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ABSTRACT 

Some consequences of the Pauli principle for the elastic scattering 

of electrons by atoms are studied. The contributions both from the exchange 

integrals and from the Hartree-Fock condition that the scattered wave be 

orthogonal to the bound-state wave functions are expressed in a simple 

approximate form. For high-energy electrons these corrections are very 

small. 

* Work done under the auspices of the u.s. Atomic Energy Commission. 
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I. INTRODUCTION 

In two previous publicationsla,lb we have introduced a method for 

treating the scattering of charged particles by atoms with the use of an 

equivalent scattering potential. In the present discussion we apply this 

method to a study of the role of the Pauli principle in high-energy 

electron scattering by neutral atoms. In a later paper the corresponding 

problems will be discussed for low-energy electrons. 

It is recognized that the Pauli principle plays a secondary part 

in scattering at high energies. On the other hand, the possibility of an 

analytic discussion in the limit of high energy permits one to obtain some 

,insight into the effects of electro~ exchange and into its relative importance. 

Much of our discussion is also relevant for scattering at low energies. 

II. FORMUIATION 

The scattering of an electron having initially a momentum Eo and 

an energy € 0 is considered. The scatterer is a neutral atom having Z 

electrons. The kinetic-energy operator for the scattered electron is 
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K = 
' 

( 1) 

where m is the electronic mass. The scattering atom is described in the 

Hartree-Fock approximation, the orbital states for the bound electrons being 

written as g-)(-J= 1, 2, ••• z). 

The wave function ¢(x) of the scattered electron satisfies the 

Schrodinger equation1 

( 2) 

Here v is the effective scattering potential and the A..J are Lagrangian 

multipliers chosen to establish the condition that ¢ be orthogonal to the 

gv's. That is, the conditions 

( 3) 

determine the A.J's just as for the Hartree-Fock equations. 

To second order (see la, lb) the potential v is 

( 4) 

where 

= ' 
(5) 

(6) 

and 
2 e ex ( 7) 
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Here P is an operator which interchanges x. and y , to give 
'xy ~ ,.._., 

Px/(!"J = ¢(y), etc. In Eq. ( 7) a is the atomic polarizabili ty and 
"""" 

may be taken approximately as 
2 

4 1 
z 2 

a = 9 ~ (xi 2) 
' 

(8) a i=l 

-112 - 2 
where a = ~ is the Bohr radius and xi is the mean-square distance 

me 
from the nucleus of the ith orbital electron. Rather than to use the 

variational expression1 to obtain v
2 

, we have introduced the more customary 

cutoff parameter d • An approximate value of d is given by3 

(9) 

Hammerling, Shine and Kivel4 have used an expression similar to 

Eq. (4) for v • 

Slater, however.5 

They have replaced v
1 

by an approximation due to ex 

where 

The scatter~ng matrix for a final momentum p for the electron is 
-./ 

T = (X , v ,0') , 
p 

X = p 

( 10) 

( 11) 

Finally, the differential scattering cross section is 

0 = ( 12) 

III. SIMPLIFICATION OF v
1 ex 

For high-energy electron scattering, the principal contributions 

to exchange corrections come from the interior of the atom. For this reason, 
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we shall use the Fermi-Thomas approximation in obtaining the exchange term. 

Consider now that contribution to T in Eq. (10) which is 

z 
= - L: . .. J~,1. 

3 3 * 1 * 2 
f. f.·:~ d y X P(x) [ 2 g-)(x) g~y) ] I3S, ~ zl ¢(y) 

( 13) 

Rather than to introduce spin wave functions in this equation, we have simply 

1 * inserted a factor of 2 before g')} g) to take account of the fact that we 

should have kept only those orbitals ~ for which the spin is parallel to 

that of the incident electron. 

