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SECTION Y INVARIANCE CONDITIONS

This section contains a general discussion of the operations of

time rewversal, cherge conjugation and spatiesl reflection.

1. Time Reversal-First Quantized

Let the state vector I L%) (t):} represent a possible physical
system. A corresponding ®"time-nverse® sysfem will be represented by
a state vector denoted by !$)@ (t);>o

In order that two states be termed ®time-inverses®™ it is necessary
that positions, momenta and spins in the twoc states he related in the
nenner implicit in the term "time-inverse®, That ie, if measurements on
the two systems are made 2t times ¢ &and =t respectively then position
expections must be equal but momentum and spin expectlions must be opposite,

Specifically, if we make the definition
<P x> 2 <P L r o 1Wis)
P 03 =y @ | 2 0 JYO ),

where P(x) is a projection operator for zn eigenvectors of x, then the

phyeical meaning implicit in the term time reverssl implies

< P (x, t)}e - {;P {x, —it)'}
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Similarily, we have the requirements
i x, 3% = P, 1))
.—}
&SPy D = Gn Py

The required relationships may be satisfied by teking

JPe w>= | 1 Ywd =il 1 Yo

where T, is Gefined by T, £(t) = f£l-t), /L is a unitary trensformaion

in spin space, and K 1is a Wigner complex conjugation operator, which

satisfies by definition the ccnditions

&Plxg)y =¥y =g 1Y),
3
Kgﬁﬁgi)+ﬁ¢>: . PK ?}'&é BKQ} {A 9ﬁ scelars),
K> = 1 .
For spinless particles .,.Q:l 1l ~and the requirements are satisfied
by specifving that the eigenvectors of x are realo That 1s, ths definition
of K is completed by the specification i X x? 2! x> o With this

definition of K the coordinate space wave function for the time reversed

gystem is

YO o2&y mpxleiny

ey “’t 4 [+)

Notice that the eigenvectors | Ky defined by < x fx

are not real:
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For particles with spin the requirement that spins be reversed under

time reversel implies that for all vectors 5%}

e s - —3 ‘
<K?i\.}1 @.ﬂ K%})"x - <?}€ji?>u
" Y .
Here \ﬂ;* is the Hermitian. conjugate of JL. Taking ¥ = ot }J,.ﬁ g,
with arbitrazy o« and £ , one obtains, for arbitrary f end Y the

more incisive fomm

4 ) . §
<xg NNk Y= (WIS .
'ﬁeré the properties of K have been used. Taking the eigenvectors of
(F™" o be real, which completes the definition of K, one obtsins in

z
this real representation the condition

SN &

vwhere the superscript T denotes transposs,

In the Dirac—particle case, the physical requirsmentg implicit in

' &
the term *time reversal® are QJO (x, t) > 7 = <~j() (z -~ ‘W}

G = (P9 G o) =aF im0

MASS
These requirements, together with Lemewdés invariance, imply

ﬁf ;ﬁiﬂim%’; | f?)%,gﬂ =487,

L OEYE @@i and & are the (Hermitian) Direc matrices.

Heving thus defined the operation of time reversal by the physical
requirements implicit in the terminology, one may inquire whether the tiws-
inverse of a system that sidsts in nature system will alsc exist in nature,

The necessary and sufficient condition for this is that
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This is equivalent to the (given) equation
iy = 74 Y
Q%bg}(t)/ HIY (0>,

provided

™  HT = H,

Another form of the requirement of ihvarisnce under time-reversal

invariance is
we - W) © N
P o= s, 09 ° )5,
where  S(%, to) is defined by

- . = SRt
0 w3 st @l Y

This may be expressed as

=1
T S 7
(%, to)

it

s (%, ty)o
Writing S (%, =t) = & and using the unitarity of S, one obtains
# ® N
k" sk = s,

vhere the star denotes hermitian conjugate., Hence for arbitrary time-

independent states (J and &’ one has
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(| sj¥>= <ol sl YD

! *
=l s SLxW gy
) e e
<¥isle) -
This is a rather useful form of the conditlon of time-reversal invariance.

20

In the second quantized theory the wave fun~-tion nﬁ’(XQ ) of
the first quantized theory becomes an operator and the state is represented
by a new state vector %? o In the Sghroedinger representation, where the
state vector is time-dapendent and the opersiors time-independeni, a

typical expectation valuwe will have the form

wlrelP @),

CFix, 1) »= (P

where F (x) is some function of the operators ky {x), For instance,

we may have

F(x) =

f ) = Y AP 2 FYm] .

