
UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

IBM MODEL-704 GUIDEBOOK

Donald H. Zurlinden

October 5, 1959

Printed for the U. S. Atomic Energy Commission

UCRL-8932

,r. "" • • :

::: :·,·~;r~1~:t ~ 'e UCRL-8932

This report was p.repared as· an account of Government sponsored
work. Neither the United States, nor the Commission, nor any person
acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information containe·d in this
report, or that the use of any information, apparatus,
method, or process disclosed in this report may not
infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor of
the Commission, or employee of such contractor prepares, disseminates,
or provides access to, any information pursuant to h:is employment or
contract with the Commission, or his employment with such contractor.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..

iii

IBM MODEL-7 04 GUIDEBOOK

Abstract

Introduction

Contents

I. Components of the IBM-7.04 Facility

II. The Sha·re Assembler

Card and Tape Formats

Symbolic Cards

Binary Cards

Tape Format

United Aircraft Symbolic Assembly Program

Description

Operational Codes

Assembly Diagnosis

The Symbol Table

Standard Boards

Conventions and Restrictions

Operating Procedures- -Share Assembler

Sample Problems

UCRL-8932

v

vii

I-1

II-1

II-1

II-1

II-2

II-4

II..:.5

II-5

II-10

II-32

II-34

II-36

II-39

II-43

II-48

iv

III. The Fortran II System

Operational Procedures for the Fortran-Il Compiler

Tape Assignment

Sense -Switch Settings and Tape Output

Usage

Punched-Card Output

Executive -System Halts

Executing the Object Program

Usage

Error Halts in the BSS Loader

Error Halts in the Object Program

Library Subroutines

UCRL-8932

III-1

III-l

III-1

III-1

III-2

III-3

III-4

III-6

III-6

III-9

III-10

III-12

v

IBM MODEL-704 GUIDEBOOK

Donald H .. Zurlinden

Lawrence Radiation Laboratory
University of California
Berkeley, California

October 5, 1959

ABSTRACT

UCRL-8932

An IBM-704 Guidebook for LRL users of the Computer Center is

presented. This book describes the material on systems avail~ble at the

Computer Center and the operational procedures that will be follCM'ed .

. Sample problems are included. The Guidebook is to be used in conjunction

with existing material on the IBM-704 computer and its applications.

vi UCRL-8932

ZN-2243

The IBM-7 04 data-processing system.

vii

IBM MODEL-704 GUIDEBOOK

Donald H. Zurlinden

. Lawrence Radiation Laboratory
University of California

Berkeley, California

October 5, 1959

INTRODUCTION

The IBM 7 04 Guidebook is divided into three sections:

UCRL-8932

I Configuration of the IBM 704 Facility, II. The Share Assembler, and

III The Fortran ... II System. It is assumed that the reader understands

basic computing methods and is familiar with the components of the IBM-7 04

and IBM auxiliary equipment. Section I is self-explanatory .. Section II

contains sufficient information to enable the programmer to complete a

problem from coding through the assembly of a working binary program.

The list of library programs and their abstracts are not stated in this

Guidebook. The purpose of Section III, The Fortran-II System, is to . .
describe the basic information required to compile and run a written source

program. The material required to write a Fortran source program is

found in:

(a) Reference Manual, Fortran Automatic Coding System,

C28-6003, October 1958.

(b) Reference Manual, Fortran II, C28-6000-l,

December 1958.

(c) Programmer's Primer for Fortran Automatic

Coding System, 32-0306-1, March 1958.

Material used in the Guidebook came from the above sources as well as

from the following:

(a) Share Reference Manual for the IBM 704, August 1956.

(b) The Share Assembler, UA SAP 3-7, (received through

the Share organization).

viii UCRL-8932

The Guidebook will continue to develop and increase in content,

and therefore it was written and arranged so that new sections may be

added or existing sections may be revised. Criticisms and suggestions

which will help improve the "Guidebook are solicited.

IBM No.

704

738

727

753

711

721

716

736

741

746

Code
419

704
Inst.

717

757

I-1

I. COMPONENTS OF THE IBM FACILITY

The components of the IBM-7 04 facility are:

Description

Central processing unit

Magnetic -core storage unit (32768 words)

Magnetic -tape units (8 total)

Tape-control unit

UCRL-8932

Punched-card reader (250 cards per minute)

Punched-card reco.rder (100 cards per minute)

Alpha-numeric printer (150 lines per minute$

120 characters per line)

Power Frame No. 1

Power Frame No. 2

Power -Distribution Unit

Floating-Point Trap

Copy and add logical work

Peripheral printer (150 lines per minute,

120 characters per line)

Peripheral control unit

The off-line printer will use one of the eight tape units listed above.

Il-l UCRL-8932

II. THE SHARE ASSEMBLER

A. Card and Tape Formats

Input for conversion to instruction is punched in symbolic format.

The Share Assembler converts the symbolic input to machine language and

punches binary output cards. The format of the binary output cards will

be either absolute or relocatable. Generally a program will be punched

in absolute format, since relocatable cards are used only when the program

must be relocated each time it is read into the IBM-7 04 machine. The data

from the binary cards are usually read into the computer by specified

loaders. The input to the assembly is always in symbolic card form ex­

cept in the case of the symbol table.

All cards (on-line or off-line) that contain 7 2 columns of informa­

tion and eight columns of identification are to be punched with the information

in Columns l to 7 2 and the identification in Columns 7 3 to 80.

l. Symbolic Cards

The card format used by UA SAP has the following form:

Column(s) Description

l to 6 Location field or blank

7 Blank

8 to 10

u
12 to 7 2

7 3 to 80

Operation code or blank

Blank

Variable field

Not used.

, All punching is in Hollerith Code. Expressions defining the address, tag,

and decrement portion of a variable field are punched without blanks, be­

ginning with Column 12. The variable field extends to the first blank to the

right of Column 12. A variable field which does not begin by Column 12 is

assumed to be blank. All punching to the right of the first blank of a

variable field is considered to be a remark and has no effect on the assembly

process. If an instruction does not have a variable field (CHS, SSP, SSM,

etc.), remarks or comments may not begin before Column 13.

If an instruction requires a symbolic location, the sympol used
\

is punched in Columns 1 to 6.

II-2 UCRL-8932

2. Binary Cards

A binary card is divided into 12 rows with Columns 1 to 36 of

Row 9 designated as word 9L, Columns 37 to 7 2 of Row 9 designated as

word 9R, Columns 1 to 36 of Row 8 designated as word 8L, etc. Hence a

maximum of 24 binary words of information may be punched in one card.

The positions of a 36-bit binary word are designated from left to

right as

s.i.gn .1, 2 J 3 J 0· 0 •0 o
0

o 0 · 0 0 0 e o o o 0 0 ·0 o 0 0 J 3 5o

For convenience, we shall use an abbreviated designation for various parts

of the card and a word. P, D, T, and A stand respectively for the prefix,

decrement, ta,g, and address of a word. The sign bit is denoted by S. Then

for example, the thirteenth bit position of the word in the left half of the

sixth row would be denoted by 6Ll3. The decrement field of the same word

would be 6LD. The 9L word is always the control word, and the 9R word is

always the 36-bit ACL check sum (denoted by CKS).

a. Absolute data. Bits 9Ll3 to 9Ll7 containthe word count V; 9L21 to

9L35 contain the initial location R. All other positions in 9L are ordinarily

blank. Words 8L, 8R, 7L, 7R, contain the absolute data. The maxi-

m-q.m word count is 22
10

= 26
8

. If 9L2 is punched, the CKS should be ignored

and no check should be made against it. This applies also to a completely

blank CKS.

b. Relocatable data. Relocatable binary cards contain data whose core

location is determined each time the data values are read into the 7 04. The

necessary controls are given by the origin table. The relocatable data are

usually instructions that may contain both absolute and relocatable values.

Position 9Ll is punched. Positions 9Ll3 to 9Ll7 contain the

word count V; 9L2l to 9L35 contain the nominal initial location R. All other

positions in 9L are ordinarily blank. If 9L2 is punched, the CKS is to be

ignored, as in the case of a completely blank CKS. The indicator bits are

in row 8, starting from the left. The following one- and two-bit codes are

used to indicate the type of field:

0 absolute field

l 0 relocatable direct field

ll relocatable complemented field.

UCRL-8932

"Direct" here means uncomplemented, Relocation complemented to the

address or decrement fields::results in obtaining the.two' s complement of

the field before reference to the table a and again the two 1 s complement is

taken before storing, The string of these codes starts at 8LS and proceeds

continuously to the right until it terminates, Words 7 L, 7R, 6L, 6R, , , ,

contain the relocatable data, Let us, for illustrations suppose that 7LD

is absolute, 7 LA is relocatable direct, 7RD is absolute, 7RA is relocatable

and complemented, 6LD is relocatable direct, 6LA is absolute, 6RD is

absolute, and 6RA is relocatable complemented, The indicator bit pattern

would be

0 10 0 11 10

This may be condensed into

OlOOlllOOOU.

0 0 lL

and this pattern is to be punched into royv 8 beginning with 8LS,

c, Correction and (or) transfer cards.

(l) Correction, Rows 8 through 12 contain corrections which .are

entered in the following manner: The nominal location is punched in the LA

field and the correction word itself in the right-hand word of the same row,

If the location is to be adjusted by an increment (i.e,, the correction word

is to be relocated)a then the Ll bit is punched. (Note that the Ll bit always

indicates relocation), If a row is completely blank, it is ignored. The

indicator bits for the decrement and address fields of the correction word

are punched in the L3-to-L6 bit positions, according to the indicator scheme

outlined in Section (b). The sequence of correction entries is assumed to be

from row 8 upward, If the L20 bit {LT3) is punched, then the nominal

location is assumed to be one more than the preceding one. Hence, it is not

necessary to punch every nominal location in a consecutive block, If this

punch (L20) appears in row 8, however, it means that the nominal location

is .the one actually punched in 8LA, Hence it is possible to load absolute

zero at location zeroo An L2 punch causes the correction in its row to be

. ignored. If 9L2 is punched, the CKS is ignored. No punches need appear

in the 9L word, or in the 9R word, if there is to be no CKS comparison,

(2} Transfer. The contents of the 9LA field are taken to be the

location to which control is to be transferred after all corrections have been

loaded. If 9Ll is punched, then this nominal location is to be relocated in

the usual manner, A 9L2 punch suppresses transfer as well as CKS checking.

II-4 UCRL-8932

d. Origin table. This .card precedes a relocatable binary deck and it is

used to define the locations required to store the program. Bit 9Ll2 is

punched. If 9L2 is punched, the CKS is ignored as usual. Starting with

row 8, the card contains a table of origins in the following format.

In each row, the nominal location that begins a region is punched

in the. LA field. The operating location (i. e. 1 the final location of an in­

struction when it is actually to be executed} is punched in the RA field. If

there is a loading location distinct from the operating location, this is

punched in the RD field. If there is no loading location, then the operating

location is used in place of it. The entries need not be punched in order

of ascending nominal locations. If a row is completely blank or if the L2

bit is punched in an otherwise blank row, then nominal zero will be set to

absolute zero.

