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ABSTRACT

The reactions m +p—+p+p+n and m +p—=p +d have
been investigated. The calculations are based on third-order
perturbation theory with pseudoscalar coupling between nucleons
and pions and with a phenomenological treatment of the nucleon-
nucleon interaction in the final state. The final-state interactions of
the antinucleon are neglected. Cross sections are given in graphical
form for the above reactions and for transitions between eigenstates
of isotopic spiﬁ. The final-state nucleon-nucleon interaction is shown
to have a large effect on the cross sections. The cross section for
the reaction n +p—=p +d is found to be relatively large. At an
an energy of 10 Mev above threshold in the center -of -momentum
system the ratio of this cross section to that for T+ p>p+p+n
is about 5:1. At an energy of 40 Mev above threshold this ratio has
decreased to l:1.- The total cross section for the reaction leading to
the unbound final state is calculated by assuming a modified Fermi
statistical model. At an energy 100 Mev above threshold, this cross
section is approximately 0.1 mb. A theoretical expression for the

transition amplitude is developed.
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I. INTRODUCTION

Until now antinucleons have been produced by bombarding
complex nuclei with protons from the Berkeley Bevatron, ! since the
lack of an external proton beam precludes the production by protons on
hydrogen. However, there is available a pion beam with momenta
ranging up to 5 Bev/c, with which it should be possible to produce

antiprotons through the reactions

1T—+p—»—f)-l-jp+n : - (1.a)
and

T +p—>p+d. , ~ (L.b)

A distinctive feature is the strong and attractive interaction
between the two nucleons in the final state, ’which can lead to a bound
state, the deuteron. From the experimental point of view this two-
particle final state is a distinct advantage, particularly when compared

to the production in nucleon-nucleon collisions,
N +N-~3N+N . (2)

It is also possible for the three nucleons in the f1nal state of
Reaction (2) to be bound as a He3 nucleus, 1,3 but the' probability for
the formation of this bound state is low. |

In this thesis we are primarily concerned with Reaction (1). We
calculate the cross sections for Reaction (1.a) by using lowest-order
perturbation theory with pseudoscalar coupling. We include the inter-
action of the two hucleons in the final state by ueing the nucleon-
nucleon scattering wave functions or the wave function of the deuteron

in evaluating these matrix elements.



The asymptotic form of these wave functions is well known
at low energies, but in our case we need to know the detailed behavior
of the wave functions fbr srﬁall separations of the two nucleons, since
the production occurs within a small volume.

We determine these wave functions by solving the Schr(;éiinger
equation for a square-well potential with' a hard core. We.use only
the s-wave part of the scattering wave function. The higher angular

momentum states should be important only when the relative momentum

of the two final nucleons is greater than 140 Mev/c. This region includes

the entire spectrum of the antinucleon for energies less than about 30
Mev above threshold in the center-of -momentum system. However,
at higher beam energies the s-wave part of the final-state interaction
should be dominant within 200 Mev/c of the maximum morﬁentum of
the antinucleon.

The problem is complicated by the large annihilation cross
' section‘for the anFinucleon. This annihilation is also due to a strong
final-state interaction and should be included in the calculation. One
can even hypothesize a bound state for the nucleon-antinucleon system,
but rough calculations using the known annihilation cross section show
that such a bound state would annihilate while trave Hng a distance
comparable to the pion Compton wave length.

The regidn in which the nucléon=antinuc1eon interaction is
least important is near the end of the antinucleon spectrum- - In the
center -of =momentum system the two nucleons then have equal
momenta and are moving directly away from the antinucleon. This
portion of the spectrum is also the region where the nucleoﬂ—nucleon
interaction is most important. Consequeﬁtly we. ignore the antinucleon
interaction in the final state. v '

The interaction of the pion andanucleon in the initial state should
be negligible. The energies of these two particles are so very high

that a plane -wave approximation is certainly justified.

ﬁiy



We find that the final-state interaction is very important in
Reaction (1) up to an energy of 120 Mev above threshold in the center -

of -momentum system. The effects of this interaction are seen both

. in the momentum distribution of the antinucleon in Reaction (1l.a) and

in the total cross section.

In the momentum spectrum a characteristic: peak occurs near
the maximum momentum of the antinucleon. It is due simply to the
distortion of the wave function and occurs when the relative momentum
of the two final nucleons is small and the final-state interactions are
the strongest. One may argue that this enhancement should occur only
for the singlet spin states of the two final nucleons. One knows that
a bound state exists for the triplet spin states and therefore may expect
that the probébility for the formation of an unbound state is thereby
decreased. No such effect is seen in this calculation.

We also find that the magnitude of the final-state interaction
depends on the details of the scattering wave function and that only
the general shape of the spectrum can be predicted from a knowledge
of nucleon-nucleon scattering.

We find that the final-state interaction strongly affe‘cts the
energy dependence of the total cross section. The low-energy cross
section is enhanced, so that the cross section increases essentially
linearly with the available energy for energies beyond about 40 Mev
above threshold in the center-of -momentum system. We normalize
the total cross section to that given by a modified Fermi statistical
model. We find that the total cross s‘ection for Reaction (l.a) is
approximately 0.14 mb at an energy of 100 Mev above threshold in the
center -of -momentum system.

The binding of the two final nucleons is due directly to the
final-state interaction. We find that the probability for the formation
of a deuteron is relatively large. The ratio of the cross section for
Reaction (l.b) to that for Reaction (l.a) is approximately 5:1 at 10 Mev
above threshold. This number is 1:1 at 40 Mev above threshold.



This ratio also depends on the detailed short-range behavior- of the
wave function. _
In Appendix II we develop a general expression for the

transition amplitude for the pion production of antinucleons.



II. THE DESCRIPTION OF THE MODEL

A. Isotopic Spin Ampliltudes

Many properties of the production amplitude for the reaction

m™+ N < (3)

1—>N2+N3+N

4
can be detefmined from general invariance conditions and the allied
conservation laws without reference to a particular interaction. A
general transition amplitude is derived in Appendix II, but it is of no
particular use to us in the present calculation. The particular model
for the basic production amplitude that we use, cgvariant perturbation
theory, already satisfies all constraints derived from known conservation
laws.

However, we derive the consequences of the isotropic spin
separately. We can then easily emphasize the two-nucelon substate
in the ‘final‘ state, and easily include the effects of the final-state
interaction between these two particles.

We treat the isotopic spin in the standard manner. We define
a three-dimensional isotopic spin space. Under rotations in this
space the field representing nucleons and antinucleons transform as a
spinor and the pibn field as a vector. The generators of rotations,
Z , in this'spa.ce must be constructed from the fields in such a manner
that I obeys the same commutation relations as the angular momentum.
We can then construct eigenstates vof T3 and I . I in the
same way as eigenstates of the angular momentum. Physical states
are linear combinations of these eigenstates. The charge independence
of the pion-nucleon in_teractiozn is equivalent to Jth"e statement that
transitions between eigenst.atés of 'iso‘to.pic spiﬁ cannot depend upon the
third component of isotopic spin. o

There is a great deal of ambiguity in the choice of the phases of

physical states. The relative phases of one particle states are made

clear in the following definitions.
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Here the subscripts p, n, and a refer to the proton, neutron,
and any of the three components of the pion field.

The physical pion fields are defined as linear combinations

"of the three components of the vector:

usn (x) = T (x)+ = |/ % [‘n’i (x) - iTrZ (X)] (6)

and

LA (x) = LB {x) .

The field w + (x) contains an annihilation operator for a positive

meson and a creation operator for a negative meson.

In terms of these conventions the physical one-particle states

are expressed in terms of eigenfunctions of nucleon number, total

isotopic spin, and the third component of isotopic spin:
|1r+>= SIN=0, t=1, =1,
|n°>: [0, 1,0) . |
v ) = Jo, 1, -1 ),

, (7).

sl
~ ~
1
]
1
—
S g
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~
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Many particle states can then be constructed by using the phases
assumed by Edmond5 for the addition of angular momenta.