The operators fér verious physical quantities are in fact just the correspond-
ing expectation values of the first quantized theory but with ihe
H? (x) and KE* {x) now Hermitian eonjugate operators and with some
specification of the order of these cperators.

The second quantized form for the expsctation value of this

same physical quantity in the tine-rsversed system is
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8%

W ) [ 7P 0y
P wirmlr@ @y

P (%, t) >e

joe.

The physical requirements impiicit in the term ®time reversal® will again

be contained in equations of the fora

Pl D° = LF (x, 4) S,

<

where F! (x). is generally 2 F ' x).. Inserting the ansatz, T = UKT.OQ

g/

one obtains, for arbitrary f
G Crmulx Pr=<K¥Pr w 2,

and hence, as before,
. :
KU F (x) U K = & (x).

The relationship batween F (x) and P! (x) is determined by the
physical meaning of time reversal, Equivalently, one can take F' (x)
to be F° (x), the operstor obtained from F (x} by the time-reversal
transformation of the first quantized treatment but with “-ﬁ) (x) and
\-R)* {x) now consider:d as Hermitian conjugate operators and with the
order of these operatirg  reversed, ﬁi‘f&h this rul® one obtains, for
instance, the physically required relationship ?‘-’ (x) = :? (%) :}

< 2, :
inserting the relaticsy F? (x) = et (x) into the sbove equation one

obtains, for a generel form F(x) = "6” {x) f S%ﬁ (x),
B »* - *
KU flg (®) TX "@ﬁ XU ﬂgi% (x) UK

o - K (U
= (Ng (x) ) ﬁ%,@ 15T Yo
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where .7 LK is the complex conjugate of .ﬂ@. . Yse has been made here of
the faset that the unitary operator U operates in the space in which.

£ is a vector and ‘\}) is an operator; that is, U commutes with the

spin-space operator )O o
The condition expressed above may be satisfied by takihg

U*i‘i)sm v = (J’Z%mw

kY @ ok Y.
This last condition, which defines the operator K. by specifying the

reality of \é‘) {x), is analogous to the condition in the first quantized

treatment that P (x) be real. It implies that the coordinate-space wave

function, defined by

Yoo =)Pw|P wd,

where f 0> is the vacuum state, becomes complex conjugated under the

complex conjugation of the state vector;
Ol KPP wysohxYmP wd
=<kol Wi P )
U, 0

Here the reality of the vacuum has been assumed. Similarly,

he

&

Y (=u = ojYw] W ° () )
:ﬂ %i* (x,-t) &

Collecting the above results, one has the besic equations for time reversal:

;T T 8
g L <1 AN
AR NN EONES ROV
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P[P o] | D
F BJ (x, t)} z F7 [ﬂ_ "f’“ (x, =t)‘g = Fr EL})Q (x, t)} 5

Ko F [y (x)] UK = Fg[‘f‘(x)} ’

KV @k P, 0 ¥@ v=LY0, |
* * T

RIS Y- o, =-d .

The smuperscripts T and tr stand for transpose and transposition of order
respectively. *
A necessary and sufficient condition for invarisnce under time reversal

is, for all %E (t),

Feoln[9w ]| Floy P wlspe, P>,

This is equivalent to

B [\Hx,, t), t] = H [L}) (x, t), t]

a condition used by Pauli, Hermiticity of H 4is implicit in this

-]

characterization,
As in the first quantized case, one obtains, as a form of the

condition of time reversal invariance, the requirement

<Pelpw]| P> =P sYw] | P°).

vhere j%s and bg; are time-independent states, This is equivalent to

#
For Boson fields the transformations are as given here but with no spinor

factor, This will be true also for C and P, The phase factors are
choosen so the Hamiltonian is invariant, if this is possible., For a
discussion of the phase factors see the references at the end of this
section,
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sﬁ)(xﬂ =K U s“[k}} ({x)} vk = &° \:LHX} },

This gives the requirement of time-reversal invariance as a condition on

S rather than on its matris elements,

Notice that the question of the commutation relations does not arise
in the discussion of time reversal.