The difference between the nominal and reference locations is

computed when the origin table is stored. Table look-ups are performed

on each instruction to find the blocks of storage into which the nominal

location, address, and decrement fall. Then each part of the instruction

is modified (subject to the indicator bits) according to the difference

associated with the block into which it falls. A general binary loader that

fulfills these specifications is PK CSBA.

3. Tape Format

All tape records representing 80-column cards shall be 84

characters in length, and the last form characters shall be blank. This is

in regard to peripheral equipment not in use at this time.

II.-5

B. United Aircraft Symbol Assembly Program

1. _ Description

UCRL-8-932.

IBM-7 04 instructions to be as sembled by this program are

written with references expressed as arithmetic combinations of symbols

and (or) decimal integers.

The input to the assembler is punched on cards in a fixed­

variable field format. The first field is fixed and contains the symbolic

location of the instruction. The second field is also fixed and contains the

mnemonic three -letter code for the instruction. The third field is a variable-

. length field in which the parts of the instruction are given in the order:

address, tag, and decrement. In addition there is a class of pseudo­

operations that look much like 704 symbolic instructions but are used to

control the assembler itself. Among these are operations that permit the

assembly of data [decimal, octal, or Hollerith (BCD)], the convenient in­

corporation of subroutines from standard and (or) local libraries, control

of binary output format, and a number of other functions.

_A few examples are included to help illustrate the basic uses of

the pseudo-operations and the use of the assembler.

The actual assembly procedure is divided into three parts. The

first two are called the first pass and second pass. The third is called the

analysis section. In the first pass, the entire set of input that constitutes a

single assembly is examined sequentially in order to define (L e. assign an

absolute numerical value to) each symbol that occurs in the symbol field of

a 704 instruction or of certain pseudo-operations. The second pass prepares

the actual machine -language program, punches it in binary form on cards

and produced a printed copy of the program in the original symbolic form

together with the corresponding printed,, octal, machine-language program.
'

The analysis section not only seeks out and prints a list of undefined symbols

and a list of multiply defined symbols but also prints and punches certain

statistics {i.e. , number of symbols, tape errors, etc.)

During the .first,pass, a counter, called a location counter, is used

to specify the ab$olute location of each word in, the program. The location

counter is increased by one for each word to be used by the program. In

addition certain pseudo-operations have the ability to interrupt this unitary.

II-6 UCRL-8932

monotonic increase and either set the location counter to an arbitrary value

or to increase or decrease the counte.r by some arbitrary value.

Simultaneously with the above modification of the location counter,

a table is constructed. Each entry in this table defines a symbol appearing

in the symbol (first) field as being equivalent to some integer. Entries are

made in two distinct ways:

(a) A symbol appears as the symbolic location of a word in the

program being assembled and is assigned the current value

of the location counter.

(b) A symbol appearing in the symbol field of one of certain

pseudo-operations is assigned a value that is a function

·Of the variable field of the pseudo~operation and, sometimes,

of the current value of the location counter also.

It is important to note that, except in the immediate presence of certain

location counter modifiers (pseudo-operations), the location and therefore

order of a given instruction produced by the symbolic assembler is deter­

mined solely by the order in which the symbolic instructions are read by

the assembly program (i.e .. bythe physical order of the symbolic cards).

During the second pass, the location counter is computed in

exactly the same manner as it was during the first pass. In addition, all

symbols are replaced by the integer equivalences given in the table formed

during the first pass. Thus an absolute binary program is produced. Note

that this operation requires that each symbol be uniquely defined. For the

purposes of the assembly program, symbol and integer are defined thus:

Symbol: Any combination of not more than six (6) Hollerith

characters, none of which is plus (12 punch), minus

(11 punch), asterisk, slash, comma, dollar sign or

blank and at least one of which is nonnumeric. (For

this purpose equals (8-3 punch) and dash (8-4 punch)

are numeric.)

Integer~ (with respect to variable field parts): Any decimal

integer less than 1,000,000.

The operational part of each instruction is specified by the standard SHARE

mnemonic of three alphabetic characters.

II-'7 UCRL-8932

Ordinarily an instruction or storage -cell location should be

identified by a symbolic location only if it is necessary to refer to this

location in the program.

The address, tag~ and decrement parts of symbolic instructions

are given in that order. In some cases the decrement, tag$ or address

parts are not necessary; therefore, the following combinations; where OP

represents the instruction abbreviation, are permissible:

OP

OP Address

OP Address, Tag

OP Address, Tag, Decrement

OP • Tag

OP ' Tag, Decrement

OP •• Decrement

OP Address,. Decrement.

Note that the tag, if present, must be separated from the address by a

comma and, similarly, the decrement:, if present, must be separated from

the tag by a comma. Where no character appears between the beginning of

the field and a comma, or between comas, or between the last comma and

the end of the field (a blank}, that part of the field is taken to be zero.

The following card format is used by the assembly program:

Columns

1 to 6

7

8 to 10

ll

12 to 7 2

Contents

Symbol, absolute decimal location or

blank

Blank

Mnemonic operation code or blank

Blank

Variable field

Expressions defining the address, tag, and decrement are punched

without blanks from Column 12 on. The first blank (and there must be at

least one blank) to the right of Column 12 defines the end of the instruction.

All punching to the right of such a blank is considered to be a remark and

has no effect on the assembly process. Note, however, that even characters

which are not directly involved in the assembly process must be legal

Hollerith characters whether the symbolic deck is to be read into the 704

on-line or off-line.

. II-8 UCRL-8932

If an instruction requires a symbolic location, the symbol is

punched in Columns 1 to 6. Blanks and leading zeros are not significant.

That is, if X denotes blank and 0 is a zero, the following symbols are the

same:

XXXXAB

XXXAXB

XABXXX

OOOOAB

XXOOAB

XXOAXl3, etc.

a. Arithmetic expressions. As stated before, the references that may be

used can consist of arithmetic expressions of symbols and (or) decimal

integers. The arithmetic operations allowed in these expressions are

addition, subtraction, multiplication, and division designated by + (12 punch),

- (11 punch), *• and/, respectively. However, no parentheses are allowed.

All of the arithmetic operations are done with 35 binary-place

integral arithmetic (i.e. modulo 2 35). In the case of division, only the

integral quotient is retained. The· remainder is discarded. The evaluation

of an arithmetic expression then proceeds as follows: Each segment of the

expression is separately evaluated from left to right, where a segment is

that portion of the expression from a + or - sign (or the beginning of the

expression) to the next + or - sign (or the end of the expression) and

the consecutive multiplications and divisions are performed as specified.

As each segment of the expression is evaluated, it is combined from left

to right as indicated by the connective + or - signs.

As an example of the ;:tbove procedure, the expression

A+ 200/15/6):c 15- B/C * D

is taken to have the meaning

A+ ffffJ] l 6

B
15- C *· D

where the brackets denote "integral part of".

Finally, if the result of an expression is to be expressed in n

binary places, its magnitude is computed modulo 2n. This quantity is

taken to be the result unless the expression is negative, in which case the

2' s complement is taken as the result. Hence, if v is the value of an

expression

II-9

n
m = l.vl (mod 2),

we obtain for the result

r = m for v ?:-- 0
2n-m for v < 0.

UCRL-8932

Consider the instruction TIX Pl, J+K, -1 for J= 1, K=4.

Then for the decrement part we have v= -1, m= l, n= 15, and therefore
15

r = 2 -1.

For the tag part, we have v = J + K = l + 4 = 5, m = 5, n = 3, and thus

v = 5.

The decimal integers that are allowed in consttructing expressions are

limited to values less than 1,000,000. The symbol values that are allowed

are those integers less than 2
15

, all larger integers being taken modulo
'15

2 .

If a symbol is given a negative value, it is "negative" in the
15

sense that the assembler uses the 2 is complement (modulo 2) of the

magnitude of the value. For example, if one states that N = -6, then the

value the assembler will use for the symbol N will be {2
15

- 6).

b. Acce·ss to the location counter. Besides being used for the multiplication

sign in variable-field arithmetic,the asterisk (*) may be used to obtain the

current value of the location counter. This facility allows one to avoid the

use of dummy symbols. For example,

TRA ~:.: -5

is taken to meantransfer to that location which is five less than the location

at which the transfer is stored.

Because the asterisk is also used to denote multiply, the

following relationships hold in the variable field:

Expression

*
**

A*

._Equivalence

C (the location counter)

0

C (the location counter)
2

0

1

0

Undefined

,

Il-l 0 UCRL-8932

If an asterisk begins the variable field and is followed by a variable -field

.operator (i.e. +, *i blank etc.) other than $ (the heading operator) or if

an asterisk is preceded and followed by such an operator, the current con­

tents of the location counter is substituted for the asterisk. Otherwise the

asteriskis taken to mean multiply. The example *A is the case where the

asterisk follows a variable -field operator but is not followed by such an

operator. Because of the way the variable field is scanned, o):~A looks

exactly equal to zero.

c. Location Counter. If an absolute decimal number is punched in the

symbol field of any card in the assembly other than ABS, BOS, C/T, DEF,

END, EQU, FIN, FUL, RED, LIB, LOG, OPD, ORG, PLB, PLR, PST,

REL, REM, REP, RST, SKP, SPC, SYN, TCD, and WSTi the location

counter will be set to that value modulo 2
15

. In the secon:il.pass, any binary

information in the core will be emitted to the current binary-output sink

before the location counter is changed. Thus the effect of an absolute

decimal location punched in the symbol field is similar to the effect of an

ORG with the same number punched in the variable field. Howeveri a

symbol (other than those defined by SYN pseudo-operations) defined after an

absolute decimal location appears in the symbol field will not be relocatable

unless an ORG or LOG pseudo-operation intervenes between the absolute

decimal location and the symbol.

If the binary format is relocatable then the relocation of infor­

mation on these cards will not cause a corresponding relocation of symbols

defined when relocatability is suspended .. That is, symbols defined in the

symbol field after an absolute decimal location behave as though they were

defined by the pseudo-operation EQU. ·

The effect of punching absolute decimal locations on the pseudo­

operations specifically exc:epted above ranges from no effect to phase errors

which in turn may lead to a useless assembly.

2. Operational Codes

a. Pseudo-operations. The assembler is controlled by a number of pseudo­

operations. These pseudo-operations are instructions to the assembler in

much the same waythat operations (binary bit patterns) are instructions to

the 704.

II-11 UCRL-8932

In the following list of pseudo-operations and their functional

definitions, the letters A, X, N, T, etc. appearing in their variable fields

are not a part of the pse.udo-operation and symbolize some legal variable­

field expression:

ABS: Absolute binary format

First pas's

Nothing.·

Second pass

Binary information (if any) present in core is punched

(or written on tape) in the current binary format. The binary

format will then be switched to SHARE standard absolute

binary.

The assembler's nominal binary format is SHARE

standard absolute binary.

