalpies

were then obtained from these individual component enfhalpies as follows,

h =% h, x 1.6
p 4 1p ip (1.6)

H ZH R I.

iiquid molar enthalpy for composition at stage p

where h

represented by xip,

H_ = vapor molar enthalpy for composition at stage p
represented by yip‘

The xip

is, they must sum to 1, to produce the enthalpy per mole of mixture.

and yip used in these equations must be normslized, that

With all data functions and sources defined, it is now possible to

proceed with the development of calculation methods;
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. II.. MASS BALANCE METHODS

The mass-balance methods to be presented here can be derived
without regard to the previously presented variable analysis considera-
tions. They are essentially mathematical descriptions of variable re-
lationships, and they are unaffected by which independent variables are
set and held while a particular problem is being solved.

However, there is one importaﬁt feature of variable analysis
which indirectly affects the use of the mass-balance methods. The
number of theoretical stages in the various column sections élways ap-
pears as a variable and can be arbitrarily set if desired. For maés—

_ balanée analysis, these variables are set, but this is not a necessary
condition for the analysis to be carried out. Setting the number of
theoretical stéges involves the introduction of stage efficiency, which
itself is a function of both the column design and the system to be
separated, The sectional over-all plate efficiencyvmust be evaluated,
and the number of actual stages in the column sections is then con-
verted to number of theoretical stages. Thus, the following mass-
balance methods are to be applied to existing columns. In this respect,
then, the methods to be presented are not primarily design methods but
rather performance-evaluation methods which postulate.fhe physical ex-
istence of an actual column. However, this does not preclude the use
of these methods for design purposes, as indeed they could be if re-
peated solutions were carried out at various values for the number of

Eheoretical stages in each column section.

Equations - Method I

The basic equations are those of Thiele and Geddes.S” The
equations are dimensionless in that they employ concentrations andvflows
always in ratio form. The individual stage concentrations are always
referred to the product compositions at the column ends, and the first
objective of the method becomes determination of the product composition
ratio. In order that this may be done, the temperature, the product

amounts, and the various internal and external system flows must be
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preset. As was pointed .out by Hanson and Rea,l6 the setting of the
t

pr?duct amounts (d and b) and of the various flows (r; Vp; Lp; Vp 3
Lp ) will vary with which variables are set and held in a particular
problem, However, no matter which variables are set and held, all the
internal flows are determined on the basis of constant molal overflow,
The equations also require the "guessing" of a temperature gradient -
before they can be used, since equilibrium relations are used across
stages.
The basic equaﬁions following are for a column numbered from
the bottom up; 1i.e., the bottom stage is stage number 1, m is any‘stage
in the stripping section, n is any stage in the enrﬁhﬁng:section, and
t 1is the top stage. .
| If a total condenser is used then, for any and each component,
one has
Yo = %3 » (I1.1)
where
¥y = mole fraction of the component in the vapor leaving
the top stage,

X mole fraction of the component in the overhead

i}

]

ligquid product.
The "bridging" relation across the top and éach subsequent
stage is the equilibrium relation which connects the vapor and liquid
leaving that stage. For the top stage, thislis given by

Y, = K X (1;.2)

Combining Eqs, (II.1) and (II.2) gives

v -t _ la
- - b
t Ki Ki
or
.
t 1
— = = , (11.3)
vxd Kt
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A component material balance around the condenser and the top

stage gives

(I1.%)-

Vi Yoy = Ly Xp + 8y
or . .
Yeer . e Yy d
X3 Ve %g 0 Ve
. Wwhere vtﬂl = total moles vapor from stage t-1 into stage t,
Lt‘ = total moles ofitliquid leaving stage t, .
total moles of top product.

="
i

All flow quantities are defined in terms of moles flowing per

mole of entering feed. An over=-all material balance around the top stage

and the‘condenser may be written

'Vt;—l:-'-d.'-Lt'
or

a o,

Vi1 V-1

Combining Eqs. (II.k4) andf(II.5),‘one has

Vo L { x
; l_ vt S R
d t-1 %3
Then, by equilibrium,
o1 1 Jpa1
X3 _ Ktrl X3
Again, by material bélaﬂces,
Yoz _ Lya %1
*3 Vi-z *a

(I1.5)

(11.6)

(11.7)

(II.8$

The process of alternating material balances.and equilibrium

relations is carried oh down the column to the plate above the feed plate.
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It is necessary to know a_.'l.l_Lp/\i’p__l ratios and stage tempgratﬁ:es to do
-this, but these have all been preset, Also, thls is one of the two
sections of the method in which the indirect effect of the variable
analysis is felt, since the number of times the above "alternation" is

carried out now becomes directly dependent on the number of theoretical

- stages above the feed stage.

The stripping-section equations are developed in a similar
menner to those in the enriching section. The vapor leaving the reboiler
may be calculated by the equillbrium relation

p =g %y

or

Y Y

T =F = K. o (11.9)
R v |

A component material balance around the reboiler and the bottom

stage gives

(11.10)

Ll xl = Vﬁ yR.+ bxb,,

where Ll = total moles of liquid from stage 1, the bottom plate,
Vg = total moles of vapor from the reboiler,
b = totel moles of bottom product.

» As before, all flows are defined in terms of moles flowing per
mole of entering feed. Now, combining Eq. (II.10) with a total material

balence around the reboiler gives

X Vv Va )
— Roo1) +1. . (I1.11)
M *p
Then, by equilibrium,
y X '
:?]:' - K 2 (11.12)
. b * -
Again, by material baleance,
X \' y '
R Y (II.13)
*b 2 *b
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Again the "alternation" process takes over and is continued
up through the feed plate; the number of times the "alternation" is
carried out is now directly dependent on the number of theoretical
stages below the feed plate, Also, all the stage temperatures and
Vp/Lp+l ratios have been preset.

The last ratios calculated are then

y
Ratio ;ﬁ , obtained by ealculating down

the column, and ¥ )
]
Ratio §£_ , obtained by calculating up

the column, °

mole fraction of component in vapor entering

where Ip =
stage above feed stage,
Ypr = mole fraction of component in vapor leaving

the feed stage, and this vapor is in equi-
libirumn with the liquid leaving the feed stage.
The first objective of determining the product-composition

ratio may now be reached by matching the above ratios at the feed stage.
The form of the matching equation is directly dependent on the thermal
condition or quality of the feed, ¥, For illustration, saturated liquid
- feed will be considered, As will be shown later for this case, yf, ob~
tained by calculating up is equal to Ve obtained by calculating down,
and the product-composition ratio, (xb/xd), may be calculated for each

component from the matching equation

o yf/xd | (IT.14)

Xy Yeil®,

Once this ratio i1s obtained, the next objective of the method
is to resolve the internal mole-fraction ratios, xn/xd and xm/xd, into
component mole fractions at every stage in the column. These internal
ratios are referred either to Xq OT X, therefore the first step is the
resolution of the external ratio into these two mole fractions., The

over-all column component material balance gives the equation

Fx

F ,
8 T p (%, /xg) +d ° (II°15)




Values of X3 for each component are obtained from this
equation, and the corresponding values of x, are obtained from the
product composition ratios xb/xd. These values of X, and X4 may now
be multiplied into the internal ratios to give the mole fractions of
the components in the liquids at every stage of the column,

One check on the method is the summation of the individual
mole fractions at every stage in the system, The convergence condition

to be met might be

L o(x,) -1
i
for all p, including p = d, where € is some arbitrary predetermined

small number, If the condition is not satisfied, then another itera-

< (eq)

tion is necessary, and this in turn necessitates the corrective move-
ment of some system variasble. The flow ratios will be fixed if d
(and hence b) is one of the preset variables, As Hanson and Rea
have shown, the flow ratios may change from iteration to iteration if
variables other than d have been preset, but they always change with
the restriction of constant molal overflow, The remaining system
varigble availlsble for corrective movement is temperature, since it
‘implicitly; appears in the method in the equilibrium relations. The
final obJjettive of the method is to correct the temperatures from their
original assumed values and to correct them in such a way that the
desired convergence condition is rapidly approached. |

It has been found that bubble points calculated on the above
values of plate compositions give excellent estimates of the correct
temperature. The general method of calculation involves normalization
of mole fractions for every stage before. proceeding into the bubble-
point section of the calculation, The summations and normalizations
are carried out as one step of the method, with the general normalization
being accomplished through the relation

x.) ] =

[ C!i p ‘Diormalized T (x:

for all p.
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When the normalized values of (x )P are used, the bubble-point

relation becomes
= ' 11.16
£y 05 ormalizea = 2 (I1.16) .
In the carrying out of the bubble-point calculation, an ex- .
trapolation proceduré is used wherein two values of Tp are arbitrarily

’

assumed, and values of

i [ (xi)p normalized

are calculated at these points and compared to 1, The condition to be
satisfied is not imposed on the summation but on the temperature dif-
ference between any two successive Tp values resulting from the iterations

 within the bubble-point‘calculation. Thus the condition is

I Tp)assumed‘- (Tp)calculatedI s (62) ?

where‘(ez) is some arbitrarily predetermined small number. The method
suggested for setting up the first two Tp values is to use the assumed
temperature gradient for the first Tplvalue and to add one to this for
the second T value. The extrapolation process autpmatically takes over
untll the above condition is satlsfied This calculation must be re-
peated for each stage in the column. Alternatively, dew points run on
calculated vapor compositions on each stage could be used., However,
little difference has been found in the correctness of the predicted
temperature grédient using either bubble or dew points., For the sake
of simplicity, it is sugéested that bubble points be used throughout the
cblumn. |
- The iterative nature of the method now becomes apparent, since
the whole_calcglation must be repeated with the corrected:termperature
gradient, If ﬁhe con#ergence condition is not met, still another trial
must be made, and so forth. The convergence criteria for termination ~
of the iterative process may be based oh several considerations., One
would be the above-mentioned stage-summation test., Another could be the
change of temperature gradient from one iteration to another. Still

another could be the change in the recovery fractions of the individual
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components in one or another of the products from one iteration to
another. No rules exist for stating when the desired accuracy has
been reached, This method is eminently suitable for use on medium
or large digital computers so that acéeptable error values, €, can
be made as small as desired within the limits of the particular
computer's ability to store and work with meaningful significant
figures, A small amount of experience in this type of calculation |,
enables the calculator to Jjudge when his specific requirements have

been met.

Feed Quantity
In the method presented thus far, the feed has been con-

sidered saturated llgquld and the feed-stage matching for this case

is quite simple. However, matching must be considered for all three

‘basic types of feed: namely, subcooled and saturated 1liquid, super-
heated and saturated vapor, and partially vaporized feed. These
three types of feed and their points of entry are shown schematically
in Fig. 3.

For subcooled or saturated liquid feed (Fig. 3a) the usual
assumption made in distillation calculations is that the feed stage
is the stage below the point of feed entry and that the liquid leaving
the feed stage 1s in equilibrium with the vapor leaving the feed stage.
This vapor 1is then fixed in composition regardless of the composition
of the feed if calculations are made up the column to the feed stage.
Similarly, the vapor leaving the feed stage is in material balance
with the liquid leaving the stage above the feed stage, and again, the
vapor composition is fixed regardless of the feed composition if calcu-
lations are made down the column to the feed stage., In Method I calcu-
lations, the ratio (yf/xd) is obtained by calculating down the column
and the ratio (yf,/xb) by calculating up. Since the feed has no effect
on ys in either case, then these two values are equal, and their ratios
may be divided to give the component-distribution ratio.

For saturated or superheated vapor feeds: the reasoning again

holds if the feed'stage is the stage above the point of entry of the
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feed (Fig. 3b). Equation (II.1l%) may be used for the feed-stage match
in this case, _

For partially vaporized feeds; the matching calculation is
more complex, Three conditions ofAfeed entry are possible here, If
the feed 1s separated before enterihg the column, the'liquid being
introduced above the feed stage and the vapor below the feed stage,
then as in the above two cases the values of Yp axe identical and the .
match 1s made with Eq, (II.1k), 'However, the common method of intro-
ducing partially vaporized feed would be that shown in Fig. 3c, where
liquid and vapor are both introduced above the feed stage. Under these

conditions, a matching equation derived by Edmister8 is convenient:

X V..
L f41 ) 4 (1 - EE (11.17)
xb f+1 Xd FXF
x. ,
a Ve Vpdp
Vf " + b —ﬁ;—
b ’ F

A third possibility of feed entry exlsts. The feed could be
introduced in such a ménner that the liquld portion entered almost
directly into the downcomer from the feed stage and the vapor enfered
above the feed stage. Essentially, this amounts to feeding . the liquid
on the stage below the "feed" stage, Equations have not been developed
for the match in such a case; and the match must be done by trial-and-

error calculations arbund the feed stage.

Alternate Equations - Method I

An alternate set of equations for iteration from stage to
stage has been developed by Edmister.8 These equations utilize the
ratio of a flow of a component to the amount of that component in a
product., These ratios take the place of the concentration ratios of

Method I, but the two methods of iteration are essentially equivalent,

The techniques of applying the alternate equations to various frac~-

tionation problems are identical with those of Method I,
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Example T
) | To illustrate the use of Method I, the following example was
calculated for the column shown in Fig. L, The feed was specified as
a four-component mixture of propane, butane, pentane, and hexane
entering the column as saturated liquid at its bubble point. -The
specified pressure was 150 psia. The column contained four enriching
and four stripping stages, counting the stage immediately below the
point of feed entry as a stripping stage. The overhead vapors from
" the column were .totally condensed. ' S
Varisble analysis considerations by means of the ﬁeScription
Rule show that three varisbles remain to be fixed before Method I cal-
culation can be started, The reflux temperature was seét at its bubble
point to fix one of the variables. The remaining two were set by fix-
ing the total top-product amount and the refiux amount, As a convenient
basis for calculation, the feed amount is always taken as one mole and
the other streams are referred to this. ‘Thus, flowing streams are ex-
pressed as moles .per mole of feed, After the stage compositions have
been determined by the.conﬁerged calculation, the actual amounts of the
- streams flowing are simply proportional to the amount of feed. The feed
:capacity of a column of given diameter can be determined frdm'“whétéVé?
internal flow is limiting. It is apparent that the usefulness of the
calculation procedure is determined by its convergence to the correct
answer from a radically wrong set of initial temperatures. 'Since these
and all subsequent calculations are tovbe carried out by using digital
computers, another consideration for procedure usefulness is the number
of iterations necessary for the degree of convergence‘desired. To
illustrate that the method converges, even though the first guessed
temperature gradient ié completely wrong, Example I was started with
the assumption that the'temperature on all stages was the same, This
temperature was approximately the bubble point of the feed.
Thé'equatiOns of Method I were translated to digital computer
laﬁguage, in this case an IBM 650, and the various equations were then
interconnected by the hecessary'looping and logic decisions. The re-

sulting computer program to do this is schematically shown in Fig. 5.

LY
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From the results of the first iteration in Example I, it is
apparent that the temperaturé gradient "guessed" is radically wrong.
However, this information cannot be obtained from

Z(x)g emd 2 (xp)y

i i
as they are very close to unity. The summations on all stages are sub-
stantially off unity,lindicating that all stage totals must be examined
to determine the degree of divergence of the results from the correct
values., That

2 (x;)q and : (x4)y
are close to unity indicates that the original temperatures were neither
all too high nor all too low. Thus, some temperatures were high and
some were low relative to their correct values,

In the Iteration 2 results of Example I, the stage summations
are much closer to unity in all cases. The recovery fractions of ChHlo
and CSHlZ have changed considerably (as would be expected),

‘The stage summations of Iteration 3 are probably converged
enough for practical use if the purpose of the calculation were to ob-
tain a value for the separation to be expeéted for the variables set.
However, in the analysis of columns, it is often of interest to deter-
mine how the separation will change with change in a variable, Thus, a
high precision is desired in the calculation in order that the trend
and perhaps the extent of the change can be determined with accuracy.

The errors in Iteration 3 are the absolute value of ¢, that is,
ie | = | ? (x;), = 1.000 |,

and they are large enough so that the degree of precision is doubtful
for the above purposes;

If the calculation 6f Example I is continued past Iteration 3,
a peculiarity of the method is brought out, Whenever the temperatures.
are predominantly low or high, the rate of convergence seems to be ap-
preciably slowed. Whether this condition 1s true of a given iteration

be a ined , .
can be determined from the i (xi)b or ? (xi)d. If ? (xi)d is less than
/
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unity, the temperatures are predominantly low and vicé versa for
o (xy )d greater than unity. The reverse is true for & (x )

Predominantly low temperatures result in a value of

“'xb

= that -is too large; that i1s, x_. 1s too small and Xy is too large.

d
Sigce this is true for each component, then the b (xi)d and = (xi)b
‘ i i

follow the same pattern. Upon examining the results of Example I, as
set forth 1n Tables 11, III, and IV one sees that the net effect of
the errors in temperature in Iteratlon 1 is such as to balance better
than the errors in Iterations 2 and 3. ‘Because of this, z (xi)d nd
Z (x ) are closer to unity than in suCCeeding iterationsi even
though Iteratlon 1. temperatures .and calculated separations are quite
wrong. _
Although bulk separatlons are not usually of interest as
variables to define a.separation problem, they nevertheless afford a
simple calculation by means of which.other problems may be solved. The
method would be to use parameter networks obtained by varying the
amount of‘top product amd‘the refluX-and cross—plotting the results.

A working computer program'could evaluate a large number of solutions
of this type in a short time. The'alterﬁative is to develop computer

programs for particular combinations Ofbvariables that are of interest.

Example 1 o o .
' Feed ' Efg o
CHg 0.25
CH,  0.25
CH, , 0.25
Cety, 222
1.00

Thermal condition of feed: saturated liquid.

Column pressure: 150 psia.

"All stage temperatures are preset at-szoF.

Top product, 4, is Q.S‘mole per mole feed.

Reflux amount, r, is 1.0 mole per mole feed.

Constant molal flows assumed in each section gave the

following flow ratios:



Table IT

Resuits for Bxample 1: different mass~balance methods for components szb, Cs, and 06 (expressed in mole fractions)

Method T

Correct values from ¢

Method Ir

Tteration 3 Iteration 12 function method ._after 52 iterations

Stage C_- Itegafion lc - Ce~ C3' Itgi‘f““ CZ' C6” 03- Gy Cj- %6 03 % 05 Cs 3 E 05 6 C3 %y C5 %
[:4 3 W ] ey o292 000325 499 456 .0268  .000266 .k99 .463 -034hF  .000351  .ug9 b6k £036L  .000372 .502 k70 .0275  .000280

a k98 .l3h L0738 .00260  .hg9 B '09 ooz 272 614 .09z .00z .268 612 .16 Lo03 .266 .60 ;. .o03 .272 631 o9k 002
8 193 E2 108008 2 i ‘172 '010 .161 .620  .190 .00 .155 .603  .230 .012 154 2596 .237  .0i2 .16 -636 193 .o010
7 .082 228 am .018 148 zst .273 -031 ‘s 538 .303 .032 .107 507 .350  .038 .105 498 357 Lo39 an 548 .307  Lo3h
6 088 299 173 .039 Lok g 57 o8k .88 42l .36 .08 .083 388 3% Log6 082 B8 o 097 .087 425 398 Logo
5 063 .186  .20%  .082 -085 +393 '391‘ '187 o072 308 427 192 .069 283 .50 .198 .069 278 .45k 199 072 1308 k26 .19k
3 .06k J18L .23k .167 073 .29; -375 -217 o .235  .516  .227 .025 .209 .53 .233 .025 .205  .536  .235 .026 .235 511 .228
3 .026 k7 .2hp AT .027 .226 ~53 -270 s 155 .565 .282  .008 .135 .5TL .288 .008 W131 572 .289 .009 .A54 -554 .283
2 Koty Q7 .27k .186 .009 .15 .5!; :365 003 089 .552 3T 002 .076 549 375 .002 .O7h -548 .375 .003 .089 .538 T
1 .00 .00 .326 .2W8  .003 X Zizs : ML 500 000679 .OM39 .MJ3 .50 .000602 .037L .66 500 -000590  .0360 .46k .500 -000660  .0436 458 ko7
N .O0LSk 0658 .L26 Riid 22(1);5.1 -102 16.1 1538: 00136 L0963 17.6 1880. 00121 .0801 13.5 1hes. oo118 L0775 12.8 13k2. .00131 40928 16.7 1775.
x:/xa ..00309 151 5.77 191. . .

15 4n
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- Table IIT

Results for Example 1: temperatures (°F) and summations for various iterations using
different mass balance methods .

Method I Correct value§ Method IT

Iteration 1 TIteration 3 Tteration 3 Iteration 4 Tteration 5 Iteration 12 from & function
Stage Tenp. §(X1)p Temp. g(ii)é Temp. g(xi)P Temp. ;(xi)P Temp. g(xi)é Temp. )f(xi)P method?® 52 iterations
a - 1.009  -- 982 - T — 985 - 988 - 997  -- 1,000 - .999
8 220 560 150.2 .929 1hh.3 .980 144,31 .989 1hkk.5 ,992 1h6.1 .998 146.7 1.000 1hk.7 1.000
T 220 469 171.0  .887 164.0 .980 163.9 .993 1645 .996 167.1‘ .999 168.0 .999 164.3 1.000
6 220. A9 1841 .883  179.7 .985  180.2 .998 18l.1 1.000 1843 1.000 185.4 .999 180.6 1.000
5 220 .537 196.3 .910 195.5 .993 ' 196.6 1.003 197.5 1.003 200.8 1.001 201L.7 1.000 196.9 1.000
4 220 .64  211.4  .94%7 213.0 1.000 21k.2 1,00k 215.0 1.003 2L7.% 1,001 218.1 1.000 2lk.% 1.000
3 220 .591  232.5 .948 235.6 1.005 236.9 1.007 237.7 1.006 240.3 1.002 241.0 1,000 237.0 1.000
2 220 .588 248.1 .968 253.4 1.010 254.6 1.010 255.3 1.009 257.% 1,002 258.1 1.000 254.7 1.000
1 220 .668 262.9 1.002 268.9 1.015 269.7 1.013 270.2 1.011 27L.8 1.003 .272.3 1.000 270.0 1.000

220 .991 28L.7 1.018 2841 1.018 284.5 1.015 284.8 1.012 285.8 1.003 286.1 1.000 284.8 1.000

o

&Yalues obtained by phi-fumction method are correct to three significant figures.




Table IV

Results for Example 1l: product recovery fractions from various iterations using
mass balance Method I

Method I Correct Method II
com.  Iteration 1 Iteration 2 Iteration 3 Iteration I, Iteration 5 Iteration 12 values™ SZ-EEE?E%EBHS
Eonent,,m (/) [FANVAN U) Dy Ny By Dy Gy Dy Gy Uy Gy Dy Gy
Cy- 997 .003 .998 .002 .998 .00L  .999 -- .999 --  .999 -- .999 -- 1.00k --
ch- .868 .132 .907 .093 .913 .087 .915 -- .918 -- .926 . .928  -- 941 --
CS— .1Lk7  .853 ' .058 .942 .054 .946 056 - -- .058 -- .069 -- ‘.072' - .055  --
C6— .005 .995 .001 .999 .000 1.000 .00l ~- .001 -- .001 -- .001 -- .001 -~
*Values correct to 3 significant figures--these values obtained by phi function methods.

‘gﬁ'
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' Enriching section: (L/v = 1.0/1.5 = 0.667,
Stripping section: ( /L ) =1.5/2.0 = 0.750.
The following values for the constants A and B were USed in the

‘equation for equilibrium value, K:

Feed : A B

. CgBg -2553. 0 5.299
Oy 3106 5.k08
Coly, o -3828. 5.797
C6th =k502. " - 6.159

The value ass1gned Ie I, the acoeptableferror in the bubble-point
relation, was 0.1 F | ' _ | 4

The problem was not termina+ed automatically, -and prlntOuts
were taken at every 1terat10n In normal operation, a programmed error
scanner would automat1cally terminate the problem when all Ie l were
within the preset limit. - The, error, € 17 cap be defined on any
variable desired, such as stage summatlons or temperatures or component

recovery fractions, and so forth

Eqpatlons - Method II
The eqpatlons of Method I are falrly simple to formulate
and spply as long as the column to which they are being applied is

fairly simple. A simple column is here defined as'oﬁetnotfhgring%
multiple feeds or mmltiple side~draw stages or any.combimatioh of
feed and side-draw stages. Thesefcombihatiohs, can, lnxessence, be
handled by the.algebraic‘techniqpes of Method I; but the'eimplicity
of thevexpressions is quickly lost as the column becomes complex, and
it becomes necessary for the.computer'to evaluate long,- unwieldy
mathematical expressions;rlln adaition, as will‘be.showﬁ_later, there
is the danger of loss of aignifioaht.figares as a result of differ-
ences of very small numoers; .This;loss prevents<the convergence of
problems of this type and neceesitates special programming'to obtain
,\conyergencsf.As a result, the desirability of another method of_mass

balance is greatly enlianced.
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Amundson and Pontinen have circumvented the above difficulties
by writing the complete steady-state network of mass-balance equations
in matrix notation.l The solution to a problem is then obtained by
repeated matrix inversion, and this requires a very large, fast com-
puter. Others avoid the above difficulties by techniques which sometimes
introduce their own peculiar troubles. Rose et al. solve these problems
by relaxation techniques using basic difference eqpations,29 and here
again a fast computer is required. Greenstadt et al. have developed a
general program of stage-to-stage calculationslh utilizing Newton's
method of root finding. It appears to be quite lengthy and subject to
convergence difficulties, even though the authors propose a special
convergence~inducement scheme that will force convergence in any problem.

The method proposed here is one derived from the basié
differential equation of the system, and will be called the Method of
Successive Flashes (for reasons that will become apparent in its develop-
ment). The unsteady-state equation for any component i on any stage p

of the column of Fig. L4 would be

ax ’
é) = +L 7 c=(V.y + L x| IT.18]
sz( Srp (d@ Vo1 Ypo1 i Xpa1 ~(Vp * 1) p) o (T1.18)
where SVp = vapor holdup at-stege p, assumed constant,
SEP = liquid holdup a8t stage p, assumed constant,
6 = time.

If the equilibrium relation is introduced into this equation
and the further assumption made that.SVP is much Smaller +than SLp’ then
for any component one has

5 -x (VK +L). (II.1
'Lp< ) p-L Kpe1 %p-1 * Tpry Fprr <% (Tp %y + Iy (TL29)

Substituting the definition
T = e/st | (1II.20)

d@/ st

into Eq. (II.19) results in

or d

H
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ax - -
—L=-v 'K . x _+L _x . -x (VK +L). II.21
dt p-1 "p-1 "p-1  "p+l "ptl  p ( P P p) IR )

Defining A = (Vp-l Kp-l X, ¥ Lp+l X +l) and B = (V Kb + L )

and putting these terms into Eq. (II.21) and separating varlables lead

to - .
dx _ | ,
at = (Ex:g;fli> S o : (11.22)

An iterative type of sbiﬁtion of Eq. (II.22) can be ebtained
.by integrating from the point xp at»iteratien E'to_the point x? at
iteration Eﬂ-_ with the corresponding finite difference in 1 being At.
The assumption needed.to carry out this integration is that A énd B are

constént across the iteration. The resulting equation is

A= (x )P | | |
T (igjr+l ~ exp (-BAT). (11.23)
p'r

- Equation (II.23) can be rearranged as follows:

(x p)r+l ~ (X ) exp (-¥) + % [1 - exp (fW)];V‘ (II.24)

where ¥ = BAT. , .
If it is arbitrarily assumed that the values of ¥ are chosen
so that one has exp ( -¥) ® 0 for each iteration, then the very simple

basic expression for the r+lst value of (xp) becomes

Vv K ‘X + L X
“p-1 "p-1 p-1 p+l T ptl L (II.25)
Vp Kb + L

x N
B
Equation (II.25) has the exact form of the well-known flash
equations, so that repeated application of this equation across itera-
tions leads to the naming of this method as the Method of Successive
Flashes. Indeed, in the solution of a mass-balance problem by this
method, a "reverse" flash of the system is just exactly what is accom-

plished. In the normal solution of a flash equation, feed concentrations
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are fixed and values of V and L obtained corresponding to these concen-
trations. The Metﬁod of Successive Flashes reverses this procedure in
that V and L are fixed and concentrations are obtained corresponding to
these flows. In addition, the results are for an interconnected network
of stages rather than for a éingle stage.

Another form of iteration equation, (II.25), allows error €
scanning as the solution proceeds, and is the fofm‘actually programmed
for the computer} Starting with Eq. (II.Zh) and manipulating and using
the same assumptions used to obtain Eq. (II.25) results in

(x )

. € : '
P r+1 ~ (XP)_I' + (E)} : - (11.26)

where €= [N~ (XP)r Bl .

Here € represents the input-output mass discrepancy for a

component at any stage and as the iteration proceeds € approaches O.

It can be used as & criterion for cessation of the iterative process

or as information on the progress of the problem toward its steady-state
solution.

As in Méthod I, it is necessary to preset all stage tempera-
tures as well as all vapor and iiqpid.flows before a solution is
attempted. Here additional starting information is needed; that is,
the starting éomposition on every stage must be known or assumed. The
values actually used are immaterial, since the steady-state solution
is independent of any starting compositions. One way of starting would
be to £ill every stage with feed material at its bubble point. If the
starting variables are such that the flow ratios,willbchange from
1teration to iteration, the methods of Hanson and Rea can be used for
changing these ratios. However, as pointed out previously, which of
varigbles are set and held has no effect on the form of the above
equations. .

The Method of Successive Flashes has a distinct advantage
over Method I in nonsimple or complex columns. At a feed or side-draw
stage, the A term of Eq. (II.25) or (26) has one additional term added,

and, in this simple manner, accomplishes what is done by the sometimes



very complex matching equations of Method I. It is a mathematically
very stable, slow-moving process which-has the disadvantage of being
much slower in ité convergence than is Method I.

In actual use, Method II proceeds much the same as Method I.
In the schematic computer program of Fig. 5, the boxes 1, 2, and 3 would
be replaced by one box, labeled Method I Equations, which would cycle
on stages first and components second. The criterion for stopping the
iteration process could be'fhe aforementioned € value if these values
are recorded, or the criteria listed under Method I could be used.u
However, since the convergence rate of Method II is inherently slow,
~ the rate of movement of summation, temperatures, or recovery fractions,
etec.,.would alsc be quite slow except at the very start of the problem.
For this reason, the values of € are suggested as the best criteria for

étopping a problemn.

- Example 2 .
The Method of Successive Flashes is_iﬂlustrated for the same

physical columm and with the same feed and variébles set as in Example
1. For purposes of comparison, the temperature behavior on eybry stage
is plotted versus iteration in Fig. 6 for the Method of Succeésive Flashes
and in Fig. Ta for Method I mass balance. The nearly exact temperature
values for this system are shown in Fig. . Tb, the source of which will be
explained shortly. The slow-moving nature of the Method of Successive
Flashes quickly becomes evident, since even after 52 lterations some’
temperatures in the center section of the column are as much as h.80
from convergence. A very large number of ilterations will be needed to
reach convergence throughout the column.

-Tebles II, III, and IV show further results for Example 2,
and in Fig. 8 are plotted the recovery fractions in the top product
versus iterations for each component for both Methods I and IL mass
balance. It is obvious from these plots that convergence is being
asymptotically approached, and that an exact solution is available if
the computer is allowed to run long enough. However, the driving force

toward convergence has established itself at a very small value and
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therefore has drastically limited the_.rate.of convergence. . It should be
noeted that in Eig, 8 the sensitivity of the curves for the C5 and C6
hydrocarbons is greatly enhanced because of their small value. On a
plot of bottom-product recovery\fractions, these two components would

behave in the same manner as the C_ and Ch hydrocarbons do in Fig. 8,

and it is the accuracy of the valugs in the nonsensitive areas close to
1.0 that is of importance. | |

Table .V shoWs the input-futput mass unbalances, that is, the
€ values of Eq. (II.26) for the 52nd iteration. From this table and the
other tables and pidts it is quite evident that the ends of the column
are appreciably nearer to-their'converged value than is the central
section of the column. Also, an over-all mass-balénce shows that the
lightest and heaviest components are appreciably nearer their convergence
values than are the other components. This would be. expected because of
the "cumulative error" characteristic of the method. That is, unbalances
in the inner areas of the column tend to "accumulate”" into a large error
in the products for a given component. Table V shows that the largest
unbalance errors occur for the Ch and C5 hydrocarbons; and on the basis
of an over-all mass balance these hydrocarbons are approximately 3% off,
in contrast to'only 0.5% for the C3 and 06 hydrocarbons. ‘

It is essentially a matter of experience and judgment in
deciding when to ferminate a Successive Flash calculation. There are
| means available for extrapolating results ahead, and the accUracy_of the
extrapolation will be a direct function of the method used. Perhaps the
simplest possible extrapolation would be a simple two-point linear
method used. If such a mefhod were gpplied to Example 2, results for
the 49Oth and 32nd iterations would give g C3,recovery fraction
of 0.9994 for .an over-all € of,lO‘h and 0.9990 for an over-gll €
of 10‘5. Thevcorresponding figures for the Cu’hydrocarbon would
be 0.9344 and 0.9343 at the same € values. These recovery-
fraction estimates are appreciably improved. Three- or four-point

extrapolation formula could be used, but it is very questionabls.
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Table V

Input-output mass unbalances, €, for the 52nd iteration of
example 2 (error as € x 10%)

' Component :
Stage ° ®y 5 %
8 | | -7 -10 +6 +1
7 r: -17 12 5
6 -5 -22 16 c1
5 -4 -22 16 .2
N -} -2 17 2
3 ' -2 26 19 3
2 -1 -22 17 3
1 -k -15 , 13 | 2

R ‘ . -1 -6 +6 +2
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whether or not the increased work is Jjustified. - Another method of pre-
dicting the steady-state values would be to use, for the unsteady-state

eqpatlon, (IT. Zl) the solution form

(x - xss) = C exp (-7), B | (f1.27)

steady-state value of.mole fraction,

where X
tlme-dependent variable .(in this case, iterations).