The initial two-particle state can be characterized by two
numbers, t and t3 . The final state has three particles and there
are several ways to combine the three spins. We choose to first
combine the isotopic spins of the two nucleons into singlet and triplet
substates, characterized by the total isotopic spin 't of the substate.
The effect of the generalized Pauli principle -- the antisymmetry of
the state when the two nucleons are exchange -- is easily seen. The
final state is theh characterized by the three numbers, t, t3 , and t .

The general transition amplitudes between eigenstates of

isotopic spin are
<t,t3,T|T|t,t3> = T(t, t). - (8)

These amplitudes cannot depend on the orientation of states in isotopic

spin space. Furthermore there are only three of them:

3 | 3 3
_<Z,t3_1|TI—2—,t3>:T(Z, 1),

and

1 1 ' 1
<Z,t3O{T[-Z—,t3>=T(Z,0)-

The two-nucleon substate with t = 0 cannot be combined with an anti-

N W

nucleon state to produce (a state with) t =



. The .deuteron has-.isotopic spin zero, so there i$§ one transition

amplitude to the deuteron state:

L 1 |
(10) -

The transition amplitudes T (%, 0)and T (% , d )} are related -
directly by the final-state interaction. ‘

| » The useful information in this decomposition is the ei-
pression of the physical transition amplitudes in terms of eigenamplitudes
of _isotopic spin. These amplitudes are given in Table I. Once the
Cross éections for transitions between eigenstates are calculated, the
cross sections for any of the transitions given by Eq. (3) may be gotten

by using this table.
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Table I

T~ coefficients of the expansion of transition amplitudes

in terms of the eigenamplitudes of isotopic spin

Transition Amplitude o Eigenamplitude coefficients
final " initial T(3,1) T(3,1) T(5,0) T(5,d)
state state
npp | , 'rr+ P 1 0 0 0
PPP 0 p v 279 V279 o 0
npn " p W2/ YI7TE V176 0
PPP A n -1/3 2/3 0 . 0
npn Cnn 1/3 ' 1/3 V1/3 0
nnn ' 170 n‘ -\/—_27‘_9— -m 0 0
Spn " S5 -yIIE v st 0
nnn T p : -1/3 2/3 0 0
opn " p 1/3 1/3 VI3 0
T)nn K T n : 1 0 0 0o
nd P p 0 0 0 V173
nd w n 0 0 0 VITE
pd w0 n 0 0 0 Naves
Bd " p 0 0 0 - V23
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B. Perturbation Theory

We now turn.our attention to the basic matrix elements for the
reaction of Eq. (3). Our purpose is to define a model for the basic
production process, which is then modified by the inclusion of the
final-state interaction. '

In Appendix II we derive a general expression for the transition
amplitude in terms of 28 arbitrary functions. We use in this derivation
the invariance of a cross section under Lorentz transformations and .
rotations in the isotopic spin space,

We write the transition amplitude in terms of a Lorentz-
invariant matrix element M' :4 '

Tfi = -1 (Z.Tr)4 \/2 fi 54
wE|E,EjE,

(pe-p; )

(11)
where E1 refers to the energy of nucleon 1 with momentum D, and
w is the energy of the pion with momentum k. "
We construct the invariant matrix with four spinors defined by

the plane-wave expansion of Eq. (13),

-3 oy T 6@
M = uy 0 u; ug 0 B (12)

Each of the functions o is a-two-by-two matrix in the isotopic
spin space and a four-by-four matrix in the space of the Dirac spinors.
In the isotopic spin space we have

2)

_ (1) 2) . . (1) _ (2) |
M= [Ma Tk +Mb T Kk + 1€ij k MC Ti 'Tj ek

(13)
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where the superscripts refer to the spinor spaces of Eq. (12), and

€y is a component of the unit vector in the isotopic spin space.
Each of these matrices, Ma , 1s expanded in terms of the

sixteen Dirac matrices. Assuming invariance under time reversal

and space reflection, we find that each matrix has the form

My = Agugvp¥3vg vy

+ Bau4y'5 uy u3 v2

+ Ca u'4Y'= kuluu3 Yg vy .

T+ Da 4y5u1u3y-kv

2

T EL U Y gqup Uy yg v,

FEQU Y5l U3 Y PV,

e 48
+ -2 u4»y5y'ku1 u30 F}-k‘pp_v2
Ha ap
+ — u40 k qﬁu‘1 us Yg Y kvz
'Ia '— ap
+ — Uy Yg ¥ 0 Q'Y u30‘ ka'PB v2
+ Ja‘ T, 0Py u
Ug g Y1 Y3 Y5 Y © PV,
K
a = _apy?d pn
t — u, € (JaB kY Qg Uy uz O kp P, Va2



where

scalars

and

(14)

q =——é-—— ar;.dp‘—'——-z—-——

Each of the coefficients is a function of the five indepéndent

s = (k+p )%,
t = (k-py ),
w s k-py )t
v=(p1-p3$2, o v(15)

- 2
'(pz + P33 )

H
H
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 We express the exchange symmetries of the transition by

defining
M = M-M, (16)

where M is obtained from M by exchanging all the coordinates of
particles 3 and 4, the two final nucleons. The exchange of particles

1 and 2 gives the.re;lations

B (s, t,u v, r) =+A (t, s, u r, v),
a R

b

Bb (S’ t, u’ V, r) = +Aa ( .t’v S, u’ r, V) 3 (17)
and h

BC (s, t, u, v, v ) = - AC (xt, s, O, T, V),
where

- 2

u = (k = P3 ) ’

- 2

v = (p;-pPy) >
and

- : 2
r = (p2+p4)

There are similar relations between
C and D, E and F, and
each of the other pairs of coefficients. For Q we find the relations

Qa-(s, t, u, v, r) = + Qb(t, s, u, ¥, v)

and (18)

Q. (s, t, u, v, 1) -Q_ (t, s, u, 1, v),



.
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This expansion of the transition amplitude is not unique, but
has the advantage that perturbation theory with pseudoscalar coupling
gives terms of the same form. ‘

‘We take as basic matrix elements the first nonvanishing terms
in the Feynman-Dyson expa.nsion6 of the transition amplitude. We

assume the interaction Hamiltonian,

-

=G | @xT oy 7T, (19)

int
Certainly the next few terms in the expansion contribute significantly
to the amplitude; we take the lowest order only for the sake of a
simple, definite model for the process. )

This perturbation theory gives terms of the same form as the
general expansion. These terms contain simple poles in the scalar
invariants with residues related to the pion-nucleon coupling constant.
The locations of these poles can be determin‘ed without reference to .
perturbation theory. They occur whenever it is possi‘bie for a pair of
the external particles to form an intermediate state with a definite
mass, but they are located outside the physical range of the variables.

Perturbation theory corresponds to the choice of coefficients:

G 1 1 1
C hd + ’
b (?.-rr)l'r)[Z r-pz s-m2 u-1m
c = C‘:3 1 _ 1 _ 1
c 2 1T)15/.2 r - M2 s - mZ ° - mZH
5 G’ 1 R
— - ’
a (2 1-r)15/2 v - |~LZ t - m2 u - mZ
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and -

LY 2 — 2

(20)

None of the other terms contributes.

The analyticity properties of transition amplitudes involving
five particles have not been investigatéd systematically, but one
expects that these poles will be present in any future theory of many-
- particle interactions. There is of course one pole that does not
appear in perturbation theory. The two nucleons in the final state
can form a deuteron, which should be represented by a pole in the
variable x = (p3 + p4)2 ; the pole is located at the x = M2 with a
residue proportional to the deuteron normalization constant. The
effect of this intermediate state is precisely what we are calculating
by explicit integration over the scattering wave functions for the two
final nucleons.