AST T, N: Adjoin symbol tables

Same as RST except that instead of replacing any symbol

table in core, this pseudo -operation combines the two tables

into a single table containing all of the symbols of each.

BCD: · Hollerith data

First pass

A symbol appearing in the symbol field is given the value

of the current contents of the location counter and~ spaces ..

are set aside for the contents of the recofd. The value of v

will lie in the range 0 through 9 if that digit is punched in

Column 12. If Column 12 is blank or contains any character

other than 0 through 9, then v will have the value 10 ..

If no symbol is given, identification is relative to that

word most recently identified by a symbol.

Second pass

The first v six-character Hollerith words (Columns 13

to 72) are stored in BCD in successive locations.

If, in fact, ~equals 0 then no words will be stored, and

the BCD card will be treated essentially as a remarks card.

BES N: Block ended by symbol

First pass

II-12. UCRL-8932

The location counter is given the value of the location

counter plus the value of the expression N. · All symbols

appearing in N must be predefined. The symbol appearing

in the symbol field is then assigned the value of the location

.. counter (i.e., the value L+N). The symbol refers therefore

to that location one beyond the end of the reserved block of

N locations.

Second pass

Binary information (if any) present in the core is punched

(or written on binary tape) and the assembler location counter

is increased by the value of N.

BOS T: Binary-output select

First pass

Nothing.

Second pass

Binary information (if any) present in core is punched

(or written on binary tape).

If T is zero or blank, the binary output unit is changed

to the on-line punch.

For T = 1, 2, . . . 10, the binary output is changed to

logical tape T .. Rewinds and end of file marks on such tapes

are the responsibility of the operator. END and TCD pseudo­

operations cause single -word records (corresponding to the
I

9L row of a transfer card) to be written on the currently

selected tape. The assembler's nominal binary output unit is

the on-line punch.

BSS N: Block started by symbol

First pass

The symbol appearing in the symbol field is given the

current value of the location counter. The counter is then

set to the value of the location counter plus the value of the

expression N, thus reserving N lo.cations.

All symbols appearing inN must be predefined.

II.,.13 UCRL-8932

Second pass

Binary information (if any) in core is punched (<?r

written on binary tape), and the assembler location counter

is set to the value of the location counter plus the value of N.

C/T A, X: Correction/transfer

First pass

If the value of X is one, the location counter is not

changed.

If the value of X is zero, or X is blank, the assembler's

location counter is given the value of A.

Neither A nor X may contain an undefined symbol at the

time the C/T is encountered.

Second pass

If the value of X is one, the instruction HTR A, X converted

to binary is inserted as the next word in the binary-card image.

The assembler location counter is not changed. If the value

of X is zero, or X is blank, then the instruction HTR A, X is

inserted as the next word in the binary-card image and the

assembler location counter is given the value of A.

Remarks

The mnemonic code C/T does not print. The printed octal

equivalence consists of an address and a tag.

It is not ordinarily sensible to use this p$eudo--operation

unless the binary format (FUL) for 24 words per card is in

effect. This pseudo-operation is used to assist in the assemply

of correction/transfer cards (no check sum). It is the cocler' s

responsibility to see that the C/T falls in the left half of the

binary-card image.

For a ~escription of the format and function of correction/

transfer cards see SHARE Reference Manual 03. 1-04 or the

description of UA CSB 1 or PK CSB 2.

An example of the use of this pseudo-operation is given

at the end of the description.

DEC: Decimal data

First pass

··Il-14 UCRL-8932

A symbol appearing in the symbol field is given the .value

of the current contents of the location counter and c + 1 spaces

are set aside for the contents of the record where c is the

number of commas in the variable field. If no symbol is given,

identification is relative to that word most recently identified

by a symbol.

Second pass

The decimal data beginning in Column 12 is converted to

to binary and assigned ~o successive locations. Successive

words of data are separated by commas, and the first blank

(or character other than 0 to 9, + (12), - (11), point, comma,

B, or E) to the right of Column 12 indicates that all punching

to the right is a comment. A blank after a comma will cause

the formation of a zero as the last word taken from the card.

Signs are indicated by+ or - (12 or 11 punch) preceding the

number, the exponent, or the binary-scale factor. However it

is not necessary to use the + sign.

The symbol appearing in the symbol field identifies the

first decimal data word on the card. Successive words are

identified relative to tne; first word. If none of the characters

Point (.), E, or B appears in a decimal data word, the word

is converted as a binary integer, with the binary point at the

right-hand end of the word. If either of the characters E or

Point (. >: or both appears in a decimal data word and the

character B does not appear, the word is converted to a

7 04-type floating-binary quantity. The decimal exponent

used in.this conversion is the number that follows immediately_

after the character E. If the character E does not appear,

the exponent is ass.umed to be zero. If the decimal point does

not appear, it is assumed to be at the right-hand end. For

example, 12.345, + 12.345, l.2345E1, 1234.5E-2, and 12345E-3

are all equivalent representations of the same floating-point

word.

II-15 UCRL-8932

If the character B appears in a decimal-data word, the

word is converted as a fixed-point binary quantity. The

binary-scale factor used in this conversion is the number

that follows immediately after the character B. It is the

number of binary places between the left-hand end of the

storage cell and the binary point of the fixed-point binary

result. If the decimal point does not appear in the decimal­

data word, it is assumed to be at the right-hand end. The

decimal exponent used in this conversion is the number that

follows immediately after the character E. The order of

B and E is not significant. For example, 12. 345B4,

+ l. 2345E l B4, and l2345B4E- 3 are all equivalent repre ~

sentations of the same fixed-point quantity.

DEF M, N: Define

First pass

Nothing.

Second pass

The N undefined symbols that follow the DEF card are

given the values M, M+l, M+2, ... M+N-1. If theN (or, N)

are left blank, this process will continue until the undefined

symbols following the DEF card are exhausted, another

DEF card is encountered, or the symbol table is filled. A

DEF card affects a symbol only the first time it is en­

countered as an undefined symbol.

An undefined symbol that occurs before any DEF card

will remain undefined if encountered again after a DEF

card. The M and N may be expressions but all symbols

must be defined at the time they are encountered in the

second pass otherwise the DEF operation will not be executed.

Note that since symbols defined by DEF are defined

during the second pass, they will not appear in any symbol

table punched by PST or WST. A symbol table containing

such symbols may be obtained by the use of FST.

II-16

END A: End of assembly

An END record marks the literal end of an individual

assembly and causes:

(a) the symbol table to be sorted

UCRL-8932

(b) the symbol table to be punched if PST was encountered

. (c) the symbol taple to be searched for multiply defined

symbols

(d) the operation table to be sorted if OPD was encountered

(e) the second pass to be called.

Second pass

Any residual binary information in the core is punched

followed by a transfer record with the value of the expression

A as the transfer address (see TCD, second pass).

The analysis section is then called.

EQU: Equals

First pass

See SYN.

Second pass

See SYN.

Remarks

This pseudo-operation is used 'When the symbol appearing

in the symbol field represents a nonrelocatable program para­

meter that is not a function of the location of the program in

memory.

FIN: Finish

First pass

When this pseudo-operation is encountered, it is treated

as. if an input end-of-file condition had been encountered. It

signals the end of a series of assemblies and either causes

a first-pass HPR-type stop if the assembler itself was loaded

on-line, or a "push load button" if the assembler was loaded

from a tape or drum.

Second pass

This pseudo-operation should never be encountered

during the second pass.

ll-17 UCRL-8932

Remarks

This pseudo-operation is primarily an operatc;>r' s control

to be used by a .7 04 operator when he feels the need to avoid

end-of-file marks on an input tape.

FUL: Full binary format

First pass

Nothing.

Second pass

Whatever binary information is presently stored in the

core is punched (or written on binary tape) in the current

binary format and then the format is changed to punch 24

words per card. A transfer card punched by TCD or END

will be absolute or relocatable depending upon whether ABS

or REL was in force before the FUL control was encountered.

This pseudo-operation will itself print only if sense

switch 2 is down.

FST: Final symbol table

First pass

Nothing.

Second pass

A signal is set which is.acted on: in the analysis section.

This pseudo-operation is printed only if sense switch 2 is

down.

Analysis section

A symbol table is punched which contains all of the defined

symbols used in the assembly including those defined by the

pseudo-operation DEF.

HED: Heading

It is often convenient to combine several programs. Two

difficulties immediately arise. First, the symbolic references

to data common to the several programs may differ in the

individual programs. This can be easily corrected by the

use of synonyms that equate the proper symbols.

Second, two or more of the individual programs may

use the same symbols for references that should be unique.

II-18 UCRL-8932

In order to restore uniqueness, the symbols in each program

must be changed in some way. The heading pseudo-operation

accomplishes this result inthe following manner. The head­

ing card supplies to the assembly program a single character

(punched in Column 1 of the HED card) .. Each symbol in the

program following the HED pseudo-operation is prefixed by

this character except when a special indication to cancel the

prefixing operating is given. A new heading pseudo-operation

will replace the prefix character. Thus several programs

having nonunique symbols may be combined by giving the

heading pseudo-operation with a unique c:naracter before

each program.

However, it is sometimes necessary; to make cross­

references between the individual programs. In order to

accomplish this, such references must be written in the

following way. Let H be a heading character and K be the

symbol in the block headed by H to which reference is to be

made. To refer to K from a part of the program not headed

by H, write

H$K.

The .special character $ indicates to the assembly program

that K is to be prefixed by H instead of by the prefix given on

the last heading card.

It is important to note that if the heading feature is to be

U$ed, all symbols employed throughout the program will usually

be restricted to five or fewer characters. If any six-character

symbols (such as the erasable storage designation COMMON)

are used, these symbols will n.ot be headed.

II-19 UCRL-893.2

Any Hollerith character may be used as a heading.

However, it is recommended that the variable field operators

(+, -, >'~, /, comma, $ and blank) be avoided because it is

always difficult to refer to a symbol in a region so headed

from a region with a different heading.

In the event that a variable field operator is used the

following procedure will set up the necessary references:

+ HED

SYM CLA SOME

AOOSYM

A

SYN SYM

HED

TRA SYM

END.

It is not possible to say+ $SYM, since this implies 0 + 0 $SYM.

A five-character symbol OMMON which is headed C will

be confused with the six-character symbol COMMON.

LIB T: Library search

First pass

The library routine identified by the six-character string

in·the symbol field is obtained from the library tape on unit T

and inserted into the assembly on the collated tape. If the PLR

switch is off (i.e., no-print condition) a "LIB" record will

precede and succeed the LIB routine. The routine identification

string (on the LIB card) will not be inserted in the symbol

table, but any s"ymbols appearing in the library routine itself

are entered and properly defined. The identification string

must be absolutely identical to that punched in the symbol

fields of the TBL and LIB cards of the desired routine on the

library tape.

If T is blank or one, the assembler will look for the routine

on.tape unit 1 (the standard SHARE library tape unit); otherwise

it will look on the tape indicated by the value of T. Routines

should be called from a library tape in the order that they are

written for most efficient searching. In order to conserve

time, all needed routines should be called from a given tape

before going to another tape.