‘The X values in Eq. (IT.27) would be those from any portion

B0
N

of a plot of mole.fraction versus iteration. The method of using the
eguation would be to assume a value of X g and, using this value and
any number of values of x, form differences X = X Plotting these
dlfferences on semilog paper would give & stralght line for the correct
value of xss‘and,a curved line‘for other valuesuof X o .The process
could be repeated for another portion of the x-versus-iteration plot to
cheCk;thegxss value, and so forth. It can be seen that this process
soon becomes lengthy itself, even though it is basically & much more
sound appfoachlthan.simple two-point extrapolation.

It should be remembered that the Method of Successive Flashes
was derived primarily for use with nonsimple colums or for those cases,
as will be shown later, for which Method I fails. It would never be
used in & simple dietillation~system.such as that of Examples 1 3nd 2.

Improving Rate of Convergence - Method I
The results of Example 1 illustrate that the rate of converf-

ence is appretisbly retarded if the temperature gradient becomes
predominantly low or high. If successive iterations indicate the exlstence
of such a condition, an arbitrary adjustment of all temperatures in the
proper direction,definitely aids the rate of convergence. However, such
adjustments require judgment, and for use with digitel_computers, it

would be desirable to have an automatic correction method bullt into

the program. It will be noted in Exsmple 1 that the rate of change of

the product-composition ratios xb/xd rgpidly falls, while a relatively

much slower rate of change occurs for the recovery fractions of those
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components appearing in the top or bottom product in major amounts.
While this behavior is only part of the mechanism contributing to the
slow convergence raﬁe, it does suggest the possibility of'modifying

the product-composition ratios in some manner such that the.rate of
convergence is appreciably increased. The simple method proposed here
for modifying these ratios is to introduce a factor & into Eq. (II.15)‘

as follows:

FxF
X, = 5 (11.28)
d b[(%)q{l +4
» d

where & 1s a correction factor giving = (Xi)d = (Xi)b = 1. In the
, n ‘

normal course of a calculation, these Summations can be appreciably

different from 1 so that the purpose of & 1s to modify the product-

composition ratio in such a way that the summations are 1 even though

the calculation is far from convergence. .The values of X to be used

in Method I are then obtained by

o

where, as in Eq. (II.28), the same value of ¢ applies to all components.

2
This same approach has been proposed by Lyster et al,'3

Some insight into the behavior of & can be determined by

defining a function fl(Q) as

F(X,)
£, (e) = Z €R) N z',(xi)él . (11.30)
| 1 b[-(——T-‘i'b o] +a 1
*1’a

Since, in a physical sense, all values of mole fractions must be either
0 or positive, it follows that the same limitations apply for ¢. The
behavior of the function fl(Q) is best shown by a plot of fl(Q) versus
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o, and for “this purpose it would perhaps be better to use Eq. (II.30) in
‘the form :

F(X )

it

and to plot f£(®) rather than £y (¢) versus ¢. Figure 9 is such a plot.
As shown in Fig. 9, there is a unique curve and § root at

-4 | (1I.31)

f(Q).=.O for each set of product-composition ratios, but the exact
solution to a given calculation occurs only when absolute convergence
has been obtained, that is, when the @ root is 1 at £(®) = O. 'A common
point for all these curves is £(®) = b at '® = 0. On the other hand as
® goes to o, the curves asymptotically approach the value £(0) = -
and would, of course, reach that value in the limit. If the & factor
ié to be of use, subsequent predictions must rapidly converge on the
exact solution. As is shoﬁn shortly, this is exactly how the ¢ factor
behaved.

Unfortunately, for every set of product-composition ratios it
is necessary to find the root value of @ for which % (Xi)d =1, and
there are several ways in which this could be donefl.The method used
here is a simple two~point linear,exirapolation which‘involveslthe
original assumption of two & values. At the start of the process one
of the ¢ values is implicitly set at 1 and the other is set at the first

value of ¥ (x obtained from Method I mass balance. By use of these

i i)d
two values of ¢ and the resulting two values of % (Xi)d’ a third value
of ¢ and of X (Xi)d is calculated, and the proce%s is repeated until

i
the following condition is satisfied:

|7 g - 2] < (o)

where s is an arbitrarily predetermined small number. The value of

)

e@ normally used was 1 x 10 ', and the nunmber of iterations required

to satisfy the above condition normally ranged from 4 to 6. The value
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Fig. 9. Plot of the & function.
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assigned €, is dependent upon the accuracy desired in the mole fractions.

It is poss?ble for the two~point linear extrapolation to get into
trouble if it predicts a negative value for &, This difficulty is
circumvented by building a sign test into the computer program to watch
for this condition, and if it is found, & 1s set equal to 0 and the
process continued. -The @ cofrection appears in the computer schematic

diagram as an auxiliary operation on Box 2 of Fig. 5.

Example 3

Example 3 was run by using the séme feed, set variables, and
physical setup as Example 1, and the results are summarized in Tables
VI and VII and plotted in Figs. 7b and 8. Comparing calculations made
with and without the ® factor shows two distinct advantages when ¢ is
used. When the caiculation without ® gives a predicted temperature
gradient that is essentially all low, the rate of convergence falls off
aépreciably from iteration to iteraﬁion. The same calculation using @
devé10p5~the same type of gradient at Iteration 2 but automatically
corrects for it, with the result that the next predicted temperature
gradient is much closer to the correct value and therefore the con-
vergence rate is apprecisbly increased. Even more striking is the féct
that correcting for the character of the temperature gradient also mekes
the calculated recovery fractions much closer to the correct value.
Essentially, the separation given by Iteration 2 is correct to a part in
a thousand, and only one more iteration is needed to confirm it. A
basic property of the ®-factor method is also illustrated in that from

iteration to iteration the value of & alternates above and below 1, and

it is this property which brings about convergence in the minimum nunber
of iterations.

In the normal use of Eg. (II.28), b and 4 are fixed and the
product-composition ratios and ® move. If the amount, d, of top product
(and hence b) is changed, the product-distribution ratio is appreciably
changed for each component, but it has been found that the relative-
values of the ratios to one another remain quite constant. This then

suggests the use of Eq. (II.28) for exploring the variation of product



Table VI

Results for Example 3:

temperatures (OF) and summations from five iterations

1.000

286.0

Stage Temp. - §(Xi)p Temp. - ’g(xi)E Temp. §(xi)p Temp. * §(Xi7; Temp. g(xi)P
a - 1.000 -- 1.000 - 1.000 - 1.000 - 1.000
8 220 .550 149.1 976 146.6  1.001  1A46.7 1.000 146.7  1.000
7 220 457 169.5 .968 167.8 1.004 168.1 | .999 168.0 .999
6 220 RN 182.3 1.007 185.5 ‘1.005 185.6  .998 185.4 -999
5 220 517 194%.2 1.087 203 1 993 201.9 .997  201.7  1.000
4 220 .665 209.1 .83%  222.4 1.01%  217.7  .998  218.1 1.000
3 220 .606 230.5 .867  242.7 1.003  240.8  .999  241.0 1.000
2 220 .599 246. 4 .912  258.4 1.000  258.0 1.000  258.1 1.000
1 220 .678 261.7 .967 272.2  1.000 272.2 .1.000 272.3 - 1.oQo
b 220 1.000 280.8 1.000  286.0 1.000  286.1

1.000

~T9-
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Table VII

Results for Example 3: top product recovery fractions

from five iterations

- C

.

 Components 1 2 3 b 5
¢ 3 .998 -999 -999 999 | -999
C) .860 .928 .928 .928 .928
5 .139 .073 - .0T3 .072 .072
6 .005 .00l .001 .001 .001
»1.076 701 . 1.061 997 1.000
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recovery fractions as a function of total product d. For example, if

the distributiqn ratios are known for a given value of 4, the approxi-
mate compositions of the top and bottom products at other values of d
can e#isily be determined if one assumes that, for the desired varriation
d, the ratios of the product-composition ratios are set and held at those
obtaining for the given value of d. Substituting the composition ratios
and the new values of d and b into Eq. (II,28) gives a & value for which
>§ (Xi)d = 1 within the desired limits. This is done in the ushal

manner by using the two-point extrapolation method as set forth pre-
viously. The individual values of Xq calculated with this new value

of ¢ give the compositlon of the new top product.

Althpugh no such.extrapolation can be correct in general, it
can be a very ﬁseful approximation. An idea of the error encountered
can be obtained from Table VIII, for which the exact top-product com-
positions were calculated for seversl values of tdp product using the
feed, physical setup, and reflux flow of Example 1. The exact
calculated recovery fractions are compared with predicted recovery
fractions by using the above extrapolation based on the converged
product-composition ratios of Example 1 as shown in Table II. Although
the character of the fractionation changed greatly, and the values of &
changed by a factor of approximatély 20 in each directlon, it can be seen
that results are remarkably close for this case. Unfortunately, not
enough information exists to define the limits within which such agree-
ment can be expected. The best use for the extrapolation 1s as an
approximation method to reduce the number of.exact calculations, and in
this respect it is very helpful. It is shown later that the extrapola-
tion property of the @ factor can be quite useful in those calculations

in which product 4 is not one of the variables set and held.
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Tgble VIII

Prediction of change in product composition with change in product amount
(values of d=0.5 and r=1 product-composition ratios used for extrapolating)

Top-product cogponent—recovery fractions for various top-product amounts, 4

Com- 0.3 0.4 0.45 0.5 0.55 0.6 0.7
ponents Approx. Exact Approx. Exact Approx. Exact Approx. Exact Approx. Exact Approx. Exact Approx. Exact
c, .955 .982  .990 .99% . .996 .997 - .999  1.000  .999 1.000  1.000 1.000  1.000
c, .217 .23 .60L .559  .783 Y A— 928  .979  .968  .991 .982  .998 994
C5 .001 .002 .009 .006 .021 .016 - 072 .219 .229 .403 410 LTT7L " L765
Co - - - - - -- - .001 .003 .003  ..006. ,008  .031 .0ko
o - 17.19 - 5.713 - 2,931 == 1.000 -~ 3401 - 173 - L0541
Product-composition ratios (Xb/Xd)
c3 - .00778 -- - - - - .000L18 -- - - - - .000331
c, --  1.55 — .- -- - - .05 - . — e .0132
c, - 3. - - -- - --  12.8 - - - -- - .TL2
Cg |- L4268, - - - - -- 13k2. -- -- -- -- - 55.1
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ITI. ENERGY~BALANCE METHODS

In Section II, the mass-balance equations were derived by use
of the assumption of constant molal overflow. For separations in which
the components involved haye latent heats whose spread is not large,
there is a reasonable justification for the above assumption. However,
in addition to a low latent-heat spread, there should be small variation
iﬁ temperature from top to bottom and the mixture properties of the com-
ponents should approach ideality in that heats of solution and volume
changes, etc., should be negligible, If the separation being considered
reasonably meets these requirements then use of the mass-balance equations
alone will provide the desired information. If the mixture-property
effects along are assumed negligible, then the use of energy-balance
plus mass-balance equations will give some idea of .the variation of
flow quantities in the system.

In general, if enthalpy data are available for the system of
components being considered, calculations involving both energy and
mass balence are not difficult. There is a resulting "extension" of
the calculations in that more iterations are required than for mass
balance alone, but in general this extension is quite small.

Another consideration that could make it desirable to run
energy balances is column capacity. If the capacity of an existing
column is known to be large relative to the feed expected and to the
flows needed for the separation desired, then there is little reason
to run an energy balance. On‘the other hand, if the column capacity
is closely approached for the desired feed amount and separation, then
an energy balance may become quite desirable. Also, if a design cal-

culation is being done, then an energy balance is needed.

Method I

Since energy balances will be made by using enthalpies of
flowing streams, it will always be necessary to precede these balances
by mass-bslance and bubble-point (or dew point) calculations in order

that temperature and composition of the various streams be known.
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Having obtained the molal enthalpy of all streams assoclated with the
colum, one may calculate the flow amounts of these streams to fit the
vafiables set. |

‘ In the calculation of the flow of thé various streams, a con-
venient quantity for use in energy balancing at any point is the "net
heat flow," defined as AQ. In any column section, assuming adiabatic

conditions relative to its surroundings, the net heat flow is given by

80 =V, Hy - Loy Ppus | (111.3)

where VP = molal vapor flow . from general stage p,

H,P = molal enthalpy of stream VP,
Lp+l.=,molal liquid flow from stage above stage D,
h.P =~mola} enthalpy of stream Lp+l' |

This quantity should be a constant between any two stages in
a given section of columm.

The variable snalysis of Section.I plays a more important role
here than in the mass-balance equations. Setting and holding AQ at some
point in the column is desirable, since all new;flows will now be cal-
culated by using this value &f ANQ. A variable énalysis will indicate to
what degree this 1is possible. Counsider the column of Example I, in -~
which--in addition to the feedvamount, composition and enthalpy, column
pressure, and stages in each section--the following variables were set:

Top-product amount, d,

Reflux amount, r,

_ Reflux and top-product temperature (total condenser).
The net heat flow in the enriching section can be obtained, based on

these set varisbles, from .

M =V, H -rh =@ +dn, (I11.2)

where Vt = molal vapor flow from top stage,

Q

s condenser: duty.

‘The molal-enthalpy terms of Eq. (III.2) are all obtained from

the temperatures and compositions resulting from the mass-balance
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equations. It should be noted.that with the above variables set and
held, AQ 1s not fixed as a specific number, since from iteration to
iteration bdth-Qb and hd
positipn changes. However, the rate of change is quite small-and
rapidly approaches O, so that although it 1s impossible to absolutely

fix and hold AQ, 1t is possible to insure that it is a reasonably

change as a result of temperasture and com-

stable number.

The numerdical vaiue and sign of the net heat flow are meaning-
less. -Actually, the quantity calculated is the net enthalpy flow; as
it properly should be, and the value and sign of the enthalpy are
directly dependent upon the temperature base chosen for the component
enthalpies. The net heat flow is merely a convenient mathematlcal tool
for conducting enthalpy balances, and is in no way to be construed as
g fundamental quantity. .

| Having esﬁablished a value for AQ in the enriching section,
one then may determine values of vapor and liquid flows between stages
in two forms for use with the two different methods of mass balancing.
Mass-balance Method I uses the flows in ratio form, and these can be

obtained from

AQ
L —== .y |
"+l _ d j9)
% = % _ N (IT1.3)
P €5 H
d Sptl

whereas mass-balance Method II, using the flows in explicit form,

would require the equation

AQES-- d Hp

= -17
ptl Hp 3pkl

L (III.%)

Thus flows can be calculated down to those above the feed plate. In
order to continue the flow calculations, a new valué of net heat flow
must be used, since the feed introduces energy into the system at this
point. The net heat flow is thereafter that for the stripping section,
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and is defined by

i}

rq = 0q - P, (TII.5)

55 e

where FhF = enthalpy of the feed.

In continuation of the calculations down the column equation,
it will be recalled that Method I uses the flow ratios in the form
(V*/L'), and the counterpart of Eq. (III.3) for the stripping section

becomes

AQ

. ‘ S8 '
__V}l_ o Tx * Ppe1 6
1 - 2 . (III~ )
L +1 AQSS
p= == + H

and the correspondihg explicit form is

£+ bh
vi= 28 PR (TI1.7)
P ptl

The calculation down is stopped at p = R, and the last quantities
obtained would be (V%/Li) or Vi. When the explicit forms are used,
Eq. (III.4) and (III.7), the other flow is obtained by a simple over-
all. flow balance.

If the set variables had been specified at the bottom of the
colum, the anaglysis would proceed as above except that the direction
of movement is reversed. Variables such .as the améunt of -reboiler
vapor,;Vé, and amount of bottom product, b, would define the stripping-

section net heat flow as

MQ = Q -bh , (111.8)

S8

where QR.= reboiler duty. At the feed stage, there is a shiﬁﬁ from
AQSS to Ages? and the calculation then proceeds on up ‘the column to
the top stage. In general, the set variables are used along with the
available estimates of composition, temperature, and enthalpy to

establish values of tle.net heat flows in the various column sections.

-
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New estimates of flows are then obtained for further fractionation
calculations using either of the two mass~-balance methods.

The method of conducting the entire calculation should be
given some further consideration, since the calculations could be run
in a number of ways. One way might be to rum two or more mass-palance
iterations, holding a certain set of flows, until the concentrations
are relatively correct for these flows. Then energy-balancé calcula~
tions might be made to establish a new sét of flows and the pattern
repeated. Alternatively, one mass-balance iteration may be followed
by one energy balance, and this pattern continued. Because of the
diversity of cases that can arise, no set answer to this problem can
be stated that is optimum for all cases. When Method I mass-balance
equations are used, the movement of concentrations towards their correct
values is very fast even if radically wrong "guesses" of flow and
temperature gradients have been made. Therefore, under these conditionms,
it is recommended that a "one-to-one" type of pattern be followed. When
the Metholl of Successive Flashes is used for mass balancing, however;
the rate of concentration movement is relatively slow, so that a differ-
ent pattern must be followed. It is recommended for this case that one
reduces the "input-output" error € below some arbitrarily preset small
number for all stages by repeated iteration before proceeding with an
energy balance. The pattern actually used under these conditions will
vary with the number of stages, since as a rough estimate the minimum
number of iterations needed to meet reasonable values of € is equal to
the number of stages in the system. As the calculstion approaches
convergence, it is quite possible for a "one-to-one" pattern to develop.

Exémple 4 was calculated by using Method I mass-balance
equations and a one-to-one pattern for energy balancing. .The calculation
proceeds . as indicated in the computer schematic program, Fig. .5, up to
the completion of the bubble-point cycling, at which time the program
branched into the energy section to calculate new flows. Figure 10 shows
schematically the linkages and program flow for this area of the cal-
culation. .The examplefuses the same feed and physical column as Example
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‘From ¢ ~ -1

mass balance = T = Enthalpy
calculations calculations ‘-I

(see Fig; 4)

Component
test;
cycle or
go on

!

Stage
test;

cycle or |&— — — J
go on

v

Energy-balance
and <
flow

calculati ons

b o ae e = o - -

Stage
H  test;
cycle or F— = ‘J
go on

To result print
—P and start of mass-
balance calculations

MU-17913

Fig. 10. Schematic computer program for energy-balance
calculations by net-heat-flow method.



Table IX

Results for Example 4: Temperatures (OF) and stage summations from five iterations

Stages Temp.l T(x),  Temp. : $(x;);  Temp. ? T(x;);  Temp. : g(xi)p Temp.5 ),
d -- 1,000  120.6 1.000  119.3 1.000  119.3 1.000  119.3 1.000
8 220°F  .550  1L9.1 .981  147.1  1.005  147.6 .998  147.5 1.000
7 220 A57 169.5 978 165.h  1.013  169.5  .99%  169.0 1.001
6 220 464 182.3  1.020  186.1 1.011 186.4 .990  185.8 1.003
5 220 .517  194%.2  1.098  203.3 .985 200.8 .994  200.7 1.004
L 220 .665 209.1 .852  220.7 1.038 | 212.9 .987 215.9> 1.003
3 220 .606 230.5 877 24,1 x.017 237.1 .99 238.5 1.001
2 220 .599 246. 4 .918 257.3  1.007 255.5 .997 256.2 1.000
1 220 ‘ .678 261.7 .970 271.6 1.002 270.8 .999  271.1 1.000
R 220 1.000  280.8 1.000 285.7 1.000  285.L 1.000  285.5 1.000

-TL-
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Table X
Results from Example 4: stages flows‘from five i{erations
Stage ¥ L \i L v L vV L V. L
-- 1.000 -- .000 -~ 1.000 -~ 1.000 --  1.000
8 1.500 1.000 1.500 ..951 1.500 .929 1.500 .927 1.500  .929
7 1.500 1.000 1.451 .950 1.429 .876 1427  .884 1.429  .886
6 1.500 1.000 1.450 .921 1.376 .818 '1;383' .852 1.386 - .8u6
5. 1.500 1.000 1.k21 = .857 1.318 .759 1.352 .834% 1.346  .799
4 1.500 2.000 1.357 1.901 1.259 1.900 1.33k4 i_853 .299 1.871
3 1.500 2.000 1.401 '.968 1.400 1.951 1.353 1.926 1.371 1.935
2 1.500 2.000 1.468 1.980 .1.h51 1.986 1.426.1.977 1.435 1.980
1 1.500 2.000 1.480 .938 1.1486 2.003 1l.477 2.000 1.480 2.001
1.506 .500 1.438 .500 1.503 .500 1.500 .500 1.501  .500




Table XTI

Results from Example k:

top. product recovery fractions from five iterations

Components 1 2 3 4 5
Cillg 997 2999 -998 -999 -999
C\H .860 923 .919 .921 .921
CsH,, =139 07T ~08L .080 .080
Cehy ), ~005 . 001 .00L .00l .001
AQéS -— 12146 12174 12208 12196
Agss o 8813 8841 8875 8863

& Factor 1.076 .725 1.119 .965 1.008
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3¢« It is aspparent from the iteration results shown in Tables IX, X,
and XI that convergence is reached essentially as rapidly as fin
Example 3, for which constant flows are assumed.

In the energy-balance equations, (III.3) or (III 4), it would
be Of,great interest to know under what conditipbns negative flows can
results. .There is, of course, no physical conception of a negative
flow; and though thevmasshbalance equations can methematically handle
negative flows, it hdas been generally found in the work presented here
that the appearance of negative flows heralds unstable conditions which
prevent convefgence of the,calculations. By usfng Eq. (III;Z) the
following energy balance expression can be derived

+1

V = - e =
L Hp - h'p+l Hﬁ - hp+l,

Q +d (b -n ) r (& -h)ra, hP“'l), (1I11.9)

This expression holds across all p up to the feed stage, and
at this point becomes

Qr te (h hb) ‘ (1II.10)

= h )
p H§ p+l

v

The denominator terms will never be negative, as Hi is always greater

than h The source of negative wvalues in theée expressions is then

the nuﬁeiator term. The terms r (H - h) and b (n - hb) are always
p051tive, and their magnitudes depend upon the values of r and b set or
assumed. Since there are limits on r and 4, this discussion assumes
that these quantities have been set within these limits. The term

(Ht ~h +l) is generally positive although it could conceivably go
negative if temperatures and compositions toward the bottom of the
column were such that (h ) were greater than H Even though Eq.
(ITI.9) produces p031t1ve values, they may be so small that when they

are used in the liquid-flow calculation,

=V -3, ' (II1.11)
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negative values of Lp+l result. Thus Egs. (III.9) énd (III,lO) depend
upon temperature and composition movements found by using the mass-~
balance and equilibrium equations. For systems with a high degree of
temperature sensitivity, such as may be encountered when relatively
very heavy or very light components are present, it is quite possible
that negative flows may result. Ordinarily, the flow variables set and
held ére within their limits and column feeds are such that the tempera-
ture gradients sre orderly and not subject to large fluctuation, so that

the net-heat-flow concept works well.

Example )
Enthalpy-vel ue constants (referred to liguid 100°F)
FxF k 1 u W
C.H, 0.25 30.90 -15030 21.80 -1B30
;ci , ©0.25 10.10 ~-20050 27.00 -4910
CoHy, 0.25 1.10 24530 29.90 -3790
C6th - 0.25 55.60 -27790 36.60  -5040

1.00

Thermal condition of feed: saturated liguid.

.Column pressure: 15C psia,

Reflux temperature: bubble point.

Top~-product amount: 0.50 mole per mole of feed.
Reflux amount: 1.00 mole per mole of feed.
Enriching stages: 4 (not including the feed stage).
Stripping stages: 4 (including the feed stage).

A and B constants: same as those of Example 1.
Allowsble error in bubble point: |€2LS 0.1°F.

Total condenser used.

It would appear desirable, then, to develop another approach
to,enefgy balances, One reason for this has Jjust been mentioned,
namely, systems which contain a component that is highly volatile or
highly nonvolatile relative to the other components. Systems of this
type become quite temperature-semsitive, with the result that the
enthalpy functions and therefore the flows move markedly from iteration

to iteration. Another reason is found in the variables set and held.
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When the varisbles set and held are such that the external flows, r and
4, "float" (in ‘the sense that they must be guessed) the net-heat-flow
concept leads to internal-flow corrections based on these "floatihg"
values. The external flows cannot be corrected by the AQ method, since
it inherently corrects only internal flows. In simple distillation
problems, resort can be had to the over-all columm energy balance for

an eXpression'to.cofrect d. _As is shown later, in the case of stripping-
'type;columns, this over=-all column energy balance completely fails when
used in combination with the AQ method. Thus, a method that corrects
not only the internal flows of the system but the external flows as

well would be desirable, and the following development presents such a

method.

Method IT
‘Consider the general stage p shown in Fig. 1la. A total

energy balance about this stage (assuming adiabatic conditions) leads
to

(Vp~l HP*‘_l Tl Spn

) ~'(V§§§ +:iphp) = net ene?gy E-ng (I11.12)

There is, then, a term for every stage p in the system being con-

sidered, and if these terms are calcﬁlateduafter‘any iteration of the

masspbalanceAeqpation, they give the magnitude of -the individual-stage

energy unbalances as well as the total system unbalance, = Qp‘ At

steady state all- QP must be zero, as must g gp; If, in some manner,

all Qp can be "relaxed" to zero, the system will be in energy balance

at this instant and the next step of the iterative procedure may be done.
The method of doing this as presented here is to first con-

sider a "feedback" process whereby all the individual stage unbalances,

Qp’ are fed back into the stmge as corrections superimposed upon the

energy streams leaving and entering that stage. The net energy fed

back at any one stage appears in the streams leaving that stage, as

shown in Fig. 11lb. The over-all expreSsion for stage p is
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V H L .h
A
Stage p Stage p ¥\ Stage p
Net energys= Qp <4 O Flash
' P

|

\Y% L. h
p-1""p-1 “pp

—>
<

(qV)p-l (qL)p p-lyp-]. prp

(2) , (b) (c)

MU-17914

Fig. 11. Ea) General representation of stage p.
b) Relationship indicated between (q.v.)P and (qL)

is (ay) /(a.) = 8/b. |
(c)pInputpfeed for flash calculations is the two
streams indicated.

b
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[foalrl i (qV)p-l * Lp+ihp41 N (qL)p+l] -

{[VPHP + (qv)p] * [Lphp + (qL)E]} =0, (111.23)

where g = that corrective value-of<energy flow which when added to its
accompanying main-stream energy flow makes Qp = 0.
If now, Eq. (III.12) is subtracted from Eq. (III.13), the relation be-

tween the corrective flows g and the total stége unbalance Qp is

qv)p R CIO I [(qv) + (qL p] Q, = 0 for all P (III.1h)

The equation for the over-all- system of stages would be

% Qp.= (qV?top * (qL)bottom = (qv)top +'(E;> (qV?bottom' (II1.15)

If now, a connection between qv and gp can be found, then a
system of calculation is possible whereby either (qv) or (qL)bottom
is assumed, and the recurrence equation, (III. lh), after modification by
some as yet unknown (qv) (qL)p relation, CL/QV, is used to calculate
. from one end of the system to the other. The result of this calculation

b ‘ i . h
would be (qv top if (g_L)bottom were assumed, and vice versa. The
calculated value would be obtained from Eg. (III.lB), and this would be

compared with the assumed value to satisfy the condition

| (qY)assumed'J (qV’;)calculatedi"< e

where € 1is some arbitrarily predetermined small number for use with
corrective heat flows. If the condition were not met, another
arbitrary assumption of (qvgtop or'(qL)bottom would be made and
another calculation and test would be conducted. Should the second
comparison not be within the imposed limit, a process of linear.ex-
Vtrapolatlon can be used to predict the next value of qv) or

top

(qL)botmom to be used. This process can then be repeated for as many

times as necessary to satisfy the imposed condition. It has been found
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that the number of extrapolations necessafy to satisfy conditions is
seldom greater than 2 or 3, and quite often the first extrapolated
value is sufficiept.

When the energy unbalance Qp is fed baék to stage p, it can
result in a .change in temperature on the stage as well as a change in
the exit flows..:Thus, both latent-heat and heat-capacity effects are
involved in the corrective flow terms (q.V)p and (qL)pv Letting AT be
any arbitrary temperature change on any stage p, it is possible to de-
fine the term '

(V.H) - (vy)
PP T+2TT ppT (1T1.16)

o4

CVA=

where CV = change in total energy content of the vapor stream per degree
temperature change. If a value can be calculated far CV, then it is
possible to @ lculate the specific temperature change associated with

stage p, since one has

(), = Cy (2T), | (III.17)

where (Am)p = the temperature change on stage p resulting from feed-
ing back the net energy gp of that stage.
In like manner, the corresponding equation for the liquid
stream would be |
(IL_h_ ) - (Ln

)
__pp'T4AT  “ppT
c, = N i _ (III.18)

and (qL)p = Cp (AT)p. (1115,19)

On .the assumption, then, that values can be obtained for Cy

and Cy, Egs. (II1.17) and (TII.19) give the relationship between (qw)p

and (qL)p needed. for use in the recurrence equation, (III.14). Thus

(g),  (Cy) (VPpr)TmT ) (VPHP_)T | (III.20)

), R [E7N N A

Equation (III.20) allows resolution of the Q, into the indivi-

dual corrective flows as outlined gbove. Having obtained the individual
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‘values of (qv) or qL) , one can then obtain the actual value of (AE)P

' from either Egq. (III. 17) or (III.19)." When the value of (AT)p'; has been

obtained, it can be used to change the exit flows from stage p if an

'expreésion is available for rate of change of flow with témperature.

T

© Such an expression would be defined as

& = Vpn - (vp)T, : | (III.21)

with a corresponding expression for ALp
A ~
The method used to evaluate the terms C_, C., and —B) or
Al . - V7 'L AT
Zﬁﬁ) is to perform flash calculations at two different temperatures.
However, one basic assumption: is. necessary to carry out the two-p01nt

flash. By recalling the two alternate forms of the flashceqpation,

- Flx. F

1 K :

Vip
Cor
. Pk, | ’ .
Z ———:LV—F— =% Lx =L, (1II.22)
: — 1+{=) x, 1 ®?+ P ,
i L D i

it can be seen that the térm FXF must be fixed at every stage p before
the flash equations can be utilized. For the general stage p it is ¢

assumed that thevaF term is composed of the two streams leaving the

platé, as 1is indicated in Fig. llc. With. FxF fixed and held as

‘1ndicated, it is a straight-forward calculation to determine any of the

quantities (Vp, LP; yi; xi) at temperature T and again at . T+AT. The
value of AT being artibrary, some judgment must be used in its choice.
The value of T used for the first flash is also somevhat arbitrary.
However, just before the corrective heat-flow calculation is entered,
equilibrium bubble-point (or dew point) temperatures have been
established, so that one useful choice for a first flash T would be

these temperatures. It can easily be shown that if the equilibrium
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temperature is to be the first flash T, then no flash calculation need
be run at this temperature because the flash equation will do nothing
but reproduce}thevvp and Lp already existing for stage p.
The calculation{as outlined here and schematically programmed

| in"Fig. 12 is to first calculate all the VPHP and Lphp terms at the tem-
peratures and compositions from the mass-balance and equilibrium
equations. Following this, a flash calculation is run, using the.F(xi)F
indicated above and with a temperature equal to the equilibrium tempera-
ture plus the arbitrary AT. The flash equation gives the information
[(Vp)T+AT] and all [Vp(yi)p]T+AT’ and this latter term, when cgmbined
with [F(xi)F]p, gives all the [L (xl)p poppe  ThUS the c’é]__cula'tion of
(VpHp)T+AT and (Lphp)T+Aﬂ1 can now be carried out and these, in turn,
will provide the Cvgand CL 5
the additional information needed to evaluate [ _p)\ by Eq. (III.21).

terms required. The flash calculation gives

In carrying out the flash calculation, an extragglation procedure 1is
used wherein two values of Vp are arbitrarily assumed and then compared
with values of Vp calculated from the flash equation. The condition to

be satisfied is

(v.) - (v

p’assumed N (GF)’

p)calculated

where (€), is some arbitrarily predetermined small number. The method

suggestedeor setting up the first two\Vp values 1s to use the value of
Vp used in the mass-balance equation when the.flash calculation is
first started and then to use the Vp from the first flash calculation
itself as the second value.