The third-order contribution to the transition amplitude consists

of eight matrix elements, Mj :

', G3 8 S
j=
The dependence of the matrix elements upon-the isotopic spin is .
contained in the coefficients Cj . In order to easily substitute scatter-
ing -wave functions for plane waves we write the matrix elements in a
partially integrated form as a function of the variables,

1 §
B zRB3 7 Bg 3nd B =py¥p,. (22)

| —
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The integration variables r and g are linearly related to the
variables occuring naturally in perturbation theory. They are regarded
as the relative separation and relatiVeﬂ momentum of nucleons 3 and
4 in the intermediate state.

Corresponding to the Feynman diagram of Fig. la is the

matrix element

u, vy - ku
M, 4= — [ &r &g
(2m) (p; +k)™ -m +ie
(23)
-ir - -
u3 Yg V, € - (R S)
X
(B, +E.)% - (g +p, + + P -l +ie
273 LR T 22 K
We have used here the defining equations for the spinors:
(y - p-m)u(p)=0" (24)

o~~~

and

(y.p+m)v(p)=0.

oo

We can roughly determine the angular distributions that would

result from this term alone by examining the denominators of the matrix

element.

We are interested in the angular distribution of the antinucleon
as a function of cos 6 = /1‘( 92 . The integration over r and q
.corresponds to replacing g by}z . In the center-of -momentum system

we have

P =_'l‘<“ and.BZ:”E'

o
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. (e) Km————— P2

(d Ke—— e — e o
: \ :"?
\
P2

MU -20597

Fig. 1. The diagrams that contribute to the préduction of
antinucleons in the lowest order. ' '
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We see that the first denominator, s- m2 , 1s completely

isotropic. ‘Theé second denominator,.

2 2. 2 2
1'-=|J."—'(E2+E3) =(P+ Mz)v“’.vp' )

oo

) —

(25)

is also isotropic at energies near threshold, where P and Dy are
both small. We conclude that this term alone gives an isotropic
distribution at low energies.

This conclusion agrees with the physical picture of the inter-
“action given by the Feynman diagram. The initial nucleon and the
pion come.together with equal and oppdsite momenta. The pion is
absorbed, leaving an excited nucleon at rest. There is now no pre-
ferred direction in space for the nucleon, so it emits a pion in a direction
not correlated with any direction of the initial state. The pion decays
into a nucleon-antinucleon pair with an isotropic.distribution.

One cannot readily determine the angular distribution at
higher energies without actually squaring the matrix element and
integrating over the phase space. When one does this one finds that
the angular distrubition is indeed almost isotropic at low-energies,
and is peaked in the forward direction, cos 6 =1 ,. at higher energies.

The second diagram, Fig. lb, goes with the matrix element

| ‘ o, [V -k-y-(q-pu
M, (3,4) = ‘1.. d3r d3g 4[ L4 M] 1
2 (2m)° - 2 1 2 2
(@-E)" -(gt+tk-5P) -mie
- - - (p -9l
u, Yp vV, € © R
% '3 Y5 V2 © L (26)
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Again we can draw conclusions about the angular distributions
by examining the diagram. We have the pion and nucl€on coming
together with equal and opposite momenta, but the nucleon emits a
pion before the collision. This pion then decays in a nucleon-~
antinucleon pair, and each of these two particles has acquired some
of the momentum of the initial nucleon., We expect then that the
antinucleon will be emitted in the same direction as the incoming nucleon
or pred'ominantly backward relative tecthe incoming pion:. _

The matrix element is the same as M1 except for the first

denominator,
2 2 S Co -
u-m = "ZwE/-}_Z}i'R'}i'BZ' (27)
We 'see that this denominator is smallest at cos 6 = - 1,

We can compare directly the magnitudes of M1 and M, at

2
threshold:

M 2

1 poo-20m ~ 1 (28)
- -T2 2 - 3
M2 W o- m2 3

threshold

Associated with the third diagram(Fig. 1 c) is the matrix element

_ u,y uy
M3 (3,4) = ! 3 d3r d3q 475
2 - 2 1 2
(2w (B, - E,)% - (q+p; -3 P -wl+ie
-ir - (p - q)

% - D (29)




-24-

_ From the diagram we see at once that the incoming meson
gives a portion of its momentum directly to the antinucleon. We
expect the angular d1str1but1on of the antinucleon to be peaked in the

forward direction.

We confirm this supposition by looking at the two denominators

in the center -of-momentum system,

t - m =pZ-ZwE2+2h-~E2 : (30)

\7=pz-=2m2-pz-2ElE4+"2}i'B+1i'gz.

Both are smallest at cos 6 = 1,
The fourth and last d1agram contributing to the transition’ in

the lowest order is shown in Fig. 1 d, with the ‘matrix element

M, (3,4) =+ ar a’q
4 2> 2
(E 4" E4) = (&-F'El ;P: - & +ie

(31)
uj [y k+l (g-g)]vz.e;_i,.l; ‘° (R_g)
(E; -0)® - (g-k+3 BP)° -nf+ie

We conclude from the denominators,
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el
]
3
I
x
]
[\
€
t=1
w
+
[\9]
I~
yo
+
3%
o
(4N

and'l':’ | - o (32)

Zmz-p.Z-Z)E'E+Zk‘.p+'k-' ,

\%

)
=
1

1 =2 By

that this matrix element also gives an angular distribution peaked in
the forward direction. ' -

At threshold the last two matrix elements are related by

M3 _ H-»mZ _ |.LZ -2wm _
- - T2 T 72 = -1
M4 t -m B - 2wm
threshold
. (33)

’_Ifhé other four matrix elements are gotten by exchangirig the

coordinates of particles 3 and 4:

Mg (3, 4) = - M, (4, 3),

M

6(3! 4)==M2(4’ 3):

M7(3’ 4)=“‘M3(4, 3)9 (34)

and

Mg (3, 4) = - M, (4, 3) .

The behavior of the individual matrix elements at low energies is not

altered to any appreciable extent by the exchange.
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A crossing relation becomes apparent when we note that
diagram No. 3 can be obtained from diagram No. 1 and diagram
No. 4 from diagram No. 2 by exchanging the external lines of parvticle‘_
1 with those of particle 2 and the external lines of particle 3 with
those of particle 4. From the structure of the scattering matrix it

is easily seen that for

Py ~™ - Py
and

Y1 T2
then

M, (3, 4) = _ M7 (4, 3) | ' ' (35)
and

M, (3, 4) —=_ Mg (4, 3).

8
The angular dependence of a cross section in perturbation theory

is determined by the coefficients Cj of Eq. (21), the relative weights

of the matrix elements M. . These coefficients are given in Table II

for transitions between eigenstates of isotopic spin.



Table II

The relative contributions of perturbation theory matrix elements to the transition amplitudes

Coefficients
Transition cl“ . c'z; c, c, c, ¢, c-
T(3/2, 1) o VE  JZ /T o /% /z %
T(1/2, 1) v 9/2 ':-‘/ 1/?2. vV 1/2 v 2572 /9/2 -/ 1]2 ./ 1/2 /2572
T(1/2, 0) /2172 =372 -/27]2 j}/z V2772 /372 Y272 /372
N o VT 0 T T

T{(r+p—=>D+p+tn) -y2 Y2 ° -|/'8
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C. The Final-State Interaction

The main problem that we are considering is the effect upon
a simple model for antinucleon production of an intefa’cztion that
causes a scattering and binding of the particles in the fiinal state.

The general formalism for ‘such final-state inferactions has been
developed by Watson, 78,9 using the operator methods of Lippman
and Schwinger. 10 He found that it is legitimate to separate the basic
production reaction from the scattering in the final state when certain
conditions are satisfied. '

First the primary interaction must have a short range. Then
it is possible to think of the production of particles by the primary
interaction, followed by a distortion of prodﬁction amplitude by a
secondary interaction which also has a short range. A second
c¢ondition is that the final-state interaction must be strong and
attractive. We may understand this by considering the reaction as
proceeding backward in time. We have several particles scattering
from one anéther. The interaction causing the scatteriﬁg must be
attractive in order to guide these particles into the small region in
which the primary interaction is effective. In general we can say that
the scattering cross section must be greater than the effective cross
section of the primary interaction. As a corollary to these two
conditions we expect the final-state interaction to be important only at
low relative energies of the emerging particles.