Notice also that one may change the definition of K by taking a
new {ield %}” (x) = eic# (%,(x) to be the real operator without
affecting the sbove arguments, Generally one will incorporate phase

factors into the definition of k}'(x) so that H . is simplified,

3. Charge Conjugetion ~ Second Quantized .

Physical requirements implicit in the term Pcharge conjugation® are

(o ©) 7= = g Got)) LG ) D = (S U ) D>

the charge and current densities are reversed but spin iz unchanged. The

operators are defined by
j)u (29 t) =1/2 ELP (19 t):a 0(# L}«x» t‘)]‘_‘- O—i (x,8) = 1/2 [‘f’)“ (x»t)s

-4 * -
o Y] = T Y mu e g Y] £

The antisymmetrized form is used in order that the vacuum expectstion

values be zero., The charg: conjugate stzte is defined to be

¢ (:? V
where

C* ?(X)G = E‘f*(x}o

The matrix E 1is defined by



-
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Wt
N

Except for phase factors, E = yfz a; 530 The conditions .

* ~3
(2 j}*(z = au and C?ﬁéfi(X@t)(z =20 (x,t) are satisfied by virtue

awd Fin

of the antisymmetrized form of %&Jya These forms are nonzero only in the
second quantized theory, and they would be constants (ze o, or infinity)
if the rields were ascumed to obey comrutation relations, rather than
anticommutation relations.

The identification of the transformation defined swve ss charge
conjugation is confirmed alsc by a study of the equations of motion of &
Dirag particle in and externsl electromagnetic field. If q)(xg t)  is
arsumed to satisfy the ecuation

(i% c»eAC)"})(xg ) = &mi.é%{; - eAi)G’{i -}—ﬁm}f{xg t),

multiplication by (- E K) gives
a @ @ = _ e A
(88 4% Y% (x 0 =t e e a ) X AR )

e 3
where Af-f» S = /u 0 Lg}c = E %" s and the Hermiticity of the ¢  and
, i

c
69 is used, Thus %J (xgt) is & solution of thesguations of motion
in a reversed external field,

If o free field @(x,,t) is expanded in ths form

- e ipx
l*g_’)o(xs’t) == Pé‘}(?%)A N (P) E§41£U (ppo() a (p.v G{) e =

Vip, &) b (pyci) e °ip’fj»

wnere \/ (pg O{’) = EXU (psao{)y

U (p, o) = BX Y(p, &f),



-12 = UCRL-8859

a #
and N(p) is a real normalizetion factor, then e (}UOC z E (f(/)
¢ _ : % #
= Lg’o is obtained from (i) by the substitution a&3b (a é3b ),
0

which is the interchange of the snsihilation (creation) operators for

particles and antiparticles,

4o Invariance Under Spe Reflection,

Given a system represented by l E%?(t);>, the reflected system

is represented by

jgpwp= pl w),
where
P YA P,

Invariance under spatial reflection may be expressed by the equivalent

" conditions

P*HP:;H, |
< '%Pgs! @P>g<%§ sﬁ%,> ,
Pﬂ S P=S,

5. Eroper Spinor S-Matrix,

A typical term in the field theoretical S-matrix for the

scattering of a Dirac particle by a spin-zero boson is
iy #
Ty swysynf m P o0 ¢ o,
0 ¢ 0 e

or, in momentum space,
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Pl
i

P

i)l (x®) G (x® q°; q k) ({) (x) ‘P*(qf’) 50 {q)o
<0 c 0 C

He make the definitions fgﬁkgk]kol/ko ) p%ﬁngiqo 3/(}00

Then
(f” (k) = (N(£) S a(f,0f) Ulf,ef) (for k> 0)
0 e : 0
NE) S b (£ o) V(g ) fgor k £0)
(=3

Poan = m(mg; a (£, ") (', o) (forok ' & 0)

N(£*) S b (£7, &°) V(E' on') (fornkcﬂ > 0)
A

70(01) = (fp) & (p) (for g S 0)
10 m 0

N(p) bm* (p) (for qO< 0)

ACDEE IR R (for-q " < 0)