At this point, all the information needed for actual corrective
heat-flow calculation is availabte. The first step in the calculation
of all (qv) or (qL) is to determine all Qp using Eq. (III.12). Next,
the recurrence relatlon and extrapolation procedure previously described
are used repeatedly until the conditions imposed by ec are met. The
form of the recurrence relation actually used at this point is that
obtained by solving Eq. (III.20) for (q,v)P or (q_L)p and substituting
into Eq. (III.1hk). Solving for (qv)p gives the form
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From bubble -point
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Fig. 12. Schematic computer program for energy-balance
‘ calculations by corrective-heat-flow method.
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(qV)p—l =1+ 5 (q’V)p - (’c”; o (q’\f)p+l - QP (11I1.23)

V/p

The (qV)p are converted to (Am)p by Eq. (III.17), and these (Am)p are
in turn converted to ANP by using Eq. (IIT.21) and being careful to
take into account the relation between the arbitrary AT and the cal-
culated (Am)p. Finally, all new vapor flows sre calculated by using
ANP, and the new vapor flows are used to calculate new liquid flows by
a simple flow balance.

As was previously pointed out, the choice of a value for AT
for use in the flash calculation is arbitrary. For all the work
presented here, AT was chosen as + l.OO. Quite often it would be better
to choose a larger value for AT. The reason is that the method may
very well predict a large value of (AT) , and to apply the values
obtainting for a AT of l.OO across a large value of (AE)P will often
lead to trouble in the form of negative-flow predittions, as is shown
later. The basic fault lies in trying to extrapolate conditions holding
for a very narrow temperature range across a very wide temperature
range. Even thoﬁgh the extrapolation may fail, a very useful piece of
information is obtained, namely, the direction; that the correction
should‘take. For the sgke of simplicity in problem layout and program-
ming, the approach used here is to always accept the direction of
correction indicated by using a AT of l.Oo and to alter the magnitude
only if negative flows are predicted. A very simple and direct way of
doing this is to apply a so-called "damping factor" in the form of a
fractional multiplier of the (AsT)p predicted. In general, its value
ranges from 1 down to 1/5, and the variation is primarily a function of
the éomponents present and the correctness of the original variable
assumptions and--to a lesser degree--a function of the physical setup.
There are other reasons for using a "damping factor." As is shown later,
a varying CV/CL‘fatio should theoretically be used in the corrective
heat-flow extrapolation process using Eq. (III.1k4); but, in actual use,

this ratio was assumed constant and equal to that value obtained from
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the flash process. The "damping factor" heips compensate for this
assumption. As convergence is approached, however, both (AT)p
(predicted)‘and (q)p (calculated) diminish and pass through 1 and
approach O in the limit, and therefore in this region the fractional
multiplier can be set to 1. Thus a variable fractional multiplier
should be used to obtain convergence in the minimum number of
iterations, but doing this would require a fairly large amount of
additional computer program and its value is questionable. For the
most part,‘in the work presented here, a multiplier value was selected
that gave positive flows, and this multiplier was used right up to the
convergence point.

The choice of a AT of 1° for the flash calculation has a
direct bearing on the value of €_ used in terminating the flash extra-

F )
T AT predicted for AT = +1 is quite small,
3

and generally it was found to be in the range ]_O-l to 10°°. To insure

polation process. The (AV)

a sufficient number of significant figures fbr-(AV)T+Am, € vas
arbitrarily set at 1 x 10-5.

The values of the total stream energy flows, VPHP and Lphp,
depend on the temperature base:for the component enthalpies with the
normal magnitudes within the range -=lO_5 to +10_5. However; even though
initial values of Qp and qp may be of the same order of magnitude as the
stream energy flows, as convergence is approached all Qp and qp_appro?ih
O so that the arbitrary value €, was sgt near O--specifically, 1 x 10 ~.
The Flash Process

vSince the flash process provides the two important relations

néeded to effectively use the corrective heat flow principle, some
further consideration of this process is in order. The first important
relation obtained from the process 1s,cv/cL, defined by Eq. (III.qu. g
The limits of this ratio can be obtained from the limits of the actual
Physical process of adding energy to a two phase system whose
equilibrium compositions and thermodynamic conditions are those of

the exit streams of a given stége p. The addition of energy must result .

in both an increase in vapor and an increase in temperature as long as
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more than one component is present and equilibrium conditions are
maintained. The amount of energy absorbed in these two increases
varies according to the boiling range of the compénents present. For
wide boiling ranges, heat-capacity effects would predominate. In any

case, the values of C_, as defined by Eq. (II.16) will always be posi-

v _
- tive and will normally be something less than 103. Since the feed to
the flash process is fixed, any increase in the vapor phase as a result
of energy addition;must lead to a numerically equal decrease in the

liqpid phase according tb‘the equation

+A =oAL, (III.2h)

Thus, we are brought to a consideration of the CL-term defined by Eg.

(I11.18). Since (Lp)T+AT is always less than (Lp)T for energy added

(AT of +1), CL will be positive only if the enthalpy or heat-capacity
effects are greater than the flow-change o'r latent-heat effects. Where
latent-heat effects predominate, as in the narrow boiling systems, it is

possible‘for C. to become negative. The limit of this process would be

L ,
the complete disappearance of the liquid stream, and the ratio CV/CL

would become

¢ (Vp%_>T+AE i (VpHp)T

c - (Lb
(T )

.

As CL veries from some positive number to its negative limit, the ratio
CV/CL and its inverse behaves as indicated in Fig. 13. The ratio can
have no value in the region O to ~1 because this would imply Gv.s - CL’
which means that ¢ither no energy cen be put into the system (CV = -CL)
or energy 1is being removed from the system (CV < - CL)’ and both' these
conditions contradict the condition necessary for AT = +1, that 1s, that
energy is being added to the system. The point CL/CV =0 or CV/CL =+ &

approaches (Lphp)T and finally becomes identical

occurs when (Lphp)T+AT
_with it. '
The second important relation provided by the flash process is

the AV/AT figure defined by Eq. (III.21). As pointed out above, this



-86-

.Boiling point

— Range (0-09)

—3 Boiling-point ~

+ 00 4
Cy 0
(2¥)
L
€L
-] =

Range (0-00)

MU-17916

Fig. 13. Qualitative behavior of CV/CL ratio and its increase.
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will always be positive and its magnitude will be a function of the
boiling range of the components involved in any given separation.
Qualitétive considerations indicate, then, that in simple
distillation columns in which boiling-point ranges are not large
latent heat effects would predominate, and that because of this-CV/CL
would tend to be positive and large. However, it may well be negative
toward the stripping end of a column, where an essentially pure com-
ponent exists at high temperatufe. On the other hand (as is shown
later), for absorbers and strippers where wide boiling ranges are
involved,‘heat-capacity effects predominate and the operating point
shifts to the right in Fig. 13. This means that the C‘.V/CL ratios will

be small, and indeed they are quite often found to range near +1.

\
PTh@jcorroo«|“Cano*gy Flow Dxirapolatin P1ocvu,,

The process of extrapolation using Eg. (III lb) is essen-
tially a complex reflection prdcess in which stream-corrective energy
flow, q, entering a given stage p is reflected into the exit streams
from that stage. In a cascade of stages, the reflection process becomes
complex but is nevertheless capable of being carried out as previously
outlined. A typical schematic reflection process is shown in Fig. 1k,
The flash process provides a value of CL/CV for use in Eq. (III.23),
and this ratio is assumed constant until the (eé) condition has been
satisfied. It should be noted, however, that the ratio applies only
for a pure energy feedback to a stage. This energy feedback creates
mass changes, and in the resulting reflection network combined mass- and
energy-corrective flows should enter and leave stages so that the CL/Cv
ratio for pure energy would not apply for combined mass and energy
flows exctpt by chance. The exact values of these ratios would be
available if mass effects were taken into account at every step in the
reflection network, but this would involve flas-process calculations at
every step. To do this would unduly expand and complicate the calcula-
tion and therefore the method actually used is a compromise one wherein
one flash calculation is used as the basis for running out the reflection

network, with.the assumption that CL/CV is constant for all streams and
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Fig. 14. Schematic eﬁergy-reflection or extrapolation process.
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is equal to the value from the flash process. Note that the constancy

is within one iteration only and that the ratio changes from iteration

to iteration. The "damping factor" previously mentioned helps take
_care of the errors introduced by this assumption. As convergence 1is
approached; the assumption is still incorrect, but the gq values have
become very small, and as they approach 0, the effect of this or any
other assumption becomes negligible.

Although Eq. (III.23) is explicit in qv it could equally well
have been written for 9 - The question of which form to use is im-
material from a purely mathematical standpoint, since either form will
lead to satisfaction of the €. condition. However, there is Jjustifica-
tion for the use of the %y form if both mass and energy are considered,
and this can be found in following a reflection-network runout. In the
course of such a runout, one condition must never be violated, viz::
the sign of the corrective energy flow and its corresponding corréctive
mass flow must always be the same in the vapor phase. The only way to
assure this is to calculate q, end then make the mass.correction
dependent on the sign of the qv calculated. It can be shown that if the
9 values calculated are used as a basis for a reflection runout, it is
guite possible for opposite signs to appear on energy- and mass-
corrective flows in the vapor phase. This is a physical impossibilityz
since if there is an energy increase in the vapor stream, there must be
a mass increase and vice versa. .The same is true for a decrease.

_ In the correctivecenergy-flow process as used here, no mass-
flow considerations are involved until all the corrective energies have
been resolved to satisfy €. It is at this point that a choicelmgst be
made, since the path of arrivsl at this point is independent of whether
qv or q,L was used. ﬁased on the above arguments, the only sound choice
for correcting the system flows is to use %y andra combination of qu.
(ITI.17) and (III.21). This is not to say that using q; and Egs.
(III.19) and (III.21) to correct the system flows will fail. What is
implied is that the choice of Uy is theoretically sound and will always
lead to convergence. The fact that qr, works indicatés only that it has
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succeeded in generating the right direction to bring about convergence,
although the magnitude of the correction is questionable, iThe risk
involved in using q, and calculating AL from the qL value'iieé ig that
the correct direction of the flow correction may not be generated, If
the direction is correct, questionable magnitudes may be compensated
for by the aforementioned damping factor,

The fact that the corrective energy flow process is independent
of which g is used to satisfy“ec hag .some utility in its actual use, As
is shown later, for strippers it is convenient to use Uy whereas, for
absorbers, 9, is more convenient, For simple distillation columns, it
makes 1little difference which is used. In all cases, though, the flow
corrections should be based on Qy s and if q; was actually calculated, it
should first be converted to Ay by Eq. (III.2) before flow corrections
are made, In summation, then, the use of Uy will always produce a AV
for which the direction of movement is correct although the magnitude

may have to be altered by the use of a damping factor,

Appiication of Method II
v Method II, the corrective-energy-flow method, can be applied
to all types of colﬁmns,‘but ft is especially useful for absorbers and
- strippers, Using the:method Involves careful consideration of the
variable analyéis since the Q for every stage p must be capablé of
~ evaluation. For those columns with a reboiler, in order to determine
QR’ the reboiler duty must be One of the variables set and held. In
effect then for these columns, use of Méthod II removes a degree of
freedom since it is nb longer possible to substitute another fractiona-
tion variable for the reboiler duty. At the top or condenser end of the
cblumh, it is not necessary to explicitly set the condenser duty, Qc’
since the only requirement for the top stage is a knowledge of energy
in the reflux‘streamo ‘For simple absorbers and strippers, there are no
condenser or reboller duties to consider, but a refluxed stripper will
involve a condenser duty while a reboiled absorber will involve a re-
boiler duty. In general, although Method IT can be used for simple or
complex distillation columns, Method I is recommended, since it will

give a convergent solution in a smaller number of iterations,
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As a first illustration of the use of Method II, it is applied
to a simple distillation column of the type shown in Fig. 4. 1In Exaﬁple
5, the reboiler duty is set so that after all feed variables, stages per
column'section, and the column pressure are additionally set, the
Descriptioh_Rule indicates the possibility of setting the remaining
variables

Condenser duty,

Reflux amount,
but for this example these were replaced with

‘Baturated liquid reflux,

Top~product amount.

The resalts of Example 5 are shown in Tables XII, XIII and
Figs. 15-18. It was necessary to use a damping factor in this case and
the first value that gave a stable solution was 1/3. Factors of 1 and
1/2 were tried but both ga®e negative flows. .The typical divergent
behavior of a nonstable factor is shown in Fig. 16 for a factor of 1/2
together with the behavior of the factors 1/3 and 1/5; all results were
obtained by uéing,a ® factor as well as a damping factor.

The effectiveness of the § factor is shown in Table XII and
Fig. 15. The use of the & factor brings about a rapid establishment of
the correct temperatures aﬁd recovery fractions at approximately the 6th
or Tth iteration, but it is necessary to do 20-plus iterations to reduce
-all Q values to some smsll number, in this{case, 10. However, as can be
* seen from Fig. 18, the iterations from 6 on are moving only the third
significant figure in the numbers representing vapor flows, and for all
practical purposes, this degree of accuracy is unwarranted. The
additional time and effort to reduce Q values from the largest value
of 100+ at iteration 6 to a value of < 10 for all stages at Iteration
14 has negligible effect on the recovery fractions. The value below
which all Q should fall for a given calculation is a matter of judgment
and experience.

The behavior of the three stages lagging behind all others in

the reduction of Q values is shown in Fig, 17. This figure and Fig. 16



- Table XII.

Results for Example:5: top product recovery fraction from various iterations

No & Factor - Damping Factor = 1/5

Components 1 2 3 N 5 6 7 8 5 To- %0
C\H 1.030 1.035--_1.029' 1.023 1.019 1.015 1.011 1.008 1.006 1.004 1.001 1.000
05H12 1.023 1.033 1.026 1.021 1,016 1.012 1.Qo9 1.007 1.00Lk 1.002 .998 .998
CeH, 5 .903 .897 .909 911 .911 911 .910 .910 .909 .908 .906 .905
C7Hl6, 154 052 ;059 .056 063  .069 .075 .080 .084 .087 .095  .096
Colli g .005 -- -- - - -- .001  .001 .001 .00L .001 .001
09320 -- - -- - -- -- - .- —- - -- --
With ® Factor - Damping Factor = 1/5
C\H g 1.000 1.000 - 1.000 -- 1.000 - 1.000 .- 1.000 1.000  1.000
05H12 -995 .998 -- .998 -- 998 - 998 -- 998 -998 998
CeHy ), .O17 .912 - .91L - 911 -~ .909 - .907 .906 .905
07H16 . .182 .089 -- .087 - .092 -- 093 -- .09k .096 | .096
Cgtli g .006 -001 -- .001 - .001 - 001 .- .00L .001 .001
® Factor .790 .828 1.089 1.000 1.003 1.00L 1.00k 1.003 1,002 1.002 1.000  1.000
, With & Factor - Damping Factor = 1/3 - '
C,H, 1.000 1.000 ==  1.000 -  1.000 -~ 1.000 .- 1.000 1.000 -
Cllip .99 .998 -- .998 -- .998 -- .998 - -998 .998  --
C6Hlu 917 .913 -- .913 -- .908 - .906 -- .905 _;905 -—
CHg .182  .088 -- .089 -- 209k -- .096 -- 096 .096 --
Cgll, g .006 .001 -- .001 - .001 - .001 - .001 .001 --

® Factor . 790 .815  1.158 .937 1.039 994 1.007 1.000 1.000 1.000 1.000 - --

"86"
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Table XTIII

Results for Example 5: (CL/CV); (CV)5

(AV/AT) from various iterations

(Cp/cy) (cy) (o)1)
Stage 1 6 ih 1 6 14 1)
9 .320 .370 .370 364 299 300 .031
8 .232  .238 .235 403 N 460 .0kl
7 .201  .187 .187 391 456 L6 .038
6 175 156 .156 371 417 408  .033
5 145 .128  .129 3k 363 354 .027
h | .20k .207 .211 480 501 ko2  .038
3 .065  .033 .037 734 919 901 .06l
2 -.010 -.060 -.057 998 1408 1380 .087
1 -.065 -.121 -.120 1281 1841 1812 .107

R . -.158 -.192 -.191 1008 1298 1286 067
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Fig., 15. Results for Example 5: temperature vs. iteration for
each stage.
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Fig. 18. Results for Example 5: vapor flow vs. iteration for
selected stages; damping factor = 1/3.
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indicate the effect of varying the damping factor. Smaller factors
appreciably slow down the rate of conﬁergence and bring about an asymp-
totic approach to the Q = 2Q = 0 axis. From the standboint of the minimum
computer time, that damping factor which just gives a stable solution
should .be used, but there is no a prior way to predict what this value
will bel A factor of 1 should always be tried first, and the factor can
then be reduced in some arbitrary manner if unstable solutions develop.
Table XIII shows that values of CL/CV can and do go hegative
even if the end effect #epresented by the reboiler is neglected. This
merely reflecfs_the movement of the composition toward pure heavy material,
with the result that high values of the equilibrium value cause flash
‘calculation to be made.in that area of the general flash curve where
there is a large movement in the amount of vapor when energy is added
to the system. Thus, latent-heat effects are predominating in this érea

and the large change in vapér‘is such that the C. term is negative,

L
since the change in liquid enthalpy cannot compensate for the decrease

in liquid. -

Example 5 : X
Equilibrium-value constant Enthalpy-value constants

Feed |XF A B K 1 u W

Cquo 0.1 -3848 8.358 Ll.27 -2h4762 29.64 -10170
cSle 0.2 -4002 “7.833 52.67 -31602 36.79 -12189
C6H1h 0.2 - 4997 ‘8.665 58.60 -35160 42.23 -13533
C7H16 0.2 -5595 8.847 66.13 -39678 50.10 -16232
Cgi g 0.2 ~6300 9.261 73,10 -43860 58.25 -19188
09H20 0.1 -7295 10.078 76.94 -L616Lk  62.84 -19879

1.0

Thermal condition of feed: saturated liquid'
Column pressure: 1 atmosphere

.Reflux temperature: bubble point

Top~-product amount: 0.5 mole per mole feed
‘Reboiler duty: 15,000 Btu per mole feed

Enriching stages: 5(not including feed stage)



=00 -~

Stripping stages: U4 (including feed stage)
Total condenser used
Allowable error in dew points |62|.s O.lOF
Allowable error in flash: ieFI.s 1 x 10™ mole
Allowable error in corrective-energy-flow calculation:
Iecl < 0.1 Btu. _
Enthalpy-value constants are referred to liquid at ZOOOF
Original flow gradient &dssumed;
Enriching section: ,L/V 0.5/1.0 = 0.5
1.0/1.5 = 0,333

]
]

SBtripping sections V/L
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1IV. CALCUDATIONS WITH VARIABLES OTHER THAN BULK SEPARATTION!
SET AND HELD, AND CALCULATIONS WITH COMPLEX COLUMNS

_ For the most part the discussion and illustrations of
Sections II and III involved bulk separation and a column flow as the
variables set énd»held during a calculation. These varisbles were used
for a simple distillation column, such as that of Fig. 4, for which the
total list of variables set would be |

.

Feed composition and amount

Feed thermal condition

Column pressure

Enriching stages

Stripping stages

Condenser (reflux) temperature

Reflux amount

‘Total topaproduct amount

Quite often it is desirable to make calculations in which

total top-product amount is not & variable of primary interest. More
1likely, the recovery fraction of a certain component or the separation:
between two components will be of interest. This latter case would re-
quire the setting of the recovery'fractions of both components.  Still
another possibility is the setting of a variable which is a function of
the composition existing at some stage in a column. Although the
following calculational procedures are developed for these non-bulk-
separation varigbles, any problem can be solved with bulk separation
used as a parameter, as was pointed out in Section II. Enough values
of r and d would be assumed, for instance, to give a sufficient number
of calculations to build up a network of answers. It becomes a matter
of individual preference.and judgment as to what approach is utilized

for the solution of a given problem.

Component Separation as a Set Variable

When the recovery fraction of a certain component is desired
as a fixed variable, quite convenient calculational procedures can be
deWised no matter what the system of components. In addition, for many

hydrocarbon systems encountered, the fixing of two recovery fractions--
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that is, the separatlon of two compdnents--also permltsconvenlent
calculatlon of the system,

The technique used is perhaps best illustrated by means of an
éxample; consider Example 6.. A feed of four components is to be fed to
an existing column such as that of Fig. 4. The recovery and purity of
Cquo in the top product are of primary interest,.and these variables
are used in place of reflux .and top-product amounts of a typical bulk
separationn However, setting the recovery and purity of a component in
a product fixes the total amount of that product. The net resultkthen
is that only the reflux amount has been replaced. | |

Setting the column flows and stage temperatures allowé calcu~
lation using MethodvI mass balance. The beglnnlng step in this calculation
is, then, the prediction of the column temperature gradient. The simplest
possible gradient is one in which all stage temperatures are set at the
bubble point of the feed, since it has been shown in Section II that con-
vergence is very fast when this is done, To spend,additiohal effort on
predicting a "better" gradient is a matter of judgment. .Example 6 provides
an opportunity to meke a "better" prediction, if desired, for with the
system of components involved a very close estimate of product compositions

can be made. Assuming C H8 goes completely into the top product and

C6HlLL completely into thz bottom product, one qan calculate the split of

5H12 into the products. Thus, good estimates can be made for the top-
stage and reboiler temperatures; they were found to be 142°F and 2h7 F
respectively for Example 6. The first assumed temperature gradient was
simply taken as a straight line between these two temperature-valﬁes°
In many systems the end temperatures would be much more difficult ta pre-
dict, so that the simple constant gradient mentioned above would serve as
the first prediction.

'Following the temperature-gradieqt assumption, a flow is

assumed and calculation can proceed. Based on the assﬁmption of a
reflux flow, Method I mass-balance calculations are made only for the
controlvcomponent whose recovery fraction is fixed. The control -component

distribution ratio_resulting,is then used in the following form of the

~
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over-all mass balance equation,

Ak = ———— , : (Iv.1)
d »% (f%r 41 .

)

*q'
which gives directly the amount of the control component in the top
product. If the desired separation for the contrdl compqnent is not
-j théined, énother vélue of reflux is assumed and the calculation is
repeated. A simple and rapid method for doing this is the two-point
extrapolation method previously mentioned. In Example 6, them, these
:calqulations Werg first méde for component ChHlO' l
- By using the proper value of reflux and the first predicted
_ temperatufe gradient, Method I mass;balance calculations are now made for
aii components present. New femperatures are obtained and the whole
procedure repeated; v
_ | In the first trial of Example 6 a reflux value of 0.574 moles
per'méle of feediwas found to give the desired top-product recovery
_vffactibn of O.90vaqr Cuﬂio} With this value of refluxvuéed to predict
the internal flows, the calculation was done for all components with the
p-factor.form of the over-all mass balance equation, Eq. (II.28). The
value of the $ factor. is, of course, unknown at the time the control-
component calculations are run, so that the factor does not apﬁear in
Eé. (IV.1). The effect of the factor in the over-all masé-balance
) eqpétions for all components is to accelerate convergence to the correct
. temperature gradient, and_therefore_¢ should be used. A value of $ other
than 1 will displace the control-component recovery fraction from the
value obtained in'the control-component calculation. In the first trial
of -Example 6 the value of ¢ was 1,070 and consequently the recovery
fraction of CﬁHlO calculated was 0.894 rather than 0.900. In subse-
quent trials, as ¢ approachéd 1 and the temperature gradient became more
correct, this discrepancy died out and_thé two recovery fraction values

became identical. The resﬁlts are presented in Tables XIV and XV,

D



Table XIV

Results for Example 6: temperature (OF) and summations from five iterations

1 2 3 4 5

stage  Tewp. F(x;) Temp. Z,)  Temp. §(gi)P Temp.  g(e,) Temp. Flhe;)
d -- 1,000 134.8 1.000 1344 1.000 1344 1,000 134k 1.000
8 14z 1.02% 1443 .989  1k3.2 1.000 143.2 1.001 143.3 1.000
T 155  1.008 154.3 .978  152.9 1.000 152.9 1.001 153.0 1.000
6 168 .986 166.1  .973 164,9 1.001 16550 1.002 165.0 1,000
5 181 978 179.7 .978 179.2 1.003 179.4 1.002 | 179.5 1.000
4 195 1.0M9 1944 .992  195.3 .998 195.5 1.001  195.4% 1.000
3 208  1.044 2041 .993  204.8 .999 205.0 1.00L  204.9 1.000
2 221 1.025 216.1  .995 216.7 1.000 216.8 1.000 216.8 1.000
1 234  1.005 230.2 .997  230.8 1,000 230.8 1.000 230.8 1.000

b 247 1,000 246.1 1.000  246.6 1.000 246,6 1.000 246.6 1.000

-£0T-
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Table .XV

Results for Example 6:

top prbduct recovery fractibn,frog five iterations

_Compeonent 1 2 3 N 5

C Hg .998 .998 .998 .998 .998
cquQ ' .894 .900 .990_ - .900 .900
C.H, 111 -.101 .101 .102 .102
CeHy), .002 .00L .00L .00L -00L.
Reflux .Syy 645 633 .630 .630
® factor 1.070 .997 .995 1.000 1.000




-105-

Example 6
. Equilibrium-value constants
Feed F"XF A B
C3H8 0.01 -2553 5.704
cquo 0.35 =3106 5.813
405H12 0.24 -3828 6.202
C6Hl)+ 0.40 -1502 | 6.564

Thermal condition of feed: saturated liquid
Column preésure: 100 psia

Reflux temperature: bubble point

Enriching stages: U4(not including feed stage)
Stripping stages: Ui(including feed stage)
Recovery fraction of ChHlO in top product: 0.90
Purity of C)H  in top product: 90%

Calculated top product d = 0.35 mole per mole feed
Acceptable:bUbble-point errors: l€2|~$ O.loF |

It is interesting to :) note that in Example 6 the second-
iteration value of the reflux was within 4% of the correct value and
that the separation on all components was correct to within l%.
Iteration 3 confirmed this result and for all practical purposes
Iterations 4 and 5 need not have been ruh. Example 6 did not include
an energj%balance calculation, but if an energy balance were desired,
Method I of Section III would be recommended.

The results of a calculation such as that of Example 6 allow
the specification of the flows in a columm for any given amount of
feed. On the other hand, by using the diaméter’'.and capacity of an
existing column, it is possible to calculate the amount of feed that
can be handled. If the calculation is being used as a design method,
it is possible to determine the column size that will handle a given '

amount of feéd.
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The use of the calculation as a design method may at first
seem somewhat backward, but it is just as logical to set the number of
stages to be used at some arbitréry figure gfeater than the mininum
nunmber stages at total reflux as it is to set the'reflﬁx.to be uéédaat
some arbitrary amount greater than minimum reflux, as is commonly done.

If a given problem description 1is té include the recovery and
purity of a component, then the calculation procedure as exemplified by
- Example 6 is immediately applicasble. If the problem description is to
include the recovery fractions of two components, there is no change in
the basic calculational procedure.but there is a change in starting the
procedure. The amount of product that will yield the second retovery
fraction should be estimated and calculations made .as in Example 6. It
is difficult to vary the total product amount to matéh the second re~
covery fraction by using the above calculational procedure. It is
suggested that for a given value of top—prbduct:amount, two control-
component calculations be made, one for each component. .The refiux
values from each.calculation.shouldube.the same for correct conditions.
If'the_values do not match, the two-point extrapolation procedure may
agaih be called upon to find that value of top product which will give
identical reflux Values from the individual control-component'calculations.
In many hydrbcarbon systemé, it is easy to estimate toﬁal produ%t gmounts;
for other systems a few calculétiohs are feqpired but in either case a
minimum amount of effort is reqpiredo

Another problem description of a similar type is of interest.
With the recovery of a given component set, and the amount of feed to be
fractionated knoﬁn, the questions arise as to what product plirity can be
obtained for this éomponent_or what sharpness of separation from the
other components can be bbtained, .From the size 6f the column to be used,
the vapor or liquid capacity of the coiumn--whichever is limiting--can
be estimated. Then, as an example, the amount of vapor that can be used
per unit amount of feed.éan be estimated and set as the second variable,
with the control-component recovery fraction as t@g first set varisble.

For this case the amount of top product is assumed and calculations are
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made on the control component as in Example 6 until that value of the
product is found which gives the correct answer for the recovéry of the
control component. The procedure from this point on is straightforward.
In like manner, calculations to determine how much of a product pf given
purity can be obtained can be made in which the purity of a control
component and an internal column flow are held.

Problems of this latter type can be solved by another, more
.convenient procedure than that of Example 6. For these problems a
variable such as the recovery fraction of the control component is set
and in addition a column flow is set. What must be solved for is the
amount of total product that will yield the required separation on the
control component. Here, then, a value of the total product is assumed
and Method I mass-balance calculations are made on all components until
the temperature gradient is correct. The calculation therefore proceeds
as in Example 1. There results a value of the recovery fraction which
is correct for the assumed product amount but which is most likely not -
correct in comparison with the desired value. To find that value of
total product which is approximately correct for the desired recovery-
fraction value, Eq. (II.28) is used as déscribed in Section II. That
is, d (and hence b) is varied, with the restriction §(xi)d = 1.0, until
a value of d is found which gives the correct control-component recovery
fraction. The product-composition ratios used in Eq. (IL.28) are those
existing when the above correct temperature gradient is obtained. The
new temperature gradient and approximate product value are then used in
the next iteration, and the whole process repeated until convergence.
The rate of convergence for such a calculation is quite rapid and the
amount of product calculated is correct. From this point of convergence
further extrapolation for the change in control-component separation
with small movements in total product amount may be made with a high

degree of confidence.
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Composition«Dependent Variable as a Set Variable

Instead of the recovery andf(or) purity of a giveh component,
it 1s often of interest to specify a product variable which is dependent
upon the composition of that product. Such a variable might be octane
number, which could be calculated from the composition of the product and
the-blending_numbers of the components. Another such.variable might be
the vapor pressure .at a certain temperature, and this could be estimated
from the boiling point of the profiuct at the column pressure. In general,
any variable that can be obtained from a knowledge of the composition
can be set and held in the calculations just as was the recovery and (or)
purity of a control component.

| _ . Calculations holding a composition-dependent variable are
generally more difficult than those holding & component recovery and (or)
purity. Comsider a problem description in which the amount of the bottom
product and,the-reboiler tem?erature are set. A temperature gradient and
a reflux (or some other flow). sre assumed., Calculations pioceed'on all
components to obtain the bottom-product compdsition. If the bubble-point
temperature based or this cdmposition is not that set for the reboiler,
another value of reflux is assumed and the calculation repeated. - This
procedure is carriea out repeatedly; holding the assumed temperature
gradient, until the bottom bubble~point temperature is within the desired
‘limit. At this point the temperature gradient is corrected and the whole
procedure repeated until the recovery fractions of all components become
constant from iteration to iteration. This type of calculation will con-
sume more computer time because of the necessary iteration-within-
iteration pattern, and this would also be true for cases in which recovery
and (or) puﬁity varigbles are. set. Nevertheless digital computer solu-
tions proceed extremely fast and meke this type of éalculation guite
feasible. |

In contrast to setting a compositlon-dependent variable and a
product flow, consider the problem description in which a column flow and
a composition-dependent varisble are set. As will be shown, this latter
combination affords an appreciable simplification in calculations. This
is best illustrated by an example.
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In Example 7 a hydrocarbon stream is to be debutanized in a-
colum stimilar to that of Fig. 4 to produce a bottom product with a Reid
vapor pressﬁre of 9 psig. As the separation is predominantly between
_ ChHlO ani'CSHlZ’ a reflux is set which is typical for such separations,
viz. 0.5 mole per mole of feed. What is desired, then, is the amount of
product that can be made in a specified column. In all such problems
in which the amount of a product is unset, very effective use can be made
of Egq. (II.28), as described in‘Section IT and pointed 6ut previously.
When one Method I maséabalance calculatibn has been made on all compo -
nents at an assumed temperature gradient, all component-distribution
ratios are available, These ratios are then used to vary the product
composition with product amount until the desired bottom bubble-pbint
temperature is obtained. This i1s an approximation, but (as was pointed
out in Section II) it is quite accurate. Once the bottom product has
been determined, the temperature gradient can be corrected and the pro-

cedure repeated to convergence.
Ekample 7

Equilibrium-value constants

Feed P A B

C3-H8 0.040 -2553 5.522
Cquo 0.320 -3106 5.631
, Csle 0.285 -3828 6.020
C6HM 0.155 -4502 6.382
C‘7H_L6 0.090 ~5750 7.698
C8H18 ’ 0.110 -6510 8.286

1.000

Thermal condition of feed: saturated liquid
Column pressure: 120 psia

Reflux temperature: bubble point v
Enriching stages: U4(not including feed stage)
Stripping stages: h(including feed stage)
Reid vapor pressure-of bottom product: 9 psig

Reflux flow: 0.5 mole per mole feed
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Reboiler temperature: ZSOOF (based on estimated vapor
pressure of bottom product of 120 psia at 2800F)
Acceptable bubble-point error: Iezl.g O.lOF

For the first iteration, the initial separation‘estimaterled
to the assumption of b = 0.7 mole per mole feed. This also led to the

following assumed first temperature gradient:

§Eggg ) Temperature
8 150°F
7 167
6 183
5 199
L 215
3 231 .
2 247
1 ‘ 263
Reboiler 280°F

-A Method I mass-balance calculation for all components gave

the following produet distribution ratios:

Cpmponent Distribution ratio (xb/%é)
A | 0.00L778
CuHio 0.07396
CSHlZ 3.991
e 23.95
C7H16 16270,
N 617700,

These ratios were then used in Eq. (II.28) to determine the
bubble point of the bottom product at various values of b. A simple
two-point extrapolation process suffices to gquickly find the correct
value for the given bubble point. In this .case the initisl value of Db
was 0.7 and the value of ¢ that gave g(@i)d = 1 was 1,801, and the
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resulting bottom-product composition gave a bubble point of 262,7OF Vs
.ZSOOF desired. Further iterations at this point and their results are

.as indicated:

b = 0.6, =0.6248, T =282.5°F;
= 0.6124, $ = 0.7151, T = 280.3°F.