These conditions are certainly satisfied in the production of
antinucleons if we ignore the interactions of the antinucleon in the
final state.

We proceed on the assumption that the interaction Hamiltonian,

V, of the system can be broken into two parts,

H=Hy+V and V=V, +V, . O (36)
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We assume V1 to be responsible for the production of particles and
\F

occurs naturally in some cases, such as in beta decay, where a point

to cause the scattering and binding in the final state. This separation

interaction causes the emission of an electron and a neutrino, and a
Coulomb interaction causes a scattering of the electron in the field of
the residual nucleus. In the production of antinucleons the same
interaction causes both production and scattering, so we symbolically
include in V2 a projection operator so that it acts only on the final

state. _ v ]
Two complete sets of eigenstates of the unperturbed Hamiltonian

are defined for the initial and the final state:

Hy x ;) = B %)
and

Ho ) TF | X¢ ) - | | (37)

The assumption that VZ produces scattering only in the final

state is expressible as
v2|xi>=o. o (38)

The state vector of the system can be expanded in terms of

one of these complete sets:

(N - 1 - ' (+) \.
[qu‘ > h |X1> * E-Hy+ic V(V1‘+Vz) Wi >

(39)

-
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The small positive imaginéry part of the denominator insures that
this solution contains only outgoing waves in addition to the plane
wave. At the end of the calculation € is to go to zero.

It is convenient to define the wave operator, ﬂ(ﬂ :

+ + ‘ 1 o
|¢i( )>=S‘l( ) ]xi> = 1+ - (V,+V,) IX1>
, E+1€-H0-V1»V2 ,

(40)

In terms of Q( ) the transition matrix for the system can be written

as

T, = <3<f vy vy at? lX'1> = <-Xf l(VlJrVZII‘pi(Jr}'>"
(41)

In the samevway a solution of the scattering problew: involving
~only V2 can be defined. A solution of H = H0 + VZ that corresponds

to an incoming spherical wave and a plane wave is

(-)> > 1 (—)>
b o1 v e
o % "E - H, - i€ 2 | o

0

(42) ¢

i
SA
L
>
h
~
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It is then a straightforward (though tgdiqus) matter to show

- “?(-Hvl ol %“’H fv,.

+) - (43)

(
(Vi +V,) 0

The matrix elements of this operatdr form the transition

matrix:

| o () S ) e (s
Tfi=<xf‘(V1+V2)Q()|Xi>:<¢f()|vl “’f()>'
(44)

Here Eq. (38) has been used to eliminate the second term of Eq. (43).

Compai’ing Eqgs. (41).and (44) , we are led to the following -
conclusions. We are directed to calculate the basic production process
using only Vl . Howevef, instead of using plane waves for the final
state we use solutions of the scattér'ing} problerb defined by Eq. (42) .
These solutions are known at low energies.

In antinucleon production there are three particles in the final
state, and the many-body problem is no less difficult in quantum
mechanics than in classical mechanics. - A first approximation is
to let one of the particles go free and consjder only the scattering of
the other two. .This is what we will do: consider only the scattering
of the two nucleons in Reaction (1) , and assume the antinucleon in the
final state to be a plane wave. =

The next approximation would be the inclusion of a correction
factor to account for the interaction of the antinucleon. In the anallogous
problem of the production of pions in nucleon-nucleon éollisions
Mandelstarn has - followed such a procedure. k1 He considered the
most important final-state interaction-to be the scattering of the pion
with one of the final nucleons. The nucleon-nucleon interaction in the

final state is represented by a correction factor.
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The interaction of an antinucleon with a nucleon is not as
simple but involves the annihilation into many pions. We will simply

ignore it.
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D+ _The Modified Wave Functions

-We must now replace the plane wavés of pertﬁrbét_iop theory
with the wave functions for nucleon-nucleon scatteriﬁgn ]-?or( energies
up to 10 Mev in the two-nucleon center -of -momentum system the
scattering is almost entirely in states of zero angular momentum.

The scattering at low energies is described very well by the effective
range approximation, 2in which the phase shifts'are given in terms

of two parameters for each spin state, the scattering length N and
the effective range Tos

However, the scattering cross sections depend only on the
asymptotic form of the wave function, and very little is known about
its detailed behavior close to the origin. For our purposes these
details are important, since parts of the basic interaction, the inter-
action responsible for the production of particles, have a range of the
order of the Compton wave length of the nucleon. We take the point of
view that the range of an interaction is determined by the masses of
intermediate states in perturbation theory.

We use a wave function describing a plane wave plus a distorted
wave that corresponds to incoming particles. The plane-wave part
reproduces the original perturbation matrix elements of our model.

We consider only s waves for the distorted wave function, This
should be a good approximation for kinetic energies of the nucleon-
nucleon system up to 20 Mev. |

To determine the s-wave part of the wave function we solve
the Schr'dvdinger equation for a sqgare=we11 potential of radius R and
depth V. We include a hard core13 of radius b. This hard core is
needed to describe scattering at energies of around 200 Mev and is
also present in potentials calculated from meson theory. 14,15

We completely neglect the noncentral parts of the potential.

Such terms would be needed to describe tiie polarization of nucleons
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and to explain the quadrupole moment of the deuteron, but are interested
primarily in the binding effects, for which the central potential is

‘adequate.

In the center-of-momentum system of the two-nucleon sub-
state, where the relative momentum of particles 3 and 4 is .E" , we

modify perturbation theory by the substitution

B T AR CITR

374
where

r

o 3= %6 [eiﬁ - tép g (r)} - 49

The explicit solution of the Schrodinger equation for a square-

well potential with an infinite core is then

- ' . .
sinpr) Ghen 0< r < b,

bpglt) =

. pr

boclr) = sin[p (r-b)] e-i6 sin (p R+06) _ sin (p r)

FS ' p' r sin[f (R -Db)] p' r

(46)
for b< r < R,
and o
-id . -ip r .
‘[’Fs(r) = = s'1n5e for r > R.
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“The parameters B and 0 are determined by the equations -

82 = mvV+(p )

and
1 1 R : e .
p cot(p R+08) = Beot [B(R-Db)] . (47)
The effective range expansion is

1 1

Pcotd = - 2t zx (), (48)

where the parameters are given in terms of the potential by

Lo g . tan[/@V (R -b) ] (49)
VmV :
and
_ 2a ' R .3 ‘a-b R,2
1‘0 —'—3- 1“_(1 -3‘.‘) ' .‘ "'—2—’—— “"(R‘b)(l.";) .
: ~a-- mV .

The spin functions, Xs (3,4) , are defined in terms of the

generalized ‘Pauli spinors, ¥ , which have four components:

1 +y0_
5 X = X
and
1 -y A ' Lo
0 v
—— X = 0 . ‘ , | (50)

We use the projection operators for the singlet and triplet spin.states

to define



1 -3+ 03 L Oy o .
. 4 .
and
0 1 ->0'§“' 0'4 '
X (3,4) = P X3 Xgq - oo (5)

When the two final nucleons are bound as a deuteron we use

the wave function,

ugzuy, 2L '(2_11')3/2 d)d (r) ,xl‘ (3, 4),

whelje ¢d (r) =0 for 0 <. r'< b, : (52)

$q (r) = N sin[y(r =B ] g b < r < R,
r

and ¢4{r) = N sin [vy(R -=-b)] e~ (r-R) 5r + > R .