Now, in the Fermi-Thomas approximation, 

( 14) 

is the Fermi momentum at y • If we replace the variable x 
'\,./ 

by p = x - y and observe 
,....._, - ,.v 

* X (x) 
p 

there results 

T 
1 ex 

We now define 

I(y) - I 
.£< PF(y) 

2e2 
= 

(21c)2 

* -i P•P 
X (y) e ~,.v 

p 

d3.£ d3p I 
(21c)3 

I 
d3.£ 

£< PF(y) (.£ - p) 
~ ~ 

A./ 

' 

i( .£ - p). p 
- ......, A./ 

·: } ¢(y) 

i{.e- p)·p 2 ,_ --- ...-..; 
e· e ---p 

( 15) 

2 

.. 

• 
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Thus, 

J d3y x* (y) I(y) ¢(y) 
p 

= (X , I ¢) 
p 

-6-

( 16) 

Since we anticipate that I will be small at high energies, we shall keep 

only first-order terms in I in Eq. (16), and thus may neglect v1 in ex 

calculating ¢ • · 

A better approximation may be obtained as follows, however. A 

typical matrix element of v1 in the perturbation expansion of ¢ is ex 

At high energies k ~ p, however. Thus, following the steps leading 

from Eq. (13) to Eq. (16), we obtain 

This means that under the stated conditions we may replace the 

interaction v1 in Eq. (4) by I • Then Eq. (4) is replaced by ex 

( 17) 

The nonlocal interaction v1 is now replaced by a simple potential I(y). ex 

Were we to average Eq. (15) over all momenta p within the Fermi 

sea, the resulting I(y) would reduce to the Slater potential.5 This 

procedure seems to have little justification for the scattering problem, 

since p is the momentum of the incident particle and is quite unrelated 

to the momenta within the Fermi sea. 
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Evaluation of the integral ( 15) leads to 

2 
I(y) { P PF(y) 

1 2 2 e - p - PF (y) ] £n 1rP 2 

In the limit with p > > PF , this reduces to 

I(y) ""' 

where n is the electron density at y • 
e 

p + PF(y) 

p - PF(y) 

IV. THE CONDITION OF ORTHOGONALITY FOR ¢ 
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} 
( 18) 

( 19) 

We now turn our attention to the solution of Eq. (2). This has the 

form 

( 20) 

Here ¢
0 

is the solution of the homogeneous equation 

(21) 

That is, ¢
0 

is the solution of the scattering problem if we ignore the 

orthogonality condition (3). 

The ¢y's are solutions of the inhomogeneous Schrodinger equations 

.J = 1, 2,. 0 .z (22) 

It has been argued above that the Fermi-Thomas approximation may 

be used, since the inner-shell electrons contribute the most to our exchange 

• 

• 
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corrections. Since by Eq. (17) v is now a local potential, we may solve 

Eq. (22): 

= 
1 

(23) 
[K( £) + v(x) EUl 

Here £ is the momentum of the vth orbital electron at the point x , -
therefore K( £) = 1-}/2m . We recall that it is in the spirit of the 

' Fermi-Thomas and WKB approximations to assign a local momentum in the 

vicinity of a point in space. Indeed, we may suppose that the volume of 

the atom is divided into small elements 8T. (j = 1, 2,···). In each of 
J 

these volume elements we introduce a set of plane-wave states 

1 e 

The index ~ in Eq. (23) then specifies both £ and j • 
-../ ' 

From the above discussion, we see that in our approximation the 

¢ .y' s have the form 

[K(£) 

1 

+ v. 
J 

E ] 
0 

Thus ¢Y is proportional to g) and we have the condition 

' 
where 

(24) 

is the projection operator on the ground-state orbitals. Equation (23) is 

not valid outside the atom, of course. 
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From Eqs. (3), (20), and (25) we now obtain 

or 

With this result we can write Eq. (20) as 

0 
¢(x) = (1 - A )¢0 

' 

UCRL-8976 

( 26) 

( 27) 

This is not valid for x outside the atom, since Eq. (23) omits the 

asymptotic wave in ¢v . Thus we cannot use Eq. (27) directly to find the 

scattered electron wave, but must instead insert Eq. (27) into Eq. (10). 