The last value of T, was sufficiently close to 280°F. There-

‘ fore, the values of x. and Xy calculated at this point were used to

obtain the,compositiogs of the individual—étage liquids, and from these
a new temperature gradient was determined. Calculations were then
continued with these new temperatures and with b = 0.6124. The results
of the iterations are given in Tables XVI and XVII, and it is evident
that the_ results of Iteration 3 are sufficiently converged for all
practical purposeé. As is also evident, thelcalculation quickly converged
to the correct bottom product. |

Another type of problem very similar to that of Example 7 is
of interest. It may well be that the capacity of an ekisting column is
limited not by a flow but by the heat-transfer capacity of either the
reboiler or the condenser. As would be expected, energy balancing is
involved in this type of problem and the second variable set and held
would be the duty of the limiting heat exchanger.

Thus, after a composition-dependent variable and an exchanger
duty were set, the calculation would proceed exactiy as in ﬁxample 7
except.that'énergy balances by Method I of Section III are included in
every itération. As an illustration of this kind of problem, Example 8
was calculated for‘the same feed and physical setup as in Example 7.
The feed to the column was to be stabilized to produce a bottom product
whose . boiling point at the column pressure of 120 psia was to be 2800F°
The limiting duty of the reboiler was used as the second variable set,
and fhe value of QR was set at 11,000 Btu per mole of feed; The results
of the calculation are the composition and amount of bottom product it
is possible to meke with these set variables. As in Example .7 the
initial assumed amount of bottom product was ¢ = 0.7. The amount of re-

boiler vapor was estimated to be equal to one mole per mole of feed.
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Results for Example 7: temperatures (OF),and,summations for five iterations

=211~

Stage Temp.l ;Kxi)PAV,Temp. . g(xi)p Temp. 3_§(xi)P _ Temp. * ;(xi)p Temp. 2 §(xi)P
a - 1upoo Wh5.1 '1°ooo 146.7 1.000  146.6 1.000 146.6  1.000
8 150 1.168 165.3 1.001 167.8 - .998 167.6  1.000 167.6 i,ooo
T 167 1.263  180.5 1.020  181.5 .994  180.9 999 180.9. 1.000

6 183 1.292  193.8 1.0.8 | 191.6 .990 - 190.9 1.000  190.9  1.000
5 199 1.28+  207.7 1.085  .20L.k .991  201.0 1.002 201.1 1,000
L 215 .972 ‘230,5 .939 215.8 .99k 218.2 -999 218.2 1.000

3 231 1.010  238.0 .993 228.1 .999  229.0 .999  229.1 1,000
2 24T 1.019  247.0 1.024  240.5 1.000  2k0.7 1.000  240.8 1.000
1 263 999 25§°o 1.025  255.5 .999  255.6 1.000 255.6 1.000
b 280

1.000 280.3 1.000 - 280.0 1.000 260.1

o

.000 280.2 1,000
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Table XVII

Results for Example T:
bottom product recovery fraction from five iterations

Component 1 2 3 4 5

03.H8 .002 .002 .002 .002 .002
C\H .07 .087 .086 .086 .086
’Csle : .819 . 785 . 786 .T785 .T85
,C6Hiu 996 299k <99k 99k -99h
CH g 1.000 1.000 1.000 1.000  1.000
Call g 1.000 1.000 1.000 1.000 . 1.000
'b! used ' . 700 L6124 . 6055 . 6055 . 6055
'b! calculated 6124 .6055 . 6055 . 6055 . 6055
T, calculated 280.3 280.0 280.1 280.2 280.2

& factor 7151 1.282 97T .999 1.000
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As mentioned above, the calculational proéedure is exactly
the same as that of Example T up to the point where a corrected tem-
perature gradient has been obtained. New flow gradients are now calcu-
lated by the net-energy-flow process of Section III, and for this
purpose.the'cﬂgs = QR - bhb would be cachlated first, and.flows.wpuld
be qglculated_Starting at the bottom of the cqlumn,ahd proceeding to the
top stage. | 1 ' '

_From the results given in Tables XVIII, XIX, and XX it is '3
‘épparent that.convergenceris'qpite rapid and, as in Example 7T, the
correct value of b is quickly esfablished, Again, for all practical
purposes, the degree of convefgence of Iteration .3 is sufficient even
 though the third-place figure of the flows is still in dobt. The
enthalpy data and assumptions necessary to use the net-energy-flow
- process do not justify iteration to determine the flows to one part in

".a thousand.

Example 8
| Enthalpy constants used
- Liquid . .Vapor
Feed FXF k ‘lf u W
CHg  0.040  30.90 -15430  21.80 . - -4830
CyHiy 0.320 k.27 -2h672 29.64 . -10170
CSH12 0.285 52.67 -31602  36.79 -12189

_C6H18 0.155 58.60 -35160 42.23 -13533
.C7H16 0.090 66.13 -39678 50.10 -16232
0.140 73.10 -43860 58.25 -19188
1.000

Thermal condition of feed: liquid at 200°F

Cgtlig

Column pressure: 120 psia

Reflux temperature:; bubble point

Enriching ‘stages: U4(not including,feed_stage)
Stripping stages: Ui(including feed stéage)
Reboiler temperature: 280°F

Reboiler duty: 11,000 Btu per mole feed
Acceptable bubble-point error: Iezl £ 0.1°F
A and B constants same as Example T



Table XVIII

Temp.

Results from Example 8: temperatures (°F) and summations from five iterations
3

AN

144.8

ERR

1.000

1.000

1

Stage  Temp.

g(xi)p

Temp.

1.000

144.8

1.000

2 3
§(xi)p Temp. gfxi)p Temp.
144.8

16L4.1

1.000

164.1

1.000
1.000

1.000
1.168
1.263

-

d
8

7
6

5
M

3
2

150
167
183
199
215
231
2T
263
280

1

b

1.292
1.284
972
1.010
1.019
-999
1.000

143.0
160.8

175.3

1.036
1.054
1.038
.983
'1.102

189.3
20k, 3
227. 4

236.5
246. 4
258.9

280.7 1.000

1.057
1.023
1.00k

164.3
178.4
189.8

200.0
212.6
226.0
239.L
255.3
280.0

.998
993
.988
.991
.983

.994
-999

1.000
1.000

177.9
188.9

199.9
217.9
228.4
240.3
255.5
280.1

1.
1.001

000

1.002

1.004
1.001
1.000
1.000
1.000

177.9
189.1
200.0

216.1

1.000
-999

999

227.9 1.000

240.1
255.5
280.1

1.000
1.000
1.000

-6TT-
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Table -XIX

bottom product recovery fraction from five iterations

Results for Example 8:

es

Component 1 2 3 b 5
C3H8 .001 .002 .002 .002 .002
;CquO .063 .078 077 07T 077
rCSHlZ .86k w824 f82u .824

C6th .998 .996 .996 .996

,C7Hlé .999 - 1.000 1.000 1.000 1.000
08H18 1.000 1,000 1.000 1.000 1.000
'b! used =700 .621 .61h .61 .6Lh
bt calculated .621 .61 .61h .61k L61h
T, calculated 280.7 280.0 280.1 280.1 280.1
® factor .770 1.271 .91 1.018 .994
AQSS. -- 9715. 9807. 9805. 9805.

AWS) -- 4717, 4808. 4807. 4807.
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Table XX

Results for Example 8: flows from five iterations
I

o

1 2 2

Stage L v L \ L v L v L v
da .300 -- .379 -- 386 . -- .386 -- 386 --
reflux .700 - .687 -— .675 - .676 - ;676 --
8 .700 1,000 .652 1.066 .648 1,061 .652 1.062 .651 1.062

.700 1.000 6.14 1.031 .628 1.03% .631 1.038 .630 1.037

.700 1.000 .573 .993 .610 1.013 .608 1.017 .607 1.016
5 »700 1,000 .500 .952 .590 .996 .55k .99k  .566  .993
4 .700 1,000 1.696 .879 1.601 .975 1.650 .9‘uo .632 .951
3 .700 1.000 1,709 1.075 1.641  .987 1.664 1.036 1.658 1.018
2 .700 1.000 1.716 1.088 1.662 1.027 1.672 1.050 1.670 1.0kk
1 .700 1.000 1.680 1.095 1.643 .1.048 1.646 1.057 1.645 1.056
b .700 1,000 .621 1.059 .61k 029 .61k 1.032 .61k 1.031
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Calculations for Complex Columns--Three or More Products

_ Columns conteining more than two main plate sections, or more
than dnelfeed, or more than two products freqpently occur in fractiona:
tioﬁ'prbblemsn Sudh.pfoblems are readily solvable by a Methocd I mass=
balance calculation_of theJEdmister procedure. However, these complex
columns are abprOdching an ares where it mey become feasible to use the
Metnod II musg—balance procedure, As will be seen shortly, thp entry
“or removal of additional streams from .a colum materﬂally inereases the
. complexi bty of the Method I mass=balance equations, and when more than
two such streams are called for, the notationsl and programuing ease
of Method IT may well outwelgh ‘the speed of. convergence of Method I.
Tynical bolumns in: which more than one product is removed
might be aswindicated 1n.Figb 19, Example 9 is based upon the colum
of partw(b)gof this figﬁre. Threé.products are belng removed as
indicated; the.top'andfbottom products are being removed from the wain
column in thé'usual manner, but in sddition a side product 1s withdrawn
at the bottom of a side stripper. The additional plate section allows
the setting of more varisbles than in a slmple two-section two-product
.colum.. On the basis of the description rule, the number of stages per
column section, all veriables comuected with the feed, and the column
pressure are set. In addition the following variables can be sets
| Condenser duty
:Reboller duty
Side=-stripper reboiler duty
Reflux amount
Side~draw amount
. _These varisbles can be replaced with an equivalent list if
.desired. The simplest set of varlables~~the variables actually used for
Exampie ewould bes
Total top~product amount
Side~stripper product amount
Side~-stripper reboller vapor flow
Reflux smount |

Reflux temperature
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Flg. 19. Typical complex columns.
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Having assumed a temperatﬁre gradient and all internal column
flows, one starts Method I masspbalance:calculations@ ~From the bottom
stage of the main column to the feed stage, the calculation is'carried
out as outlined in .Section II; the last ratio calculated is ﬁf,/xb.
Again, from the top of the column to the side-draw stage, the calcula-
tion is as previously outlined. - However, the :last ratio calculated is
for the side~draw stage,,Stége 12 in :Example 9, and will be xlz/xd.

. In order to continue the calculation .down to the feed plate, the side
stripper must in some manner be meshed into the éalculational scheme .
This is accomplished by starting another series of ratio calculations
at the bottom of the side stripper with all stage compositions being
‘referred~topxs, the side-stripper prodqct composition, and the .last
ratio calculated will be that of the side~drawf stage to the bottom
product, x, ,/%, for Example 9. At this point it becomes comvenient to
define a new combined top product in order to make mass balances on
“those stages from just below the side-draw stage to thevfeed,stéges
This'secﬁion of theicolumn is here termed the intermediate section.
From Fig. 19b, the first stage in this section is Stade 11 and its mass-

balance equation is

+ dx. + sx =1L rx ' (1v.2)

v =L %5 a s -~ M2%¥e T

11711 P

The newly defined product P now appears in all equations
from étage 11 to the feed stage. Equation (IV.Z) is first put in the

form

y L X
11 _ V12 ( 1z £>+ 1, (17.3)
Trp ‘1 \¥'p 3

and if the ratio xlz/xP is available, calculation down to the feed

plate can proceed in the normal manner. One can readily show

J




and therefore all guantities are available to calculate the ratio, Cal-
culations are continued down to the feed stage and the‘proper matching
equation used to obtain the product distribution ratio xb/xP. Having
obtained the product-distribution ratios for all components, one uses the
over-all material balance relation, Eq. (II.28), but its nomenclature

is now

e (1v.5)
P b(:—:-bi)yﬁ + 4
P

Thus all x, and X = X, [Xb/x2)¢] can be determined under the
usual restriction §(X1)P =1, In this type of column a similar relation

exists for Xqs and it is

ExR .
x. = % . (1v.6)
d s =2 $' + d

Xa

Finally, then, all X3

and x_ = Xp [(xs/xd)ﬁ] are determined
under the restriction %(x,). = 1. The distribution ratios xs/xd are all
i

obtained from the known r;t?os le/xd and Xlz/xs' The wlue of $' is
not necessarily.equal to the value’ﬁ of Eq. (IV.5) except at the point
of convergence, which is, of course, a unique point at which all $ = 1.

These values of Xqs Xpr X allow calculation of cqmpositions
at all stages and thus a corrected temperature gradient. Also, interhal
flows may be corrected at this point by energy-balance Method I if
desired. The over-all calculation is now repeated and the iteration is
continued until the desired degree of convergence is obtained. The
results of Example 9, as presented in Tables XXI and XXII, indicate that
such a calculation converges rapidly.

If the bulk separation-column flow-variable combination dis-
cussed above is not desired, it is quite possible to specify setting a
control-component separation or setting a composition-dependent variable,
since for these variables the calculational procedures previously out-

lined can be used. It is even possible to effectively set and hold more
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‘Table XX

Results for Example 9:

temperature (°F) and summations from four iterations

1 ' b
Stage Temp. %(xi)p Temp. §(Xi)p Temp;3v§(xi)P Temp. %(xi)p
a - 1.000 - 1.000  113.0: 1.000 113.1 1,000
17 110°F 1.076 117.5 1.008 118.3 1.002 118.5 1.000
16 121 1.119 126.3 1.019 127.6 1.004 127.8 1.001
15 131 1,193 .139.8 1.026 1%0.9 1.005 141.2 1.001
14 1lk2  1.318 156.0 1.021 155.9 1.006. 156.1 1,002
13 153  1.490 157.1 .998 168.9 1.006  169.0 1.001
12 164  1.673 183.4 .957 178.5 1.008  178.8 1.001
11 175 1.130 186.6 1.023 188.8 .996 188.2 1.001
10 186  1.148 195.% 1.005 194.7 .99%  194.2 1.001
9 196  1.12k £02.0 .983 199.7 .995  199.3 1,001
8 207  1.063 207.7 .966 204%.% .998  204.4 1,001
T 218 987 212.8 .957 209.3 1.00k4 209.9 1,001
6 229 .960  217.2 1.025 215.1 .987  216.h  .999
5 240 .917 235.5 1.01% 233.4 .990  234.3 . .998
b 251 .897 250.8 1.005 249.2 .993  249.8  .998
3 262 .891  264.6 1.000 263.8 .995  264.3  .999
2 273 2901 278.1  .999 277.9 .997  278,3  .999
1 284 3923 291.6 1.000 291.8 999 292.1 1,000
b 295 1.000 306.1 1.000 306.1 1.000 306.2 1,000
5ss 170 .935 185.% 1.020 182.0 1.002 182.0 1.001
hss 178 .966  188.L4° 1.01% 186.0 1.002 185.8 1.001
3ss 186 .988 192.1 1.010 190.3 1.002 190.0 1.001
258 193 1.00b 196.1 1.007 194.7 1.002 194.5 1.001
lss 200 1.010 200.3 1.003 199.2 1.001 199.0 1.000
s 207 1.000 204.9 1.000 204%.2 1.000 20%.0

1,000
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Table XXII

Results for Example 9:

various recovery fractions from four iterations

Top product recovery fraction

Component 1 2 3 4

C3H8 951 945 Ol .943
Cquo .037 .042 042 .043
CSle - - - -
'C6H14‘ w - | o -

Side draw product recovery fraction

C3H8 : .0h49 .055 .056 057
Cquo ‘ .908 .90 .904 .90L
C5H12 .109 .109 -107 - L1107
Céﬂlh .001 .002 ,00L .001

Bottom product recovery fraction

’C3H8 - e - -
Cquo .055 .055 .05k ,053
CH, .891 891 893 .893
CH ), :999 .998 999 .99
* @ factor ' 1.060 1.063 975 1.000

®' factor .539 1.074 .993 1.000
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than one control~component separation. -A case in point using the system
of Example 9 would be to set and hold the following variables:

Recoyery of C3H8‘in.the.top product

Purity of C§H8 in the tbp.product

Recovery of C in the bottom product

Purity of C

5H12
5H12 in the bottom product
Reflux temperature

Example 9
Equilibrium constant values
Feed ¥ A _B
'C3H8 030 =-2553 5,011
C\H o 0.40 -3106 5.120
CsH) 5 0.20 -3828: 5.509
CeHy), 0.10 -4502 5.871
. 1.00

Thermal condition of feed: saturated liquid

Column pressure: 200 psia .
Reflux temperaturet. bubble point

‘Enriching stages: 5(not including side-draw stage)
Intermediate stages: 6(not including feed stage)
Stripping stages: 6(including feed stage)
Side=stripper stagess 5

Top~product amount: 0.3 mole per mole feed

Reflux amounts O.4 mole per mole feed

.Side-stripper product amounts 1.5 moles per mole feed
‘Side=stripper reboiler vapor: 0.5 mole per mole feed

Acceptable bubble-point errors ]62|.s O.lQF

Since stages are numbered from the bottom of the column upward,
for this example the feed stage is 6, the side-draw stage is 12, and the

" is used for

top stage in the main column 1is 17. The designationv"ss
side-stripper stages, and thus the top stage in the side stripper becomes

5ss. See Fig. 19b.
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Fixing these variables automatically sets all product amounts
so that wpat is required is the calculation of all internal column
flows.

It is apparent that the internal flow that will have the
greatest effect on the recovery of C3H8 will be the vapor flow in the
side stripper. Similarly, that flow which will affect the C5H12 recovery
the most will be the liquid flow in the intermediate section. Con-
sequently these two flows can be varied essentially independently and
calculations made alternately on the two components to produce the
desired recoveries. To hold the recovery and .purity of ChHlO’ which
appears in appreciable quantity in all products, is more difficult but
can be done by the same procedure. In general, the techniques pre-
viously presented for two-section columms can be used here.

In the generalization of this procedure for more than three
products, as for example a crude-oil distdillation column with two or
more side strippers, Eq. (IV.2), (IV.3), (IV.4), (IV.5), and (IV.6) must
be repeated'for every side~draw product., For each additional side
product another term appears in Eq. (IV.2) and (IV.4) and another p must
be evaluated. Although in principle this presents no difficulties, the
programming and calculations become rather involved and it is recommended
that Method II mass~balance procedures be used rather than Method I, If
such a column is further complicated by more than one feed input, the

use of Method II mass~balance procedure. is strongly recommended.

Calculations for Complex Columns=--Two or More Feeds

The simplest column of this type is that illustrated in Fig.
20. Using this figure and applying the ddscription rule, one cén see
that if the two feeds are completely specified and if in addition the
number of stages per section and the column pressure are specified then
the three folldwing_variables can be sets

. Condenser duty
Reboiler duty

Reflux amount
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MU-17922

Fig., 20. Typical two-feed distillation column.
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The simplest set of variables that can be used would involve

replacing the exchanger duties as follows:
' Total top-product amount
Reflux temperature
Reflux amount
Example 10 uses this latter set of varisbles. For each com-
ponent, the Method I mass-balance procedure is started after assumption
of a temperature gradient and all internal column flows. Calculations

from the colum bottom to the lower feed stage, f., yield the ratio

2
(yfl/xb)° Calculations from the column top to thi upper feed stage, f,,
~ yield the ratio (sz/xd), and below this feed stage it would be desirable
- to continue calculating down, using some combined product, as was done
for three-product colufms. Unfortunately, concentration ratios based on
a combined product cannot be expreséed as a pure number, as they could
for the side-product column. The unknown concentration ratio (sz/xd)
appears at feed stage f2 and must be carried along in any calculations
continuing down the column.

Consider first the mass balahce below Stage T In Example 10

o°
the upper feed stage is number 11 and the lower feed stage is number 2,
and in the subsequent equations actual stage numbers are used to

simplify the subscriptings. Consider, then, the first mass balance to

involve F2 At Stage 11 this is

Viov10 = Tpa¥in + 9xg - Foxmy o (Tv.7)
which can be written in the following two alternate forms

Y0 Ma (B Vo "t Ty Fo (X
x. ¥ X * v TV X ? (1v.8)
a 10 \*a 10 10 \*a
y L X F xF
10 _ Vll <1l_§ al . _Vz <1°X2> . (VL.9)
*a 10 \%a 10 d

Equation (IV.9) is recognized as a combination of a normal

Method I mass-balance equation and a carrying term for the unknown
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(XFZ/xd) ratio. To simplify the nomenclature, Eq. (IV.9) is newly

defined as

.y - ..
10 ¥re
X G0 * 910 ( X }’ (Iv.10)

where the G and J functions are calculable numbers. Using the equili-

brium relation results in

X G J x. :
10 _ KlO + KlO <1 - _52_> , | - (1v.11)
X3 10 ™10 Xa

-and this equation in turn can be newly defined as

.

X X ’
0 . *po
Xy &0 *id10 ( Txg )7 (1v.12)

where the g and J functions are also calculable numbers, The continuation

.of this procedure yilelds, for Stage 9,

y L L F X .
220 (g 1)1 22 ) SR (—5—@ (Iv.13)
xd V9 ..lO B V9 10 V9 X
or
vy R :
2.6 +J ,_1-X—F§ , (IV.1h)
3 9 9 *a/ | |

and so on down the column. Thus the generalized.expressions for these

newly defined functions are

L
_ _ptl a1y .
Gp —E——V _ (giigl-l 1) +1, ' (IV.15)
Lo v T
JP = _.E__Vp ,(Jpﬂ_) + ‘—,;, (Iv.16)

(Iv.17)
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J
j = £ B (IV.18)
p K
Y
and the complexity of these functions is directly dependent upon the .

number of stages existing in the intermediate section between the two
 feed stages. As noted, these functions are numbers and as such are

calculated and stored for each stage in the intermediate section. As
will be shown, they also appear in the matching relation existing at
the lower feed stage, fl.

In starting the calculation of these functions at the upper
feed stage, we have gr, = (sz/xd) and jfz = 0 for feeds which are all
liquid or all vapor.  For partially vaporized feeds, the relations are
slightly more complex but can be readily derived.

Stage~to-stage calculations in the intermediate section
finally yieid values of g and J for the stage immediately above the
lower feed.stage or values of G and J for the lower feed stage. The
matching equation on the lower feed tray can be written using these

functions. .Thus, for all-liquid or all-vapor feeds, the matching

equation would be

(Iv.19)

Xpo
% G§f1 i Jf1<l Y
o (yfl/xb)

However, the value of x. must be known before this equation

d
" can be used, so that it becomes necessary to set up an over-all mass-

balance relation explicit in x Upon substituting Eq. (IV.19) into the

a
over-all mass balance relation, one obtains

_ FlXFl + FZXFZ )
Xq = = (Iv.20)
G. +J. 1 -{*Fe '
fl fl X
d /1 4+ a.

(yfl/xb)

b
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Solving Eq. (IV.20) for x, yields
e
Fx, +F + D
1 T T2 Fe CTNEN) S
X, = - . , (Iv.21)

; Gsf-'-l + J-fl

+ d
nyi;xb)

I

A1l the numbers in Eq. (IV.21) are known, and therefore values
of X4 can easlly be obtained for each cqmponént. Valpes of xb'can then
. be calculated by using,Eq. (Iv.19). However, before one proceeds to
calculate the individual stage compositions, it is best to use these
values in component-distribution-~ratio form for the ﬁ factor calculatlon
such as that described in Section II. The form Qf the $-factor equation
here is ' '

$1XF +F 2'F,

X, = <Q&{> -~ | | (1v.22)

Thus all Xd and xb =

b .
K?i;) | are determined in the usual

1, and stage compositions can be

I o

way with the restriction :ZL:(xi)d
obtained. Following this the temperature gradient is corrected and
-the flows, if desired, can be corrected by the Method I energy-balance
procedure. ‘ .
. Calculations with two feeds are more difficult than with one
feed only in that two numbers must be carried through the intermediate
section between the feed plates rather than one number as is normally
done. As can be seen from the results of Example 10 in Tables XIII and
XXIV, the rate of convergence is quite rapid. All of the variables
that can be held succeséfully in the calculation of ordinary columns

can be held also.

It is possible to extend the use of these G, J, g, and J
functions to the case of three feeds without unduly complicating the

calculation, but this would represent the limit of their usefulness.



Table "XXIII

Results for Example 10: temperatuféf(oF) and summations from five iterations

1 .
Stage Temp. §(Xizp, Temp. : %(xiji Temp. - §(Xizp Temp. . §(Xi)p Temp. : §(Xi)p
a - 1.000 171.6  1.000 172.1  1.000 172.2  1.000 172.2  1.000
15 172 1.084 180.6 1.009 181.6 1.000 181.6 1.001 181.6 1.000
1k 177 1.141 186.9 1.011 187.6 1.000 187.6 1.001 187.7 1.000
13 182 1.178 192.7 1.002 192.4 1.000  192.% 1.001 192.4 .998
12 187 1.209 198.8  .978  196.2 1.000  196.3 1.001L  196.%  .999
1 193 1.235 205.8 .935 199.4  1.004 199.8  1.001 199.9 .999
10 198 1.206 213.7 .932 212.7 1.010 213.5 1.003 213.6 .999
9 203 1.211 222.2 .964 225.5 1.017 226.5 1.004 226.6 .999
8 208 1.259 230.9 1.012 236.0 1.024 236.9 1.004 236.9 .999
7 213 1.355 239.1 1.053 243.6  1.027 24,2 1.004 24L.2  1.000
6 218 1.498 2hk6.2  1.077 248.9  1.028 24k9.2  1.003 249.1  1.000
5 223 1.687 252.0 1.082 252.8 1.025 252.8  1.002 252.6  1.000
L 229 1.908 257.3 1.070 256.3  1.022 256.1L 1,001 255.9  1.000
3 234 2.197 263.3 1.0.43 260.5 1.017 260.2 .999 260.0 1.000
2 240 .T60 271.4 1.018 266.1  1.001 266.0 1.001 265.8 = 1.000
1 245 .832 275.4 1.006 272.9  1.000 272.8  1.000 272.7 1,000
b 250 1.000 283.0  1.000 281.8 1.000 281.7 1.000 281.7 1.000

-TET-
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Table XXIV

Results for Example 103
top product recovery fractions from five iterations

Component 1 2 -3 4 5

CiHg 11,000 1.000, 1,000 1.000 1.000
¢, H 983 973 973972 972
C., .095 .109 .110 .111 .111
o .002 .001 .00L .00L  .00L
o factor 292 - 1.022 .987 1,003 - 1.002

For more than three feeds the use of the Method II mass-balance pro-

cedure is

strongly recommended.

‘Example 10
Equilibrium-value constants
Feed ~ [17F FoXra A B
C3H8 - 0.05 -2553 22299
’ChHlO 0.20 0.80 -3106 5.408
CSle 0.60 0.10 -3828 5.797
C6th 4 0.%0 0.05 . ~4502 6.159
1.20 1.00

Thermal condition of feed: saturated liquid

Column pressure: 150 psia

Reflux temperature: bubble point

Enriching stages: U4(not including upper feed stage)
Stripping stages: '2(in61uding lower feed stage)
Top-product amount: 1.10 moles per 2,20 moles feed
Reflux amount: 1.00 mole per 2.20 moles feed

Acceptable bubble~-point error: lezl _O,lOF,
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V. STRIPPING AND ABSORPTION COLUMNS

The boiling-point range of feed material to the simple and
complex columns discussed in the preceding sections has generally been
limited to a small value. Fairly large values of the boiling-point
range are not ordinarily encountered except when it is desired to accom-
plish some special-purpose Separations. Stripping and absorption fali
in this latter category, and for this reason are discussed separately
here. The recovery of wvaluable hydrocarbons from multicomponent
'gaseous mixtures by abéorption with a lean solvent oil followed by
steam stripping of the enriched solvent is an important operation in
the natﬁral—gasoline and petroleum-refining industries. In the absorp-
tion process there is present, then, a component or a mixture--the lean
oil--whose boiling point will be appreciably higher than that of thpse
components remaining after absorption. On the other hand, in the
stripping process, steam will have a much lower boiling point than those
compenents remaining after stripping. Unfortunately, in the solution of
problems based on these systems, the use of digital computers brings:to
light convergence difficulties not ordinarily encountered iﬁ "appfoxima-

> 12

tion" methods such as those of Souders and Brown,” Horton and Franklin,

Sherwood ananigford,33 Edmister;9

not desired. The methods developed and presented here are convergent

and others, where exacl solutions are

and therefore give exact solutions to problems involving absorption and

stripping columns.

Simple Stripping Column

In a simple stripping column, such as that shown in Fig: 21,
steam entering at the bottom proceeds up the column and. becomes séturated
with hydrocarbon vapor at the temperature and pressure existing at any
given point. Since the operation is adiabatic, the energy required to
vaporize hydrocarbon must come from the sensible heat of the liguid
stream. Thus, the temperature gradient, instead of rising from top to
bottom, drops off, and this is another important feature in which a

stripping column differs from an ordinary distillation column.
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In the mathematical mass-balance analysis to follow, it is
always assumed that thermodynamic conditions in the -stripping column
are such as to preclude the condensation of any steam at any point in
the column. At the very outset of sny analysis, the presence of steam
poses the necessity of dec¢iding how to héndle it in the calculatiocnal
scheme developed. ' .

The first decision is to make a choice from two available _
treatments, viz., to treat the steam as merely another component in the
system or to recognize that steam is not a hydrocarbon-and so treat it
as a diluent not entering into the general fractionation pattern; In
the development to fbllow, steam has been treated as a diluent and the
general computer progfams for stripping columns were usually based on
this choice. However, as is shown later, the treatment of steam as
another component is actuélly a more desirable approach. Fortunately
either approach is acceptable, since the convergence of a problem is
unaffected by which approach is used.

The necessity of a second decision exists only if the choice
is made to treat steam as a diluent. Since that choice was made in the
analysis to follow, a decision must be made as to the basis upon which
to define vapor mole fractions. The choice here lies in defining vapor
mole fractions on total mass flow or on only the hydrocarbon mass flow.
Once again, fortunately, either approach i1s acceptable from the conver-
gence standpoint, so that the only basis for a decision would be the
relative ease of programming for a computer. Both approaches were used
here, and it was found that they required approximately the same
storége space and the same execution time in a computer. In the equations
to follow, then, all vapor flows are total mass flows, that is, they
include both hydrocarbons and steam, and consequently all vapor mole
fractions are defined on this total mass flow.

The Description Rule for this case indicates that in addition
to all the feed varisbles, column'pressure, and number of stages, it is
possible to set two other variables. They would be the amount and

enthalpy of the stripping steam. When 81l these variables have been set,
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it becomes necessary to predict the top- and bottom-prodﬁct amounts as
well as all internal column flows. Also, a temperature gradient must
be predicted. As is shown later, it is not necessary to expend a lot of
effort in maeking an initial prediction, since . convergence will
result even with an absurd prediction. Predictions based on the
"approximate” methods of Horton and Franklin or Souders and Brown may
be used if desired,'bﬁtvthey will result in a relatively small reduction
of computer time needed for a calcuiation. | v \,

It would be desirable to use the Method I mass-balanée pro-

cedure, and for this purpose, the combined bottom product is defined by

PEL -V =Db-V_, (v.1)

.where VSt = moles of steam entering the stripping column per mole feed.

The individual-component mass balance becomes
Pxp = bx, - vstyst_, , (v.2)
or, since we have Yo = O for all the hydrocarbon components,
A

o, s

X
 *p o

Starting from Eq. (V.3) and proceeding up the column in the

[

(V.3)

manner of Method I mass balance, it is'p0ssible to obtain the component
ratio (yt/xP) for each component. This ratio is the actual component-
distribution ratio, since vy is the mole fraction in the top product in

this case. The over-all mass balance equation,

FXF ,
= i (V.h)
P v, (yt

—\+ P

makes use of this ratio to obtain all Xp values. The Vt of Eg. (V.h) is
in reality d, the top product, for this column, and therefore Vi = %4

and Eq. (V.4) can be written as
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F
X = —-———'-———XF . (V-S)

P d_(fi> + P
*p

As noted above, this equation holds for all the hydrocarbons,
and the Xp values resulting from it are used to resolve all the compo-
nent ratics into the actual stage compositions. It is now possible %o
use these individual stage compositions either to move the temperatures
while holding the flows constant at their preset values or to move the
flows while holding the temperature constant at their present value.
This latter possibility exists only because steam is present and is
treated as a diluent rather than as another component.