An additional parameter is the binding energy B of the

deuteron, which is related to the well parameters by

<12 = mB, .
v* = m(V-B),
vy cot[y(R -b)] =-a,
and
N = 4 - ) - (53)

Zw T F¥a(R-D)
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We assume that the well radius R has a valie of about the:
Compton wave length of the pion and that the core radius b is about
one-third of this value, as is indicated by experiments at high energy
and by the meson theory of nuclear forces. The actual values of the

parameters b, R, and V are adjusted to fit the effective range

expansion.
The accepted values of . a_, Tgo o and . B are12
o 13
ag = - 23,7 (1 £0.003) (10) cm o,
-13
T = 2,49 (1 +£0.0L) (10) "7 cm, .
00 2
-13
a; = 5.38 (1 £0.004) (10) cm ,
-13
Ty T 1.69 (1 +£0.017) (10) cm , v (54)
and

B = 2.225 £ 0.002 Mev.

We choose .for. b, R, and V the folldwing values:

1.42 (10)'13 cm ,

R, =
b, = 0.506 (10)'13 cm ,
Vo = 144 Mev , o (55)
R, = 1.64 (10)'13 cm ,
b = 0.69(10)713 cm |

1
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and

Vv, = 106 Mev.

These wave functions are to be used in the evaluation of the
matrix elements given in Egs. (23), (26), (29), and (31). The
integration over r corresponds to taking the Four‘ier transform of
the complex conjugate-wave functions. For convenience in the later
integrations, we write th_e transform as a sum of four terms--two
delta functions, one of which reproduces the perturbation theory, and

a positive and a negative frequency part:

¢ (q) = 13 d3,£ el L ¢(“)*(3’4)
o (2 )
a3, 5%, ; 55 '
= |x° 3.4 6°(p -q)+=22222 5(p -q)
- ~ 2mwq
; +
+ ¢ (q) +¢ (q)} , (56)
where
$" (@ = ¢ (-q)
and
.53 , -‘
6 1) = S | G9R| sin(pR*0Y . icos (p'R +0°)

(2m) p q
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ieiqb' cos (ppR +6s)' 1 l
9 cos [B(R-B)] q° - 87 |

For the deuteron we {find

¢>d* (q) = { ¢a+(q) oy (q)} E_ x (3.4)

where
+ N % : i
o4 1q) = s { (112 AR - X
(2 7) 4 a” +a mV
; jeldB Y
2 2
q q”-v"
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E. The Basic Integrals

There are three basic integrals for the each of the bound and

unbound cases. The first has the form

:}c_ .
(B0l = | &7 2l 68
q +Zg- B-C-ie€ '

The integration over the magnitude of q is perfo‘rm‘ed easily. Two of
the terms in ¢* (g) contain delta functions. The integration of the

term containing ¢ (q) is done in the complex plane. The range of
integration is extended to the entire real axis and the co.ntour is closed
above. The small imaginary part of the denominator of Eq. (58) has
been retained from the causal propagator of perturbation theory and
serves to further define the contour. The only poles that occur on the
real q axis are those in ¢+ (g) . These are to be treafed by integrating
above and below them and taking the average. One finds that the residues
from these pole.s cancel and do not contribute tc‘) the integral.

The result of this integration and the integfation over the

aximuthal angle is

1
I, [B, C] = az 1, [B, C, 21,
- -1 _ -
where
L (B G 2] =7
p t2p- B -C
BRI il (2) 1% .
+ N -t ¢ [ql (Z)]’
(p)*+2p BZ-C 2[q(2)-BZ]
' (59)
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and

The integration over the variable Z was done numerically, by using the
IBM650.

The other integrals are

I8 c " : |
P - 3 ¢ (q) . 1
I2 _ = d q - : . > .
, E| q2+2g - B-C-ie q“+2g-D-E-ie
and = . (60)
1B, C o Bl : a e
I E 3 ¢ (a) Y. 4
5 - ] o= d”q — — 5 :
D, E q t2q-B-C-ie g +29.D-E-ic€
' The results are, éxcept for a final ivnt'egrati..on, , ’
. BCod1 1 1
2 D, F 2 p2+2'£.§=c p'2+2£.‘D—E
+ iel((5 sin & 1
[ 1 > Il
(p )2+2p BZ-C \/[E- (p') - Zp Dz cosB] ) DZ(I-ZZ)Sinzﬁ
(61)
. (zZ
L1 [ql )] [CI1 (Z)]

[q,(2)-B2] VAL q1<Z) "E - 24, () DZ cos B} - 4la; (2)]°D2sinB(1-Z)

-
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- 19,(Z2)2 trqy (Z)
+y 2 | —— ] ) N SR
[4,(2)-D2] /{[q,(2)]°-C -2q,(2) BZ cosp}*-4[q,(2)] “B sin’p (1-2%),

and
B, C !
13 - Z = é—- X B > 1
D, E p +t2p. B-C p ¥2p:- D-E
. ! A
oy i elasiné . Zp y - B

> () +2p' Bz-C /[E-(p)°-2pDZ cosp]>-4(p )2D% (1 - 2%) sin’p

: N
+i e15 sind ZR' v D

Z o")242p DZ-E JIC - (0')%-2p BZ cos B]2-4 (p )°BZ (1- 22) sinp |

+i [ql (Z)]»3 : Zy - % ¢'+[ql (Z)L
® [q,(2) - BZ V/ {[4,(2)1% - C24,(2)DZ cosp }*-4[q,(2)] “D?sin’p(1:2°)
RN - T09) M zy B o'[® )

®la,(2) -Dz Vila;(2)1°-C - 2q,(2) BZ cosp }*-41q,(2) 12B%sin"p(1 - 2°)
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The symbols not previously defined are
Dz + E +D°Z°

and (62)

qZ(Z)

A A

cos B B.D.

Whenever q; (Zz) or 'qz (Z) is complex—=which’is'the case
for some negative values of C and E--one must take the imaginary
parts to be positive.

We need not give explicitly the ,éorresponding integrals over
the deuteron wave function. They have éxactly the same form except
that the terms coming from the delta functions are not present.

The relative importance of the terms in these integrals can
be estimated roughly. The first term comes directly from perturbation
»théory, The ﬁext term is of the same order of magnitudé at energies
near threshold. The coefficient of this term is iei sind = eié5 cosd - 1‘,

. (63)
so that when the phase shift is close to 90 deg the first two terms
interfere destructively. At threshold, or whenever the momentum p'
is zero, We know that thé phaée shift for triplet spAin states isv slightly
greater than 90 deg and the phase shift for singlet spin states is slightly
less. Therefore we can say that the first two terms are smaller at
very low energies, or near the end of the antinucleon spectrum at
moderate energies. ‘ _ .
| The po“s‘itions. of the poles cil(.Z) and qZ(Z) ‘vé-ry with the

integration variable Z over a wide range, but in general they are
of the order of magnitude of a few nucleon mass units. We would expect
then that the terms coming from the integration over the function

+
¢ (q) are of the same order of magnitude as the perturbation-theory

term. However, occurring in ¢+ (q), Eq. (54), is the term
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1 1 ) | -mV 64)
R e T L ATy S

which is proportionalto V, and is therefore small since in both
cases V is around . one-tenth of a nucleon mass unit. This term can

1
become large only when the relative momentum p becomes small.

sin (pl R+0)
P

Then the factor is the important one. We expect then
that the term in each integral containing ¢+(q)_ becomes dominant at>
the end of the antinucleon spectrum, and that it is relatively unimportant
elsewhere. _

So at moderate energies we expect that the momentum distribution
of the antinucleon is given essentially by perturbation theory whenever
the antinucleon momentum is small. Near the maximum antinucleon
momentum the final-state interaction becomes dominant, proddcing
a characteristic peak in the distribution. _

The interference effects mentioned in an earlier section can

occur, but it seems likely that they are masked by other oscillating

terms.
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We can now write the modified matrix element for any of the
reactions of Eq.:(3) in terms of the six integrals. FEach matrix
element is in géneral a function of five variables when the two final

nucleons are not bound:

M = M(W,p,,61¢). | (65)

In the over-all center -ofsmomentum system, W is the total

energy, P, the momentum of the antinucleon, and the angles are

taken to be
/I%QZ =clos.6, ]
{o‘f.’fiz = cosn, b e
and /B - K = cos 8 cosn+sinfisinn cos ¢ . |

The transition probability per unit space-time volume into a
state with each final momentum between p and p + dp is given by
|2

= 4 4, _ 3.3 .3
dx (NNN) = @27)° | 6% (p;7p; ) d7p,d padp, -

ti

(67)
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To find a differential cross section we divide by the total flux

and integrate. The flux is \
1 . K K 1 KW e
(2 ) E1 w (2 m) Elw

Using Eq. (20) and introducing the relative momentum p, we find the

cross section for the production of an antinucleon in association with

3 N

two unbound nucleons:

‘ 2 a4 dTp ' L !
-.,G” 3 8m sl P dQp spin states
do (NNN) = (77-)° gwe, ~4n~ W-E In 72
2 : 2 . p, cos” 7
1 - :
: 2
(69)
where
va | WiEyy,-Ep)
(P ) - . )
2
W2 _3m?
Eom = ’
2W
W2 iml-u
E, = — ,
2W
: 2 - 2 pp, cosn
E3_E4 :-m_ , D 2
W-E, W—E‘2

and

3/2
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p = p T
l: pz2 coszn] 1/2
] o —m—————— .