ﬁ(p“) bm (p") (f@r‘wq@“ > 0}

Intreducing the free-particle momsntum eigenstates,

lta, 0y 2 o (eet) o (0) [ o> YUs, p),
wvhere

Mg, p) 2 | Ns) Np) <0la (£aA) a"(£,0) | 0D<0]a () o (p) JOp
m m

etc., w2 define the proper spinor scattering matrix . Sn(k“ q's k q) by

the equations



- 1 = UCHL -885Y
<f”g{“ p? & s \l fa{p> Z T8 a) G (£, p'; p,£) U (o)
2@ dr) s (£, p% pf) f (X)),
Lirregt) (£of)® ) s)(pv)c py =T (£1ex) G (£5 = p'; p=f) V (£A)
=g (A1) 5 (£ - p's p - 1) #° (),
{p’ pC)S ’(f“oﬁ“)c (£A)) = T (£ ') G (£, p'; =p, £) U (£ o)
=£° (4*) S, (£, p'; =p, £) F (of ),
k15 s | (e n® 0%

L7 4

2=V (£ ") G (=£7, -p'; =p,=f) ¥ (fX)

i

#° () 8 (=1 = p's - pym 1) 6% (4A).

The minus sign in the middle term of the last two eguations comes irom
an anticommutation of the creation and annihilation operators. Notice
that the states on the right of Sn refer to the “incoming® states in the
spinor or proper time sense. The states # (of) and # (0]') represent
the states of the positive-energy particle in its rest frame. In terms of

these states the U(f of) and V(£ ) are given by

U(f, & ) = (B’(f)/é’ﬂ) g (4) {1«%(%/::1)} -V,
SRk

il

. c Y . =1/2
V) = () 8 ) [2e teym]

where J(£)E -1{. £/m and m is the mass of the Dirac particle.
Noticing that (@mc’& ) =8 ((oa)g/@yj@ (A ) = =@ (cf) and that in

S the varistle % (k") is +7 (£f') or -f(f') for particle or

n

antiparticle respectively, one obtaing the genersl relationship
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Splk? 0¥ q k) = @+ (k®) ) 6 (x°, q% o k) (14T (k) )

L E1+(f0/m)} £1+(fo“/m“)}] -z

With the notation /ﬁgg.i 1/2 (2 i:fg) :./A\cf‘ we see that the single
matrix Sn(k“ q'; q k) describes four different processes, in accordance

with the four choices of the signs €, —* in
/X,_" S, (o' o P’ P f)/\c_,o

According to the substitution rule of field theory G(k°, q'; q k) is
a single covariant function of its variables. Hence Sn is also a
single covariant function of thgse variables, éside from the square
root factor, which is known. A single esrentially covariant matrix
S, (k' q'; g, k) describes four different processes, [;Jso, one
quadrant /qer" Sn /A\:r » given as a function of the four energy momentum
vectors, determines the enfire Snm:%

If we take ;8 to havé the usual diagonai form then the four
parts of Sn lie in the four cornera., -Each process is described by a
two=by-two spin matrix of the Pauli form, As this reduced form is some-

what more convenient for calculations we inquire into the consequences of

the symmetry principles in regard to S (kx'q's q k).

6, Time - Reversal Inveriance Applied to S e

We may take the representation

(/1 lb Cf}_ ) (6

= 1 Ay ¢ b’ = o

Iégm mlmlp 0{'.3\ 14V 4 5 I
/7

‘/ﬂz - (angﬁ) » EF 6ZSP;;COC>9 GJ}£§?CZ) =
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Then the condition

)

/

g \ e ]
Crioe | s ey = Clexp® | s | (erog p

becomes

B o) s (eep;pf)gal)=p Gi) &S (%, % £0 p®) AF (f")
where P = (fC, 3" Yo

- . -?
This says 7\, S, .7\  is invariant under (?9 D )32 BN,

'y

{£q PO) ("’%(fo“ po“),; g~} ~ &=, and a transposition of orders of all

<5 ‘s, The same condition apblies for A«——v Sn /L o For these two
quadrants the initisl and final states consist of the same particles and
thus the timearevei'sal condition is a condition on the single quadrant,
not a relationship between the matrices for different processes.
‘F@r the off-diagonal elements we have 5 :fmm time-reversal invariance,

the relation
iera®) (£4)° ) s | p (1% )

= (B e s [ ten ) (re)*® ) :

Ihtroducing the definition of the Sn and using the fact that.
”fno(n)e (£ a‘)c8> = - i(fﬁ)ce((f“ o 0)° D one obtains,

g lcf?) s (£ =p';p-1) ¢ (X)
== g% (o) s, (-, 2% - p®, 2% (x ),

or

«

A, 5n rrepsp-) Ao W=
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B Y

" T
5 - CUE/L s(-£°, % - p'® £0) /\4,.‘3 .