Some further discussion of these two possibilities is in order
bécause of their effect on the energy-balance procedure to be used for
. stripping columns. As is shown later, the Method I energy-balance pro-
cedure fails altogether in this case. Method II energy-balance
procedure does work, but if the choice is made to hold the temperatures
and move the flows, then the method differs from that of Section III in
that the flows, rather than the temperatures, are moved twice. That is,
there is a flow-correction calculation made prior to entering the energy
balance calculation, and another flow correction is made as a result of
the flash calculation within the energy balance.
| For the moment, then, let the choice be made to hold the
temperatures and move the flows, and let this be done with the view in
mind of accomplishing only a mass balance rather than both mass and
energy balances. If the assumption is made that the mole fraction
ratios of the hydrocarbon portion of the vapor are correct, then it is
possible to find how much of this hydrocarbon vapor will be reqpired‘to
saturate the steam at the temperatures set and held. Thus & variation
in total vapor flow is implicit, and it is necessary to have an expression

for (Vé) the corrected vapor flow at any stage p.

NEW’
The ratioc of mole fractions in the hydrocarbon portion of the

vapor is (yi/§ yi), where the summation is on the hydrocarbons only.
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At the unknown new value of V_ there will be a new value of Vet and

therefore the new value of (yi) hydrocarbon can be written
[1 - by yme! 03/395) = 0 D - (v.8)
and using this expression in the dew-point relation leads to

— 3 =rx =1 , (v.7)
1
i
or
Py, |

where i in Egs. (V.6), (V.7), and (V.8) runs across the hydrocarbon

only. Dew points are used here because the vapor-phase compositions
give a more sensitive temperature indication than do the liquid-phase
compositions. Now % yi can be replaced by its eguivalent expression,

295 = 30 ) 00man ~ Getlomn’ (V'9)

vhere i in (% yi) includes the steam. Substituting Eq. (V.9) into

TOTAL
Eq. (V.8) gives the expression

(2 Y o, - (yst?OLD‘

1 -
£ Y,;/K,

At any given iteration in & calculation, all quantities
necessary to evaluate either Eq. (V.8) or (V.10) are available and

is then used to calculate (V_) as indicated

(yst)NEW p’NEW

\
st :
(VP)NEW = T - (V.11)



-139- -

Following the calculation of all (V the (Lp) are

» p)NEW’ NEW
obtained by a simple flow balance, and the calculation returns to the
start of the mass-balance equations, and iterations are carried out to
the desired degree of convergence. When convergence is reached, there
results a set of flows and compositions for every stage, and they are
correct for the temperature gradient assumed and held..

This procedure is illustrated in Example 11, in which a four-
stage column similar to that illustrated in Fig. 21 is used. -It is
Idesired to strip light hydrocarbons out of a feed stream consisting

essentially of C This is to be done with 0.1 mole of steam per

‘ 9H20' .
mole feed. A Horton and Franklin approximate dalculation was used to
set the initial temperature and flow gradients for the results shown in
Table XXV. The flow gradient was next set at an absurd condition and
the example rerun, with the results shown in Table XXVI. It is

apparent in both cases that the procedure is rapidly convergent.

Example 11
Equilibrium-value constants
Feed Fxp A B
03H8 0.0121 -2747. T.143
C\H 4 0.0236 -3302. 7.189
05H12 0.0166 -4879. 8.920
C6H1u 0.0149 49Tk, 8.259
CgHZO 0.9328 -7737 10.592
1.0000

Steam flow: 0.1 mole per mole feed
Steam temperature;-’Z?OoF
Column stages: L4

' Column pressure: 30 psia



Table XXV

Results for Example 11:
flows and summations for four iterations with a calcula®ed initial flow gradient

1 : 2 ' N
Stage W L %(yijp T T gryi)p T g ),V i ERN
4 .23 .96  .965 .21k ,955 1.011 .219  .955  .996 .27 .955  1.001 -
3 19 .93 .937 169 .938 1.015 173 .936 .996 172 .937  1.001 ,
2 .16 .90 .97k .152  .927 1,011 155 .923  .997 JA5% 0,925 1.001
1 13 .87 15061 .1kl .886 . 1.005 .1k2 .88 .999 .1k .883 1.000 -
| o
Table XXVI ?
Results for Example 11:
flows and summations for four 1teratlons with no initial flow gradient
1 2 3 L
Stage V L glyi)P v L g(yi)p v L E(yi)p,- v L Z(y 15
L .25 1.00 .913 0213 2954 1.012 218 .955 . .997 217 .955 1.001
3 .25 1.00 780 - .167 .937 1.024 AT7h 937 996 172 .937  1.001
2 .25 1.00 .713 .150  .925 1.023 .155  .923  .997 153 .92h  1.000
1 .25 .85 .683 138 .887 1.018 .1k .882 .998 141,883 1.000
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Initial Assumptions

o Temperature First flow gradient Second flow gradient
Stage gradient Liquid Vapor Liquid Vapor
b | 280°F 0.96 0.23 1.00  0.25
3 25k - 0.93 0.19 1.00 0.25
2 250 0.90 0.16 1.00 0.25
1 245 0.87 0.13 0.85 0.25

The component-recovery fractions in the bottom product are as listed:

Bottom-product

Component recovery fraction
C3H8 .005
ChHlO .06k4
CSHlZ . 265
Cetlyy, +293
C9H20 .931

Whether or not the initial gradients were established by
approximation methods, it 1s very desirable to run energy-bélance
calculations on stripping columns, since flow variation could have an
appreciably .effect on the separationﬂ For energy-balance purposes
Method II of‘Section IIT was used. It will be recalled that this
method corrects both the temperature and the flows, so that in a typiéal
iteration the sequence of calculations might be

(a) Method I mess-balance calculation modified for strippers.

(b) Flow-correction calculation as just outlined.

(¢) Method II energy-balance calcuation to correct both flow

and temperaturé. ' ,

The pattern followed in a calculation is arbitrary. Steps 1
and 2 above might be repeated a number of times before Step 3 was done,
and this was tried. A pattern involving Steps 1, 2, and 3 in sequence
was also tried. The best pattern to use in any given case is a matter
of judgment and experience, but it has been found that in most cases a
Step 1, 2, 3 sequential pattern will converge just about as rapidly as

any other pattern.
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The feed and column of Exemple 11 were used for a complete
-calcumation, Example 12,: using both mass and heat balances in a éequen-
tial pattern. The schematic diagram of the computernprogram to accomplish
this is shown in Fig. 22, where path (a) is used. It should be noted
that the normalizing of the vapor mole fractions is done after Step 2
flow correction and before Step 3 energy balance. The purpose of this

is to use (y in the normalization process. The results of

st)NEW
Example 12 are given in Tables XXVII, XXVIII, and XIX as well as in

Fig. 23 and 24. Once again the rate of convergence is good, since the
results of Iteration 4 or 5 are sufficient for all practical purposes

t

even though the initial flow and temperature gradients were pure "guesses.'

Example 12

Feed and column variables as in Example 1l1; also A and B

constants.
Enthalpy-value constants
(Referred to liquid at 200°F)
Feed k - 1 U W
C3H8 31.75 -19050 22.04 -7712
Cquo W1.27 -24762 29.64 -10170
05H12 52.67 -31602 36.79 -;2189
C6th 58. 60 -35160 42.23 -13533
C9H20 76.9k4 -4616Lk 62.84 -19879
Steam -- - 9.2 -5220
Initial assumptions
Temperature Flow gradients

Stage Gradient Liguid Vapor .

4 270°F 0.20 1,00

3 270 0.20 1.00

2 270 0.20 1.00

1 270 . 0.20 0.90
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Mass and energy balance

i
:

r

Method II Energy-balance:

Temperature flow correction

Mod:f:eld Method | -—— _+_ - _Mass balance ?
mass-balance |jq-o& i only ]
equations A Mass] Stage { Stage
I | balance telst, -—— =1 -4 test] b we — 1
1 1y |cyele o cycle o7
| only o on | o on |
| g B .
P! | [
Ly ! [
Stage | ! Component | Component |
test; I test; \ test;
cycle or[ = | cycle or I~ 71 cycle or o
go on | go on 1l go on : {
!
| 1y o
| ; 1
| ! |
Matching | Mole-fraction 11 Dew-point | |
equation summation and equation - |
to get | normalization ! I correct all
all ‘ using ‘] | temperatures __]
xp values | (yst) new '__I
1
|
|
Back-multiply ) ! Stage L Stage
using xp to I test; _— test; — -
l cycle or _| cycle or
et all ) o on
getally, [ | go on | g I
values | i | 1
{ ] |
| l Component| | Component |
| | test; }_ —_ test; L
1 cycle or : cycle or gl
Stage \ go on 1 go on P
test; 1 | | |
cycle or[ ™~ | | ! I
go on | :l | l
| Calculate (y_, )ne |l Mole-fraction ! I
| and all new d | summation andh
flows normalization h-l
component | ! ‘J
test; | A
cycle or
gO on ? !
i |
P ! !
ath (a)J Path (b) |

MU-17964

Fig. 22. Schematic computer program for stripper.
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Fig. 23. Results for Example 12: temperature vs. iteration

for all stages.
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Fig. 24. Results for Example 12: vapor flow vs. iteration
for all stages. :



-Table XXVIL

Results for Example 12: temperatures ( F) and summations from various iterations

1 2 . k4 ; . 1
Stage Temp. %(yljp Temp. %(y:[)#p ‘T«emp. :ZLZ(yi); Temp.. E(yl)p Temp,5 §(y17p Temp. ?:ZL;_(yi)p
i 27o°F 1.134%  257.5 .953 263.8 1.023 262.5 .991 262.8 1.004  262.7 1.000
3 270 1.011 253.9 1.017 259.9 1.005 259.1 .996  259.3 1.002  259.2 1.000
2 270 950  250.9 1.058  255.% .997 255.2 .998  255.4 1.001  255.3 1.000
1 270 916 247.9 1.08% W61 .995 2u6fo .999 246.3 1.001 246.2 1.000
Table XXVIIT.
Results for Example 12:- vapor-flow ahd'enefgy uﬁbalancé f£bm_§ariou$.iterations .
| 2 3 y T s 10

‘Stage v Q- i Q BT Q il Q vV o q. ¥ Q
4 200 -707  .235 +495  .222 -131  .231 436.0 .227 -12.3 .228 -.10
3 .200 -250  .166 -+83.5 .179 +.70 _ .180 -7,0 .179  %.90 .179  +.00
2 .200  -151 L1kl +75.0 .160 %32.0 .160 -.10 .159 +2.3  .159  +.00
1 200 -1197  .129 -h56  .1h2 +6.80 .14l +7.7 .1kl -2.5 .11 +.00
zQ --  -2305 - 4197 - 91.6 ~-  436.6 -- -18.0  --  +.20

—91‘."E-
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Table XXIX

Results for Example 12:
~top product recovery fraction from various iterations

Component o1 2 3 L 5 6

C3H8 .998 .995 . 996 . 7996 f996 .996
Cquo .965 .940 .Oh7 .950 .99 .99
CSHlZ .816 . 749 . 768 L7750 WTTL LT72
C6H1u L451 429 .138 by Lih2 4 RIRIN
CéHZO 077 .076 .079 .080 .079 .080

As mentioned previously, it is possible to calculate this type
of problem by holding the flows and moving the temperatures by a dew-
point calculation before proceeding with an energy balance. This apprach
assumes that Yot is correct and finds that value of the temperature for

which

}-(yst)

Z (yi) SJT}’—T__

. = x; = 1.0, | (v.12)

where i runs across hydrocarbons only and where

1-(y_.)
;) z(y.?t = (¥; )yormar1zED" (v.13)

" Having found that value of the temperature which satisfies
Eq. (V.12), one carries out an energy balance, and there results another
temperature change as well as a flow change. Path (b) of Fig. 22 shows
the computer program for this approach, and Example 13 was done by using
dew points and mass balance only for the same feed and physical column
as that of Example 12. The results of Example 13 are shown in Table

XXX from which it can be seen that convergence is fairly rapid.
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Table XXX

Results for Example 13: temperatures (OF) and summations from eight iterations
- Stage summations §(yi)p '

1 2 3 b 5 6 7 8

Stage ] No & [0} No @ ] _NOA@ [} No ¢ ] No ¢ ] No &- [} No & o No @
1 1.267 1.13% .992 .995 .999 1,000 1.000 1.000 1.00C 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.082 1.011 .990 1.002 .998 1.004 1.000 1.002 1.000 1.001 1.000 1.000 1.000 1.000 1.000° 1.000
3 .992  .950 .994% 1.0L7 .998 1.009 1.000 1.004 1.000 1.002 1.000 1.001 1.000 1.000 1.000 1.000
L .94 .916 1.008 1.049 1.000 1.019 1.000 1.008 1.000 1.003 1.000 1.001L 1.000 1.001 1.000 1.000
Stage - Stage temperatures

1 270°F 270°F 277.4 279.1 278.3 279.1 278.5 278.8 =278.5 278.6 278.5 278.5 2718.5 278.5 278.5 '278.5
2 270 270 270.2 278.6 27L.3 272.8 27l.5 272.1 271.5 27L.8 271.5 27L.6 271.5 271.6 27L.5 27L.6
3 270 270 261.1 266.6 261.6 26h.1 261.9 262.9 261.9 262.4 261.9 262.1 261.9 262.0 261.9 262.0
i 270 270 246.4% 254.8 245.5 249.3 245.5 247.0 245.% 246.1 245.h% 245.7 245.4% 245,5 245.% 245.5

® factor.652 --  .985  -- .999  -- 1,000 == °~ 1,000 --  1.000 ==  1.000 ~-= 1,000 ==
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Example 13

Feed and column variables, A and B constants, and all initial
assumptions are the same as those of Example 12.

Allowable dew-point error: |ez|.$ O.lOF.

The use of the ® factor in absorber and stripper calculations
will be discussed shortly, but the factor does speed up the convergence
in Example 13. However, the temperature gradient obtained is completely
wrong when compared with that from a mass and energy bélénce, therefore
this calculation is done next.

"A complete calculation using the sequence

(a) Method I mass-balance calculation modified for strippers,

(b) Temperature correction by dew-point procedure,

(¢) Method II energy-balance calculation to correct both flow

and temperature,
is illustrated in Example 1Lk. 1In the first attempt to solve this example
no damping factor was used, but the results of the very first iteration
produced so much movement in the vapor flow that a value of (yst)'greater
than 1 resulted. This situation is physically impossible, as the upper
limit on'(yst) is 1 for pure steam. The results reported in Tables
XXXI, XXII, and XXXIII and Figs. 25 and 26 are based upon a damping
factor of 1/2 applied to the temperature correction as outlined in
Section III. As can be seen from the results, there has been very
little slowing down of the rate of convergence as a result of carrying
out energy balances, since, for all practical purposes, the results of

Iteration 6 or 7 would be acceptable.

‘Example 114

Feed and column variables, A and B constants, all initial
assumptions, and the enthalpy-value constants are the same as those of
Example 12. | _ v

Allowable dew-point error: |ezl.$ O.loF,
Damping factor: 1/2.



-150-

Table XXXT

Results for Example l4: summations from nine iterations

1 2 3 " 5~ 6 7 8 9
Stage () No o Q No & 9 No ¢ ¢ No & 6. No d § No o & lo ¢ Nod & Noo
b 1.:267 1.13%  .,98L 1,039 .994% 1.0l1 .997 1.002 .999 .999 .999 .999 1.000 ,999 1.000 1,000 1.000 1,000
3 1.082 1.011 .983 1.039 .98k .998 .992 .993 .997 .995 .999 .997 .999 .999 1.000 .999 1.000 1.000
2 .992  .950 1.040 1.075 .995 1.001 .995 ..99% .998 .996 .999 .998 1.000 .999 1.000 1.000 1.000 1.000
1 9L .916 1.058 1.068 .999 1.000 .997 L9996 .999 .998 .99% .999 1.000 1.060 1.000 1,000 1.000 1,000
Table XXXII
Results for Example 14%: energy unbalsnces (Gp) and their algebraic sums from nine iterations
1 2 3 L 5 6 T 8 9
Stage ] No & Z No ¢ o No?d [ No & 9 No ¢ ] No o ] No ¢ ] No & o No ¢
s +2025 +J.33é +1019 +1223 4469 +702 422k 4373 4110 +187  +531.1 +89.9 +26.3 +LL.7 +12.6 +18.9 45.8 48,4
3 -926  -Thh -277  =77.1 -z24h -129 ~-170 -128 -103 -95.7 -57.9 -60.3 -31.% -35.2 -16.5 -19.4 -8.5 -l0.2
2 ~5h7  =h22 4448 4361 4334 4257 +189  41h3 101 +78.5 +452.7 +43.5 +27.3 +24.0 41kl +13.2 +7.3  +7.2
1 -2109 -2009 -1029 -1267 ~46l -629 -2ih -300 -100 -139  -h7.6 -63.7 ~-22.9 -29.% -11.1 -13.7 -5.% -6.5
£Q ~-1558 -1836 4161 4241  +97.7+420L +30.4 +88.5 +7.h +432.3 +0.3 +9.3 0.7 +l..3 -0,9 ~L.0 =0.7 =-l.2
Table XXXIIT
Results for Example 1li: top product recovery fractions from varias lterations
Without § factor With ¢ factor
Component 1 2 3 4 5 6 12 1 2 3 b 5 6 7 8 9
C3H8 LT77T.986 1,015 1.013 1.007 1.002 ,996 1.031 1.050 1.021 1.007 1.002 .998 .997 .997 .997
¢ J751 .919 L9533 .958 .957 .95% .9%9 .980 .98h .96k  ,956 .953 .95L .950 .950 .950
CEH12 .635 .690 .73T .76L  .TTO  .T72 .T72 76T .TH6  .TEL .T69 .72 .TT2 73 WTI3 WT73
Celyy, L350 .360 .ol Lh25 L4360 WM LMk 360 .396 k23 (436 JMBO LBh2 LLhh L hhh (LN
09H20 .060 .058 .067 .073 .077 .OT8 .080 .053 .063 .072 .076 .078 .079 .OT9 .O7T9 .OT9
® factor == - - - - - <= TB527 1.039 1.012 1.005 1.003 1.002 1.001 1.000 1.000
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[ T L T T T
No ¢ factor
270 + == = = ¢ factor -J
Stage 4
~——
.
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S
® 260 Stage 3 1
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MU-17970

Fig. 25. Results for Example 1k4: temperature vs. iteration
for all stages.
—— no § factor.
-~= & factor used.
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No ¢ factor

=== — ¢ factor

Stage 4

Total vapor flow (moles per mole feed)

Stage 3
Stage 2
Stage 1
0.0t 1 1 A 1 1
1 3 5 7 9 11 12
Iteration
MU —-17925

Fig. 26. Results for Example 1ki: +total vapor flow vs.
iteration for all stages.
—— no & factor.
-== & factor used.
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Top-product recovery fraction
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.0l

Iteration

MU-=17926

Fig. 27. Results for Example 1lh: +top-product recovery
fraction vs. iteration for all stages.
—— no ¢ factor.
--- @ factor used.
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The results of Examples 12 and 1k bring out a rather striking
difference in the rate of relaxation of the energy unbalances, Qp on
each stage, The double correction of the flows qulckly ‘relaxes all Qp
to zero without ever generating an 1mpos51ble condition and without
requiring a damping factor. The use of a damping factor when doing double
corrections of the temperatures appreciasbly slows down the rate of con-
vergence but assures. that no 1mp0551ble physical condition arises. As
was p01nted out for the © factor, any tlme a solutlon alternates about
its correct value, convergence‘w;ll‘be reachedfln a mln;mum number of
iterations,_and this is the case fof'the.doﬁble flow correction. However,
the asymptotic behavior of the double teﬁperature correction is equally
capable of giving an exact answer'bmxatewcostudfadditional iterations.
Unfortunately, the. double-flow-correction approach.is possible only when
a component,‘such as steam, can be treated as a diluent. As is shown
later, this approach breaks down when & more complex column is involved
and the liquid flow is very small in one section of the column.

It is also of interest to note the following results from
Example 12, as these values reflect the predominantly heat-capacitive

nature of the system when it absorbs energy via the flash equation.

(CL/CV) Ratio Cy | (ow /o) |
Stage Initial = Final . Initial Final = Initial Final
1.511  .968 k9 6L.7  .0020  .0027
3 1.111 1. 484 57.5 . L2.3 .0025 .0018
2 .910 1.927 66.9 33.2 .0028 001k
1 L67h 2.74 749 23.1 .0030 .00098

These values ‘should beveompared to those of Table XIII, which show the
same results for a simple distillation column with a relatively narrow-
boiling-range feed.

The use of the ¢ factor for stripping and absorption calculations
is somewhat controversial., If it is used when steam is treated as a
diluent and flow corrections are madée with temperature held, as in
Examples 11 and 12, it wéuld be expected to be of little use because

of the inherently rapid convergence of this approach ‘In actual use,
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the ¢ values diverged rather than converged. When used where flows were
held and temperatures varied, the ¢ factor would be usefui if the tem-
peratures were predominantly low or high. ‘Table XXX foriExample 13 shows
exactly this behavior, and the use of & quickly corrected the temperature
.gradient except for an absurd set of flows with a resultant completely :
wrong temperature gra@ient compared with the final wvalues ﬁhen energy
balances are done. Since the simpléét and most general method of
approach to problems of this type is to make a pure "guess" of the flow
and temperature gradients, it is always necessary to do both mass and
energy balances to get the correct answer. The effectiveness of the &
factor is greatly_diminished when both balances are'run, as in Example
1k, A damping factor was necessary to Obtain‘a‘convergent solution, and
apprbximétei& eiéhf iterations &éreineedeg,to'establish the flows to the
third decimal piéce. The ¢ factor did causé 8 cldser approach to the
convergefice vélues in the early iterations, but 1ts effect quickly died
out and was for ail practical_purposés'nonexistent by the 5th iteration.

| Wheﬁ the ¢ factor is;used,,Eq; (v.5) takés'the form .

e o )

p .
oafSe| +e
e

and care must be exercised in the two-point extrapolation process to
take account of §(xi)é # 1 but [lﬂ+‘(xP)st]. The range of values of
component distribution ratios is markedly different from those for simple

distillation columns, as the following shows.

B W

Typicel values _ Typical values

from EXEmplé‘lhv - from Example 1

C.Hy ~- 1757. C Hy - . .00118
L o D o
cgnlz.-. 17.7° | .cgnlz - 12.8
C6th - 3.29 C6th - 1342,

Coize = 333
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In Fig. 9, the £(0) and f(») limits Wwould shift upward.for strippers
and that for f(®) would approach the £(&) = 0-axis if 4 were quite small,
as it is here. While this 1limit shifting in no way affects the ability
of the'two-point extrapolation process to fiﬁdfthe'¢'robts, it is
suggested that the shifting of the component distribution ratios using
fthese o] values loses a large -part of its effectlveness when- movements-
in. flow gradlents are included-in a calculatlon, as they must be for
"strlppers and absorbers.

7 Slnce 1t is mecessary to. use Method. II energy. balances with
damplng factors, and becauge there is some. doubt of the effectiveness
" of the ® factor in stripper calculatlons, subsequent examples for
refluxed strippers and for refluxed strippers with side strippers do
not include the o factor.

- Method I energy balance, the net-energy-flow (AQ) method, was
fried for the simple stripper problem, but proved incapable of producing
any solution, let alone a convergent solution.  When AQ is defined for =
stripper, it may be done for ‘any stage, but the most likely stage to use
would be the top stage, where

mﬁmEmR§VH ~ Fhy, o | ' YWJQ

and FhF is a relatlvely large fixed gquantity. ’The mass balance and
equlllbrlum relations give the information necessary to obtaln H 12 S0
that V must be obtained from another relation, in this case the over-

all mass-energy-balance relation, which gives

F(h-h)+V_, (H_ -h) |
v, =d-= r h?Htfhbit st (V.16)

Again, the mess-balance and equilibrium relations make it

possible to determine hb’ so that all guantities needed are knowvn, and
therefore Vt is known. Since any vaporization in an adiabatic stripper
mustvtake place at the expense of sensible heat of the fluid flowing;
the temperature must drop from tbp to bottom of the eolumn. Thus, the
term (Ht-hb) will always be positive and the term (Hst-hb) will always



be negative, so that the term (hF-hb) must always be positive and such
that we have Vt> (Vst)t to maintain physically plausible conditions.
Since the liquid flowing is essentially pure heavy component, hF > hb

can be true only for T_ > Tb’ and therefore temperature movement becomes

. Very important. Unforgunately, there is a high degree of temperature
sensitivity with steam as a diluent and only small hydrocarbon vapor
flows, so that this effect can and does reflect in large variations in
Vt and hence in AQ. Also, since all internal flows must be calculated
from this AQ, they in turn will reflect large variations in_Vt. It is
impossible to set and hold Vt=d as a variable if.complete specification
of the stripping steam is assumed. Thus, internal flows are based upon
@ quantity which is itself subject to large variations, with the result
that a convergent calculation is highly improbable. In Example 15, the
OQ approach was tried on the feed and column of Example 11, and the
starting gradients were purposely obtained by an approximation to see if
the AQ method could converge given excellent starting conditions. The
results shown in Tables XXXIV and XXXV clearly indicate the instability
of the AQ calculation for a pure stripper. The approach was tried on
refluxed strippers, and on refluxed strippers with side strippers, and
equally poor results were obtained. Historically speaking, it was the
failure of the AQ approach to give convergent solutions which led to the
development of Method II energy balance, and this method was specifically
developed for strippers end absorbers, and application to other types of

columns was a secondary consideration.

Table XXIV

Results for Example 5:
temperatures (F) and summations from four iterations

-1 2 3. n ' qbrrect
Stage Temp. §<yi)p Temp. Q(yi?p Temp. %(yij;' Temp. %(yi)p value®
L 258°F .965  261.5 .777 283.8 .358 341.9 -- 262.7°F
3 254k .938  262.4 719 284.7 .330 333.9  -- 259.2
2 250 .97k 255.0 .373 298.4 .303 338.2  -- 255.3
_;Le 2h5 1.061  233.1 .262  32h.6 .223 346.9 @ -- 246.2

Correct values from converged solution of Example 12
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Table XXXV

Results for Example 15: vapor flows from four iterations
showing failure of Method I energy balance

Stage 1 2 3 h Correct value
L .230 . .355 -1.227 | Q.372 .228

3 ..190 - .272 -1.157 © -.088 _ . .179

2 160 462 =754 ~.125 159
1 130 3.051 -.328 ~082 .1l

AQ - -1831 16931 ~11289 -3020

* . o
Correct values from converged solution of Example 12.

Ezample 15

All variables and constants as in Example 12, but with the

following initial assumptions:

Temperature Fiow_gradients

Stage gradient v L
n 258°F 230 .96
3 . 25k .190 .93

2 250 .160 .90
1 245 .130 .87

Refluxed Stripper
A typical refluxed stripping column: is that shown in Fig. 21b,

for which a total condenser is used. Two examples are given to illus-
trate the calculation for this case, the first uses a total condenser
and the second uses a partial condenser.

As was pointed out previously, it is quite poésible»to treat
the steam as just another component and so let it enter into the general
fractionatioﬁ scheme. This approach obviates the necessity of any
specigl handling in-thé mass-balance eépations or the.dew- (or bubble-)
point equation. To accomplish this, steam is merely assigned some
arbitrarily high equilibrium value which assures that its concentratian

in the liquid is always some very small number. Example 16 illustrates
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this approach together with the Method of Successive Flashes for mass
balancing. The column used is that of Fig. 21b, and the feed was 70%
vaporized. The Description Rule for this case states that in addition
to all feed variasbles, stages per section, and column pressure, these
variables also can be set:

Condenser duty

Reflux amounf

Stripping-steam amount

Stripping-steam enthalpy

For Example 16, condenser duty is replaced by top-product

amount, 4, but all other variables indicated are set. Since only mass
balancing is to be done, the stripping-section flows are estimated by
an approximate method--that of Horton and Franklin, for thid:case--and
the enriching- sectlon flows are set by assuming constant molal overflow.
The stages all were assumed to initially contain llqpld of feed com-
- position at its bubble point. Also, bubble points were used for
correcting the.temperatures The results given in Table XXXVI and Figs.
28 and 29 show that convergence is fairly slow and that practical values

of the separation are avallable\somewhere near the 50th iteration.

" Example 16
Equilibrium-value constants
Feed  FIF VE¥yF A B
CJH , 0.0077 0.0923 -4002 7.833  (Enthalpy-value
‘ . constants same as
Cel),  0.0309 0.1691 -4997 8.665 . lie of Example 5)
C7H16 0.086M4 0.2136 -5595 8.847
Cglig  0.1750  0.2250 -6300 9.261
0.3000 0.7000

Thermal condition of feed: 7T0% vapor at 220°F (from feed flash)
Column pressure: 1 atmosphere '

Enriching stages: 4(including vapor feed stage but not liquid
feed stage)

Stripping stages: 5(including liquid feed stage)
Top product amount: 0.36 mole per mole feed

Reflux amount: 0.50 mole per mole feed



Table XXXVI

Results for Example 16: mass balance error array at 8lst iteration

Stage ‘
Component, 0 1 2__ 3 L 5 6 7 8
céH12 . 5x10'9 -5xlo"8 -6#10'8 —6x1078 .8x10-9 3x1070  —2x0”! owxao”! | 5xlo'6
CcH ), 1x107 7 -3xlo’7 0”7 -3x10”'7 -5xlo'8 -1x10"6 -2x10'6 _--3x10'6 7x10'6 '
CH g 8x10” 1 -9@0-7 29x10° 7 —9x10”T x0T -2x07® «-2Ax10’6 ox10”T 1x1077 ?Z\
10 1007 1007®  1a0®  200®  1x07®  uxao® wxa0® a0

Catlig
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Fig. 28. Results for Example 16: temperature vs. iteration
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Stripping steam amount: 0.10 mole (at 270°F) per mole feed
Acceptable bubble-point error: Iezl.s O.loF
YA' value assigged steam was O, and 'B' value was such that

all X & 10
steam

As can be seen from Table XXXVI, the largest mass-balance |
errors remaining in the system after 81 iterations are those of com-
ponent C8H18’-but the over-all mass-balance check on this component is
less than 0.1% in error, so that the solution is fairly close to exact

for the flows assumed, which were

Flow gradient

Stage v L

Reflux -— ~ 0.500
8 0.960 0.500
7 0.960 0.500
6 0.960 0.500
5 0.960 0.500
L 0.260 - 0.767
3 0.z227 - 0.735 .
2 0.195 0.705
1 0.165 0.670
0 0.130 0.640

Steam 0.100 -

When combined mass and energy balance is run, it is convenient
to use a partial condensér and to specify the condenser duty indirectly
by setting either top product or reflux amount. This allows determina-
tion of the reflux composition and enthalpy by a flash calculation using
the condenser input as the fixed feed. Usually The hydrocarbon reflux
amount is small and thé steam leaves the system as a vapor. Example 17
was set up in this féshion, with the reflux from the partial condenser
set at a small value so that the separation would tend to minimize .the

heavy component in the top product.



- Example 17 : L

Eguilibrium value constants . Enthalpy-value constants
Feed-_.FxF A _B k 1 u W
C\E 0.0053  -3848  8.358  h4l.27  -24762  29.64  -10L70
051{12 . 0.0106 -4002 7.833 ‘ 52.67 -31602 36.79 -12189
‘C6th 0.0324.  -Lk997 8.665 - 58.60 - -35160 hz.23 ~-13533
C7Hl6, 0.0832 ~5595 _‘8.8u7 66,;3 -39678 50.10 -16232
C8H18 0.2810 -6300 9.261 73.10 -43860 58.25 -19188
C9H20 0.5875  -T295 10.078 .76.9n -4616M4 62.84 -19879

1.0000

Constants u and w for steam same as in Example 12

'Enthalpy-value constant referred to liquid at ZOOOF

Thermal condition of feed: saturafed liquid

Column pressure: 20 psia

Reflux amount: 0.05 mole per mole feed _

Enrichiﬁg stages: U4(not including the partial condenser)

Stripping stages: 4

Allowable errors: .
Dew point: lezl.s 0.1F

Flash: ]?F};s 1 x 1072 mole

Corrective energy flow: lecl.s 0.1 Btu
Stripping steam amount: 0.1 mole (at 27OOF) per mole feed.