II-20 UGRL-8932

If a routine cannot be found, the library tape is rewound

and re-searched. If the routine still cannot be found the LIB

card involved will be printed during the first pass.

Second pass

A LIB card encountered in the second pass wilL suspend

all but error prints until another LIB card is encountered.

Any routine that has one LIB card associated with it on the

collated tape necessarily has two. The first is the original

LIB card from the input deck and will be printed in lieu of

the routine itself. The second is a. 11phony11 to signal the end

of the routine.

LOG A: Location specification

First pass

The assembler .location counter is assigned the value of

the expression A that appears in the variable field. All symbols

appearing in A must have been predefined.

Second pass

The assembler location counter is assigned the value of A.

Remarks

The LOG acts just like the ORG except that LOG does not

initiate punching. Because of this difference LOG is useful

primarily in the assembly of certain types of self-loading

cards. Its use leads in some cases to a more useful listing

and preserves the integrity of the location counter. An example

of its use is given at the end of this description.

OCT: Octal data

First pass

The symbol appearing in the symbol field is given the

value of the current contents of the location counter and c + 1

spaces are s.et aside for the.contents of the record where~ is

.the number of <;:ommas in the variable field. If no symbol is

·given, identification is relatiiVe to that word most recently

identified by a symbol.

!I.:..21· UCRL-8932

Second pass

The octal data in the variable field is converted to binary

and stored in successive locations. The octal point is considered

to be to the right of the octal word, with the binary point to the

right of the 7 04 word.

Successive words are separated by commas, and the first

blank to the right of Column 12 indicates that all punching to the

right is to be considered a remark. If the last octal number is

followed immediately by a comma, the .blank after the comma

will be interpreted as a zero word and will be included by the

assembler.

If there are 12 octal digits in an octal number, the following

equivalences exist with respect to the high-order digit:

-0=4 -1=5 -2=6 -3=7.

OPD: Ope ration definition

First pass

The first three nonblank Hollerith characters in the symbol

field are taken as .the mnemonic code. The instruction or pseudo­

operation' that this code is to represent is punched in octal in

the variable field. Leading zeros are assumed if the octal number

has less than 12 digits. The number may be signed (+ or -).

In the case of a 12-digit octal number, the sign may be contained

in the lead digit, i. e. , 7 is equivalent to -3.

An instruction may not be assigned a tag by this method

bec~use the tag bits are abstracted .and used to generate the A,

T, and D flags where required .. A tag of four in the operation

.implies that an address is normally required. A tag of two

implies that a tag is required and a tag of one implies that a

decrement is required.

Second pass

The OPD record prints as is .. Note that this pseudo-operation

can only~ a new operation for the current assembly.

ORG A: Origin specification

First pass

II-2.2 UCRL-8932

The ass.embler location counter is assigned the value of the

expression A appearing in the variable field which must be less

than 2 15 .. All symbols occurring in A must have been predefined.

If no origin specification is given for the program, the initial

value of A shall be zero .

. Second pass

Binary information (if any) present in the core is punched

(or written on binary tape) and the assembler location counter

is assigned the value of A.

PLB N: Push load button

First pass

If N is blank or one a push-load-button sequence is executed

at the time the PLB is encountered. The proper return is to

READl in the first pass.

Second pass

If N is blank or two. the binary information in the core (if

any) is punched (or written on tape) and a push-load-button sequence

is executed. In addition1 the return to the assembler must be

to the location CPRT.

This pseudo-op will print only if sense switch 2 is down.

PLR: Print library routine

First pass

A switch is actuated in the LIB-op routine. The switch is

normally off. When the switch is off no-print signals (LIB

records) are written on the collated tape with each library sub­

routine. When the switch is on these signals are omitted.

S.econd pass

This pseudo-operation will itself be printed only if sense

switch 2 is down.

PST: Punch symbol table

First pass

If at least one PST control is encountered anywhere befo.re

the END card1 the symbol table will be punched· on-line at the end

of the first pass.

II-23 UCRL-8932

Second pass

This control will be printed only if sense switch 2 is down.

REL: · Reiocatable binary format

First pass

Nothing.

Second pass

Any binary information remaining in,the core will be punched

or written on tape in the binary format currently in force, and

then the binary format will be changed to SHARE relocatable

binary.

This control will print only if sense switch 2 is down.

REM: Remark

First pass

Npthing.

Second pass

The contents of Columns 1 to 6 will be printed in the columns

occupied bythe symbol field of the print out, Gplumns 7 to 11 will

be blank, and Columns 12 to 72 will print inthe columns of the

variable field.

REP M, N: Repeat

First pass

The values of the expressions M and N are computed and

M * N are spaces reserved in addition to the M locations already

reserved by the records that are to be repeated. I£ any symbol

in M or N is unddiQed, the REP record is printed during the

first pass and no extra spaces are reserved.

Second pass

The M records preceding the REP operation are repeated N

times; thus they appep.r N + l times.

Remarks

Only one word of information may appear on a repeated card.

The REP record will be printed if sense switch 2 is down .. A

symbol defined on a. repeated card will print only the first time.

The value of the symbol will be the value at that appearance.

RST T, N: Replace symbol table

First pass

II-24 UCRL-8932

A symbol table is read into the core at the time tha,.t the RST

pseudo-operation is encountered. This replaces the existing

symbol table (if any).

For T = 0 or blank, the table will be read from the on-line

card reader. A blank card or card reader end-of-file skip

signals the end of the symbol table.

For T = 1, 2, . . . 10, the logical tape T is rewound, N -1

records having a zero first word are skipped over, and the Nth

table is read in to the core. The next record having a zero

first word signals the end, of the symbol table. Tape T is then

rewound.

SKP: Printer channel skip

First pass

Nothing.

Second pass

The character which appears in Column 12 replaces the first

character of the next line printed. Any character permissible

. for printer carriage control (PROGRAM) may be used .

. This control will, itself, print only if sense switch 2 is

down. If switch 2 is down, this will be the line carrying the

special initial character. This operation controls the arrange­

ment of the assembly listing only.

&emarks

The effect of such a first character on the on-line printer

is shown in the following table:
Share board 1 or 2

Character Standard UAC modification

(12 punch} Suppress space Suppress space

0 Double space Double space

1 or 2 Skip to channel lor 2 Skip to channel 1or2
Jto K

3 to 9 Skip to channel 1 Skip to channels 3 to 9
. L toR

SPC: Paper spacing

First pass

Nothing.

Second pass

II-25 UCRL-8932

If the, value of the expression in the variable field is two,

then during the assembly output listing, a printer under

PROGRAM control will double space until another SPC pseudo­

operation is encountered. If the value of the expression is

anything other than two or is undefined or .if the first character

of the variable field is a blank, a printer under PROGRAM

control will.single space until another SPC is encountered.

If no SPC-operation is encountered the printed output will

single space.

This operation will itself print: only if sense switch 2 is

down.

SYN: Synonym

First pass

The symbol appearing in the symbol field is assigned the

integer value of the expression appearing in the variable field.

Each symbol appearing in the variable field must have been

defined before the SYN pseudo-operation is encountered. If

any symbol in the variable field is not defined at this time, the

image of the SYN record will be printed immediately, and the

symbol in the symbol field will not be defined.

Second pass

The value of the variable field is recomputed and printed

to the left of the SYN record .. If one or more symbols appearing

in the var:i.able field have values different from those. they had

in the first pass (this may be caused by. symbols which are

multiply defined or defined after the SYN record was first en­

countered), then the value printed will, in general, differ from

the value appearing in the symbol table. If at this time some

symbol remains undefined, no value will print (i.e. blanks).

II-26

Remarks

This pseudo-operation is used only when the value of the symbol

being defined is to be a function of the location of the program in

memory (i.e. the symbol is the. location of an instruction or piece

of data, etc.)

TCD A:: Punch transfer card

First pass

Nothing.

Second pass

Any binary information saved in the core is omitted to the

selected binary output unit (on-line punch or binary tape) in

the selected format. Then a single card is punched with the .value

of A in the 9L address (i.e. a transfer card) or a single binary

word is written on binary tape with the equivalence of A as

its address (HTR A), depending on whether the binary output

is to. be punched or written on tape~~ A must be previously

defined.

If the binary-output mode is ABS, the 9L prefix will be zero.

If the mode is--R.EL, the 9L prefix will be two. If the mode is

FUL, the value of the 9L prefix will be that of the last binary­

output mode other than FUL.

WST T, N: Write symbol table

First pass

The symbol table as it exists at the. time the WST pseudo­

operation is encountered is sorted. For T = 0 or blank, N (if

any) is ignored and the symbol table is punched on-line in

SHARE standard absolute binary cards. However, for T = 1, 2,

... 10, logical tape T is rewound and skipped past (N-1) records

which have a zero first word .. The tape will then be positioned

immediately after the (N -1)th symbol table on the tape. The

new symbol table (th Nth) is then written in SHARE standard

absolute binary card images followed by a single one-word re­

c'ord of zeros and an end-of-file· mark. The tape is then re­

wound.

II-27 UCRL-8932

Note that this procedure requires that for multiple -symbol

tables written on a tape, the first should have anN of 1, the

second an N of 2, etc.

Second pass

The WST record will be printed if switch 2 is down.

b. Alphabetic codes. In addition to the standard three-letter op­

eration code adopted by SHARE, this assembly program recognizes

the following codes which may be used to assign arbitrary values

to the prefix and sign of calling sequence words:

Alphabetic code Name Octal code

MZE Minus zero -0000.

MON Minus one -1000

MTW Minus two -2000

MTH Minus three -3000

PZE Plus zero +0000

PON Plus one +1000

PTW Plus two +2000

PTH Plus three +3000

FOR Four -0000

FVE Five -1000

SIX Six -2000

SVN Seven -3000

c. Mnemonic operation cedes. A detailed explanation of the Machine

I:tistruction Co'des with one exce.ptioD. appea•r in the'.IBM~ 704 Manual

of Operation, IBM Form-A22-6500-2. The one exception is the

copy-add-and-carry (CAC or CAD) (-700)
8

instruction. This

instruction is equivalent to a copy and skip instruction (07 00)

followed by an add and carry logical-word instruction (06 31) un-

less skipping occurs, in which case ACL is omitted. Since the

7 04 installed at this facility is a drumle s s machine, all instructions

relating to drums are deleted from the summary of machine in­

structions. In coding symbolic instructions, which have CHS, CLM,

COM, DCT, ETM, ETT, IOD, LTM, LBT\ PBT'~ RCD, RPR,

RTT, RND, SLF, SPT, SSM, SSP, WPR, or WPU as their

operational part, the address part should be blank or zero, since

the assembly program automatically introduces the correct address.