2
(W‘* E 2.”):

In the nonrelativistic approximation the transformation from
the center of mome_ntumlbf the!’éwo=n:uc_1eon‘éubsta’ce, v&v/h_.e;"e“_the matrix
elements have been e“valuated, to the ov_e;r-all cente,r=of_—érhnrp{_entum
system is a trival one. We also expand the matrix elementé in powers
~of p. By taking the first term in this expansion we are neglecting terms
- of the order of —EE-Z— ' : o o
; o
We define the matrix elements for the two spin states for the

two final nucleons with the help of the spin projéction operators:
M . - (70)

The matrix elements for-the unbound final -state are then

1 sk £ ~— % ) 3k
M =a.)(4-\(-kv1 X3 Y5V2+Q,X3Y° k vy Xg4 Y5 V>

3 E3

4 —_ b £
FBxg YsviXz YT RV B X5 Y5V Xy V- kY,

ko ' £ % ' B
Fxg X EViXs Y5z X l°_§V1X4 Y5 V2

P, Y5 Vixs XA Vatxs Ysvixg XXV

(71)
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o] —

1
.—lJ, 2
(p1 +k) - m
2
- B
2.
-m
(72)
> !
2 2
(k.-,pZ) - m
2
- B
- M
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For comparison we also calculdte the contribution from the

pole terms, lowest-order perturbation.theory:

sPole . _ - .. - - -
M7= by kvpug vy vy tBug v k) v,

+ €ﬁ4y5v1 u3y.kv2+€u3y5v1u4y-kv2 )

(74)
where
5 = 1 ] -y . €,
zZ_ 2 2 2 z 2 ’
(p, +p3)" - 1 (p; +k)7 -m (py - k)" - m
.- 1 s ©4
B 2 2. 2 2 2 ’
(py - p)% - w (& -p,)° -m®  (py - K - m
s . 1 G5 _ 6
B z 2 Z 2 2 z_ |
(p, +py)" - ¢ (P, +k)" -m (p3 - k)" - m
and
- 1 ©q Cg
€ ) - z ¥ z 2
(P} -P3) -1 (k -p,)" -m (k - py)” -m
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These matrix elements are proportional to'the probability
amplitudes for a transition from either of the two initial spin .states
to any of the eight final spin states. We sum over these states in the
usual way by taking traces over the y matrices.

- We use the following relations and definitions:

a a rs
a=1
and
2 S S S
D |Ye T R -ve ®T R | =0,
s=1

(76)

Here the superscripts r and s have two values corresponding to the
two spin states. The éﬁbscripts a. and P refer to the four components
of the spinors.

The sum over spin states is then

. .8
spin
states
_ E, +m |
st Jqag [ 2 Wm-p®E +t20k p)

4 ™



1 (2 s+1)

+ (2 st+1)

s +1

(2 S+1)

-1)

.52~

(B, - m) .
= 12 1 2 2
|ﬁi‘3 | . mz _(Zwk' P> "EZH - mp )

- :g_v 2 (EZ +m) (El - m)

2
m

> = 2 (E,+m) (E; *m)
l)\:l:_):l 2 m;z !

m

'Re [(a&E)(ﬁi_ﬁ)*] "1—2 { 'm,sz' X

+ m (wk pz—wk~Rl-E25 ~1§+E11§“-5)
2
tE E; Kk ktop) - py-E,0kpy -Ej ok
B | .
_ _*‘ E2»+m)
Re | (azxa) (éi%) } __:n_z__[ (El'm),.li’w.gl
F - "
L E ) ]
Reé-(ﬁ:kﬁ)(l\:t');) mz (E2+m)k-w£2§
[‘ _ % (EZ +m) [
Re {axa) (”)“\:1:”)‘\) —mz—— (El'm)}i-wgl“
—_ <‘1 (El—m) i
Re (B=p) (éi,..) 5 (E2 + m) .li - wRZJ
™ - .
[ _ s (EZ'er)-(E1 - m)
Re | (ExE) (A\E)) >

(77)
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The plus sign between coefficients refers to the singlet spin state.
The sum of spins for the poie terms is evaluated (pion mass

neglected):

Z |Mp01e|z= 224 k'Plk'P4(P2'P3+mZ)

spins
states

; , 2 3 ' :
2| - . S 2\

+ _1_41_ k pzk' p3 (pl ) p4 - m )
™m

s : r :

1 Re [60 ] , 2 T |
+ > m4 k Py Lm k. _1__‘1+k " Pyp, p3+k- p,P, - p4-k - P,P3 - p4i

1 Relee"] .. | 2 5
* E mv4 k pZ m k- p2+k p4p1 : p3—k * P p3 . p4+

tk- P3 Py P4]
R [5'_*] 2
5] €

* 3 k.p, |m k- p,+p -pyk-p,-p " p,k-pyt

+pz'P3k'p1}

(78)

. To this should be added five more terms gotten by the replaceroent

p3 <——> p4 € i E s 6 ey 6- . . . F/’W
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The differential cross section for the production of an anti-

_nucleon in association with two unbound nucleuns is then

t

2 1 .
— 2 5 3 P, 'p - <
gn SOONN) oy (870 mo 2~ ) M, P
d’Qde‘2 4 K_.W EZ. s=0,1 spin
. states
/

When the two final nucleons are bound as a deuteron we

evaluate the matrix elements at p.= O and project out states of spin
‘one only, We find

. : : ‘ 12
4 do(Nd) - 8“2 ( G )3 "2 ; < i M.ld |
: de 4w KmWw :'. LT
2 spin

state

(80)
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III. RESULTS AND CONCLUSIONS

G

The cross sections for Reaction (1) and for each of the
transitions between eigenstates of isotopic spin are shown graphically
in Figs. 2-21. They are all evaluated in the center-of -momentum
system. The unit of energy is the nucleon mass, and Vclifoss sections
are giver& in terms of the basic cross sections, which occurs naturally |

in perturbation theory

0, = (5—) =5 = 0.442 (Z=)’wb.  (81)

The total cross section for Reaction (l.a) is normalized at
an energy of W/m = 3.1 to the total cross section given by the
statistical model of Appendix 1. This corresp‘on’(‘is to taking -
0y = 6.4wb. | |
A The total cross section of Reaction (1) iszplotted:as a function of the
total energy in Fig. 2. The perturbation-theory result is also given.

At energies less than W/m = 3.04, which corresponds to an.available
energy of 40 Mev, the cross-section increases as the square of the
available energy. Beyond this point the curve is essentially linear
and approaches the perturbation-theory result. This enhancement of
low energies is characteristic of the final-state interaction.

The total cross section for the production of a deuteron in
conjunction with an antiproton is given in Fig. 3. This cross section
increases as the square root of the available energy, the dependence -
expected from phase space alone.

The ratio of the cross section of Reaction (l.a) to that of

Reaction (l1.b) is shown in Fig. 4. This ratio is unity at about W/m =3.04,
40 Mev above threshold.