Initigl gradient assumptions

Stage Temperature Vapor Liquid

Reflux - - . 0.05
8 270°F 0.25 0.05
7 270 ©0.25 0.05
6 270 0.25 0.05
5 270 0.25 0.05
y 270 0.25 1.05
3 270 0.25 1.05
2 270 0.25 1.05

1

270 0.25  0.90
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In‘view of the success with the double-flow-correction approach
on simple strippers, this approach was tried first in this Example. It
was found that negative flows were preﬁicted'at the first iteration when
flow correction without energy balance was attempted. This behavior
could be attributed to the very high temperature aesumed for the top
stages, forcing a large amount of hydrocsrbon into the vapor, with the
result that liquid flows disappear and even become negative. This con-
dition was not recognized by arbitrarily changing the temperature
gradient, but by combining the energy—balancenaﬁdeflow;correction
calculations. The results of this double flow'correction did not give
negative flows, but neither 4id a convergent solution appear. Figure,
30 shows the behavior of vapof flows at certaiﬁ stages and indicates the
instability of the dOuble-flow-corfection approach. - The combined tem-
perature and flow movements from the energy-balance calculétion.are
incapable of'compensating for the effect of high temperatures;ef the
top stages. The most.likely cause of the difficulty is that the flash
calculation is carried out at a temperature far remOved from the satura-
tion temperatures in the upper stages_of'the column, and the corrections
predicted under these conditions are quite wreng and lead finally to a
divergent result. The small liqﬁid £1ow in the ﬁpper eolumn section is
another source of.difficulty, since it is subject.to large errors as a
result of being obtained as the.difference of two relatively large
numbers which oscillate markedly as shown. Also, the temperature move-
ments resulting from the flash calculation do not meve the temperature
gradient toward saturation conditions. For these‘reasohs, the double-
flow-correction approach was abandoned and the double‘tempefature
correction was tried in hopes that this‘approach.wbuldvallow the
calculation to be made even if a poor tempereture gredient ﬁas originally
assumed. | ' | '

The results of the double-temperature calculation are given in
Figs. 31, 32, and 33 and Tables XUVIT and XXXVIII. The sequence used

within every iteration was
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Fig. 32. Results for Example 17T: temperature vs. lteration
for all stages, with Method II energy balance and
double temperature correction.
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_(a) Mass balance by Method I equations,

(v) Dew point using equilibrium equation,

(c) Energy balance by ccrrective—énergy-flow method,
and the results show a rapid convergence. For all practical purposes the
caltulation could have been terminated at the Lkth or 5th iteration.

As before, relaxing all QP to a very small number is not .. .0
necessary, so that the last iterations could be dlspensed with unless a
very exact solution were desired. Also, it is interesting to note the
values of (AV/AT) and the (CL/CV),ratios in Table XXXVIII. Even though
the liquid flows are very small in the refluxed section of the column,
the flow change resulting from the flash overshadows the enthalpy effect,
and in this area latent heat effects predominate and the (CL/CV) are

negative and very close to O.

Refluxed Stripper with Side Stripper

Columns of this type are quite common in the petroleum indus-
try, and their principal usage is for crude-oil separations. A simple
column of this type is shown in Fig. 34 in Wthh only one side stripper
1s indicated but the normal crude dlstlllatlon column will have as many
as four or five side strippers. To illustrate calculational methods
only one side stripper is used, since it is a sinple matter to extend
the method for two or more side strippers. The normal boiling-point
rangé of feed material to these columns is quite large even withbut
steam present, and therefore the general form of the calculation proceeds
Just as in simple strippers.

As pointed out in Section IV, there are a number of additional
variables that can be set for colums of this type. In Example 18, the
colum of Fig. 34 is used and the Description Rule indicates that--in
addition to all feed variables, column pressure, and stages per column
sect10n--the following variasbles can be set,

Main-column steam: amount and enthalpy,

Side-stripper steam: amount and enthalpy,

Reflux amount,

Side~-draw amount,

Combindened condenser duty, Qr + Qb’.
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Table XXXVII

Results for Example 17:

summations and energy unbalance from seven lterations

1 2 3 _
Stage ;(yizp ], §3y17;* Q, {(yi{E Q §(Y;7p %, ;(yi)p Q, §(yi)pi %, ;(yi7p <,
8 1.163 -35.4% .965 +29.4 1.096 -77.5 1.032 -31.7 1.012 ~l6.4 1,002 +40.6 1.000 +0.5
7 1.182 .3 .984%  +0.5 1..057 =35.5 1.013 -2.0 1.003 +0.7 1.000 +0.1 1,000 =0.0
6 1.192 +2.5 .998 +10.4 1.038 -25.6 1.008 +10.7 1.002 +l.7 1.000 +41.1 1.000 -0.1
5 1.196 4+0.1 1.008 -13.1 1.026 +25.6 1.007 +30.1 1.002 +14,9 1.000 +4.1 1.000 +0.9
b 1.198 +1490 1.015 =433 1.017 +56.3 1.008 +13.3 1,002 +2.6 1.000 43.1 1.000 © +1.h
3 1.146 -207 1.116 +1353 1.067 4457 1.025 4107 1.004 +4.3 1,001 =-3.7 1.000 -0.}%
2 1.100 ~154% 1,269 42553 1.166 +1l230 1.058 +429 1,009 +88.4 1,001 +11.3 1.000 +0.k
1 1.039 ~-2631 1.287 +250 1.130 -80.4% 1.028 -151 1,001 -39.1 1.000 -3.4 1.000 -0.7
-- 1530 -- +h61l7 -~ +1550  -= +406 - +57.1 -~ +11.9 -~ +2.0

™M
'dD




-172-

Table XXXVITI

» Results from Example 17:
ratio (C /CL) values from various iterations

Stage 1 3 5 7 (&v/20)”
- 8 - -.106 . =.136 -.1h4h - 1hh .0042

7 -.113 -.139 -.148 -.150 .0043

6 -.116 -.138 -.150 -.151 .0043

5 -.117 -.132 -.149 -.151 .0043

L +.660 +.496 +.370 +.364 . 0061

3 .589 1.346 .751 .731 .0037

2 .540 3.021  1.227 1.158 .002k

1 .Lo6 3.746 . 2.029 1.995 . 0015

*

Typical values at 5th iteration

and for this example the steam amounts and enthalpies are retained, as

is the sidefdraw amount. Reflux amount is replaced by the combined top
product, 4, and the combined condenser duty is replaced by a total
condenser with the hydrocarbon reflux stream st its bubble-poiﬁt tem-
perature. Thus, the reflux and two bottom=-product amoﬁnts are unspecified
and will be determined by the calculation.

The equations previously given in Section IV for a side-
stripped column apply here, and two combined bottom products are now
used rather than one, both having the form of Egq. (V.1). The Method I
mass-balance eguations then apply in a straightforward meuner, but the
Method II energy balance must be haﬁdled in a slightly different mannef

“because of the presence of the side stripper. There are corrective
energy streams to and from the side stripper, as shown in Fig. 35, and
these must be meshed in with the msin-columm corrective energy flows.
Thus, the recurrence relation, Eq. (III.23), for this point in the

column becomes
C

L= ‘p | AV
(qv)st—l + ng)£Ss =1t +<§; <Dp (qv)st ) ¢ % [spp+1” %spp’
' (v.17)

i\

(a.)



. '_173-.

Bl — —> 4

-3-]

2 — Vs team

V:ste am

.MU=17932

Fig. 34. Refluxed stripper with side stripper.
Column used for Example 18.
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Fig. 35. Corrective energy-flow meshing at a side-draw stage.
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where the number (qc) can be determined but must be broken down into its
component parts before calculation can proceed either in the main column
or the side stripper. Fortunately, this can be done, but at the cost of
an additional two-point extrapolation calculation for each side stripper
present on a given column. ’

The following relations exist at the side-draw stage:

(a)epp = (U)apge + (%)oos (v.18)
. Lss
L [te/ep) (2.0, - (v.19)

where (qL)ss can be calculated as a number and used in the expression

C
(qV)tss e (?3 tss (qV>tss - qL T e (v.20)
The only unknown gquantity in Eqg. (V.20) is (qv) s and if this
is known, a normal corrective energy-flow calculation can be run on the
side stripper by means of the two-point extrapolation procedure. Whena
the desired value of (qv) is available, (qv) Dp-1 is obtained from
Eq. (V.17) ana qL) " from Eq. (V.18) and the calculation for the main
column is dome. This latter calculation, it will be recalled, is itself
done by a two point-extrapélation proeédure. Thus, a value of (qV)tss
must be assumed for use in Eq. (V.ZO), and the most obvious first

assumption is

v
[(q’v)ts;ASSUMED = Qr t+ v 95

tss - "sDp-1

the second assumption is some arbitrary number times the first assump-
tion, and the limit of convergence, (ec)ss’ for the whole calculation
is set at the same value as that for the main column, €. and is usually
0.1 Btu. The number of extrapolation calculations needed for convergence

in the side stripper is small--on the order of 3 or k4.
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When the number of side strippers is three or more, the two-
point éxtrapolation process may be replaced by an approach involving
matrix solution of the corrective energy eqpations;, This approach has
not been used in this work because even with three side strippers the '
calculation proceeds quite rapidly by use of the extrapolation process.
In a very complex column of this type, Method II mass-balance equations
are recommended; and since rates of convergence are quite slow for this
method, any approach that will appreciably speed up the corrective-energy-
flow section of the over-all calculation is desirable. Whether or not
a matrix approach will do this is questionable.

The general computer program for refluxed strippers with side
strippers follows that shown in Fig. 22, path (b). The only add®tions
necessary are in the energy—balanée area and are a bubble-point sub-
program to give the temperature and enthalpy of the reflux, and a two-
pdint extrapolation subprogram for each side stripper. ‘

The results of Example 18 are given in Tables XXXIX and XL and
Figs. 36, 37, and 38. Damping factors of liand 1/2 Eoth gave negative
flows, and the next factor tried was 1/5, which gave the results shown.
A factor of 1/3 will probably be stable and Would certainly speéd up the
convergence, -Even 50, a practical solution'to the problem is available
~in the neighborhood of the 12th iteration. All Qp were less than 100 at
the 19th iteration and less than 10 at the 29th iteration, but the last
10+ iterations were establishing the third place in the flows, and this

is not necessary.

Example 18
Feed FXF VFyVF
cquO o.lo. .0956
CSle 0.20 .1811
CéHlu 0.20 S L1627
C7H16 0.20 .1328
C8H18 0.20 .0976
C9H20 0.10 .0302

1.00 . 7000
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Fig. 36. Results for Example 18: total vapor flow vs.
iteration for all stages.



CF)

Temperature

~178~

220

200

180

160

140

120}

100

Stage 4
— Stage 3
— Stage 5
—— Stage 2
Stage |
—_— Stoge" 6

-— Stage 2ss
— Stage 7

Stage Iss
— Stoge 8

J I 1 1 1 1 1 i i 1 i 4 1 1 H 1 1| 1 i i H 1
5 7 9 11 13 15 17 19 21 23 25 27
Iteration MU —-17935
Fig. 37. Results for Example 18: temperature vs. iteration

for all stages.



..179-

T T e 'J' ::f
C4Hio CsHjp
5F -
CeHia
S ol |
©
O
} .
—
>
| -
[}
>
o
[&]
[}
} -
S oot , | .
o
O
-
[»R
]
Y CsHig
'._
| L ] ] | 1. | | 1 |
O'OO'I é é 'l/ 9 11 i3 15 17 19 21 23 25 27 29
[teration
MU-=17936

Fig. 38. Results for Example 18: top-product recovery
fraction vs. iteration.
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Table XXXTX

Results for Example 18:

summations and energy unbalances from various iterations

» ) 9 11 _ 15 20

stage 2(v,), & ROy, & Fly) o Py, o RGy), 4 3Gy) @ 3Gy), @ By, e 3(y), q
8 1.613 -16564 1.167 -3587 1.071 -2171 1.032 -1257 1.013 -696 1.00% -372 1.000 -190 .998 -90.7 .998 ~6.1
7 1.009 -169 1.08%F +l2kh 1.035 41131 1.017  +931 1.006 +703 1.001 | +496  .999 4332 .998 +212 .999  +59.2
6 .928 +176 1.000 +307 .998 116 .998 =314 .997 -347  ,997 -307 .998 -243 .998 -180 . 1.000 ~70.3
5 .937 +287  .96h4 +265 .983 +h47.6  .992 -61.6 .995 ‘-83.3 .997  -67.6 .999 -h3.h .999 -22.6 1.000 +2.7

.97h 43916  .967 +2595. .982 41620 .991  +100k .996 +619 .998 4378 .999 4229 1.000 +137  1.000  +35.7
3 1.099  +777  .989 4635 .985 4343 .991  +l7L  .99% +72.9 .997 420 .998 -6.5 .999 -17.9 1.000 -18.8
2 972 -238 .993  -105 .985 -122  .990 -124 .99h  -108 .997 -86.0 .998 -64.9 .999 -47.1 1.000 -18.3
1 870 ~2680 .998  -1636 .992 -964  .995 -58L .997 -354 .999 -~217 .999 -133 1.000 -80.9 1.000 -22.2
288 .958 +131 .995 +39.% .98% -88.6 .992 -123  .995 -111 .997 ~-85.2 .998 -59.6 .999 -39.0 1.000 -105
1ss 8oL -653 .988 =370 .985  ~2hk.h 995 -150  .999 -83.1 1.000 .-40,5 1.000- -15.8 1.000 -3.0 1,000 %5.0
zq, -15019 -613 ~505 -388 -280 -195 -131 -43.6

=565
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Table XL

Results for Example 18¢
ratios.(CL/CV) and (&V/AT) from various iterations

Stage CL/cv = N /AT ,cL/c.V 15~AN/AT cL/cV = N /AT
8 .358 .0228 .895 .0332 .892 .0330
7 .230 .0234 .LoT .0552 .40l .0548
6 .188 .0217 .332 . .0500 .329 . .0492
5 .117 L017TL L1877 L0345 183 .03h5
) .083  ..0158 065  .0228 .06l 0228
3 . T6L .00k2 LTh3 00l . .757  .00LO
2 .636 - .0045 1.367 .0022 © 1.433 .0020
1 .399 .0046 2.292 0012 . 2.hk9 ,0011

2ss 857 .0013 1.148 .0013  © l.z231 .0012

1ss .593 .0013 2. 445 .0005 2.557 .0005

All equilibrium and enthalpynvalue constants are the_same as
those of Example 17. : ' -
| ‘Thermal condition of feed: 70% vaporized
.Column pressure: 20 psia

Top-product amount: 0.42 mole per mole feed (includes 0.12
‘ ' mole steam) . o

Reflux temperature: bubble point of hydrocarbon
Enriching stages: 2(not including side-draw stage)

Intermediate stages: - 2(including side-draw stage but no feed
stage) ' ’

Stripping stages: U4(including both feed stages)

Main-column stripping steam amount: 0.1 mole (at 270°F)
per mole feed

Side-stripper sﬁripping steamfamount: 'Q;Oz mole (at ZTOOF)
. " per mole feed

Side-stripper stages: 2
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Allowable errors:
Dew point: Iézlﬂg 0.1°F
Flash: IeFI.s 1 x 107 moles

Corrective energy flow: |ec|,and Ieclssis 0.1 Btu

Simg}e Absorber

In the simple absorber shown in Fig. 39a heavy components are
absorbed from the primary feed material, Fl’ into the lean absorbing oil,
Fz, which can be considered as a second feed to the column. Since only
hydrocarbons are present, no special handling of any one component need
be considered here. Also, the temperature gradient will rise from top to
bottom for an adisbatic system because of the condensation accompanying
the absorption and‘the resultant release of latent heat in'the fluild
stream. "

The lean o0il will usually be & heavy material, relative to the
components present in the vapor feed, but 1t may contain smell amounts of
light material which will appear in both the vapor and the liguid leav-
ing the column. Any method of calculation must be capable of handling
- this common component (or components), and the methods of Sections II and
III do this quite nicely. |

One difficulty that can arise in absorber calculations does
require special handling in computer application. Since an absorber is
essentially a two-feed column, the two-feed equations of Section IV are
used, but they are Jjust a variation of Method I mass balance. In the
calculation of the G, g, J, and j functions of the two feed equations,
difficulties Can arise if stage temperatures are such that heavy components
in the lean oil have very small equilibrium values. Under these con-
ditions, the G, g, J, and j functions become large numbers very fast as
célcula%d&;proceed from stage to staege. In the process of resolving the
individuallstage component rétiog into concentrations, these large value
functions give rise to a condition involving the subtraction of two very
large numbers in the lowg;.@taﬁe region. The average digital computer

carries only eight places when operating in a ﬁloating%point mode; and in
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the carrying out of the subtraction and the rounding off of the result,
enough significant figures were lost so that convergence was prevented.

There are several ways'to handle this difficulty. One possi-
bility is to use double-precision numbers for all calculaiidns, so that _
18 places are carried rather than 8. Another possibility is to use Method
IT mass balance, since numbers reqﬁiring even eight-place accuracy never
occur in this method. In the calculations that follow both approaches
were used with success. They both suffer the disadvantage of requiring
additional computer time to arrive at a solution, and the double-precision
approach has the further disadvantage of requiring = largevadditional
block of computer storage space needed for operation in that mode.

In starting an absorber problem, approximation-methgds previously
mentioned can be used for the initial assumptions as to temperature and
flow gradients, or a pure "guess" can be made for these gradients, since
a convergent solution will result no metter what the assumption. The
Description Rule indicates that after all feed variables, column pressure,
and the number of stages are set, the column is completely specified and
calculation can begin. |

In Example 19, the flow and temperature gradients were apprdxi-
mated by the method of Souders and Brown and all calculations were done
in the double-precision mode in the computer. The results of this
example, given.in Tables XLI and XLII and Figs. 40, 41, and 42 indicate
a small tendency for the solution to oscillate, although the third-place
figure of the variables has been fairly well established at approximately
the 11th iteration. This tendency to oscillate slowly damps out if enough
iterations are run; but doing this is hardly Jjustified, as iterations
beyond the 1l1th establish only the third or fourth significant figure,
and this is not necessary for a practical solution. An oscillation also
develops in solutions.'for reboiled absorbers, as will be seen shortly,
and this behavior appears tpybe a characteristic of the combination of

two feed equations with corrective energy flows.
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Fig. 40. Results for Example 19: temperature vs. iteration
for all stages.
—— Jamping factor = 1.
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0.9r

(moles per 2.2 moles feed)
@
2
N

3 O‘GL .
(o]
“—
| -
(o]
Q.
O
= O.Sr Stage 4 .
0.4 A S TR M TR N NN T SO SO S |
| 5 9 13 17 21 25
[teration
MU-=17939

Fig. 41. Results for Example 19: vapor flow vs. iteration
for all stages. : o
~—— Jamping factor = 1.
--- damping factor = 3/2.
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-188-

Table XLI

Results for Example 19: summations and energy unbalances from various lterations

T . 11 23
stage  Txy)y @ )y § 3Oy & 30, @ 30e), & B, @ 30a), @ BGx), 9 ¥x), &
b 1.043 - -17hhk 1.0l7 -649 1.005  ~347 .999 -182 .996 -26.8 .996 +78.5 .998 +107 1.000 +75 1.000 -28.8
3 1.033 +1hh7 1.025 4270 1.015 +412.7 1.006 -58.5 .998 -T7.7 .995 -6h.h .996 -32.9 .998 | -1.9 1,001 +6.0
2 1.01k 4515 1.013 +428 1.013 4233 1.008  +85.6 1.002 -1.6 .997 -38.1 .996 -38.2 .997 -20,0 1,001 . 49.5
1 1,034 -1041 1.012 -296 1.008 +10.4 1.006  +61.5 1.003  +27.%4 1.000 -12.6 .998 -30.3 .998 -25.9 1.000  +49.1
-823 -247 -91 -93 - =78 -37 -5.6 +27 ~h.2

b
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Table XLII

Results for Example 19:
ratios (¢ /C ) and (&V/AT) from various iterations

. 1 12 23
Stage Cy/Cp. AL/ AT cv/cL‘ AL/ AT -cv/cL AL/ AT
L .2h3 -.001k 190 -.00Lk - .193 -.001k4
3 .332 -.0022 .324 -.0023 .325 -.0023
2 462 -.0031 L ~.0030 by -.0030
1 The -.0046  .64k7  -.,004k 645 -.00k4Y

The general computer program for absorbers follows that of
Fig. 22, with bubble ponints replacing dew points of Path (b) and with
liquid rather than vapor mole fractions being recorded. In the flash
equation of the corrective-energy-flow process, the ratio (CV/CL) was
used and AL was calculated and used to correct the liquid flows, and
the vapor flows were corrected by a simple over-allbflow balance. It
was found that a-.damping factor of 1 gave a stable solution. As can
be seen from the values of Table XLII, the system has a predominantly

heat-cﬁpacitive nature.

Example 19
Feed Equilibrium-value . Enthalpy-value constants
= 7 constants (Referred to liguid at 90°F)
1r1 T2fFe TR B K T 3 "
Cth 0.285 -- -1355 6.356 11.55 -5659 9.15  ~-31L4k
CHHs 0.158  -- -2110  6.158 21.65 -10608  1k.13 -2608
C3H8 0.240 -- -2419  5.671  30.43  -1ko11  19.8h  -3046
C\H o 0.169 -- -3281 6.288 38.94 -19081 25.57 -3503
CSle o.;u8 0.012  -h5hk  7.627 u5.45  -22270  32.47  -b597

- 1.188 -6989 9.312 65.11 -31904 51.39 -7796
1.000 1.200

Caflig
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' Allowable errors: same as Example 18, except dew point, which

- was 1nadvertently set at |€2| <0. OOOOlO

Thermal condition of:féeds:v.Fy saturated vapor
F, liquid at 90°F

Column pressure: 5 atmostheres

Number of stages: L

Feed amounts as 1nd1cated above and initial-gradient assump-
tions as below

Temperatures . Vapors - Liquids

Stage 1st ~ 2nd - lst 2nd 1st 2nd
L 100°F 100°F = 0.55 0.75 1.31  1.h45
3 110 100 0.66 1.00 1.h2 1.45
2 121 100 0.77 1.00  1.54 1.h45
1 132 100 0.89 1.00 1.6 1.45

Example 19 was restarted with the second set of initial
assumptions and reached the same convergence values, but required more
iterations to do so. What initial gradient to use is a matter of judg-
ment and experience.

In an attempt to speed up the convergence of Example 19, the
damping factor was set at 3/2 and the problem restarted. Typical stage
behavior under these conditions is shown iq Figs. 38 and 39. The dis-
turbance is pronounced in the early iterations but soon dies out and
behaves exactly as the factor-1 results in the later iterations, with
the net result’ of no gain in the convergence rate.

The ® factor also was combined with the two-feed equations, and
an attempt'was made to use it. The process of finding the & root was in
no way affected, but consecutive root values diverged quickly and the
whblevcalculation "plew up." The exact reason for this behavior is not
known, but it is in some manner a result of the very large numbers cal-
culated for the G, g, J, and j functions in the two feed eqpatlons, caus~-

ing large oscillation of the . roots.



-191-

Reboiled Absorber

A typical reboiled absorver is that shown in Fig. 39b. The
purpose of the enriching section is to recovery moré of the light
products, or--what is in effect the same thing--tc enrich the heavy
products. The addition of a reboiling sectiom introduces more variables
into the system, and the Degcription Rule indicates that in addition to
all feed variables, column pressure, and stages per column section, one
additional variable can be set; that is reboiler duty. Since Method II
energy-balance equations are used, reboiler duty must be the set
varisble. It is quite possible to replace this variable with a product
flow and attempt to do energy balances by Method I equations but, as is
shown later, this approach fails,

In Example 20, a combination of Method I mass balance and
Method II energy balance was used to obtain a convergent solution. Also,
to avoid the special form of the two-feed equations required with Method
I mass balance, a combination of Method II mass balance and Method II
energy balance was used, snd the results of this approach appear in
‘Example 21. .

The results of Example 20 are given in Figs. 43, 4L, and 45 end
Tables XLIII, XLIV, and XLV. The oscillating property of the solutions
is quite evident, but a reascnably exact solution is available if enough
iterations are run. In Figs. 40 and 41 only results for certain stages
are plotted, as they are typical of the behavior of the other stages.
Final values of the other stages are indicated in the figures; It would
appear that even practical solutions to this type of problem require a
relatively large number of iterations, approximately 35 or 40 here, and
that the actual number for a given case is at least partly a function of
" the damping factor used and of the most sensitive stage in the system.
As can be seen, larger démping factors appreciably reduce the amplitude
of the oscillations at the expense of 'increased frequency, but in this
case, this behavior actually improves the rate of convergence. The top
stage in the system is the worst actor in the sense that its oscillations

are the last to die out. It is intuitively evident that the top stage
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Table XLIII

Results for Example 20: summat;ons and energy unbalances from various 1teratlons

QP values’ - Damping factorgzi/z)

wn
ct
Qo]
el

[¢)

10

UJ!IJI—'_NM-P'\J‘O\-\](D

-999

- .998

1 5 15 20 25 30 35 40 L5 50 66 60
-716 -92  -2073 4693 . +348 . -8?6 -146  +363 -134  -208 +107 463 -8
_148 +76L +i99 '-hzl 4343 4294 173 -35 . 4150 . -3 -65 429 +15
o742 41500 +h28 <36 - -9k 4325 26 -1bl 471 +68 <51 16 - 431
+328 +162 +540 111 -308 4146  +127 -105 © -22 +T4 -5 =34 21
4563 -947  -865 -992  -Ml1  -152 . -232  -143 41 -10 -39 -- +18
41559 -2220  -548 153  -357 -208 - 419 =26 -7k 41 423  -1h -2
1178 4498 +h79 4220 86  -53 433 -30. 56 ~h + o -17 -1
1758 41592 +80h 4720 4269  +60 11k 463 -24 -7 . 18 -6 -11
| 47h00 41089 4812 +44O. 4486 4323 +80 466 492 419 -13 413 -
T . , ) values —= |
8 1.021  1.010  .996 .997 - 1.005 1.000 .998 1.000 1.001 .999 1.000 1.001 1.000
7 1.032 1.0k 1.000 .992° 1.005 1.00k .997 .999 1.002 1.000  .999 1,000 1.000
6 1.036 1,015 . 1.008 .992 1.002 1.006 - .999 ,998 1.002 -1:00L  .999 1.000 1.000
5 1.001 1.006. 1.009 .995  .999 1.004 1.000 .998 1.001 1.001 .999 1.000 1.000
4 1.004 1.000 1.006 .993  .998 1.003 .999 .998 1.001 -1.001  .999 1,000 1.000
3 1.009 1.001 1.006 .993  .997 1.003 .999  .998 ~1.001 1.001 ..999 1.000 1.000
2 1.010 1.007 1.009 .995° .998 1.003 .999 ' .998. 1.000 1.001  .999 1.000 1.000
1 1.000 1.012 1.011  .997  .999 1.00k 1.000 .998 1.001 1.001L .999 1.000 1.000
R 1.002 1:.0l2 1.014% 1.000 1.005 1.000 1.001 1.001 .999 1.000 1.000

-C6T-
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Table XLIV .
Results for Example 20: summations and energy unbalances from various iteratioms
Qlp values
, Damping factor (1/5) Damping factor (1/10)
Stage 1 5 0. .15 20 25 30 35 40 L5 50 1 5 10 15 19
8 f7i6 +2029 -90k  -1082 +157 +590 +189 -181  -166 -3 +66 =716  +1l21 4930 -18 =5k
7 -48  -315 +504 -30 -280 58 4lMl 4112 - <43  -18 -48 486  -93 +113  +80
6 -Th2  -668 435 +27 =310 +279 -38 . +8& +5h =13 -28 -Tha =320 -551 -311 .- -207
5 -328 4840 +718 +631 4131 -173  -127 +15 +58 419 -16 -1328 41575 4917 +T48 4682
I -4563 4593 +217 +328 -8 -140 -53 +13 +42 +3 -16 -4563 -1687 -260 473 4186
3 -1559  +748 k93 -109 499  +58 ~38 -50 -10 415 +10 -1559 -42 4109 -165 -192
2 -1178  +455 ° 480 +179 +198 477 -21 -30 - +1h +7 -1178 =600 4285 +297 4270
1 -1758 -2416 -690 -320 -5 455 +2 -31 -16 . +6 49 -1758 -2685 -1754 -1032 -765
R +7400  -186 +616 +57 -99 =37 +38 +34 -l =15 -6 +7400 +2628 +853 4557  +363
ZQp -2836 41080 +79 -319 =-117 493 +93 -29 -39 -16 +8  -2836 -924 4436 +212 -38
Stage §(Xi)p values ) %(xi)P values
8 1.021 1.002 1.000 .997 .999 . 1.001 1.001 1.000 1.000 . 1.000 1.000 1.021 1.000 1.00L 1.000 . .999
7 1.032 1.000 1.003 .997 .997 1.000 1,001 1.001 1.000 1.000 1,000 1.032 1.000 1.001 1.000 .999
6 1.036  .999 1.006 1.000 .997 .999 1.001 1.00L 1.000 1.000 1.000 1.036 1.000 1.001 1.002 1.00L
5 1.001 .996 1.005 1.001 .998 .999 1.000 1.00L 1.000 1.000 1.000 1.001 .998 1.000 1.002 1.001
4 1.004 1.000 1.005 1.00L .998 .999 1.000 1.001 1.000 1.000 1.000 1.004 1.000 1.000 1,002 1.001
3 1.009 1.006 1.005 1.00L .998 .999 1.000 1.001 1.00C 1.000 1.000 1.009 1.000 1.000 1.00L 1.00L
2 1.010 1.007 1.004 1.00L .998 .999 1.000 1.001 1.000 1.000 1,000 1.010- .999 1.000 1.001 1.001.
1 1.000 1.00L 1.004 1.00L .998 .999 1.000 1,001 1,000 1.000 1.000 1.000 .998 1.000 1.001 1.001
R 1.002 .993 1.005 1.001 .998 .999 1.000 1.001 1.000 1.000 1.000 1.002 .996 1.000 1.002

1.001
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Table XLV

Results for Example 20:
ratios (vacl) and (AL/AT) from various iterations

1 30 60

Stage cv/cL AL/ AT cv/cL AL/ AT cV/cL AL/ AT

8 .125 -.00L7 .097 -.001k .096 -.001k
T .218 -.0028 172 -.0023 167 -.0022
6 L311 -.0037 .24k -.0032  .237" -.0031
5 Ao -,0053 .379 -.0048  .373 -.0048
4 .332 . -.0045  .177 . -.0035  .172. -.003k
3 .430 -.0055 .279 ~-.0051 276 -.0052
2 515 - -.0061L  .361 . -.0063  .358 - 006k
1 .628 -.0066 .47k -.0075  .470 -.0075
R 973 -.0069 .988 -.0072  .967 -.0072

should behave in this manner since the two-feed equations are solved
from the top of the column down, and the top-stage concentrations are
obtained by back-multiplying. Any errors occurring in the lower stages
thus tend to "accumulate" into the results for the top‘stage.

The réelaxation of the stage energy unbalances, Qp, need not
have been carried as far as 60 iterations, since the last 20 to 25
'iterations once agéin establish only the thirdnpléce figure of the flow
numbers. However, the computer time required for these latter iterations
is somewhat less than that for tﬁevinitial iterations because of fewer
triasls needed for the extrapolation proéesses within the calculation.
How far a given calcdla%ion should be carried and what damping factor

should be used are matters of judgment and experience.

Example 20
Feed Fixp Fo¥pe
C.H : 0,385 <

17,

Q2H6 0.158 --



Feed  1'm. T'we
¢ Hg 0.240 -
Cuﬂlo 0.169 -
CH , 0.148 0.02
Ceflig == 1.98
: 1.000 2.00

Allowable errors: same as Example 18

A1l equilibrium- and enthalpy-value constants same as those
of Example 19.

Thermal condition of feeds sdme as those of Example 19.
Number of absorbing stages: (U4 including vapor-feed stage).
Number of stripping stages: 4 ‘
Reboiler duty: lhOOO.Btu.per 3.0 moles feed.

Feed amounts as indicated above

Initial gradient assumptions as below:

Stage Temperatures Vapors Liquids

. 8 100°F 0.5 2.2
7 116 0.7 2.3
6 132 - 0.8 2.4
5 iua 0.9 2.7
b 164 0.2 2.7
3 180 0.2 2.7
2 196 0.2 2.7
1 212 0.2 2.7
R 230 0.2 2.5

All fesults up to this point have been obtained by tising the
two-feed modification of Method I mass-balance equations. To eliminate
the necessity for the double-precision. mode of computer calculation,
Method II mass balance was tried in Example-21, It is necessary to
estimate initial compositions on every stage for this approach in
addition to the usual flow and temperature gradients. Mass balance
without energy balance was tried first in order to obtain some idea

cf the convergence behavior under these conditions.
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The results are shown as a temperature plot for certain stages
in Fig. 46. For comparison, the Method I solution is plotted in the
same figure. The totally absurd starting temperature and composition
gradient used for Method II unfortunately resulted in an oscillatory
behavior which appears to compare unfavorably with the behavior of
Method I.‘ What is important is that both approaches converge and, as
would be expected, Method I converges at a faster rate than Method II. -
It will be recalled that a distrubance takes a number of iterations—-
foughly equal to the number of system stages-~to propégate through the
system, so that the rate of convergence of Method II should not be
Judged too harshly. ’

Example 21
Allowable bubble-point error: l€2|<§ O.lOF

Feed, physical column, and congtants as in Example 20.