II-28 UCRL-8932

In coding symbolic instructions which have BST~ RTB~ RTD,

REW. SLN~ SLT, SPR, SPU, SWT, WEF, WTB, WTD, or WTS

as their operational part, the address part should be the unit

number (in decimal). For instance, BST2 implies back-space

tape No. 2, SPR9 implies sense printer exit No. 9, and so on.

The assembly program automatically computes the correct octal

address (222 and 371 respectively, in the foregoing examples).

· (1) Summary of machine instructions

Alphabetical Code Description

ACL Add and carry logical word

ADD Add

ADM

ALS

ANA

ANS

ARS

BST

CAC

CAD

CAL

CAS

CHS

CLA

CLM

CLS

COM

CPY

·DCT

DVH

DVP

EFM

ETM

ETT

FAD

FDH

Add magnitude

Accumulator left shift

And to accumulator

And to storage

Accumulator right shift

Backspace tape

Copy, add~ and carry

Copy, add, and carry

Clear and add logical word

Compare accumulator with storage

Change sign

Clear and add

Clear magnitude

Clear and subtract

Complement magnitude .

Copy or skip

Divide check test

Divide or halt

Divide or proceed

Enter floating-trap mode

. Enter trapping mode

End of tape test

Floating add

Floating divide or halt

Octal code

0631

0400

0401

0767

-0320

0320

0771

0764

-0700

-0700

-0500

0340

0760, 002

0500

0760, 000

0502

0760, 006

0700

0760, 012

0220

0221.

-0760,002

0760, 007

0760, 011

0300

0240

Il-29 UCRL-8932

FDP Floating divide or proceed 0241

FMP Floating multiply 0260

FSB Floating subtract 0302

HPR Halt and proceed 0420

HTR Halt and transfer 0000

LBT Low-order bit test 0760, 001

LDQ Load MQ 0560

LFM Leave floating-trap mode -0760,004

LGL Logical left -0763

LLS Long left shift 0763

LRS Long right shift 0765

LTM Leave trapping mode -0760, 007

LXA Load index from address 0534

LXD Load index from decrement · -0534
f

MPR Multiply and round -0200

MPY Multiply 0200

MSE Minus sense -0760

NOP No operation o761

ORA Or to accumulator -0501

ORS Or to storage -0602

PAX Place address in index 0734

PBT P bit test -0760, 001

PDX Place decrement in index -0734

PSE Plus sense 0760

PXD Place index in decrement -0754

RDS Read select 0762

REW Rewind 0772

RND Round 0760, 010

RQL Rotate MQ left -077 3

RTT Redundancy tape test -0760,012

SBM Subtract magnitude -0400

SLQ Store left-half MQ -0620

SLW Store logical word 0602

SSM Set sign minus -0760, 003

SSP Set sign plus 0760,003

STA

STD

STO

STP

STQ

STZ

SUB

SXD

TIX

TLQ

TMI

TNO

TNX

TNZ

TOV

TPL

TQO

TQP

TRA

TSX

TTR

TXH

TXI

TXL

TZE

UFA

UFM

UFS

WEF

WRS

II-30

Store address

Store decrement

Store

Store prefix

Store MQ

Store zero

Subtract

Store index in decrement

Transfer on index

Transfer on low MQ

Transfer on minus

Transfer on no overflow

Transfer on no index

Transfer on no zero

Transfer on overflow

T:ransfer on plus

Transfer on MQ overflow

Transfer on MQ plus

Transfer

Transfer and set index

Trap transfer

Transfer on index high

Transfer with index incremented

Transfer on index low or equal

Transfer on zero

Unnormalized floating add

Unnormalized floating multiply

Unnormalized floating subtract

Write end of file

Write select

UCRL-8932

0621

0622

0601

0630

-0600

0600

0402

-0634

2000

0040

-0120

-0140

-2000

~0100

0140

0120

0161

0162

0020

0074

0021

3000

1000

-3000

0:1.00

-0300

-0260

-0302

0770

0766

II-31 UCRL~8932

(2) Extended Operations

Read

RCD Read card reader 0762, 321

RPR Read printer 0762,361

RTB Read tape - binary 0762, 221-232

RTD Read tape ~decimal 0762, 201-212

Write

WPR Write:printer 0766, 361

WPU Write punch 0766,341

.. WTB Write tape - binary 0766, 221.-232

WTD Write tape co decimal 0766,201-212

WTS Write tapes - simultaneously 0766,321-325

Sense

SLF Sense lights off 0760, 140

SLN Sens.e light on . 0760, 141-144

SLT Sense light test -0760, 141 .. 144

SPR Sense printer 0760, 361-372

SPT Sense printer test 0760, 360

SPU Sense punch 0760, 341-342

SWT Sense switch test 0760, 161=166

Other

IOD Input-output delay 0766, 333

II-32 UCRL-8932

3. Assembly Diagnosis

As an aid to the programmer and installation, the assembly pro­

gram gives 'Some indications .of programming and machine errors:

a. First pass. Certain pseudo-operations require that symbols appearing

in their variable fields be defined at the time the operation is encountered

in the first pass. These are BES, BSS, C/T, EQU, LIB, LOG. ORG, REP,

RST, SYN, and WST. In addition LIB requires that the identification

appearing in the symbol field be identical with that of some library routine

on the specified tape.

If the assembler is unable to find an equivalence in the proper

place, the record in error will print on-line and, if switch 5 is up off-line,

with a U to its left .. In addition, if any record read from the input tape or

any library tape causes four redundancy checks, the record that so failed

will cause a similar print but with an R to the left. If the symbol table or

operation table is filled in the first pass, an appropriate comment will print

on-line and the computer will stop.

b. Second pass.

·Flags

ATD

TD

D

D

(1) Off-line print

(a) Certain instructions are tested to see that they have the

normally required parts (i. e. address, tag, decrement). If one

or more is missing, an appropriate letter prints to the left of the

printed instruction in the flag field.as shown below:
Symbolic instruction

Core Octal Variable
location instruction Location OP field

xxxxx X XXXXX X XXXXX ALPHA TXI

TXI,

TXI,,

TXI, • 0

TXI ALPHA,,

(b) If a symbol appearing in the symbol field or variable

field of an instruction or pseudo-operation is defined more than

once even though the definition is unique, an M will print in the

flag field. The particular equivalence used by the assembler is

unpredictable but will be the same for a given assembly.

II-33 UGRL-8932

(c) If a symbol in the variable field or the operation code is

undefined, a U will print in the flag field.

{d) If the value of a symbol in a symbol field is not the same

as it was in the first pass, a P (phase) will print in the flag field

and the location counter will be changed to the first-pass value

unless the symbol involved is multiply defined .

. (e) If an STO follows immediately after a FDH, FDP, DVH

or DVP, a Q (quotient) will print to the left of the STO instruction.

(f) If a redun~ancy check occurs four times, an R will print

in the flag field, and a print will be forced on-line whether sense

switch 3 is down or not.

(g) In the case of library routines that are not to be printed,

failures of the sort described in items 2 through 6 will cause a

print in spite of the no-print bias.

(h) The following information about the input tape, the

collated tape, and all library tapes will print:

(1) the total number of records read

(2) the number of single failures

(3) the number of double failures

(4) the number of triple failures

(5) the number of quadruple failures.

Note that in the case of the library tape, these will be totals of

all library tapes used in that assembly.

(i) The number of input records read on-line will print .

. (j) The number of off-line print records generated will

print.

(k) The number of defined symbols, symbols defined by

DEF, and undefined symbols will print.

(2) On-line print

(a) All symbols defined by DEF will be listed.

(b) All undefined symbols will be listed.

(c) All multiply defined symbols will be listed with their

various equivalents.

(d) If the symbol table was full in the second pass, an

appropriate comment will print.

II-34 . UCRL-8932

4. The Symbol Table

Each symbol that appears in the symbol field of an instruction

or is defined by use of a pseudo-operation will be entered in the symbol

table as a BCD word with its corresponding core address. Therefore,

each symbol requires two cells in. the assembler's symbol table area.

Unassigned symbols are also recorded in the symbol table with their

corresponding core address set to zero. . The symbol table may be read­

out and used for later assemblies by the us.e of the WST or PST pseudo­

operation codes. These operations will eii.ther write the table on a tape or

punch it. in binary cards on-line. The read-in is accomplished by the

operation RST. It should be noted that symbols defined by DEF will not

appear in any symbol table recorded by the operations PST or WST. A

symbol table containing such symbols may be obtained by the use of the

operation FST .

. If the symbol COMMON is not defined and reference is made to

it. then the corresponding core location for COMMON inthe symbol table

will be the address of the next cell after the last one assigned in the current

assembly. If COMMON has been defined, then it will be recorded in the

normal manner.

The maximum number of symbols that may be constructed in

the symbol table is 15433 entries. In cases where the program to be

assembled uses the library tape, however, the maximum number of symbols

that the assembler can handle is somewhat reduced. This follows from the

fact that the entire ordered list of subroutines that forms the first set of

information on.the library tape is copied into the upper end of the symbol­

table area at the time that the first LIB card is encountered. Hence, if the

library tape is used during an assembly, the effective symbol-table size

becomes 15433 minus the number of library subroutines on the tape. The

number of library routines will var'y from time to time; therefore, if this

number is required it should be determined at the time of need.

a .. Symbol-table format. All punched-symbol tables begin at (1900) l o•
(3554)8 .. When the PST pseudo-operation is used (or WST without designating

the tape number. the symbol table is punched in binary ca:r'ds on-line in the

following format:

_II- 35 UCRL-8932

9 row left: Bits 9Ll3, 9Ll5, 9Ll6 punched. Bits 9L24-9L35:

loading address

9 row right: Card check sum

8 row left (first card only): 8-left decrement contains 2N, where

N is the number of symbols in the table. 8-left address

.contains a number 2E, which is defined such that

2E-l<2*N~2E.

8 row right (first card only): Logical check sum of the entire symbol

table (not including the word represented by the 8-left word).

8 to 12 rows left: BCD symbols. The individual symbol is packed to

the right, with leading, imbedded, and trailing blanks

being replaced by leading zeros. If the symbol has less

than six characters (leading zeros not counted), the current

· heading is inserted at the extreme left end of the word. It;

for example, the heading is H, the symbols .A, AA, AAA,

AAAA, AAAAA, and AAAAAA will lead to entries in the

symbol table of HOOOOA, HOOOAA, HOOAAA, HOAAAA,

HAAAAA, and AAAAAA, respectively.

The symbols are placed in algebraically increasing sequence.

8-to 12-rows right: In address field, integer equivalences corresponding

to BCD symbol in rows left. If the word is negative, the

symbol is multiply defined. If the tag is two, the symbol

is relocatable; if zero, the symbol is not relocatable.

b. Reassembly features. Additions to a program which has been assembled

are easily' accomplished if the table of symbols which was written on tape or

punched during the initial assembly process has been saved .. By use of the

AST or RST pseudo-operations, the symbol table may be appended or re­

placed. It is then necessary only to reload this table and assemble the new

parts of the program. The .original program need not be loaded. Further­

more any change to the original program which does not involve relocation

of any part of the program or any reassignment of symbols may be made by

assembly of only those parts of the program that are to be changed.

ll-36 UCRL-8932

5. Standard Boards (On-line)

a. Card reader, type 71 L The card reader reads Columns 1 to 7 2 directly

into calculate entry left and right.

b. Card punch type 72L Normally, calculator exits 1 to 72 punch into

card Columns 1 to 72. On cycles containing Sens.e Punch 1, (0760, 341),

cal~ulator exits 2 to 9 punch into .card Columns 7 3 to 80. Thereafter data

punched into Columns 7 3 to 80 of this card will be gang-punched in cards

following.

c. Printer, type 716.