A

and firally
A, s, (£ -p p- £) A\-
-
= eé))i& S («fe» pé; —pt® £1® )/\_JCJO

This equation relates one off=disgonsl quadrant of Sn to the opposite

quadrant and therefore imposes no restriction on either quadrant alone.

7. GCharge = Conjugation Invariance Applied to ___S_n .

Charge-conjugatiom invariance gives conditions on the off-disgonszl

parts of S,. It implies
i) 2 | s | 6n° D

= A 0% ) [ s [0 ).

Inserting the deinition of S, one obtains
B LA S, (£ pf5 p= 1) #° (L)

== (o) Sy if-p;pl=e)g ()
or

A-{- S (fﬂ."—" p’; P, = f)/\m@

-
- T
2 - iﬁ"sn (f,- p; p' - fOA - &)]
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or

| /'l‘r?Sn (£ - p's p- DA

WA s

. + n

¥

T
(f;p;pf;»f“)/\m“’] W .

e

This says /AL.Sn’,\ _ 'is invariant under the substitution (£p) 310, p'),
O ~3 -~ provided the order to the =—'s is reversed.
Applied to the diagonal quadrant, the requirement of charge=conjuzation
invariance.sayso
' 41'00(0 p! lsifo(p>g<(fﬂo(‘ﬂ pn)clS\(fo(p)c/\)
or

B (") s (e, p% p,0) B () = ¢° (A) S (Lepsopj-2?) £ L)

or /\ +_% (£3p%; pif)/!f [&)ﬁ/\@ S (-fp; =p) ~£') A _Q{]T

3t

":Q)[/\,’_= S, (af,=p; =p)“=f“)/§ _ ] Tv Q -

This is again a relationship between two different quadrants and does not

impose a restriction on a single diagonal quadrant,

Invariance under psrity implies that under the substitutiocn
‘(?;'39fE§TP“)«4§ (;?; 239 :31(=f“) the diagonal quadrants are invariant
and the off=diagonai quadrants change sign. This sign change comes from

the /6’ in the equatioxﬁ L;o'P(x,t) = ﬁ(}’ (;;?9 t)o
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9. Genergl Formg of Invarisnce Conditions,

Sn(k“ q'; q f) 1is, aside from the square-root factor

. v ¢ ' 1/2
Ly - (fo/mlS § 1--(f “/m“{} / , & covariant matrix, In the Dirae
t. (_; {\'x O

representation, where F? is disgonal, four related processes are

described by the four quadrants.of S (k'; q; q, f), provided the appropriate

signs in k.= £ f, etc., are used. For the quadrants at opposite corners
the physical matrix elements ere obtained;by using opposite gigns of all
the momenta. But for any covariant matrix a reversal. of all vectors
followed. by a switch to the opposite quadrant leaves & matrix unchanged,

as 1s easily seen, Thus lorentz invariance implies
/\+_Sn (£¢ p's p £)/\, = A s {-£' -p’; -p -£)/\-,
Aps (£ = p'5 p = )N ZAS (17 %5 —p, DA .

These relations allow one to obtain restrictions on the diagonal quadrants
from C invariance and restrictions on the off-diagonal quadrants from
T invariance,

The previously obtained consequences of time-reversal invariance
combined with the above consequences of Lorentz Invariance, imply that
under the transformation.

Z Do, I
(£55 pod &> (£.%5 py")
CTED -5

T of 0

T transf,

the diasgonal quadrants of S (k', q'; q, k) are unchanged and the
off-diagonal elements change sign. Here ®Tof 0¥ represents a transposition

of the gorder of the ¢y~ matrices.
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Similarly chargezonjugation inveriance, ¢ogether with Lorentz

invariance, implies that under the transformation

(£, p)&—>(£7 p?)
T D - T C. C. Transf,
Tof O
all quadrants be invariant.
The requirement of reflection invariance (parity) says that under

> -D
(£, ;’; E%'» ;’E)H(;ﬂ =py ~f! ”Pq)g P _transf,

the diagonal quadrants are invarient, and the off-diagonal quadrants
change sign.
It will be observed that the product of the three transformations
{(C;, P, and T) is the identity tramsformation, 'Hence the combined CPT
invariance is always mailntained., Stated differently, our equations
A*Sn(f“ P p I, = AS, (£ =p'; -p @f)/\., )