Initial gradient assumptions:'

Temperature ~ Vapor Liguid
Stage I 1T 1 ;_ . 1 II
8 100°F  180°F 0.5 8. 2.2 8
7 116 180 0.7 A 2.3 A
6 132 180 0.8 M 2.4 M
5 148 180 0.9 E 2.7 E
L 164 180 0.2 2.7
3 180 180 0.2 2.7
2 196 180 0.2 2.7
1 212 180 0.2 2.7
R 230 180 0.2 2.5

The starting composition on every stage was synthesized from

the two-feed streams and was as follows:
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Fig. 46. Results for Example 21: comparison of results for
Method I and II mass balsnce on reboiled absorber.
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Feed Liguid mole fraction
C,H, 0.0015
CZH6 0.0076
C3H8 0.0350
Cquo 0.0746
Csle 0.2206
08H18 0.6607
1.0000

When Method II mass balance is combined with Method II energy
balance, it must be done in a very definite pattern. The first pattern
attempted was a one-to-one approach in which an energy balance was made
after every material balance. This péttérn failed completely.even though
damping factofs as high as 1/200 wére used. The feason for failure lies
in the very slow movement of the concentrations in the mass-balance
eguations. With the starting conditions above, the initial concentrations
and temperatures are so badly out of balaﬁce that the cOrrectionsA
generated in the energy-balance equations are far enough wrong that
divergence quickly sets in and the problem "blows up" even with wery
high demping factors.

This behavior suggests a technique that would allow the Method
IT mass-balance equations to reduce the unbalance errors, €, to a value
less than some arbitrarily set small number before allowing an energy
balance to be carried out. In this manner, it should be possible to
avoid the divergeﬁt behavior of a one-to-one pattern, and this is what
was done in Example 22. The number of iterations needed to meet the
condition on € should be.large in the initial stages of the calculation
but should reduce .to its limit of one as convergence is spproached. Thus,
in effect, the arbitrary limitaetion on € introduces a variable pattern
into the system, since the number of mass-balance iterations per energy-
balance iteration will vary from some lerge number to one‘as the cal-
culation progresees.

"The results of Example 22 are given in Figs. 47 and 48 and
Tables XLVI, XIVII, and XLVIII. The "variable-pattern" technique gives



Stage temperature (°F)
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230 A Example 20
Method I
220 febon results
ePoller o151 vs2155
210 )
S S —"
160
i
50 Stage | —147.7vs148.0
140
Stage2— 1355 vs135.7
| Stage 3—132.1 vs132.3
30 STage4 129.5vs129.5
120 Stage 5—126.2vs 126.4
Stage6—112.5vs112.8
1o
) Stage 7— 104.5vs 104.0
100 Stage8— 97.5vs 97.9
90 , .
Number of mass balance iterations
80 ) per energy balance iteration
262828269 88 8 7 433 3332 | | 1 | | || || | ||| -
O 1 234567 891011 1213141516 1718 1920212223 24252627 282930

Total iteration at this point: 175
Energy—balance iteration

MU-17944

Fig. 47. Results for Example 22: temperature vs. energy-
balance iteration for all stages, using a damping
factor = 1/5. :
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Example 20
Method I
results
B Stage5—0.870vs 0.871 |
St 6 ’ T
2982 5750 vs 0.750
Stage 7—0.648 vs 0650
Stage 8— 0.448 vs 0.450
- Reboiler  0-425vs 0.426 |
Stage | — 0.326 vs 0.327
- Stage2—0.269 vs 0.270 _|
Stage 3-——0.206 vs 0.208
4
L S199¢ % 5129 vs 0.130
Number of mass balance iterations
per energy balance iteration
262828269 8 8 8 7 4333332 (L L 4 1 4L 1 111 11 | 21

01 234586 7 89 1011213141516 17 18 19202122 232425262728 2930<—"

. . Total iteration at this point 175
Energy-balance iteration

MU=-17945

Fig. 48. Results of Example 22: wvapor flow vs. energy-
balance iteration for all stages, using a damping
factor = 1/5.
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a stable solution for this case, but at the expense of a marked increas

in the number of total iterations needed for convergence. Fortunately,

the mass-balance iterations are much faster than energy-balance’:

iterations, so that the extension of computer time required by this

technique is not as large as it appears. The combination of the

slow-

moving Method IT mass balance and a damping factor of 1/5 have all but

eliminated the oscillatory behavior evident when Method I mess balance

is used.

Table XIVI

v Results for Example 22:
top product recovery fractions from varlous iterstions

Method II values Me;hod
Component 5 10 15 20 25 30 value
C.H, : 1.005 1.000 .999 1.000 1.000 1.001  1.000
CZH6 .815 .822 817 L8LYL .816 815 .818
C3H8 .108 124 123 122 .122 .122 123
CH .003 .003 .003 .003 .003 .003 .003
.CSle .006 .006 : .QO6 .006 .006 . 006 .006
C8H18 .002 .002 .002 .002 .002 .002  . 002

Table XIVII
Results for Example 22:
energy unbalances . (QE) from various iterations
| Damping factor (1/5)

Stage 1 5 10 15 20 25 30
8 -3921 +1007 +39 © 455 +93 +42 +16
7 +575 -160 +9 +9 +11 +43 +25
6 +77 -730 -365 -229 -128 ~54 -18
5 +2629 +819 +477 +121 +51 +13 +9
4 -5107 -1434 -550 -303 -186 -125 -2h
3 -1922 +1651 +460 +212 +125 +76 +31
2 -1167 +177 +375 +202 +88 <416 +18
1 -1354 -2034 -664 -203 +28 -21 +8
R +7196 +971 +228 +27 -- +h -=
%%p -2995 +268 | +8 -39 +26 -6 468
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Table XLVIIT

»Results for Example 22:
mass unbalance errors (e€x102)

Component

Stage CH,, CH, C3H8 C\H CSH12 ‘c9H18
8 -1.0 -11.0 -7.0 -0.2 - | 48.9
7 +2.6 -10.8 -13.0 -0.7 +0.1 +10.9
6 +4.2 -8.5 -19. 4 -1.9 - =0k +20.2
5 +4.2 -3.1 -14.7 -1.3 +0.3 +14.6
i +2.9 " +0.8 -17.0 . -=k.5. -0.5 +2k.2
3 +3.3 +16.8 -15.7 5.2 - -1.k4 4121
2 +1.5  +29.2 -17.3 -8.1 -1.9 +25.2
1 +0.5 +47.3 -17.9 -8.4 -6.8 -10.5
R +0.1

+29.2 . +h1.1 +2.6 -2.8 - =70.2

For all practical purposes, the results of the 15th energy-
balance iteration could be accepted as a reasonably exact solution to
the problem, with the additional iterations serving only to establish

third-place figures in the flows and other variables, -

Example 22

Feed, physical column, and constents as in Example 20
Starting gradients are those of Example 21, Method II

Allowable errors: same as Example 18 exceptfbhbble-ppint
error, which was restored to‘|£| < 0.1 F

The value below which gll lel must be reduced before‘pro-
ceeding with an energy balance was set at 0.0009. The values of this
mass-unbalance error, €, existing at the 30th iteration for this example
are given in Table XLVII.

The slight discrepancy of the convergéed temperature énd flow
values indicated in Figs. 44 and 45 is due mainly to the use of differ-
ent values of the € in the bubble-point part of the program in each -

case and--to a slight degree--is due to not carrying out the Method II
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~ solution for a very large number of iterations. In any case, an exact

solution can be obtained.by either approach.

VI. INFINITE-MIXTURE CALCULATIONS

In the usual calculational approaches for'multicomponent
separation processes, compositions are specified by a disCrete set of
numbers, the mole frabtion‘concentrations, However, it 1is quite possible
that a continuum nmixture 6f an indefinite number of components may com-
‘pose the feed to a separation process. Mathematiéally, the transition
. to a continuum of compoheﬁté is éssentialiy a. formal one in which it is
necessary to define a system variable in such a way that it can be in-
tegrated rafher than summed. '

For problems involVing a continuum oOr infinite ﬁixtUre, re-
course must be had to the curve for the true boiling point (TBP) or to
somé other function bésed on this curve. Bonan3fu and Edmisterl
‘defined’'a function x(a), based on relative.volatility, and showed that
this function can represenf mdle fractions for the range of relative
volatility @ to & + 8@ by the product x(@)da. This approach effectively
sets up O as a component-designating variaﬁle, and gives to function
x(a) a Physical interpretation as the reciprbCal of the slope of the TBP
curve. ' ' '

Normally the function-x(a)-is continuous, as indicated in Fig.
49, which shows curves for two typical mixtures. Curve A represents a
mixture gontaining en infinite number of components uniformly distributed
‘with»reSpect to (&), while Curve B represents a mixture rich in inter-
mediate-boiling components with fast;dwindling'ampunts of high- and low-
boiling components. A very important property of these differential
représentation curves 1s that the area under them must be unity, that is,

0

[ x(aysa = 1, | (VI.1)

which corresponds to the normal'§(xi) = 1. The use of this function in
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Fig. 49. Representation of infinite-mixture function.
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various distillation calculations is Set forth in some detail by both
Bowman and Edmister. .
Another very similar approach, and--with some modification--

17

the one used in this work, is that due to Harbert. For direct use in
digital computer calculation, the TBP must be put in the form of the

differential curve (Bx/Spr) versus T, , where x represents mole fraction

and pr is the boiling temperature. gﬁch 8 curve;would provide the
relation between total moles, component mole fractions, and vaporization
properties required for calculations and at the same time allow charac-
terizing infinitesimal amounts of a component by its boiling point.
Thus, the mole fraction of that éOmponent whose bpiling range.is (pr)
to (pr + 5pr) is,xspr. '

The TBP curve is usually ‘available in the form of liquid
volume percent distilled over plotted againsf colum top temperature or
boiling point, that is, Tbb Vs v. it is'necessary to convert this to
the form of the differential curve above before calculation can be

started. The basic relation used to do this is

av/aTbP»' (p/mw)

- = 5x/8pr, (Vi.2)
JF (5v/8T, ) (p/mn)T,
prl
where
mw = molecular weight,
v = liquid volume percent of total mixture,
p = liquid density,

and the values of the derivatives aré for the infinitesimal fractions of

the mixture boiled over at an average temperature T _. Derivatives are,

bp
then, the inverse slope at any point of the.TbP-vs—v curve in the range
prl,to prz. Obviously the value of the integral in the denominator . is

the total moles present, and the numerator represents the infinitesimal

moles of that component whose boiling point is pr. For one mole of
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material, the nunerator becomes identical with the mole fraction.
A typical7true-boiling—point curve, together with molecular-
weight and liquid-density curves, is shown in Fig. 50a, and the derived

curve for (6x/6pr) vs T 1is shown in Fig. SOb. Curve A is the basic-

bp

data curve, while Curves B and C must be estimated. in some manner.

These latter curves may be obtained by using the Universal 0il Products
37 : .

characterization factor,”' which relates six commonly available
laboratory inspections.. The derived. curve is then the starting point
for the compﬁter calculations. Thevpfocess of obtéininé this curve
would be | '
(a) Differentiation of Curve A, with'the inverse of the
slopes obtained being plotted and smootled.
(b) ﬁsé of Curves B and Cvtogether‘witthq, (VI.Z) to obtain

the.smoothed<cgrve fgr (BX/spr)_VS pr'

The area under the curve of Fig. 50b must meet thé.qondition

Tope

fT '(ax/apr) Spr =1.0. S : (VI.3)
bpl : o '

i

The manner in which step (a) above is accomplished is entirely
arbitrary. It may be done either by analytical or graphical methdds,
: 30

but in this work an analytical approach was used. Rutledge” presented
formulas for numerical differentiation based on the assumption that any
give set of data can be represented by a»fourth-_(or lowere)‘power poly~-
nomial, and these formulas were used to differentiéte the TBP curve.
The smoothed results from this differentiation‘weré then used in Step
(b). |

In order to uSe.these slopes in-multiéomponent distillation
calculations, equilibrium values for the hypothetical-qomponents
bharacterized by pr are required. These may be obtained from vapor
pressures, fugacities, or empirical correlations of observed equilibrium

(K) values. In Example 23 (to follow), the A and B constants of the
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Fig. 50. (a) A = true boiling point,
B = molecular weight,
C = liquid density.
(b) differentiated true boiling point.
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equilibrium-value relation were determined by plotting empirical K data,
given by Edmister,lo on semilog paper. -The temperature spread covered -
in the plot corresponds tolthe :bpl‘to prz spread, and though the
lines on semilog paper were not quite straight, they were nearly enough
5o that they could be approximated by straight lines. Lines were

plotted for a number of T within the over-gil spread, and the A and B

constants from all these ??hes were in turn plotted vs pr and a best-
fit straight line drawn through these points. The resulting plot gives
the A and B congtant for any component Whose:pr ie specified Within.the
range covered. . o _ _
- Since Example.23ialsovincindestheat belances, it 1s .necessary
to know the enthalpy-value constants for these T P—charagterized con- -
ponents. These were obtained by plotting the enthalpy data of Maxwell
for known hyorocarbons whose boiling points bracketed the pr spread
Involved. These data were plotted for two different temperatures, and a
straight line was"drawn‘througn these points for extrapolation to other
system temperatures”  following this, interpolated‘straight l{nes.were
fitted for each pr COmponent, and the slopes of these lines then gave
the ,desired values 'of the enthalpy constants, elther liquid or vapor.
Since- Maxwell's data for enthalpy are in: Btu per pound, it was converted
to Btu per mole by using molecular weights obtained from Curve B of Fig.
50a. As with equilibrium. data, nearly straight llnes are obta ined when
enthalpy deta are plotted, and therefore: the assumption of a strarght
line across the system temperature spread is ordinarily quite ‘satisfactory.
Mixture enthalples must now be obtained by integration rather than by

(I.6 and I.7), so that the enthalpy'expréssions become

n hee Ox, Lo » : |
D fT‘ by (gﬁi;? Ty o | (VL)
bpl .
and '
o \/OTbPZ 6yi - . |
P prilip (-5-6[‘—;;) 5pr . | - (VI.5)
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where all terms are defined as in the Section I enthalpy expressions.

In using a slope plot for 1nf1nite.m1xtures, such as Fig. 50b,
with -Method I or II mass balance, the equations are the same as for
4 discrete mixtures But with slopes replacing mole fractions. The equili-

“brium relation becomes

oy | Sxp L
———E— = K L. :.‘ 3 . (VI.6)
6pr P 6Tb%

and a typical internal relation would Eé

8 8T, I 5x /T " |
E?y /aé e’ A (bzpjapr" y o+ 1, (VL.T)
oxg/ Ol p-1 . \""d ““bp

but it will be noted that in these equations as well as all other
equa%ions describing the system, the differentisl temperature 6T bp drops
out, ‘The somputer program for calculations using slope plots follows
that of Fig. 5 with summations belng reblaced by integrations. Other
v thaq this replacement the programs are identlcal. |

| The normalization procedure and the reverse process of obtain-
ing the TBP curves of the producte and $ﬁage materials and the evaluation
of mixture enthalpies all require integration to obtain areas under the
slope'cﬁrves. These must be done by thc digital computer with a féir
degree’ of accuracy, and therefore some-method of numerical integration

31

must5be»programmed. Integrations using the trapezoidal rule and

Gaussién“quadratufe f'ormUlas3l were tried but discarded because of the
necessity of breaking up the T bp range 'into too many increments_to get
the accuracy desdr=d. The best compromise finally adopted was the use

31

‘'of Simpson's Rule, with the number of characterizing componénts being

~ arbitrary and with the condition imposéd on values of

' u
lbpz

. (5x/apr)apr
bpl

at convergence being of the same order as for discrete components,

As a rough approximation, the nuaber of characierizing components is
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usually chosen in such a way that the temperature gap between any two
adjacent components is of the order of 15 to 20 degrees, and the total
number must be odd for use with Simpson's Rule.

The net result of the fractionation process of infinite mix-
ture feeds is to produce a series of curves similar to that of Fig. 50D,
with the peaks moving upward and to the left in the enriching section
‘and upward and to the right in the stripping section. These curves in
turn would integrate into true-boiling-point curves located below that
of the feed for enriching-section liquids and above that of the feed
for stripping-section liquids. The limit of this resolution process
would be a pure component (at one or both ends of the column) requiring
a peak of infinite height in the slope-curve representation and having
a horizontal line for a true-boiling-point curve. Of course, no
practical column will ever approach this condition.

A perfect separation for an infinite-mixture feed would be two
(Qr more) products whose ending and beginning bo;ling points exactly
coincided as indicated in Fig. 51. In actual practice, this ideal is
never reached, since theoretically the ends of the TBP curves of the
products must all coincide with prl or prz, as indicated by Curves I
and II of Fig. 51. This behavior will have some affect on the decision
of what temperature increment to use between any two adjacent components,
since the region where reasonably good accuracy is desired is that for
the boiling curves I and II. It is gquite possible to break up integra-
tions into two regions with an arbitrary temperature increment within
each. The technique used in a given case is a matter of judgment and
experience.

The laboratory inspection of a given product is more often an
ASTM.37 distillation curve, and the end points of this type of curve
would appear respectivel& above and below. the bottoms and distillate
cut-point temperature of Fig. 51, with a resulting gap betwéen ending-
and starting-product temperatures. This behavior results because ASTM

distillations tend to average the product temperatures.
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Fig. 51. Typical true-boiling-point curves.
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The combination of infinite-mixture calculations using Method
I mass-balance equations and Method I energy-balance equations will
always give product compositions as true-boiling-point curves. However,
these curves should really be interpreted in terms of their equivalent
ASTM curves when conclusions are beting drawn as to0 separation achieved
and cut-point_temperatures since,_as pointed out above, most laboratory
inspection of products is done in terms of ASTM distillations.

True-b0111ng -point curves with plateaus representlng discrete
amounts of a given component can easily be handled by a combination of
the method presented in this Section and the methods for discrete com-
ponents given in Section IT This means that both integrations and
summations. must be done in a given calculation. Other than increasing
the complexity of'e_calculation, mixed feeds present no additional
difficulties. | -

The results of Example 23 are given in Table XLIX and Figs. 6,
7, 8, and 9. The feed for this problem (shown in Fig. 54), was
arbitrarily. broken up into 17 characterlzlng components, 1nclud1ng the
two limits of T bp’ ‘50 that the 1ncrement between components was 20 F
As can be seen, convergence was gquite rapld without a $ factor, and the
use of the ¢ factor actually retarded the convergence of the internal
stages of the column | This nehav1or of the ¢ factor was enCOuntered in
strippers when the double flow correctlon, which converged very fast
without #, was used. In that case, the use of § actually caused diver-
gence, | . | R |

Figures 52 and 53 show the converged values of temperatures
and flows for all stages, and the complete plots for only certain stages
that are indicative of the general behavior of the other stages. Figure
54 is interesting because it gives the elope curves for the components
at all the system stages. When dealing with infinite mixtures, it is
possible to visualize a distillation.surface, such as that shown, which
is a unigque surface for any combination of feed, physical column, tem-
peratures, and flowe. This surface is shifted about by the mass- and
energy-balance equations, with the restriction that the integrated areas

under all slope curves must be 1 * ¢, where € is some arbitrarily
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predetermined small number. The shifting of the peaks of the élope curve
upward and to the left is quite evident in the enriching section of the
column, while the shifting of the peaks upward and to the right is not
nearly so pronounced in the stripping section.’ This behavior is to.be
expected because of the shape of the feed-slope curve and the point of
introduction of feed into the column.

Figure 55 gives the integrated TBP curves for the liquid
products from various stages of the system, and includes the feed curve
for referehce purposes. Since a bulk split of 40% top product was set
and held, the perfect separation or cut temperature would be approxi-
mately M3ZOF for the feed used. That.this was not achieved is quite
evident, but ih'terms of the equivalent ASTM distillation curves of the
products, the.ovériap'wduld be appreciably diminished. - There are, however,
ways in which the TBP séparation could be improved. The reflux ratio for
this example is qpité low and the ﬁumber of stages is quite small, while-
~in crude-oil columns, where infinite—mixtﬁre féeds generally occur, both
the stages and reflux ratio would be appreciably ébovefthose(uéed here.
Increasing both these quantitites would definitely imprQVefthe separation
obtained. | |

It is pOssible, then,,by.méans‘of‘the ;alculatibnél techniques
presented here and those of previous sections to simulate a crude-oil.
distillation column on a computer, and to obtain reasonably accurate
predictions of théﬁcompOSitions of the streams'at'eVery point in the

system as well as the stream amounts and stage temperatures.
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Table XLIX

Results for Example 23.: individual stage integrals from nine iteratioms
1 2 3 4 5 6 1 8 9

Stage (4] No @ o) No & o) No o Jo) Nod & No ¢ 1) Noo o Nod @ oo @& No &
8 945 1,217 1.030 1.086 .996 .986 1.001 .997 1.001 1,00L 1.001 1.000 1.001 1.00L 1.001 1.000 1.001 1.001
7 .905 1.238 1.065 1.076 .990 .970 1.001 ..993 1.00L 1.00L 1.000 1.000 1.00L 1.000 1.00L 1.000 1.00L 1.000
6 847 1,208 1.113 1.062 .978 .967 1.003 .995 1.001 1.000 1.000 1.000 1.001 1.000 1.001 1.000 1.001 1.000
5 L7185 1.146 1.188 1.046 .955 .976 1.015 .998 .998 1.001 1.001 1.000 1.001 1.000 1.00L 1.000 1.00L 1.000
i 2.782 1.205 .997 1.163 .922 .978 1.0h2 .993 .980 1.00% 1.008 1.000 .997 1.00l 1.00L 1.000 1,000 1.001
3 2.687 1.289 1.117 1.175 .906 1.010 1.028 .985 .993 1.005 1.000 1.000 1.00C 1.000 1.000 1.00L 1,000 1.00L
2 2.423 1.291 1.138 1.128 .936 1.027 1.009 .988 1.000 1.003 .999 1.001 1.000 1.000 1.000 1.00L 1.000 1.00L
1 1.806 1,085 1.086 1.02L .972 1.017 1.001L .99% 1.001 1.001 .999 1.00L 1.000 1.000 1.000 1.000 1.000 1.001
R 1.000 .720 1.000 .856 1.000  .973 1.000 .99% 1.000 :998 1.000 1,000 1.000 1.000 1.000 1.000 1,000 1.000
¢ factor .2658 -- 1.5798 -- .8430 -- 1.0739 -- 9759 - 11,0102 -- L9974 --  1.0022 -- 1.0001 --

26709 25543 27207 26697 26976 26984 26993 26972 26997 26989 26995 2599% 26994 26996 26994 26996 2699k 26996

S

UJB (Dg

-1448Y -15650 -13986 -14L96 -14216 -1L4209 -1L4200 -1L4220-14196 -14203 -14198 -1h;99-1&198-1&197-1&198-1&197-1&198-1&197
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Fig. 55. Results for Example 23: selected TBP product curves.



Example 23

Component - Feed-slope Equilibrium-value _ S
characterizing value h: ~. constants Enthalpy-value constants
temperatureszP, -(SX/SprxlO.)>_ A B . k. 1 u W

0 nTH S
300 ¢ ©oh.08k 5760
320 . 6.225 . -6160 <
340 11.056 '«4656017
360 24.602 26960
380 50.199 . . -7350.
o 515295 .. =750
k20 50.000 . -8lk5-
Mo u6.813 sy S
460 . . k2,530 :fi':,j;gghgug-_»
480 /SU6 935
500" 3960t o9Ths
520 S 32am - -10040
5ko 30.528 ‘Qlo5uo
560 29.681  -109k0
580 © 29.233 . -11335
600 28.98%4 o735

.055. © Tl.lz  -3284k  55.30  -6700
285  75.47 -35719 58.00 . -7050
515 -77.84  -36738 61.00 -0
:750-  8L.40  -38307  6L.00  -7885
.980 --84.24 -39528  67.00 -8300
1205 88.32 ;~u1588' 70.30-  -8820
L35 92,38 -W365T  173.70  -9360
565 . 95.00 WLk . 77.20 <9900
900 : 98.07 ;ysuu3." 81.00 -10600 -
130 101.82 . -47021 'B4L.70  -11230
360 - 106.38 -hg3ll  88.90  -12040
585 © 110.92 -51606  93.00  -12800
.820° 115.4%  -53622  97.30  -13620
;050 © 119.31  -55289  101. -14530
.280 123.69 -57201  106. -15420
510 128.00 -5907L  110. 16270
7%  132.24  -60900  115. 16970

0.0.0 V. ®»® ®

e = o R R B
P B O O O O
e BN
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Thermal condition of feed: saturated liquid
Column pressure: 1 atmosphere
Reflux temperature: bubble point
Reflux amount: 0.3 mole per mole feed
Top-produét amount: 0.4 mole per mole feed
Enriching stages: U{(not including feed stage)
Stripping stages: U4(including feed stage)
Total condenser used with equilibrium reboiler
Allowable error limits:

Integration: |e| < 1x1073

Bubble point: le,| < 0.1°F

"Initial gradient assumptions:

Stage Temperature Ygggz?lows Liquid
8 o 37CF 0.7 0.3
7 i 390 0.7 0.3
6 407 0.7 0.3
5 422 0.7 . 0.3
4 436 . 0.7 1.3
3 453 | 0.7 1.3
2 LeT 0.7 1.3
1 483 0.7 1.3
"R 500 0.7 0.6
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VII. EFFECT OF NOWIDEALITY IN MULTISTAGE CALCULATIONS

The equilibrium valués used in calculations presented up to this
point have‘been empirical‘ones based on general correlations available in
the literature. These equilibrium or K values are correlated as functions
of temperature and pressure, and as usually presented are in no way depen-
dent upon composition. The composition dependence can be disregarded if
the assumption of ideal behavior is postulated for the liquid phase, and
this assumption is generally a good one for paraffinic and olefinic hydro-
carbon mixtures. However, for mixtures containing aromatic hydrocarbons,
water, alcohols, etc., the departure from idéal behavior in the liqpid
phase is pronounced enough so’that it must be accounted for in some manner.
It is the purpose.of this section to present a method for doing this and
to show how this method can be used with the'calculatiOnal,methods of
Section II.

As Robinson and Gilliland,28 Perry§26 and'other522’36 have
shown, departures from ideal conditions may occur in both the vapor and
liquid phases under certain specified conditionsf Vapor-phase departures
occur at high pressures because the volume and molecular-force effécts
become large enough to preclude ideal gas behavior and therefore fugacity
replaces pressure in the vapor-liquid relationship. The Lewis and  ‘

36

Randall fugacity rule is normally used for mixtures in the vapor

phase, so that the fugacity of component i is

£ =7v.f - (VII.1)

Vi iTwi’
WherefjTi is the fugacity of the pure component at the same temperature
and pressure as the mixture.

| Deviations from the ideal solution laws .are more'importgnt for
the liquid phase than for the vapor phase because they occur even at low
pressures and their magnitudes are larger. In.the dense liquid phase,
the molecular volumes and intermolecular‘forces are always significant

and lead to at least two main types of deviations, such as
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(a) those resulting because vapor does not obey the perfect gas
law,

(b) those due to special phenomena connected with the llquld
phase, such as chemical association.

Robinson and Gilliland have shown that Type a deviations can

be calculated by an equation of the form

£y = Xi‘fpi exp [5& (m - Pi)/RT], ' (VII.2)
where f1i = fugacity of component i in the liquid phase,
fpi f fugacity of pure liquid i'under its own vapor pressure,
V& = partial molal volume of component if‘ ‘
7 = total system pressure,
Pi = vapor pregsure of component i at thé temperature of the

mixture,
T = absolute temperature,
R = gas law constant. |
Typé b and. other liquidnpﬁaée deviations can be summed up .in
":what is termed &n activity coefflclent whlch is a term inserted in the

fugacity eqpallty at eqpllabrlum, as- follows:

fyi =14

or

¥y _fﬁ =7, »xi fpi exp [v (x - Pi)/RT]. o (VII.3)

In %his.manner, pure liquids before mixing serve as a
reference base, and deviations resulting from mixing asre accumulated
as the departure‘factor or activity coefficient y. The general ex-

pressionirelating vapor- and liquid-phase mole fractions becomes

V. (£, B
.—.& = 2 - - P ) = : .
v Yi__—P—-fﬁi exp [vi (a ..I"i)/RT] . ‘1<‘:, | (VII.L)

4
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where X is the normal equilibrium constant. The fugacities in this
expression can be determined in various ways, such asffrom generalized
bplots.or from various equations of staté, and the exponential term
requires partial molal volume data. No matter what form the expression
takes for these quantities, a K value calculated from them would cause
no difficuities in the mass-balance methods of Section Ii, since these
- exXpressions are essentially independent of composition. The v term, .
however, is composition-dependent, since it involves molecular inter-
actions, and the effect on the fractionation‘calculations of this -
composition dependence is what is of interest. | |

; In the presentation to fbllow, then, the system pressures are
assumed low enough that fugacity betomes identical with pressure, and |

under these conditions Egq. (Vil.h) reduces to

D, = ¥,% = T.Bx (VII.5)

i1 i’
where 5 = partial pressure of component i.
This form of equation is qplte suitable for studylng the effect
of T4 oh the fractionation calculatlons, end the 1deal equllibrlum value

P, /ﬂ becomes ‘the modified value

K‘MODI_FIED = TiKIDEAL = [Ti (-It—:L)] - (VIL.6)
There have been many - proposals of methods for calculating the
”-activ1ty coefficient probebly the most widely used are those of Mar-gulesZLL
and van Laar.21 More recent methods proposed are those due to Scatchard
and Hamer,3 Redlich and K:Lster,‘7 Wohl, 39 and others The method used
by Wohl in his derivation of the ternary and quaternary three- Suffix
Margules eqpatlons was used to derive a three- suffix Margules eqpatlon
for N components. Similsr N-component equations can ‘be derived.for the
van Laar approach as well as the oOther approaches, but the Margules
equation is simplest in'application and is quite adaptable to use with
digital computers. The three-suffix Margules eqpation proposed here - is,
then, for component a in a mixture of N components, where a = 1, 2, 3500

N as follows:



-227-

: N N ., N0 X
bar_.=2x_ % xA +3 (x)%A,+% % = X X B -
a a 1=1 i ia 5=1 J :J Xa 5=1 k=1 Jxk aJk |
afifk .
a#k ‘ :
5<k
N ( . N N N : )
2 = [(x, ) T xA . ]-2 3 = = X, % AY ' VII.7
i=1 31 901 i=] j=2 k=3 VEREY
| i3tk
14k
<k

This equation can be written in symbolic‘fbrm as

107y = 20+ Vag 3 Vage ™ 20 T By (v11.8)

and one can show

= YRR R ' II.
2/3 2 vy | o (viL.9).
1= - . .

The implied definitions of the functions (w 1 waJ, vagk, up
and 1) is obvious, and the latter two, 7§ and p, are actually constants
applying to all T Values calculated. The above equations show ‘the
dependence of r values on compos sition as well as binary interaction
data A , and A 13k’ where the latter term as defined as actually depen-

13
dent on blnary interaction data as follows:

A:Jk.= L2 (Ayy + Ay + Ay + A + Ay + A )+ C:Jk (VII.10)

The term C?gk represents actual ternary data, and normally these data

are not available; Following Wéhl, then, this term is set equal to zero,

and there is some Jjustificetion for this on the basis of meager daﬁa

available, which indicate the magnitude of the term.to'be guite small.
The following'suffiﬁ‘permutatioh‘relation-holds,

*

A A* *
ijk — Tgki T Akij
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¥ 1
so that the number of A terms that exist for N components is [Zﬁ:ngET]‘

which implies a minimum value of 3 for N. .

Thus, if binary-interaction data are available for all the
binary pairs possiblé in a mixture of N components, it is possible to
calculate the activity coefficient for any component as a functim of
composition and these binary-interaction constants, Aij' The individual .
values of Aij are the limits of 1n Yi as X, approaches 0 in a mixture of
J and i; that is, they are the terminal values of 1n - Similarly, the
Aji value would be the limit of 1n Y, as Xj approaches 0. In actual
use, the A i data are stored in a computer as a two-dimensional 1,]J
array from whlch w terms are obtained as row summatlons and w aj terms
as column summatlons. The 7 term is the sum of (x ) terms times the
@,  terms, and the p term is obtained by Eq. (VII.9) involving Vajk terms.
These latter terms are derived from a special two-dimensional array of
Aijk terms made in accordance with the limitations on the suffix com—
binations indicated in Eqg. (VII.7). By use of this special array, the
vajk terms become column summa*tiéns° _

- The over-all calculation involves the use of either Method I
or Method ITI mass-balance equations in which KMODIFIED.valueS from Eq.
(VII.6) are used. Following this, a bubble-point calculation is made to
correct the stage temperatures, and the bubble point-relation used is

¥ Kyoprrrep (¥4 'wormarzzap = 10 (VII.11)
When new temperatures have been obtained, the next step in the calculatioh
is to use the mass-balance equations for another .iteration. A schematic
computer prégram for doing one iterétion is shown in Fig. 56. '

Treybal36 and others have pointed out the dependence of the Y
value on temperature and noted that data on partial molél heat of solu~
tion are needed to calculate the change in y value with temperature.
These heat-of-solution data are also required if any attempt is made to
make energy balances and flow corrections for a given system. Such data
are not generally available and therefore, for calculations done in this
work, the temperature dependence of y was neglected and constant molal

overflow was assumed.
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Fig. 56. Schematic computer program using activity
coefficient, Tye



-230-

One of the primary advantages of calculations*using modified
K values is that they predict the formation, of azeotropes which cannot
be predicted in any other way. The formation of these azeotropes at
some point in a distillation bolumn is much more a function of com-
position than of‘flows, and therefore the neglect of flow changes that’
would result from energy balances is reasonable even if not rigorously,
ijustifiable. If heav-of-solution data and other energy data were
available, energy balances coﬁld easily be made by the methods of
Section IIT with appropriate modifications. }

In Example 24, a ternary solution of ethyl alcohol, propyl
alcohol, and water is fed to a column similar to that of Fig. 4 and
containing four stages plus an equilibrium rebéiler with saturated
liquid feed entering at Stage 2. Method I mass-balancé equations were
used and the results are shown in Table L and Figs. 57 and 58. The
setting of tle bulk split in this and subsequent problems in this section
was purely arbitrary; the only purpdse of the proll em was to ascertain
the behavior of the mass-balance equations with valwe s of KMODIFIED' It
is not to be inferred that'the separations obtained represent any
practical solution to the separation problem préposed. However, the
calculational techniques givén here can be used for studying separations
obtainable by varying the available independent variables for a given.
system.