(1) BoardNo. 1

(a) "7 2~ 7 2": Calculator exits 1 to 7 2 into type wheels

1 to 7 2 in a single cycle.

(b) "7 2~ 120": Calculator exits 1 to 7 2 into type wheels

1 to 7 2 on first cycle of double cycle; calculator exits 1 to 48

into type wheels 7 3 to 120 on second cycle of double cycle.

(c) "72-spread-72u1: Calculator exits 1 to 12 into type

wheels 1 to 12 and exits 13 to 7 2 into an arbitrary combination

of type wheels 13 to 120 on a single cycle.

(2) Board No. 2

.(a) "72 to 72" with echo-checking possible

(b) "72 to 120" with echo-checking possible

(3) In addition to the above modes of operation, both boards

will execute the following functions:

(a) normal single spacing

(b) double-space under control of a sense instruction

(c)\ normal overflow

{d) overflow suppression under control of a sense instruction

(e) programmable overflow under control of a sense instruction

(unsuppressable)

(f) extra space under the control of a sense instll."uction

(g) space suppression under control of a sense instruction

(h) carriage skip to Channel 2 under control of a sense

instruction

(i) a panel check under the control of a sense-exit and the

sense -entry instruction.

II-37 UCRL-8932

(4} Board No. l uses all 20 co-selectors and eight of the pilot

selectors. Board No. 2 uses all 20 co-selectors and 4 of the pilot

selectors.

(5} Sense -exit functions

If no SJ;:!nses are given, the page will space one line befor.e

each line is printed. (A space means that the paper will be moved

one line (1/ 6 in.) and does not refer to blank lines between printed

lines.) Automatic overflow will cause sheet ejection to take place

at the end of each page. If 7 2 to 120 mode printing is called for,

this will take place on the same line as the previous 7 2 to 7 2 line.

There .may be at least 5 msec of computing between the last

copy of the copy loop and the sense instructions following the copy

loop. The sense instructions given before the copy loop may be given

anywhere between the WPR or RPR and the first copy. The order of

the sense instructions is unimportant except as they are given before

or after the copy loop.

Note also that spacing before printing is suppressed on the first

line of a page after an automatic sheet overflow. This is not the case

if the page is restored manually or by means of the Sense Printer 1

(SPRl) or Sens.e Printer 2 (SPR2} instructions.

A sense may be energized either before or after the copy loop

for either read printer or write printer. The function of each accord­

ing to the time at which it is given follows. Note that in general one

copy is not equivalent to a full 24 or 46 copies.

Sense printer L This is wired directly to skip to Channel 1. If this

instruction is given before the copy loop, the page will be ejected be­

fore tl_le line is printed; if it is given after the copy loop, the line will

be printed and then the sheet will be ejected. The operation of this

sense is unaffected by any other senses, either before or after the

copy loop .

. Sense printer 2. This is wired directly to skip to Channel 2. The

operation is exactly like SPRl except that only a half-page skip occurs,

either before or after printing.

Sense printer 3. This sense must be given. after the copy loop

and causes one space to be made after the line is printed, regardless

of the number of spaces called for before printing the line. Note

:that an automatic overflow may occur after printing the line.

II-38 UCRL-8932

Sense printer 4. This sense must be given before the copy loop, and

causes two spaces to be made before printing the line. Note that if

these force an automatic overflow, the page will be ejected after the

.line has been printed. This sense is rendered inoperative if either

a.SPR5 or SPR9 is also given.

Sense printer 5. This sense must be given before the copy loop,

and prevents any spacing before the line is printed. If SPRl or SPR2

is also given before the .copyloop, the page will eject before the line

is printed.

Sense printer. 6. (board No. 1 only). Sets up format control for the

7 2-spread-7 2 mode of operation.

Sense printer 7. Panel check exit.

Sense printer 8. This sense must be giv:en before the copy loop, and

prevents automatic overflow before the line is printed, regardless of

the number of spaces being made before the line is printed .. If one or

more spaces are called for after printing, automatic overflow may

occur after the line has been printed.

Sense printer 9. This sense ~t be given before the copy loop, and

causes Columns 1 to 48 of the card image to be printed from type

wheels 7 3 to 120. Columns 49 through 7 2 are printed from type

wheels 49 to 7 2 .. In addition, spacing is suppressed before the line is

printed. If sheet ejection is called for, however, the page will be

ejected before the line is printed.

Sense printer 10. Not used.

II-39 UCRL-8932

6 .. Conventions and Restrictions

a. Machine space. There are no restrictions placed on the use of space 1n

the core or on tapes at compute time except for the built-in restrictions

concerning loading and trapping. The programmer does not control storage

at assembly time.

b. Symbol HCOMMON". The symbol "COMMON" has been established by

conventionto designate erasable storage for SHARE subprograms. Since it

consists of six characters, it may not be headed, and it should not be other­

wise restricted. Many ,library subroutines require blocks of erasable storage

to be assembled with them. The initial (symbolic) location of the block to be

shared by all programs in the same assembly is "COMMON. 11

c. Sense switches. Whenever a sense switch is used for control of a

program, the "sense switch down" position shall be the unusual case. Sense

switch No. 6 will be used for trapping-mode control in those programs

relying upon switch setting in such control.

d. _ Relocatable subprograms. All SHARE programs in relocatable cards

will have a standard origin of 0 (zero), with COMMON storage having an

origin of (2000)
8

.

e. Subroutines. The point transferred to shall always be the first instruction

in the subroutine.

Subroutines in the library are entered at their initial locations, t,

with the following calling sequence:

LOG OP ADR TAG DCR

z

z + l

z + 2

z + K

z+K+l

Error return

Normal return

The arguments and answers will be placed in the following units

of the machine in the order indicated:

(1) Accumulator

(2) M Q

II-40

(3) Core -storage location specified in linkage.

UCRL-8932

The P. in the calling
1

sequence represent parameters, such as core-storage locations or

scale factors (negative scalefactors should be complements of 2' s) .

. The R. in the calling sequence represent any information that can be
1.

conveyed in three bits.

The SHARE subroutines depend on index register No. 4 for their

calling sequence. Subroutines written for the library should use this register

for its calling sequence. Index registers and sense lights, when used by the

subroutine, shall be re.stored to their original condition within the subroutine

before exiting. The status of overflow indicators, the divide check light,

the accumulator, and MQ are not guaranteed on exit from a subroutine.

Subroutines will not normally use sense switches.

Stops within subroutines should be avoided. Instead exits should

be made to the error return with a code placed in the accumulator defining

the reason for failure. Explanations of the code will be explained in the

program write -up.

L ·.Program classification. Programs are assigned a two-character

. classification code. The leftmost character is a letter indicating a primary

class; the second character is a digit indicating a secondary class within

the primary. The classifications are as follows:

A. Programmed arithmetic

L. Real

2. Complex

3. Decimal

B. Elementary functions

L . Trigonometric

2. Hyperbolic

3. Exponential and logarithmic

4. Roots and powers

C. Polynomials and special functions

L. Evaluation of polynomials

2. Roots of polynomials

3. . Evaluation of special functions

4. Simultaneous nonlinear algebraic equations

5. Simultaneous transcendental equations

UCRL-8932

D. Operations on functions and solutions of differential equations

1. . Numerical integration

2. Numerical solutions of ordinary differential equations

3. Numerical s.olutions of partial differential equations

4. Numerical differentiation

E. Interpolation and approximations

1. Table look-up and interpolation

2. . Curve fitting

3. Smoothing

F. Operations on matrices, vectors, and simultaneous linear equations

1. Matrix operations

2. Eigenvalues and eigenvectors

3. Determinants

4. . Simultaneous linear equations

G. Statistical analysis and probability

1. Data reduction

Z. Correlation and regression analysis

3. Sequential analysis

4. Analysis of variance

5. Random-number generators

H. Operations research and linear programming

I. Input

1. Binary

2. Octal

3. Decimal

4. BCD

9. .Composite

J. Output

1. Binary

2. Octal

3 .. Decimal

4. BCD

5. Analog

9. . Composite

II-42

K. Internal informatio11- transfer

1. Read-write drum

2. Relocation

L. Executive routines

1. Assembly

2. Compiling

3. Automatic operator programs

M. Information processing

1. Sorting

2. Conversion

3. Collating and merging

N. Debugging routines

1.. Tracing and trapping

2. Dumps

3. Search

4. Breakpoint print

0. Simulation programs

P. Diagnostic programs

Q. Service programs

1. Clear-reset programs

2. Check sum programs

UCRL-8932

3 .. Restore, rewind, tape mark, and load button programs

Z. All others.

II-43 UCRL-8932

C. Operating Procedures - SHARE Assembler

l. Tape Assignment

Logical tape

1.

2.

3.

6.

Function

Share assembler (SAP followed by

library prqgrams).

Off-line print.

Off-line input.

Collated tape.

Tapes one and 6 are always required. All tapes must be

rewound at the start of assembly.

2 .. Sense -Switch Settings

3. Usage

Switch 1 up Off-line input. Tape 3 required~

Switch 1 down

Switch 2 up

Switch 2 down

Switch 3 up

Switch 3 down

Switch 4

Switch 5 up

. Switch 5 down

. Switch 6

On-line input. Tape 3 not required.

Normal print (off-or on-line).

Certain pseudo-ops do not normally

print. With this switch down, they

will print.

On-line printer prints only certain

error and statistical information.

On-line printer prints everything.

Not used.

Off-line output tape prepared.

Tape 2 required .

No off-line output tape required.

Tape 2 not used .

Not used.

The Share assembler is the first file on the tape; the library of

sLJ.b:coutines is the second file. The Share assembler tape should always

be mounted in logical tape unit 1 without the file -protect ring. When all

necessary tapes have been mounted and sense-switch settings made, one of

two loading procedures is followed:

a. On-line input Ready symbolic cards in the card reader following an

Assembler Tape call card (UA SAP RT).

Press clear button.

Press load button.

II-44 UCRL-8932

For multiple assemblies~ each deck of symbolic cards must

have an· END card as its last card .. The decks are then stacked one after

the other in the card reader .. The last sta.cked deck may be followed by

a FIN card. The function of the FIN pseudo-operation and an end-of..,file

are similar except that the FIN -op will eject the paper and be printed before

the load button is pushed.

b. Off-line input. Ready card reader with assembler-tape call card

(UA SAP RT).

Press clear button.

Press load button.