-
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Fig., 2. The total cross section for w + p = p+p+n as
a function.of energy. Solid line: prediction of the
theory when final state interactions are included.
Dashed line: prediction of perturbation theory.



section ( o, )

Cross

-57-

| I | I i !
0.004} 7 -
0.002 -
0 t ] ! 1 ] C 1
3.00 3.04 3.08 3.12

Total energy W/m (mc?2)
' MU ~20599

Fig. 3. The total cross section for m + prp+d as
a function of energy.
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The total cross sections for transitions between eigenstates of
isotopic spin are given in Figs. 5-7. The cross sections for any of
the transitions of Eq. (3) may be obtained from these three cross
sections. One must realize that the cross terms between eigenamplitudes
give no contribution when one integrates over the solid angle of the
antinucleon. Total cross sectiohs and momentum distributions then
depend only on the squares of the coefficients given in Table I. For

example, we find the ‘relation

o(n-+p—-p+p+n) = O'(1T++n—>H+p+n)
(82)
1 3 1 1 11
—50(7,1)+§0(2‘,1)+3‘0(2‘,0)

Angular distributions cannot be obtained in this simple way.

At an energy of W/m = 3.08 we find the approximate relation

,0)= 1:1.5: 3.9,

N —
—
St
DVf —

o ( o(=, 1) : of

(83)

The antinucleon momentum spectra for each of these transitions
are plotted in Figs. 8-13 and compared to perturbation theory. The
effect of the final-state interactions is plainly seen in the peak at the
end of each spectrum., There is no discernible difference in the
shape of the spectra for the singlet and the triplet spin states of the
nucleon-nucleon system. Whenever the relative momenta of the two
final nucleons are greater than about 150 Mev/c one expects that the
p-wave nucleon-nucleon scattering becomes important. The region
where the s-wave scattering is dominant corresponds roughly to the
region where the antinucleon momentum Py is within 200 Mev/c

of its maximum value. [
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Fig. 5. The total cross section ¢ (—> 1) as a function
of energy. 2
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Fig. 6. The total cross section 0o ( -}—, 1) as a function
of energy. 2
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Fig. 7. The total cross section ¢ (‘-1—, 0) as a function

of energy. 2
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Fig. 3. The momentum distribution
m3e (t" +p— p+ p +n) as a function of anti-
d;)z
‘ w  q v
nucleon momentum. — = 3.01 . Solid line:

m
prediction of the theory when final state interactions

are included. Dashed line: prediction of perturbation
theory.
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Fig. 10. The momentum distribution

m-2C (" +p=>p+p+n)as a’function of anti-
dpz . WA o
nucleon momentum. . — = 3,08 . Solid line:
m 7 ,

predicfion of the theory when final state interactions
are included. Dashed line: prediction of perturbation
theory.
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. . . . do 3
Fig. 11. The momentum distribution m =2 (—.,1) as
‘ dpz 2
a fu_nction of antinucleon momentum.
w . 3.08. Solid line: prediction of the theory when
m

‘final state interactions are included. Dashed line:
prediction of perturbation theory.
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Solid line: prediction of the theory when final state
interactions are included. Dashed line: prediction
of perturbation theory.



section ( o)

Cross

-68-

0.4

o
o

o
)

0.l 7]
(o3| 0.2 0.3
_Antinucleon momentum
' MU-20609
. . . . do 1
Fig. 13, The momentum distribution m ¢ (—,0) as a
dp2 2
function of antinucleon momentum.
AL 3.08. Solid line: prediction of the theory when
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final state interattions are included. Dashed line:
prediction of perturbation theory.
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Representative angular distributions are given in Figs. 14-21.
Whenever the final state interaction is important, for relatively large
momenta, there is a peak at cos 6 = ﬁ . /1;2 = - 1. At lower momenta
the angular distributions are similar to those given by perturbation theory.

These cross sections show that the effect of the final state
interaction is important at energies where the s-wave nucleon-
nucleon interaction is dominant. Unfortunately the results depend
critically upon the details of the nucleon-nucleon scattering wave
function and upon the parameters of the nucleon potential.

We find that the magnitude of the effect of the final state
interaction is determined essentially by the depth of the potential well.
The magnitude of the peak in the momentum distributions changes
linearly with the potential depth. This effect could have been predicted
by an examination of the wave function of Eq. (54). One of the terms
is inversely proportional to the relétive momentum of the two final
nucleons and directly proportional to the potential depth. Whenever
the momentum p| is émall enough this term is dominant and accounts
for the characteristic peak in the momentum distribution.

Variation of the other pararheters seems to have no great effect.

We find then that we cannot predict quantitatively with accuracy
any of the cross sections since we are doubtful both of the basic
production model and of the details of the nucleon-nucleon wave functions.
Qualitatively we can say that the effect of the final state interaction is
large, and that there is a large probability for the two final nucleons
to be bound as a deuteron. The general shape of the momentum

spectra = 1is also certainly correct.
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APPENDIX

_ I. The Ferrru Model )
As or1g1na11y proposed by Fermi, 1o the statistical model

cons1sts of the as. sumption that the probablllty for the productlon of

n particles in a colhsmn is proportxonal to the statlst1ca1 we1ght S :

' g n-1 n. n - n
S, 7B =L [T @®p,8® (3 ppsw- 5 EB), @D
_ (2m) L f=1 - =1 - f=1

where W is the total energy of the system, and .Ef is the energy of
the particle with momentum P; - The interaction volume £ is an
adjustable parameter and the numerical factor Qf takes into account
the conservation laws not explicitly included.

The cross section for production for these n particles is then

given by

o =0 =, - (1.2)

where o is the total cross section, the sum of elastic and all
inelastic cross sections for a given initial state. The sum is to extend
over the statistical weight for all possible final states.

Implicitly contained in this model is the assumption that the
particles inside the interaction volume are in statistical equilibrium.'
This limits the validity of the model to the region of high energies, and
to particles whose interactions are very strong. The assumption of
statistical equilibrium also makes ‘it difficult to understand how the

final state can depend on the initial state in any way except through the

rigorous conservation laws.
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In accordance with this assumption we assume that the
production of antinucleon in pion-nucleon collisions and in nucleon-nucleon

collisions are directly related. For each of these reactions we assume
o = o35 (I.3)
n n _

in the region near each threshold. , .

The one adjustable parameter in the problem is then the inter-
action volume., We determine this parameter from the known production
cCross sect‘ion},for antinucleons in nuéleon-nucleon collisionsl. The best
known cross s,eci‘tio'n is that for the production of antiprotons by protons
with an energy of about 6.1 Bev in the laboratory system incident on
carbon nuclei. For antiprotons produced in the forward direction

with momentum of.1.2 Bev/c the production cross section is,

2 -
do ¥ 1.2 (10)%% (L.4)
dpdQ2 Bev/c '

lab
Published data indicate that the cross section for the production
by protons on hydrogen, Eq. (2), is essentially the same, 1 but some
recent evidence indicates a smaller valve. 17

.We transform to the center-of-momentum system and find

= 4,13

and

= 0.100 , (1.5)

3l g =

The four particles in the final state are definitely nonrelativistic but
to find a differential cross section it is convenient to use a modification

of the phase-space integral, which is a relativistic invariant:

n

3
ol -1 _ n d p n '

',Snrd: %‘:3‘ m® T ) 87 S P 8(W- 5 Eg). (1.6)
| (2m) -1 Ey =1 f=1
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This allows us to write the recursion relation, !

_ p max d3p ‘ | o
s Tlw? - g / B s Tlwlim?_2wE), (1.7)
n n-1 n
0 n |
if all the particles in the final state have the nucleon mass, m.
We .can use the nonrelativistic expressions for Sn given by

Lepore and Stuart, 19‘ since there is no difference between Sn and

Sh.rel in the nonrelativistic limit.