As can be seen from the results of Example 24, the convergence
is not as fast as’ that using empirical K values. However, if enough '

iterations are run, an exact solution is available.

Example 24
Feed FKF- Vaior—pressure ;onstants*
CZHSQHV 0.239 -7319.2 15.4563
C3H7OH 0.045 -8076.3 15.9924
HOH 0.716 -7450.9 14.8618

N 1.000 -

These constants were obtained in the usual manner and used in the -

equation



Table L
Results for Example 24: summationsand topw-pro-duct recovery fractions from various iterations
| ‘ A '7 7 VStaige. summétions %:L:(X )
Stage 1 2 3 4 5 6 7 8 10 12 W 16 18
4 °768 .799  .884 §9#7 .978 -~ .99% 1.001 1.003 1.003 1.002 1.001 1.000 ~ 1.000
3 .845  .850 . .920 .983 1.011 1.019 1.018 1.01% 1.007 1.003 1.00L 1.000  1.000
2 978 .92k 97£‘ 1.014 1.022° 1.018 1.013 1;009 1.004 1.002 1.001 1.000  1.000
1 1.088  .982 1.042 ,i;osh 1.040 _1.028 1.018 1.012 V; 005 1.002 1.001L 1.000  1.000 gé
R 1.0 1.195 1.118 1.073 1.0&17710031 1,020 1.013 1 005 1.002 -1.00L° 1.000  1.000 '
Component - ’ 'I‘op-product recoverjy fraction
Ethyl 1.152 1,129 1. o9h 1. 05h 1. 030 1. 015 1. 005 .999 v‘992'A .989 .988 .987 .987
alcohol -~ o : ' :
_Propyl .357 - 1. 165 1.121. 1 073 1.045 1,028 1. 018 1.010 1,003 1.000 .998 .998 .998
alcohol _ o .
Water .291 .248  .263 279 .289'f'.295 .299 .301 .30%  .305 .306 .306 .306
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Fig. 57. Results for Example 2k: temperature vs. iteration
for all stages.
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i

n P, =5 + B,

to obtain values of Pi'-
Thermal condition of feed: saturated liquid
Column pressure: = = 20 psia (assumed constant)
Reflux amount: 0.5 mole per mole feed
Top product amount: 0.5 mole per mole feed
Enriching stages: 2(not including feed stage)
Stripping stages: 2(including feed stage)
Total condenser used;
Equilibrium reboiler used

Allowable bubble-point error: lezl<§ 0.1°F

Binary interattion constant array

i 1 2 , 3
J Ethyl Propyl
' alcohol Alcohol Water Three-suffix constant
: ¥ ¥* ¥
f;ggiol Ay Aoy Ay By p3™hog =hs 572675
0.00 0.00 1.05
= A = A _ =
RPN 22 32
0.00 0.00. 1.05
Water A = A = A =
13 23 33
0.95 2.30 0.00
These data were estimated from information available in Treybal36 and

Horsley;l8

Initial-gradient assumptions

Stage Temperature Ygéégigﬂi—fgquid
Iy 200°F 1.0 0.5
23 200 1.0 0.5
2 200 1.0 1.5
1 200 . 1.0 1.5
R 200 1.0 0.5
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In Example 25, the same feed was fed to Stage 5 of a 10-stage
column with the top product amount cut to 0.3 mole per mole feed and a
reflux ratio of 1.0 maintained. The results are given in Table LI and
Figs. 59 and 60; and indicate that an oscillatory behavior in the early
iterations is possible and quite pronounced. Fortunately, it does damp
out and an exact solution becomes possible, but some doubt is raised as
t0 the behavior of the Method I mass-balance approéch with larger numbers

of stages present in the column.

Example 25

Same feed, vapor pressure constants, binary interaction, and
three-suffix constants as Example 24. Column conditions are the same
except for

Enriching stages: 5(not including the feed staze)

Stripping stages: 5(including the feed stage)

‘Reflux amount: 0.3 mole per mole feed

Top~-product amount: 0.3 mole per mole feed

For initiel gradients sll temperatures were set at ZOOOF, ,
L/V = 0.3/0.6 = 0.5 in the enriching section, and V'/L' = 0.6/1.3 = 0.462
in the stripping section. |

The results of Example 25 further indicate that as more stages
are added and the bottom product shifts toward higher water content,
oscillations of the propyl alcohol activity coefficient show up and the
values of the coefficient become large. The oscillations are quite
marked at first, but finally demp out.- The temperature profile for the
system based on the split set indicates that stripping stages in the area
of the feed stage sre doing very little fractionation, while the last
stage and the reboiler are doing a relatively large amount of fraction-
ation. This large movement at one end of the column apparently is the
major cause of the initial large oscillation, which fortunately then damps
out.

Even though the bulk split and flow gradients set do not give

an efffcient column (as evidenced by the presence of several stages where
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Table LI

Results for Example 25:

summations and top product recovery fractions

from various iterations

Stage sumnmations ¥(x, )
i'p

Stage 1 3 5 7 9 10 13 15 17 19 21 23 25 27 29
10 602 1.049 1.093  .975 .977 1.018 .996 1.003 1.000 .995 1.003 1.001 .998 1.000 .doo
9 .681 .994 1.101 .965 .978 1.013 .996 1.00k 1.000 .995 1.003 1.00L .999 1.000 1.000
8 .766 .9hi .ol .956  .988 1.007 .995 1.00% 1.001 .995' 1.002 1.00L .999 1.000 1.000
7 .84  .928 1.063 .960 .998 1.006 .992 1.004 1.002 .996 1.001 1.001 .999 1.000 .boo
6 .917 .948 1.021 .973 1.003 1.008 .992 1.001 1.003 .998 1.001 1.000 1.000 1.000 1.000
5 .979 .98l 1.024 .997 .993 1.009 .998 .999 1.002 .999 1.000 .1.00L .999 1.000 1.000
y- 977 .963 1.043 1.012 .973 1.0l1hk 1.000 .996 1.003: .998 1.000 1.001 .999 1.000 1.000
3 975 .938 1.0h8 1.042 .96k 1,013 1.007 .993 1.004k .998 .999 1.003 .999 1.000 1,001
2 .980 .918 1.028 1.07% .958 1.005 1.013 .993 1.00h4 !998 .998 1.003  .999 .999  1.00L
1 1.018 .925 .990 1.064 .971 .996 1,012 .9§5 1.002 1.000 .997 1.002 1.000 .999' .000
R 1.189 .97h  .960 1.011 1.005 _.992 1,002 .999 1.000 1.002 .999 1.000 1.001 1.000 1.000
Component Top-product recovery fraction

Ethyl _

alecohol .850 .826 .776 .73 .772 .77X  .756  .757  .757  .761 .61 .78  .758  .760  .T759

Propyl . |

alechol .167 .893 .830 .565 .760 .788 .725 .73 .732 . .738 .78 .735 .734  .7ML L7309

Water 25 .087  .108  .1k6 .11k 112 121 .120 .l20 .19 .118 .120 .120 .1l19 _.119
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very.little fractionation takes place), it is important to have a cal-
culational method that will always converge so that bulk splits, flow
gradients, and numbers of stages may be varied and problem solutions
cross-plotted. Example 26 uses the feed of Examples 24 and 25 but
increases the number of stages to 23 with liquid feed on the 11th stage.
The bulk separation is changed to 0.25 mole top produét per mole feed
with a reflux ratio of 1. Typical results given in Fig. 61 show that
under these condition Method I mass-balance eguations are incapable of
giving a‘convergent solution, so that recourse must be had to Method II
equations, ‘The combination of Method II equations with KMODIFIED
normally gives convergent solutions if enough iterations are run on the

computer.

Example 26

Same feed, vapor pressure constants binary interation, and
three-suffix constants as Example 24, Column conditions are the same
with the only system changes

Enriching stages: 12(not including feed stage)

Stripping stages: 11(including feed stage)

Reflux amount: 0.25 mole per mole feed

Top~-product amount: 0.25 mole per mole feed

All femperatures initially 200°F

Enriching section: L/V = 0.25/0.5 = 0.5

Stripping section: Vl/Ll = 0.5/1.25 = 0.4

Example 27 is a rerun of Example 26 but with Method II mass-
balance equations used rather than Method I equations. The results are
given in Figs. 62 and 63, where only specific stage temperatures and
activity coefficieﬁts are plotted as they are typical of the behavior of
all other stages. The use of slow-moving Method II has essentially
removed all oscillation from both the temperature and activity-coefficient
values, and a practical convergent solution is available at approximaté.y
the 80th iteration. The over-all mass balance at the 100th iteration 7,

gave the following errors,
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Fig. 63. Results for Example 27: activity coefficient vs.

iteration for reboiler only.
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Ethyl alcohol - 0.12%,
Propyl alcohol - 0.53%,
Water - 0.01%.

and these figures give an additional check on convergence.

Example 27 _

Exactly the same as Ek&ample 26 in all respects except one--
that is, Method II mass-balance equations were used rather than those
of Method I. | |

The converged temperature gradients for two bulk splits and
fwo,different columns are shown in Fig. 64 and are indigative of the in-
efficiency of the separation under the assumptions made. However, since
no informafion is available on a tern?ry azeotrope for this three-
component,system,‘the arbitrary bulk splits indicated were assumed. It
" is very likely that any azeotrope would be such that smaller values of
the topnprdduét amount would have fo,be assumed and caléulations made
to see if‘the,uppér end of the temperature gradient curve became
Vertical,‘as it.would be if an azeotrope were found. The shape of the
gradient curve can also be changed by varying the reflux amount so that
better fractionafibn éfficiehcy is obtained.
o ' In.any case, calculational techniques have been presented which
give-conVergent solutions as variables are assigned different values.
Thus, it becomes possible to seek out azeotrope formation in multi-
component systems and to make géneral calculations in systems exhibiting

.nonideal behavior'in the liquid phase.
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VIII. LIQUID-LIQUID EXTRACTION CALCULATIONS

It is possible to apply the methods of Sections II, IIT, and
VII to the general problem of liquid-liquid extraction, and it is the
purpose of this seetion to illustrate how this might be done. There
are obviously fundamental differences between the two processes which
will require calculational techniques differing from those of the pre-
ceding sections. '

In the general distillation problem, there is a process of
vaporization and eondensation which takes place at every stage; along
with this process, the necessary mass transfer takes place to effect
the desired component separation. Thus; of necessity, there is a
: temperature gradient in such a process, aﬁd this in turn allows mdss
~and energy balances to be made. v
It ﬁas a property of.such'processes that the composition—
v-temperature interdependence allowed separation calcuiations_to be made
irrespective of the system flows, which were of course assumed constant.
Further, when it was necessary to recognize flow changes, the energy-

: temﬁerature interdependence‘provided a convenient basis upon which to
make calculations. _

In liquid—liquid extraction processes, the temperature is
essentially constant from stage to stage if frictional and heat-of-
solution effects are neglected and there are no arbitrafy energy inputs
or outputs. HoWever,‘the mass-transfer process taking place requires
that flows do change from stage to stage, and this flow variation must
be taken into accounﬁ in order to obtain a properly,convergent solution
‘for a given problem. o ) '

Method II mass-balance equations can be used to describe such
a system if there‘ie a means available for calculating the distribution
coefficilent or equilibrium value for the distributing component or
components. Since it is assumed that two liquid phases are in equilibrium
at any stage p, then the activity a of any component i must be the .

same in each phase, and this is expressed methematically as
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(ai)v = (ai)L, : | (VIII.1)
where v _ ‘
(ai)V = activity of component i 1n'phase V, and V is that
- phase ordlnarlly called the extract phase in llgUld-
liquid extraction literature. _
(ai)L = activity of component 1 in phase L, and L is that ™

phase ordinarily called the raffinate -phase 1ﬁ liguid-
liquid extraction literature.

'
i

Since activity is defined as the product of activity coefficient

and mole fraction, it follows, from Eq. (VIII.1) that we have

(ryyyly = (ryxg )y | - (VIII.2)
vand therefore
V. )y (7.
RERA L | |
G T e T K - (VIII.3)
1’1, i’y »

so rhal if the individual activity coefficients y are known for each
phase, it 1s then possible to use Method II mass-balance equations.
 These activity coefficients can be calculated from Eq. (VII.T7) by assum-
ing that all necessary data fof the Mafgules‘binary-interation constan s,
Aij’ are available for.a given éet of components.

The eqpilibrium'constant KLV differs from that used in dis-
tillation calculatiqns in that it is essentially temperature-indepeadent.
‘ActiViﬁy coefficients do varylwith t@mperatﬁre and préssure; but for all
practical purposes, isothermal and isobaric conditions may be assumed in
liquid-liquid extraction calculations so that KLV becomés primarily a
function of composition. ‘

The change in the individual phase filows, whiéh appear
explicitly in the Method II.mass-balahce equations, must be calculated
for every change in ¢omposition'resulting from use of these equgtions,
ahd energy effects cannot be usedvto do this. Howevey, an equation
parallel to Eq. (III.13), but involving only mass flows for component:

i, would be
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(Vy;)50 * Cagyd g + (L) gy ¥ (qiL)p+l -
{}(Vyi)p + (qiv)p + (in)p + (qiL)p]} =0 (VIII.L)
where g, = that corrective value of mass flow for component i which when

added to its accompanying main-stream mass flow makes Egq.
(VIII.4) identically O.

Any stage mass unbalance would be defined for component i as

(Vygdpg *+ (g = (W) (Txg) = (Q)) (VIIL.5)

p-1 L'p i'p

and subtracting Eq. (VIII.5) from Eq. (VIII.L) leads to

(agydpoy + (qiL)p+l - (agyh+ (qiL)p + (Qi)p = 0.  (VIIL.6)
This latter equation is identical with Eq. (III.lh), but the
q and Qi now have totally different definitions. As in Section III, it
is necessary to find or assume a relation between (qiv).and (qiL) before
Eq. (VIII.6) can be effectively used. .The previously proposed (CV/CL)
ratio cannot now be derived from basic energy relations, so that re-
course must be ad to some other method of estimating (CV/CL)’,
One way of estimating this ratio, and the way proposed here,
is to assume that any mass unbalance (Qi)p that is fed back to a gtage
will split into two phases in a mass ratio equivalent to the mass ratio
of component i in the two phases currently leaving that stage. It can
be shown that this assumption cannot be rigorously correct except at the
limit or convergence point, but it is nevertheless an excellent assump-
tion, as any small feedback mass (Qi)p splitting between two existing
phases would split in some aribtrary menner heavily dependent on the
respective masses of component i in each phase. For purposes of carrying
out corrective mass-flow calculations, then, (CV/-CL)i is set equal to
the mass ratio of component i in the exit streams from each individual
stage. On the basis of this assumption then, the following relationship

is established:
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tog/c )y = (Vy )/(1x) o | | (VIII.7)

This relationship can now be used in Eq. (VIII.6), and a
normal two-point extrabolation process can be run for each component
i. This process operates.exactly the same as the similar process
~described in Section III. The use of Eq. (VIII.6) with (qiL) or (qfv)
being explicitfis arbitrary; but, as will be shown later; the choice
sometimes depends on the (CV/CL)i ratio values for certain components

i,
If g, are calculated, £hey can be used directly to correct.

- a component flow, since 9, = ALi, and the following relations hold:

(VIII.8)

(L Dy = (28) + (L)

(Vyir)mé (CV/CL)i (ALl) + (Vy )OLD " - (VIII9)

-HaVing-calculated all values of (Lx, )NEW and (Vy, )NEW’ one can determlne

NEW’ Vi (x )NEW’ and (yi) for each stage p from ‘the relablons

Ly = 5 )i - . (viinao)
.JVNEW =7 (Vy, JpJ— - o e S ‘“(VIIi_ll)
(%) = (in)NEW o .
1NEW T e o . : . (VIII.12)
, - _
(V'.): :
(¥ Dy = zl NEW (VIII.13)

NEW
 When these rélatioﬁs are applied at each stage p, therfinal'
result 1s all new comp051tlons and total stage flows ‘ |
The over -all program as set up for a digital computer is
_ shown in Fig. 65, and the normal sequence 1h ehy given 1teratlon would:
be one mass-balance step. for each corrective-mass=flow step. It has
génerally been found that no damping faotor is needed with this one-to-

one pattern, but a factor could easily be inserted to multiply qi if
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test; - _] normalize a L old‘_l cycle or
cycle or go on
go on and (in)old
MU =17959

Fig. 65. Schematic computer program for liquid-liquid extraction.
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necessary. It also may be .necessary, under certain conditions in a .
given problem3 to run the mass-balance part of the iteration until the
unbalance errors are reduced below some arbitrarily predetermined small
number before moving on to the corrective mass flow. This type of
operation would correspond to the variable pattern previously mentioned
in Section V, and would be necessary when compositions changed rapidly
(owing} most likely, to very poor guesses of starting gradients and
compositions).

When Method II mass balance is being used, starting values
of compositions must be assumed for all stages; the.simplest possible
assumption is that all V-phaSe-streams have the composition of the
extract solvent and all L-phase streams have the composition of the
incoming feed containing the raffinate solvent and the distributing
components. The initial flow gradients gssuméd should be selected
with some care, since there are limits on_ﬁhese values outside>which '
it is impossible .to operate. Forluhately, if these limits are violated
the calculation process itself will most likely give an indication of
this condition and at what point in the column it has occurred,

To test the proposed method and the assumption regarding
(CV/CL)i, avtwo-component feed was fed to a single stage, as . shown in
Fig. 66a, and a pure solvent feed was used for extraction. This case
is presented as Example 28, and the results are given in Fig; 66b and
LII. The convergence is rapid, with practical results available at the
third iteration. The range in values for (ﬁV/CL)i'is ;arge because the
V-phase solvent has a very small solubility in the L phase and vice
versa for the L-phase solvent. These ratio values quickly reach an

essentially constant value and stay there as the unbalance errors are

.

reduced. _
Example 28 Margules binary interation constant
Py, F (Aij) array
—= = /i 2 2 .3
Component 1 1.0 0.0 1 0.0 0.5 9.0
‘ *
g 0.0 0.1 2 0.5 0.0 0.2 A _,=10.2
3 0.0 0.9 123
1.0 1—6 3 10.0 02 0.0
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Raffinate solvent plus
V phase [_FeEd{distributing component
Single
stage

— :

o N

L Pure solvent {FFEEd} L phase

[+}] 1 .

Y

(a)

(72}

[} v

£

O

N V phase
1, 04—

(3]

Q

L

@)

E (b)
~ 100

2

o

Y

]

o

2 0. 96— . . L phase

2] ] I I B ] .

1 2 3 4 5 6 7 8
Iteration

MU=17960

Fig. 66. a. Stream flows for the single stage of Example 28.
b. Results for Example 28: stage flow vs. lteratiom.



Table LII

Results for Example .28:

parameter values from seven iterations

Summations 1 2 3 L 5 6 7
§(Xi) .968 . 995 .999  1.000 1.000 1.000 1.000
%(yi) 1.032  1.00k 1.001 1.000 1.000 1.000 1.000

Components _ L-phase y values

1 7835, 11707. 12207. 12276. 12285. 12286. 12286.

2 1.165 1.191 1.193 1.194 1.194 1.194 1.194

3 1.003 l,QQl l;OOl 1.001 1.001 1.001 1.001
Components ' V-phase y values |

1 1.000 1.001 1.001 1.001 1.001 1.001 1.001

2 1.633 1.585 1.579 1.578 1.578  1.578 1.578

3 7905. 5740, 5548, 2523. 5519. 5519. _ 5519.

Components Mass-unbalance errors, ei
1 -6.91 -.693 -.061 -.808 -.001 -- --

2 -.071 -.0078 -.0011 -.0001 - -- --
3 +.0099 _ -.0001 -- - - - - --

Components .Flow—unbalance efrors, Qi
1 +,031  +.0042 +.0006 +.0001 -- -- --

2 -.0006b -.0001 .. -- S -- -- --
3 -.0003 -.0042 -.0006 -.0001 -- --

Components (CV/CL)i values
1 T7hO5. 12575. 13322. 13426.7 13440. 13441, 13h4kL2.
2 .683 .807 .826 .828 .828 .828 .828

3 .000L . 0002 . 0002 .0002 .0002 .0002 .0002

Components Top-product recovery fraction

1 -9999  .9999  .9999  .9999  .9999° .9999  .9999
2 L4057 LukéT  LL522 4530 L4531 L4531 L4531
3 .0001 .0002 .0002  .0002 .0002 .0002 .0002
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The initial V- and L-phase‘ﬁésses were assumed as indicated
in Fig. 66b and the compositions of these phases were set at those of
Fl and F2 respectively. .The Aij values were arbitrarily assumed so as
to have a high degree of immiscibility between components 1 and 3, with
component 2 the main distributing componenf.

In Example 29, the same feeds were put into the three-stage
column shown in Fig. 67a, and the resﬁlts of this exampie are given in
Tables LIIT and LIV and Figs. 67b,'68,-69. Again the convergence. is
fairly rapid, with practical results available at the 5th or 6th
iteration. These results were obtained with a corrective mass-flow
allowable‘érror, ec, of 0.01 for the two-point extrapolation process.

In the calculational process' of Example. 29, it was impossible
to lower the Valué of €. to 0.001 or 00,0001 even though these values are
more desirable than the one used. The reason that smaller values would
not work is that in the twd-pointvextrapolation process'new values of
qiL are predicted in such a way that a difference-of-differences term
occurs. The first difference is based upon nunbers which are quite
small, the 91 aga th;s difference_approaches the limit of signifiéant
figurés that the computer can carry. When the differences of these
difference terms is calculated, it is quite possible that total loss of
significant figures can bccur, and.as this tefm is used as a division
term, the computer automatically stops because in efféct it is trying
. to divide by zéro,{ There are two.ways to get around this difficulty.

" The first is to usé dpuble—precisioh numbers that carry 18 rather than

8 places. The'second and more desirable way 1s to switch to qu term;
r any component that distributes essentially all .into the V phase, since
the order of magnitude of the qu is appreciably greater than that of the
qiL’ and enough significant figures should be retained so that lower .
values of €, can be used. Unfortunately, this second approach requires
some additional programming to seek out highly nondistributing components
in order that a decision may be made on the use of 47, or 9y with the

logic being as follovs:
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distributing

{ Solvent plus
component

A phase Feed
| I FZ
Stage
3
Stage

1]

Stage
1

Pure Feed _j I—;
Fy

solvent L phase

(a)

2.0
~ |
- (b)
preey
[ =
(]

O Stage 1
:: & Stage 2
® L5 F Stage 3
o
(&)

: _____________________ Stage 1
.; L,é_—_—:‘::::::—— e e e T e e Stage 2
:..: Stage 3
(& ]
1.0
<t
1 l N L ] | ] | ]
: 5 5 7 9 11 13
Iteration
MU-17961

Fig. 67. a. Stream flows for the multiple stages of Example 29.
b. Results for Example 29: activity coefficient vs.
iteration for component 2.
—— V phase.
-=-~ I phase.
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16000} | ]
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© 14000} | - |
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.-_>—. I[ /____/ ————————————————— - quge 3
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<
6000k Stage | 4
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| 3 5 7 9 0 13
Iteration
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Fig. 68. Results for Example 29: activity coefficient vs.
iteration for components 1 and 3.
——— L~phase solvent or component 3.
--- V-phase solvent or component 1.
All V-phase values of component 1
All L-phase values of component 3

1.001.
1.001.

~
~
~
~



Stage flows

Fig. 69. Results for Example 29: stage flow

(moles per 2.0 moles feed)
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Table LIIT

Results for Example 29: summations and top-product recovery fractions from various lterations

)P

Phase mole-fraction summations §_)(xi)P and %(yi
1 2 3 Y 5 .
Stage L v L v L v L v L v L v L v L v L v

3 1.002 1.039 .992 .999 .99% .998 .997 1.000 .999 1.000 .999 1.000 1.000 1.000 1,000 1.000 1.000 1,000

2 .991 1.081 .997 1.005 1.000 1.001 1.000 1.000 1,000 1.000 1.000 1.000 1,000 1.000 1.000 1.000 1.000 1.000

1 .966 1.032 .997 1.003 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Component Top-product recovery fraction

1 1.0075 1.0022 .9996 © 29999 9999 .9999 -9999 .9999 -9999

2 L6116 .6800 L6754 . 67h4h L6751 L6756 L6759 L6760 L6762

3 .0001 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002
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(a) If the component distributes heav1ly into the V phase,

“use qu ,

(b) If the component dlstrlbutes heav1ly into the L phase, .
use qlL

( ) For all other components either q can be used. -

These dlfflcultles did not occur in dlstlllatlon procedures because the

value of the g term was normally qulte large

Table LIV _

vResults for Example 29
mass unbalance errors2 €, from Iteratlon l3

. _.Component ‘ )
Stage A s B e 30
2 - -6 x l0*5 _ S 49 x 10?7_: e
1 O dx 1077 | ;‘}u'xvio'éflf o _éz'xalo’S

The small values of q. iL AL cause another behav1or quirk, as
shown 'in Fig. 69 As. the 1terative process converges, all q i1 approach
. O3 and 1if an . attempt 1s made. to reduce all mass-balanCe errors €, to &
very small number dlfflcultles with s1gn1f1cant figures again arlse
Table LIV shows values of € for Iteratlonrl3, and at that p01nt the
errors for CompOnent 3 haie been reduced belOW the: eight place carrylng
ability of the computer Beyond this p01nt, correction values calculated
- begin to oscillate. This behav1or can be compensated for by the methods
suggested in the precedlng paragraph However the obv1ous solutlon to
~the prdblem is to; recognlze that practlcal convergence has set. in long
before Iteratlon 13 has beén reached and to stop the 1terat1ve process,
as. reductlon of € to some very small value is not justlfied ) .
E mple 29 _ . - A L
" The same feed and data as for Example 28 The starting flow
gradients are as shown in Fig.. 69, and. Lhe 1n1tlal phase comp051tlons at
every stage were set equal to- the‘Fl composxstlon forrthe V_phase and -

the F2 composition for'the L' phase..
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L%quid-liquid extraction in center-fed columns, refluxed
columhs, and other column variations can be handled by the calculational
techniques presented here. The equilibrium data required can be calcu-
lated either by arbitrary empirical functions or from activity coefficients

and used in the general calculational framework with novdiffiéulty.
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NOMENCLATURE |

Activity of Componeﬂf i in liquia phése L

two-suffix Margules binary interaction constant

three-suffix Margules qonstént )
coefficient for Component i in equilibrium expression, Eq. (I.3)
bottom-product amount from a column (moles per mole feed)
édﬁstant for Component i in equilibrium expression, Eg. (1}3)
column condenser

Vapor-stream‘heat capacity defined by Eq. (III.16)
iiquid-streémvheaf capacity defined by Eg. (III.18)
heat-capacity ratio 6r_gorr;é€fve”mass?flbw ratio

top-producf amount frdm a column (mbles.per mole feed);

or total differential symbol

feed stages of a column or a general funetion

fugacity in vapor or ligquid phases |

amount of feed material éntering a column (moles)

function for two-feed case, defined by Eq. (Iv.17)

function for th-feed case, defined by Eq. (IV.lS)

totél liquid-stream enthalpy at stage p (Btu per mole).
Component i enthalpy in liquid stream at stage p (Btu per mble)
total vépOr?Stream enthalpy at stage p (Bfu ver mole)

Component i enthalpy vapor stream at stage p (Btu per mole)

coefficient for Component i in the equation (I.4) for liquid

enthalpy

funétion.for two-feed case, defined by Eq. (IV.18)
function for two-feed case, defined by Eq. (IV.16)
coefficient for Component in in the eqpatiOn-(I.h) for liquid I3

enthalpy. . : ' o
equilibrium consfant = y/xl :
coefficient for Component in in the equation (I.4) for liqudd

enthalpy
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NOMENCLATURE (cont'd.)

liquid stream flowing off stage p (moles per mole feed)
number ofvstripping stages in a colum

number of enriching stages in a column

number of intermediate stages in a column

general stage in a column

any'combined column product or éolumn pressure

corrective energy-flow or corrective mass-flow term in phase

V or L

= heat-exchanger duties in reboiler, condenser, and reflux,

respectively (Btu)
net energy or net mass as defined by Eq. (III.12) or Eq. (VIII.5)

(Btu or moles)

AQes,Asttnet enefgy flow in enriching section and stripping section

respectively _ .
reflux flow (moles per mole feed), or iteration number

column reboiler or gas constant

: side-draw amount from a given stage; or bottom-product amount

from & side stripper (moles per mole feed)

coefficient for Component i in the eqpation.(I.S) for vapor
enthalpy

any stage from which a side product is withdrawn
vapor—phase holdup.at stage p (moles)

liguid-phase holdup at stage p (moles)

general stage temperature (°F)

characterizing temperature for boiling point of a component
true-boiling-point curve of a feed or product

coefficient for Component i in the equation (I.5) for

vapor enthalpy |

partial molal volume of Component i1

vapor stream flowing off stage p or liquid off stage p in

extraction ~ moles per mole of feed.
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st

= amount of steam flow in a column (moles per mole of feed)
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- NOMENCLATURE (cont'd.)

= ceoefficient for Component i in vapor enthalpy, Eg. (1.5)
= liquid-phase mole fraction

= vapor-phase mole fraction or liquid-phase mole fraction in

extrattion

Greek Letters

a

€,€ €
)'l, 2)

£ €« & 4 D 34 < T » © 3

Mo b

-

.
S
~

-

M

i}

m

general coefficient in equilibrium eqpation or relative
'volatility

general coefficient in equilibrium equation or defiﬁed‘as
VK +L |

D P D ‘

general coefficient in equilibrium equation or activity
coefficient, Eq. (VII.3)

total differential symbol )
d,eF,§¢ = general error or tolerance term, with 1, 2, C, F, ¢‘
representing allowable tolerances in mass-unbalance, bubble or
dew point, corrective-energy br mass-flow, flash, and_¢-factor

evaluations, respectively.

= defined symbol in Egs. (II.7) and (VII.8)

time

defined term = Vool Ko %ot Lp+i X4l
defined symbol in Eq. (VII.8)

‘defined symbol in Eq. (VII.8)

total system pfessure

density

dimensionless group = @/SLp

= factors defined by Eq. (II.28) or (IV.6). N

defined symbol in Eq. (VII.8) . S ¢
general coefficient in equilibrium equation;
or defined symbol in Eq. (VII.8)

= general difference symbol applied to VP,LP, and T

= general summation term or summation on components
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NOMENCLATURE (cont'd.)

Subscripts
b = value of variable in bottom product
= value of variable in any corrective’ process
= value of variable at condenser
= value of variable in top product
es = vélue of variable in enriching section
f,fl,f2 = yalue of variable at various feed stages
F Fl’FZ = value of variable in various feéds or flash process
i = general component, i =1, 2, 3, ..., N.
L = value of variable in liguid phase
m = stage in stripping section
n ‘= stage in enriching section
NEW = next sequential value of a variable

NORMALIZED = value of variable giving §(Xi)p =1
0 = stage in intermediate section
OLD = existing sequential value of a Variable
- p,p-1,p+tl = Value of a variablé at stage p = 1 '2;'3, <.. Or the
' stage below or gbove, respectlvely |
P = value of variasble in any combined produot _
= iteration, r =1, 2, 3, ..., w; or value of variable <
connected with reflux
R = value of variable at reboiler i
SdP;st+l,st~l = value of variable in stream from sidé-draw stage and'
| stage above and below, respectively
ss = value of a variable af steady staté, in a side stripper,

or in the stripping section

st = value of variable for steam

t,t-1 = value .of variable at top stage of column and first stage
below top ' ' .

T;T+AE = value of variable at temperature T or temperature +AT

TOTAL = value of a Variable based 6n a total stream flow

v = value of variable in vapor phase or liquid phase in
extraction '

7 = value of variable at total system pressure



Superscript !

Miscellaneous

(/) g/ )y =

sDp'!
iJ
i3k
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NOMENCLATURE (cont'd)

= value of a varisble below the feed stage

recovery fraction of Component i in top or bottom product
respectively

part of side~draw stage liquid as defined in Fig. 35
two=suffix constants in activityhcbefficieﬂt equation

three~-suffik constants in\activityecoefficient equation
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