For multiple assemblies 8 each deck of symbolic cards must

have an END card as its last card .. The decks are then stacked one after

the other and read onto tape via off-line equipment. The last stacked deck

may be followed by a FIN card. The presence or absence of a FIN card is

treated in the same rrtanner as when input is on-line.

SAP SRCH

It is often convenient to be able to start the assembler operating

on some assembly other than the first or to by-pass the remainder of an

assembly which caused a stop in the first pass (L e. for symbol table or

operation table full, etc.). A SAP SRCH card will read any tape 3 and

cause the following stops:

00007

00010

00017

00022

HTR

HTR

HTR

HTR

End-of-file

False end-of-record

END card encountered

FIN card encountered.

This program is self-loading. Pressing start after a stop causes it to

continue. The program does not rewind the tapes» nor does it write an

end-of-file on the output tape (2) q.t any time.

4. Output

When printing the output tape» the carriage should be selected

to PROGRAM .. Channels 1 and 9 cause an eject.

. II-45 UCRL-8932

5. Stops

The location given to the left of an HPR is the actual location

of the HPR instruction. . (All locations given in octal.)

(00015) HPR

(00016) HPR

(00017) HTR

(00032) R- W check

(00053) HTR

(00107) HTR

(01060) HPR(52525)

(01173) HTR

(01311) HTR

Drum-read error .. Press start to try

again: Manual transfer to address of

HPR ignores stop. The drum involved

is given by the address of location

(00016).

Tape-read error. See above. Tape

unit involved is given by address part

of location (000 17).

Error leading built-in binary loader

or loader is out of order. Start over.

End-of-file encountered by built-in

loader. Check deck make-up and

start over.

Absolute binary-card check-sum

error. Press start to read next card.

(Not recommended).

Relocatable card encountered by built­

in binary loader. Investigate, fix, and

start over.

False end-of-record skip while reading

tape in BCD mode. Press start to try

again.

Wrong board in printer. Replace with

SHARE board No. · 1 or No. 2 and

press start (present IBM diagnostic

board 4P01D will not stop, since it

also uses SPR 7 to impulse the SE hub).

End-of-file detected on collated tape

before END card. Machine error.

Press start to try to go on.

(01412) HPR

(01475) HPR

(01571) HTR

(01636) HTR

(01663) HTR

(01710) HTR

(02056) HPR

(02327) HTR

(02611) HTR

(030 15) HTR

II-46 UCRL-8932

Symbol table fulL (Stop follows

print-out of comment on-line.)

Press start to go on. Results not

useful in. general.

Operation table full. (Follows print­

out on-line.) Press start to go on.:

Error while reading library table of

contents .. Recommend new library

tape and restart. Press start to try

again.

False end~of-file on collated tape

{third pass). Press start to go on.

Statistics probably meaningless.

False end-of-file on library tape.

Press start to continue. Or library

tape incorrectly prepared.

False end-of-file on collated tape

after library error .. Press start to

try to continue.

A FIN card or end-of-file has been

detected (only occurs if binary deck

loaded on~line). Press start to

"push load button. "

Symbol-table check-sum error. Press

start to go on. (Not recommended.)

Non-Hollerith character detected in

Columns 1-7 2 of a symbolic card read

on-line. Correct the card (third from

end in stacker), reload the card reader

and press start.

False end-of-record skip while reading

symbol table from tape or cards.

Press start to try to go on.

(0'3043) HPRX

(03062) HTR

(06262) HTR

(06317) HTR

II-47 UCRL-8932

Check-sum error on last card or

record (tape) read while reading

binary symbol table. If reading on­

line, press start to go on. If from

tape, press start to try again, manual

transfer to X to continue.

Symbol-table check-sum error

immediately after execution of AST

or RST. Press start to continue.

(Not recommended.)

Absolute-binary check-sum error on

last card read. Occurs while writing

ass.embler on drum or tape.

Relocatable card found while. writing

assembler on drum or tape.

A SAMPLE SAP CODE.

THIS ROUTINE WILL EVALUATE A BIVARIATE POLYNOMIAL.
Loc. Pre. Dec. Tag Addr. --

04000 ORG 2048
04000 -0 53400 2 04004 LXD P6, J+1 INITIALIZE INDEX REGISTERS.
04001 -0 63400 4 04020 P4 SXD P2, K STORE K.
04002 0 50000 1 04022 CLA A+1, J OBTAIN FIRST ELEMENT.
04003 1 77777 1 04004 TXI P6, J, -1
04004 -2 00001 4 04017 P6 TNX P5, K, 1
04005 0 76500 0 00043 P3 LRS 35 FORM POLYNOMIAL
04006 0 26000 0 04046 FMPX IN X
04007 0 30000 1 04022 FAD A+1, J
04010 1 77777 1 04011 TXI 'H1, J, -1 STEP COEFFICIENT
04011 2 00001 4 04005 TIX P3, K, 1 TEST REDUCED K tJ
04012 0 60100 0 04051 STO S STORE PARTIAL SUM
04013 0 56000 0 04050 LDQ Z FORM POLYNOMIAL Ul

PJ
04014 0 26000 0 04047 FMP Y IN Y 3
04015 0 30000 0 04051 FADS '"0

TXL ou-r, J, -R/2+1
.....

04016 -3 77754 1 (1)

04017 0 60100 0 04050 P5 STO Z "d
>1

04020 1 00000 4 04001 P2 TXI P4, K 0
H

00005 N EQU 5 cr I *"' (1) :x> 00052 R EQU N':'N+3':'N+2 Note that the a .. are stored in the 3
04021 A BSS R/2 lJ Ul

04046 0 00000 0 00000 X order a05'al4'a04'a23'a03' ...

04047 0 00000 '0 00000 y a
00

from location A on.
04050 0 00000 0 00000 z
04051 0 00000 0 00000 s

00001 J EQU 1
00004 K EQU 4
04000 END P4-1
00001 0 OUT

SHARE ASSEMBLER STATISTICS

TAPE TOTAL 1 FAIL 2 FAIL 3 FAIL 4 FAIL
INP 0 0 0 0 0
LIB 0 0 0 0 0
COL 32 0 0 0 0 ~

NUMBER OF ON -LINE INPUT RECORDS 32
()

~

NUMBER OF OFF-LINE PRINT RECORDS 42 t-'
I

(X)

NUMBER OF SYMBOLS, DEF 14, DEFOP 0, UNDEF 1 -.{)

w
N

Loc. Pre. Dec .. Tag

00000 0 70000 0
TD 00001 1 00000 0

01000 0 70000 0
01001 1 00021 0

01000 -0 53400 4

01000 0 70000 4
01001 2 00001 4

SHARE ASSEMBLER STATISTICS

A USE OF THE CONTROL OPERATION LOC.

A SELF-LOADING REMOTE BOOTSTRAP FOR A 1 TO 17 INSTRUCTION
PROGRAM. THE BOOTSTRAP USES LOCATIONS 0, 1, R, AND R+l.

THE PROGRAM WILL OCCUPY LOCATIONS R+2 TO R+N+1, WHERE
N IS THE NUMBER OF WORDS IN THE PROGRAM. AFTER THE

PROGRAM IS LOADED, THE FIRST INSTRUCTION EXECUTED
WILL BE THE ONE IN LOCATION R + 2.

Addr. --
00000 ORG 0
01000 R SYN 512
01000 CPYR
01000 TXI R
01000 LOC R
01001 CPY R1
00000 R1 TXI 0,, N
01000 LOC R
01001 LXD R1, 4
01000 LOC R
01023 CPY R+N+2, 4
01000 TIX R, 4, 1

CONTINUE HERE WITH THE PROGRAM WHICH IS TO BE
LOADED. CARD SIZE LIMITS THE PROGRAM TO 17
INSTRUCTIONS.

00021 N EQU 17 PARAMETER=THE NUMBER OF PROGRAM WORDS.
00000 END ':":'

TAPE TOTAL 1 FAIL 2 FAIL 3 FAIL 4 FAIL
INP 0 0 0 0 0
LIB 0 0 0 0 0
COL 27 0 0 0 0

NUMBER OF ON -LINE INPUT RECORDS 27

NUMBER OF OFF-LINE RECORDS 35

NUMBER OF SYMBOLS, DEF 3, DEFOP 0, UNDEF 0

H
H
I

*"" -.{)

c:
()
:;o
t"'
I

CXl
-.{)

IN
N

A USE OF THE CONTROL OPERATION C/T

A CORRECTION/TRANSFER CARD TO PUSH THE LOAD BUTTON WHEN
LOADED BY UA CSB 1 OR THE EQUIVALENT.

Loc. Pre. Dec. Tag Addr. . --
00000 ORG 0
00005 T SYN 5

1 00005 T, 1 TRANSFER ADDRESS 9L ROW
A 00000 0 00000 0 00000 HTR DUMMY FOR CARD SPAC- 9R ROW

00005 T ING. 8L ROW
00005 0 76200 0 00321 RCD FIRST LOCATION 8R ROW

1 00000 ' 1 READ CARD READER 7L ROW
00006 0 70000 0 00000 CPY 0 LOCATION COUNTER +1 7R ROW

1 00000 ' 1 ETC. 6L ROW
00007 0 70000 0 00001 CPY 1 6R ROW

1 00000 ' 1 5L ROW
00010 0 02000 0 00000 TRA 0 5R ROW

00000 END -

SHARE ASSEMBLER STATISTICS

TAPE TOTAL 1 FAIL 2 FAIL 3 FAIL 4 FAIL
INP 0 0 0 0 0
LIB 0 0 0 0 0
COL 19 0 0 0 0

NUMBER OF ON-LINE INPUT RECORDS 19

NUMBER OF OFF-LINE PRINT RECORDS 27

NUMBER OF SYMBOLS, DEF 1, DEFOP 0, UNDEF 0

....
I

"" 0

c:
()

::0
t""
I

00
~
VJ
N

III-1 UCRL-8932

III. THE FORTRAN-II SYSTEM

A. Operational Procedures for the Fortran II Compiler

1. Tape Assignment

a. . Nonbatch compile:

(1} Set the system tape to tape 1.

(2} Set off-line input tape to tape 2 (for source program on

tape prepared off-line).

(3) Ready tapes l, 2, 3, and 4.

Note: Tape 2 is always readied rega!t-dless of whether input is on cards or

tape.

b. Batch compile:

(l) Set the system tape to tape 1.

(2) Set off-line input tape to tape 5 (for source programs ontape

prepared off-line).

(3) Ready tapes l, 2, 3, 4, 5, 6, and 7.

Note: Tape 7 is not required if every source program calls for punched­

card output. Tape 5 is always readied regardless .of whether input is on

cards or tape.

2. Sense-Switch Settings and Tape Output

a .. Sense switch 1.

Up: Binary cards for the object program(s) are punched on line.

Tape 3 contains the binary program for the last or only program

compiled. Tape 7 is not used.

Down: Binary cards for the object program(s) are not punched.