Equation (10) now reads 

The exchange part is 

and 

T = -(X , v A O ¢ ) ex p 0 

From Eq. (14) we have 

0 
(x I A I y) = 

* X 
p 

-ip•p 
= x*(y)e ~"-' 

p 

(28) 

( 29) 

' 
where 

• 

• 
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'1'hus 
"' 

i(.e- p)•p 
e -v """ ..v v( y + p) ,....., 

( 30) 

Let us define 

i(.e- p)•P 
e """" ...v "'"' v( y + p ) , 

,...., ,-1 
( 31) 

so 

( 32) 

Thus 

T = (XP, [v - J]¢0 ) (33) 

We may re-express this more concisely as follows. Let us introduce 

the Fourier transform v(k) of v(x): 

-3/2 ~ i k•X 
v(x) = (2:n:) J d./k e ,._,_ v(k) ( 34) 

Then J may be written as 

J(y) = (2:n:)-3/2 
i q.y 

e -;;../ v( q) ( 35) 
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Finally, 

b.(y) ~ v(y) - J(y) 

J d3q (36) 
lq-pi>PF(y) 
A....., 

defines an "equivalent potential" for Eqo ( 33) • 

For sufficiently high energies, J may be evaluated in a very 

simple way. We have 

Now, 

v(y + p) = v(y) + p·9 v(y) + o•• 

p ~ 0( ~) , therefore for 
p 

11 ~; I « v( Y) 

we may set 

= v(y) for 

= 0 for 

The expression (33) is finally 

( 37) 

(38) 

(39) 

( 40) 

The integral over y extends here only over those portions of the atom 

for which p > PF(y). 

· .. · '' 
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The condition (38) for the validity of the approximate Eq. (40) is 

2 
g_ > > 
/{).2 

where yc is defined by 

p == PF(y ) 
' c 

For the Fermi-Thomas potential, 

where 

Z e2 
-- X(s) y 

zV3 
s == (o.88)a Y 

' 
( 41) 

( 42) 

' 
( 43) 

( 44) 

and a == ~e2 , as before. Here X(s) is the dimensionless Fermi-Thomas 

potential function. We have then, from Eq. (41), 

where 

Yc 
(o.88)a 

and Ry == e)f2a is the Rydberg constant. 

' 

( 45) 

(46) 

When the condition (45) is satisfied, we expect the approximate 

Eq. (40) to be valid. 

\ 
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V. APPLICATION TO THE BORN APPROXIMATION 

In this section we illustrate the above with a calculation using the 

Born approximation and taking 

X(s) 
-0.8 s = e 

The condition (45) becomes now 

Eo 
> > ro Ry 

z2/3 1 
[ 0.77 ]( s 

c 

2 
+ 0.8) 

Values of sc and r 0 are given in Tables I and II, respectively. 

We must also, of course, satisfy the usual condition for the 

validity of the Born approximation, which is 

Z e
2 

m 
~( )<<1 

Po 

This may be rewritten as 

Eo 2 
- > > r 1 = z Ry 

( 47) 

( 48) 

( 49) 

Values for r
1 

are also shown in Table II. It is evident that, except 

for the lightest atoms, the condition (49) is more restrictive than is (48). 

·-· 

... : 

To simplify the integration, we replace Eq. (40) by introducing into 
-y/y 

the integrand the factor (1 - e c ) and then integrating over all y: ~ 

T = ' 

where ~ =:.£.-Eo . For v we use Eq. (17), with v 1 given by 

Eqs. (43) and (47), I given by Eq. (19), and v2 given by Eq. (7). 