/\+Sn(f“ =p’s p =f)/\ = /\ Sn (“’fup pls «p, £) /\4‘9

which were obtained from the substitution rule and lorentz invariance,
imply CPT invariance.
The principal results of this section are contained in the above-
stated forms of the separate invariances under C, P, and T as applied
to the matrix S (k', q%; k, q)o These results éprly in unaltered form
to a system of several Dirac perticles provided the generalized Sn
is defined by the obvious generalization of the one Dirac—particle form
given above.
Relationships between various observables implied by the the invariance
conditions may be obtained by an exasmination of the exprezsions for thess

observables in terms of the scalar parsmeters of the proper spinor scattering



e 21 - UCRL-859

matrix, S . The restrictiions imposed on these scalar parsmeters by the

n

invariance conditions leads to corresponding connections betwsen the

observaebles, In general one obtains various relations among the

observables over and beyond those that follow directly from the postulated

physical significance of the symmetry operations. As an example, the

reaction

Lo

2o

bo
5.

P 4“; —-—A b ;‘- is considered in section two.
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SECTION II: THE REACTION p& p —3 /\ +A

The resction P?“;“"‘%A?”/K can be described by a matrix in the
product spin spaces of the two Dirac particles. Expressed in terms of
the two proper spinor scatteripg matrices, Sn and S“n s Lthe reaction
is related to one two by two quadrant of each., Thus the reaction is

represented by a matrix of the form

M= a+b1°"i+ci’Ti+ oy dij ‘)’3 = a+b 0?4‘- co %ﬂﬂdo%

The <~ 3 and ’)’1 are Pauli spin matrices in the proper spinor spaces of
the two Dirac particles of the reaction. In accordance with the ‘theory
given above we let the indices on the right-hand side of these matrices
refer to the ®"incoming® particle in the Feynman or proper time or spinor
sense, That is, for an antiparticle the final spin sﬁate multipliesgﬁ
from the right and the {complex conjugate of the) initial spin state stands
on the left, |

i
with the particles. In the first (Form One) one set of matrices, ssy

There are two ways of associating the matrices ”E/i and O™

the T’ 3° is sssocisted with the proton and anti-proton and the other
set, <"y, 1s associated with the A and 7( o In the seond form
one set, say <374, 1s associated with the particle (1.0 /A 5 P)
and the other set, ~J'y; is associated with the anti-particle {p, A ).
For these alternative forms the consequefxces of the various symmetries

are as foilowssl

See section ona, The operators corresponding to the spins of
— -
anti-particles arse (-¢&) and (- 77} in this formalism. The

Brmuias are specislized to the reaction cepte_r=of==mass franme,
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In these equations, and in what follows, ?E ﬁ will be the unit vector
perpendicular to the ‘production_ plane and ? and ?" are vectors in this
plane,

The general forms of the wvarious observables, expressed in terms of
the parameters a, %,, ?9 and d, are given in Table A,

For the special case in which C;, P, and T ere individuslly
conserved and the (possible) polarization of the incident antiproton is
perpendicular to 1ts direction of motion, the general for- ulas reduce toc the
forms given in Tables Bl and BZ. For this special case there are 24
scalar observable_s for each polar production vangleo‘ These are defined by

the scalar parameters on the right hand side of the equations



~p
o
3y

10, = 3/6 e M (1 B P) B2 I 5, (eos ) @,

:,:(e,% Ei_ = 1/4 Tr ﬁés% (1 - ?5) M= P s o R (cos e
PKS'?(\(sin 4}7)6)+ PPS?(sfm %0 )@ ,
1(5130)? = 1/4 Tr (= ;% ) ¥ Q4 -7 ﬁ) Moo= 1/4 T b ’g} |
e .. ? Vg wE “§?‘+¥NC‘§\(COS g )6?.;.'5KS (st D10
+ PPSP (sin SD)()O
x(@ﬁ’> C = 14 Tr (= &= = F&O}:w ’? @‘; LI = /4 Tr (: )“4 ;Z

~\ T 7

= ;?(CNNO%CNNG (cos L{D )GD) ({;‘
+ R, + G e (00 ) |
4 ?(CPPO + CPPC (cos L?)@) '}? |
¥ P(CPKO Coxc (cos (ﬂ)@) ?“L'?(CKPD."”CKPC (cos “F)@? gt
+ N(CHKS ( sin (P)@) x+% (c (s (510 OyP &
A . A
w Ao (atn )P B4+ B(epys ( sta FIP) .