Tape 3 contains the binary program for the last or only program

compiled. For batch compiling, tape 7 contains the binary programs

for all the source programs compiled in the order they were compiled.

b. Sense switch 2.

Up: Produces, on .tape 2, two files for the source program com­

piled, which contain the source program statements and a map of the

object program storage. For batch compiling, tape 6 will contain two

files for each program compiled and tape 2 will contain two files for

the last program compiled.

Down: Adds a third file for each program compiled (see above)

containing the object program in SAP-type language on tape 2 (and tape

6 for batch compiling).

III-2 UCRL-8932

c. Sense switch 3.

Up: No on-line listings are produced.

Down: Lists on-line the first two or three files on tape 2,

depending on the settings of sense switch 2.

d. Sense switch 4.

Up: Causes Fortran II to produce a program optimized with

respect to index registers.

Down: Causes Fortran II to produce a program not fully optimized

with respect to index registers but which will be translated more

rapidly.

e. Sense switch 5.

Up: Library routines are not to be punched out or written on

tape 3.

_ Down: Causes Library routines to be punched on-line or

written on tape 3, depending on whether sense switch 1 is in the

up or down position.

f. Sense switch 6.

3. Usage

Up: Single program compilation.

Down: Batch compilation.

a. Printer: SHARE printer board No. 2.

b .. Card Reader:

(1) On-line input; Ready source program cards in card reader.

(2) Off-line input; Ready card reader.

Note: Compiler attempts to read source programs from card reader and

goes to tape for programs if end-of-file condition is encountered from card

reader. Tape 2 is always required, regardless of input mode.

c. _Depress load-tape button.

d. Compiling. Successful compiling is indicated as follows:

(1) Single problem: Card reader is' selected. _Depress READY

button. Program stops location 35
8

.

(2) Batch compile: Card reade.r is selected. Depress READY

button. Program stops at location 35
8

.

III-3 UCRL-8932

4. Punched-Card Output

If sense switch 1 is UP, Fortran II produces the following

punched-card output:

a. Compilation of a main program:

BSS loader (9 cards)

Program card (9 punch in Column 1)

Program in relocatable binary (9 punch in Column 2)

Transfer card (9 punch in Column 1, remaining card blank).

b.. Compilation of a subprogram:

Program card (9 punch in Column I)

Program in relocatable binary (9 punch in Column 2).

Note: Columns 1 to 36, row 7 of program card for subprogram contains

BCD representation of the name assigned.

Columns 1 to 36, row 7 of program card for main program are blank.

See reference manual for Fortran II, C28-6000-l, for further

description of object cards.

5. Executive System Halts

Section Rec. Octal
.n~mber No. loc

1

PRE 1

Successful

compilation

record

000

013

001

009

27

30

0147

35

III-4

Stop
source

Tape 1

Ma-

chine

error

.Pro-

gram

Job

com-

pleted

UCRL-8932

Procedure and details

Press START to try reading Tape

l (system tape) again .. Tape 1 has

been read once unsuccessfully be­

cause of either Redundancy error

or check sum error in reading in

System record.

][£not batch compiling, press

START to rerun problem. For

batch compiling, press START to

rerun current problem; or, turn

on sense light 1 and press START

if next problem is to be compiled.

Remove cards from card reader

and run out the cards in the reader.

There is an impossible character

(non-Hollerith} in the third card

from the last in the stacker.

Correct the invalid character be­

fore recompiling.

Compilation is complete. All

source programs have been com­

piled, or an attempt at compilation

has been abandoned because of

source-program or machine error.

Computer control is returned to

the installation via a load-button

sequence .. If the card reader is

ready, but empty of cards, this

halt results.

.Source 010 50

program

error

record

Ill-S

Source

cards

or
tape 5

UCRL-8932

Compilation is complete.

There has been a s.ource -program

error if the program is in a single­

problem compile mode. This halt

can also result if the END card

in a batch compilation is missing

or mispunched, or if tape 5 can­

not be read successfully. Com­

puter control is returned to the

installation via a load-button

sequence. If card reader is

ready, but empty of cards, this

halts results.

UI-6 UCRL-8932

B. Executing the Object Program

1. Usage

a. · Binary and subroutine card outputs. The binary card output of a main

program compilation consists of the following sequence of cards:

{1) BSS loader (9 cards)

(2) Program card

(3) Program in relocatable binary

(4) Transfer card A9 punch in Col. 1).

The binary card output of a subroutine or function subprogram

compilation consists of:

(1) Program card

(2) Program in relocatable binary.

Where a permanent or general library subroutine is called by a

program compilation that does not suppress punching of subroutine cards,

the subroutine card output will be:

(1) Program card

· (2) Program in relocatable binary.

b. Loading. In order to run the object program, the Fortran II object

program deck must consist of the following sequence:

(1) BSS loader

(2) Program card

(3) Program in relocatable binary

(4) Program card

(S) Program in relocatable binary

(6) Program card

(7) Program in relocatable binary

(n) Transfer card {9 punch in Col. l).

One of the programs must be a main program and all the others subprograms.

The programs may be in any order.

The deck is readied in the .card reader and the LOAD CARD

button is pressed.

III-7 UCRL-8932

.(1) All the subprograms called for in the main program and other

subprograms must be in the deck if it is to run. Of course, they

normally will be there as a result of a compilation with sense switch

5 down. If any are missing, a stop at 777 56 or 7777 5 will occur

during loading.

(2) Although duplicate subroutines taken from the library tape will

never occur in a single main program, subroutine, or function

compilation, they may easily occur in a main program - subprogram

sequence. If this occurs, the duplicate copies will be loaded, al­

though only the first of these will ever be called during execution.

(a) To save core space during execution, the duplicate sub­

routines should be extracted from the compiled deck .. This may

be accomplished by searching for the program card that identifies

the program and removing it along with its binary cards.

(i) The program card is identified by a 9 punch in Column 1

and by punching in the 8 row words. The transfer card,

which also has a 9 punch in Column 1, has no punches else­

where. The program card of a subprogram is distinguished

from the program card of a main program by not being blank

in the 7 row.

(ii) The physical sequence of subprograms belonging to any

main-program, subroutine, or function compilation is the

exact reverse of their appearance in that section of the object

program storage map labelled "Subroutines Punched from

Library. 11

(b) In order to save both compilation time and card-searching

time caused by duplications of library subroutines, binary-card

copies of certain of these frequently used subroutines may be

kept aside and inserted into the load deck when needed. This

would enable some programs to be run with sense switch 5 up,

which otherwise could not be.

(3) The transfer card must be the last card in the load deck. It is,

however, compiled as the last card in the main program, and the

main program may not be the last program in the .deck ready for

loading. In this case, two alternatives are available:

III-8 UCRL-8932

(a) The transfer card may simply be extracted and placed at the

end of the complete load deck.

(b) Another transfer card (9 punch in CoL 1) may be placed at

the end of the load deck. In this case a stop at 7777 5 will o.ccur

during loading at the time the first transfer card is encountered.

Pressing the START button enables loading to continue.

(c} The control card is used to relocate lower memory locations

upwards in cores, and common data downwards in cores. That

which is referred to in the Fortran II Manual as the "Common

Reassignment Card" is a control card with reference only to the

relocation of COMMON. When the .control card is used, it
' must be placed immediately before the program card of the

program concerned.

III-9

2 .. Error Halts in the BSS Loader

Halt (octal)

3

20

77453

77556

77756

77775

Reason for halt

Instructions and

symbol table of

loader overlap.

End of file in the

card reader.

Instructions and

data overlap.

Check sum error.

More than 20

subroutines are

missing.

Missing

subroutines.

UCRL-8932

Procedure

Get off machine .. Combination

of program and transfer vectors

too long. Rewrite program.

Press START to read more cards.

Get off machine. Combination of

instructions and data too long.

Rewrite program.

Press START to accept infor­

mation.

If missing subroutines are at

hand, press START until stop at

7777 s
8

is reached. Follow

instructions (a) for that stop.

This stop indicates the transfer

card has been reached. It is

caused by one of two things:

(a) Loading has been completed,

but at least one of the subroutines

called for is missing. Location

77453 contains the BCD name of

the first missing subroutines~

location 77454, the second, etc.

If the missing subroutine (s) is

immediately available, it may be

loaded without starting the entire

loading process over again .. Place

another transfer card (9 punch in

Col. 1) at the end of the routine (s),

ready the card reader, and press

START.

III-I 0

3 .. Error Halts in the Object Program

UCRL-8932

(b) The transfer card en­

countered is really a premature

one that simply has not been

withdrawn. Be certain that a

transfer card is the last card at

the end of the deck, and press

START.

There are 11 standard error halts in the object-program level

input-output routines. They are to be recognized not by looking at the

instruction counter but by looking at the HPR instruction itself in the

storage register:

Halt

HPR 0, 0

HPR 0, 1

HPR 1, 1

HPR 2, 1

HPR 3, 1

HPR 4, 1

HPR 5, 1

HPR 0, 2

Reason for Halt

End of file in

reading binary

tape .

. End of file in

reading cards or

BCD tape .

.. Inappropriate

character en­

countered in a

data field in read­

ing cards or BCD

tape.

Illegal control

character in

FORMAT

statement.

Non-Hollerith

character en­

countered in read­

ing input cards.

Procedure

Press START to begin reading

next file.

Press START to begin reading

next fii].:e.

Pressing START causes that

character to be treated as a

zero.

Press START to continue.

Correct card, ready the card

reader and press START .. Do

not press START before

correcting card{s).

HPR 0, 3

HPR 0, 4

HPR 7, 7

. III-11

Redundancy check

in reading BCD

tape.

Echo check in

printing

Binary-tape error

in reading binary

tape.

UCRL-8932

Press START to accept

information read.

Press START to continue.

Press RESET and then START

to repeat line, and then continue.

Press START to accept in­

formation read.

Note: The error halt HPR 7, 7 in octal, as it would appear in the storage

register, is shown as 0420007 00007.

-
III-12 UCRL-8932

C. . Library Subroutines

SQRTF(X)

Computes the square root of I x j. If x is negative, ,.,) +x will be

computed. There is no error stop.

LOGF(X)

Computes natural log of I x j.. If x is negative, ln(+x) will be

computed. There is no error stop.

EXPF(X)
X

Computes e for I xi < 87. 3. F 87 3 X . 1 1038 or x ~ . , e 1s set equa to .

For x ~ -87. 3, ex is set equal to <j>.

SINF(X)

Computes sin(x) for 2- 8 < (x) < 2 29. For X~ 2 29, sinx is <j>.
-8

. For x < 2 , sinx is X.

COSF(X)

Computes cos(x) by adding rr/2 to x and computing sine as above.

ATANF(X)

Computes arctangent of any floating-point number x(in radians).

TANHF(X)

Computes hyperbolic tangent of x for lxl < 5896644Xlo
30

.

For lxl >11.0903540, tanhx= 1.

For I xl > 5896644Xl0
30

• tanh xis set to 128 and the accumulator-overflow

light is turned on. This routine turns off the divide -check light.

Information Division
sa