(50) 
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TABLE I 

Values for the Cutoff Radius 

E:o(Ry) s 
c 

z = 10 z = 18 z = 36 z = 54 

3 1.34 1.62 1.95 

6 1.16 1.37 1.70 1.90 

9 1.02 1.25 1.56 1.74 

12 0.94 1.15 1.45 1.64' 

15 0.89 1.08 1.38 1.57 

20 o.8o 1.01 1.29 1.47 

30 .o. 71 0.89 1.16 1.33 

50 o.6o 0.77 1.01 1.16 

90 0.48 0.64 0.86 0.99 

/ 
'• 

·-
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TABLE II 

Values for the Limiting Energy Ratios v0 and v1 

25 

31 

39 

48 

100 

324 

1300 

2900 
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The electron density in Eq. (19) is taken as 

Here 

Tl = 

where 

n ::::::: 
e 

(0.1) 
z2 e-1.2 s 

3 . 3/2 a s 

An evaluation of Eq. (50) leads to 

Tl arises from vl • 

2 
1 -~( 2 2 21(2 Ko + K 

zl/3~ 
Ko ==· (o.88) a 

) 

It is 

{1 
2 

Ko 

(Ko + 

+ 

1 
Yc 

UCRL-8976 

(51) 

(52) 

2 } ' K 
2 

) 2 
+ K 

(53a) 

(54) 

The contribution T2 comes from the potential term v2 • The exact integral 

may be expressed in terms of known functions, but the term associated with 
-Y/Y 

the "cut-off" (-e c ) is cumbersome and not more than qualitative, 

anyway, since we have used a crude expression for v2 at small distances. 

We thus give this part of T2 only for the limit that. d >> y : c 

2 
{ e-•d 8 

(y d3fl 

} T2 
e a c (53b) = - &d - - 2 1( 

l )2 2 [( + K ] 
Yc . 

Finally, T3 arises from the expression I in v • It is 
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z3/2 e2 (0.88 a) 3/
2 F{Im[ 3 

1 1 .. ]} T3 = 
5(2lt)

4 2 

~~ Ko 
1 p K v~ KO - i K +-- i 
Yc 

(53c) 

Here "Im[ •• o ] " means "imaginary part of." 

The contributions to T which result from the Pauli principle "cut off" 

for y < y are easily recognizable in Eqso (53), since they involve the c 

parameter y 0 

c 
The entire quantity T

3 
represents an exchange correction, 

of course. 

When the condition (49) is satisfied, the exchange corrections are 

.seen to be small, except for large scattering angles (for which the scattering 

cross section is itself very small). 

We are now in a position to compare the relative sizes of the various 

correction terms. First, the ratio of the second to the first Born approximation 

is 

T3 
The ratio of -

Tl 

R( 

R ( 

T3 

Tl 

v ex ) is --
vl 

/"-/ z2/3 ( 

= z-1/3 ( 

(55) 

from Eqs. (53) 

Ry ) 
€0 

Ry 1/2 
) R 

€0 

(56) 

y 
"-( 

....! 
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Finally the ratio of the correction arising from J to that from v1 is 

R( J ) ""' 

(57) 

Thus, the exchange corrections seem never to exceed the corrections to the 

first Born approximation. 

In the next Section we shall re-examine R(~v1) in the classical, 

phase integral approximation. 

with 

VI. THE PHASE INTEGRAL APPROXIMATION 

We consider again 

T = f d3y x* (y) [v(y) 
p 

e 
i P(y) 

where P(y) f [p2 - 2M v] 1/ 2 ds is the phase integral along the 

(59) 

classical orbit of the scattered electron. A simple consideration shows 

that only for those orbits for which the classical orbit is parallel to p 

* and for which v ~ 0 does the product [X p ¢
0 

] not oscillate rapidly. 

This can happen only near the boundary of the atom, where, by Eq. (39), 

J = 0. Thus we obtain no correction from J in the phase integral , 

approximation. 
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VII. CONCLUSIONS 

We have obtained approximate expressions for two leading exchange 

corrections, expressed in terms of the "quasi-potentials" I and J. These 

two approximations were evaluated on the basis of the.Fermi-Thomas model. 

At high energies these have a very small effect on the scattering. At lower 

energies, these expressions are still applicable if we are content with the 

Fermi-Thomas model. In this case a numerical evaluation of 00 seems to be 

necessary, however. 
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