P
Hars “F is tle angle between N, the normal to ths production planc, ané
Py o~ P
6’? , the incident polarization vector, The orthonormal vectors P and X
ard in the plane of production and the subserdipts I and II on M refer

o the 7irgt and second forms of M,

Tho dsffercntial cross section for a production reaction at angles

4 f,')"p. . . . o A . '{-‘;\ .

P j-.tollo-..’ed by a docay apecified v ¢we unii vectors V. oand ¥ B glven
v

~oomras of L granredtlss upvesting ghove o
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The wectors G' and V refer to the dirsctiona of the decay products of
the A and A}r particles as measured in their rest frameso2 The 24
observable scalar quantities Ai(e) 2 (10{ s Pdﬁ %&/9 s Cm{ga»)
may be obitained by appropriate averages of I (6, qy, V,‘ﬁ) over
weighting factors 0, ( "f , ¥, V).

By virtue of the assumed invariance undsr parity (spatial reflection)
24 other analogous quantities mast vanish. If the obvious extension of the
notation introduced above is used, these elementery consequences of

congervation of parity are

s ™ Pxo® Pro * Pxo ® Tro = Pre = Prc ® Fke T Prc F Tws = Tis T

B8

c 2

Chpo = C PG

0 = Oypo = Cgmc = ©

e = ©

=2 C = C

NKo = CNo - ©

PHC
& Cyns = Okks = Cppg ® Cpgg = Cgps = 0o

The elementary consequences of charge-conjugation invariance

alone ars

?

o WO KO K0* “yo PO’ XP0  KFO' NPO PKO

The elementary conssquences of time-reversal inveriance (CP) alone are

See for instance H, P, Stapp, Relativistic Transformationz of Spin

Directions, UCRL-8096,
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A violation of parity is demorastrated if any of the 24 pseicesceley
quantities 1lsted akove fails to wveuish. If €1l these do vanlsh tien &
vioiation of C . (and hence T = CP) is shoun by a breakdown of either of
the sguailties

-3
€t

]
INO

Ths remaining elementary consequences of € and T invariance arz
lmpiied by P Anvariance.

the <lemeniary congequences of invariances listed above follow
directly {rom their definitions, withonut reccurse to any formalsim. However.
gince with G, P, and [ conserved the M matrix is described by six
complex parsmeters, of which one is an arbitrsry phase, 2nd thsre zre 24
ionvanishing observables, there must be 11 relationshins betuwesn the
observables implied by €, P (and T) in addition to the two glven above,
fhese raelationships ars implieit in ihe expressions for the cbservables
glven in Teble B or Y2 Bxoressed as relations betwesn the
shearvables the constrainits are ather @omplicatgd in general, However

Y

thrze simphe relations can be ob%ained, These ere

.
CPPC = TTRKC ?

th R}
NNG ¢’

}2 o )2 2 - 2
{iT -0 e (3 S . .. P
0 Wy Ve Ok gee T Texe’ N¢ T Ne

A

it ]

he first of lhege glveg an nlete.blig test for € imarisncs.

roo secornd protides fov en evulvibing ol tha macdust o X whees

7 a ) o o I
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This metrod of determining oK X arises from the fact thet the obse.vsd
quantities are essertially (G*-ERCQCNNC) anc (Cplc)g hence the quctlent
is ciod . &1s0, since the same assumption ¢f P and C invariance
(in the production} implies P = P, the ratic of the w:ymmeiries for
A\ and ;ﬁ( decay gives the ratio of ¢X and ZX . This, ratio,
together with the above,detarminatién of the product X A s allows the
parameters ¢X. and X to be fouad.

I@he ratio of o and X 1is of course fixed tc be minus one is

¢P? invariance is maintained in the wsak interaction. 4 diffeirence

in the asymmetries of /\ ani ;ﬁ: would indicste a breakdour of
CP in either the strong interaction or in the ueak interactior,
ox bothgz
The third consequence of lavariance under C, P (and hence 1)
iisted atove 1s more complicated sad the remaining eight do not appear

expressible as simple combinations of a few cbservables,
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TABLE A&

Kxplicit forms for the itrsces representing the various cbsoi-rablca.

PUFINITIONS

M % akB oo b B oot e o d e, fpE dii¥, a:{:t?ﬁ-’[abg.

KOTE: The initial particle spin metrices appeatr on the right of M and,
initial antiparticle matrices appear on the lefi of M. The
- >,
operator representing spin is given oy -=é?* or -~ % for
antiparticles.

=

= 2 ; -> - p .
l/LTKMM‘? ja‘ +bﬁ°b+’c*oc+spd0d

vt : - -3 =7 - ol ~
Vi Te FH Zar @atra e a #7305 4 (B -afd . d

- e 2 - = 7.3, - =
1/4 Tr Mﬁzlf a‘*ﬁ«}- b¥*a 4+ dod® o 2’ od 1 (b¥xD) $ 1]d- C".J

P

-y =P - _ =3 o
1/4 T~ MME a% + bfa+ doZ% + 24 +1 (BExb) -4]d - d]

-l

- oz sanly — _% I - .-
174 Tr WM = a*c 4 &% +b% - d + 4 rs b i (rsd) 4 ild.d

oo o D : g e
},/LTIJMG&('ﬁ-ﬁ)M?—? a*doc’?%a@«d+?’* (“303'?)‘, 3 (e* . 4

-2 -y

g- 1 {d o¥) « &’? e,»i €% 3 wi-gzxd ?3 4 6T

e i-dog;s 'é'j

1/4%5?-?&( ‘e 3) M= at d - &fa? d+b<* (cn 5)#‘: (ot

I > _ - .
43 "(dxc%} 054- 1{530 c>xd)n{§zi b%xdoz?’nf-i (F . dx'?

i)

w[d 0(?)43

o

-y ™ ““’x} X ué) . np-ﬁz Q%
i/L Te M oT Me ata v 2 (X bhola -ie® (o TS‘?) - b¥e b
- ,,); . B - pe an?
-.t‘-o Bt ph = o 5 bite i {x‘ do- ’i&)ér: {?o ;) 4 3% o
A =7 . TT

G



- - UGHL - 485

;\

wnady - 5 PO

e ‘ 2
3T B AL T avaq da GGY) oi e¥(NE) L BE L 4G o b

F'i.

= - s - . Y cm - . i
=3 (p%= d X) - ﬁ"?-ﬁ* o Gh o e g% W8p deadd o awid e a)

Ty w2 T
/e Te (WA MT M=z avd A+ Aodatbt (oAlfb (et /)
=1(b*\!d 7\“ 1 (A 4}?) -4 (/Tf’c){d) =i \dxc.* /‘\) rLdO}:“ ;
‘ D=2 =2 - =%
1 tr MO (% Frus &*-(Z’o )4 a (c¥ o é%’) -1 a® (3 do )

p- g I 1 B
t1ia (ﬁ o d )41 (xb¥e) (@0 @) -1 LB (@ )
Y o P - - e
« {Pod  b) «(b* a o Gg) (@ 3 B
- - B
4B (@ P+ B (@ D+ a P e

= L W
(X d xﬁo ) 4 (2 - Bed x)
o 0xD -1 (a@GD™ 41 sp (@ Ox3)
b1 (xR
- 3 = p 5 P
Vitr P REE A (- Pru « Car Ak £ o (b A

>
e dx’? ~ia. 6’ R B T A)
s
%1 "f@)&(ﬂ (b*o/‘\;}? -1, ((Pe %) (k?o/-'f)) j’?o? X a x? &xdxb

o S b - —p L
+FRea PR FeT A Pha-B - Fed A
.,% .u} = e b -
FAd) (& @) @ M (Z-Fr+)e FAxal

pu = ST
=1 sp(a A xd)'f“i(gjodclﬂmcﬂ



@

Lt

= 3C <
TABLE B
Expiicit expressions for the observables in terms of the scalar
parameters for the special case where C and P are conserved and .
A Al i
° PS0, where P is along anti-proton motion.. dy, = dy ete, | EQRID "Lﬁi’]
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TABLE B2

Explicit expressions for the observables in terms of the scalar

paramsters for the specisl case where C and P are congerved and

ete,

A A
o P=0 where P is along anti proton,direction of mo’i‘.icnadNN =4
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TABLE €
. Helationship between parameters of first and sscond forms,
X | {Barred parameters are those of Form Two, QD é\g f Form right-
< handed basiso)}
[}
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