We find, for the differential cross section of Reaction (2),

do . — 2 — 72 2
% - 185 10723 AO/3 (B )i/if 1-2 B 5 e
dpd 2 . m

(L.8)

where §2 = 4_"2‘._ ) .
. 3
3

We determinebthe parameter N by comparison with Eq. (I.4),
1 :
— = 9.55, (I.9)
A

The total cross section for the production of antinucleons by

pions is then

0, =3.0(10)% N3 W52 2
m .
- 1.4 (10720 (W 52 m?, | (1.10)
m

At W = 3.1 m this cro.ss section is 0.14 mb. . We have ncsrrnalized

the cross section for the reaction of Eq. (1) at this energy.
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II. The General Transition Amplitude -

Our purpose is to find a general form of the transition
amplitude for the reaction of Eq. (14), using the known physical in-

variance principles.

A. Lorentz Invariance

L

The transition amplitude has the general form

4 2
4 Mg & (pg-p)m ‘
T, =-i(2n) , (1I-1)
Y 2w E,E,E3E,

where the matrix element M is a Lorentz invariant. The square

of this quantity, divided by the volume of space-time and the flux of the
incoming particles, and multiplied by é factor d3B for each particle
in'the final state, gives the cross section. This cross section must be
a Lorentz invariant.

1f one neglects the spin, the invariant matrix M is a function
of 15 variables, the components of the five momenta. However, only
five of these variables are independent.

In general, for an interaction involving n particles, the
number 6f independent variables is 3n-10. There are 3n components
of the momenta. Four relations between these components-are found
by applying conservation of energy and momentum. Three more
relations are due to the consérvation of angular momentum, and the
other three come from the conservation of the generators of rotations
involving the time,

Alternatively one can say that four relations are due to the
arbitrary choice of an origin in space-time. The orientation of the
complex of vectors in the scattering or production process requires
six more numbers, just as the orientation of a rigid body in space is
Spec1f1ed by the three Euler angles. ,

-We choose these five varlables to be 1nvar1ant functions of the

momenta:
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s=(k+ pl)'2
u = (k - p4) o . -
v=(p) - p3) | - (11-2)
and ‘
2
r = (P2+P3)

These quantities appear naturally in perturbation theory. Five
other variables may be expressed in terms of-these:

2 2 :
2m +p -u=sit+y,

— 2
r = (p2+p4)

= (p; - Py)
) 2 .2
—(k—p3) =4 m +2pt v-s—t—u,

2 .
3m -1 -v +u,

i

<1l ﬁl "*l

2 ‘
-(plnp4)—2m +|¢—S+r=—u,- (11.3)
and
2 2
X—(p3+p4) =m - p - r-vis+ttu.
Finally there is the general relation

- . 2
s+t+u+tv+r+r+t+u+v+ix=3(4m +|.LZ)'3. (I1.4)

Only one of these variables has a si‘mple.physical significance.
The square of the total energy in the center-of-momentum system is s.

There are four independent momenta in the collision. We
choose these to be

Py * Py P3 - Py P - Py

=p, —%=q, —=——2 =Q, and k. (I1.5)
2 2 2

We then construct the invariant matrix, M:

O(Z) . o (11.6)

M—u O()uu v,

173
‘The spinors are the direct product of a ljirac spinor with a
spinor in the 1sotop1c spln space as def1ned in Eq (13). The matrices
© are then four-by-four matrices in the space of the Dlrac spinors
and two-by- two matrices in the isotopic spin space. .The order of the

spinors has no particular significance.
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For the moment we neglect isotopic spin and expand each
matrix in terms of the sixteen Dirac matrices. We write M as the
sum of three terms. The first term is the produét of a scalar in one
spin space and a scalar in the other space, the second is the product
of two vectors, and the third is the product of two tensors.

We show explicitly the expansion of the scalar part of O(l) _

in terms of arbitrary scalar coefficients:

(1) _ Lo (1) a (1) ,
C')scala.r = Al + Bly k_o. +Cly q, +

iE! 1 . |
_+-Lz-e Py Goaﬁ () kydg +iF! (Y5YQ”1)1< +

+iG! (yslya)‘(l) q, + iH' .Ys(l) . (I1.7)

Terms of the form y- p or i(ro"3 ko, p|3 can be reduced to the

above form by using the Dirac equation for the spinors,

(vy* p; -m)u(p)=0. , | (I1.8)
Terms involving a pseudovector such as »yaeaﬁyé pﬁgyké
also are not independent. If one writes
apybd _ i . .
Yo © Pgdyks = 7 [ v ky- ay- pyg (I1.9)

-V ky* pPY-aqvg Yy qy- Py kyg --v- PY - 9V~ kvsj

and usés the Dirac equation, one finds that this term is of the above form.
One final point is the requirement that the _coefficienté of the

expansion be scalars under space reflection and time reversal. There

is only one pseudoscalar that can be formed from the four independent

momenta,
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o.[3y6 k qu Q This function can. be expressed as a

function of four gamma matrices and. y5:,

[Y ’v [v 9 ¥ k] }+]=

(I1.10)
It then. reduces to a series of terms like those already given.

apyd i
€ ka.q.ﬁl_) - _8

B. Parity and Time Reversal

The operation of space reflection induces a transformation of
the spinors according to
- S . e . ’
u 93)* u (B) =Y u (mR) . (I1.11)
We assume the invariance of the transition amplitude under

this transformation. More exactly the relation is
- <flf IM']?) ” <E.f Ml p; )% = (pp M |-py) (IL.12)
i -~ - ,

Under time reversal of the Wigner type the initial and final states

change places:

<pf|M|Pi>"’<vpf|,M|Pi>T=<}-Pi|.Ml-Pf>- | (11.13)
The transformation for the spinors isg.u(g)*uT(£)=YdY5 CE(«-R) . (I1.14)

We must also remember that the pion field changes sign under either
‘time reversal or space reflection.’
We now list the seventeen matrix elements that are invariant

under the full Lorentz group:
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.M=Au4u1 Uz Yg v2+Bu4y5ulu3v2

4 Vs U3 Y kvy

‘+Cu4vy- ku1u3y5y2+Du

+Eu4y- qulu3Y5vZ+Fu4y5ulu3,y- PV,

— . — ap
+ G Uy VgV k u; uz0 kappv2

ap .
,+Hu4o kaqﬁulu3y5y kv‘2

. - ap .
Flugvg ¥ quyuz 0k pg v,
13,0 P TR

Y4 ‘a g1 Y3 Y5 YT PV

u e'a"3 Yo

LK = p7
+—2 4 € Gaﬁkvq6u1u30‘ ’k PnVy

' (11.15)
L

+

=y
NN

o < (oBYS
> o k'pq:n 1 U3 € 00.(3 kypﬁvz‘..

—_ — aﬁ
+ M u4ly5 YO- u; ug o kﬁ v,

_— Qﬁ —
tNuyg 0 " kgupuzvg v, Vv,

+ou, o, 0 ®
CUg¥s Vg U3 0~ PgVa
— Qﬁ —_—
+Pu40 ‘qﬁul Uz Yg Y, Vs
+.Q eaﬁYaTl4 oaﬁ u1 33 (0] as Vo .

These amplitudes are also invariant under charge conjugation,
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C. Isotopic Spin

We now find the consequences of invariance under rotations in
the isotopic spin space.

The matrix elements must be scalars under
this transformation.

We take a term in the above ex'pansibn and expand
it in terms of the 7 matrices:.

My=4A,u, Ty 3 Y5V, €6

+ Abu4 u1 u.3 Tk YS vzrek.

(11.16)
+ 1AC eijk" uy ’_ri u; u, T,j'YS jz €
The unit vector € occurs in the expansion of the pion field and must
appear linearly. The T matrices Jobey the same relations as the
Pauli spinors:
'ri'l'j = 6ij' + ie ijk T (I1.17)
D. Exchange Propertiés
According to the generalized Pauli Principle this matrix
element must be antisymmetric in all the coordinates of the final
two nucleons. This exchange give us | '
+Abu3 u; U '7'k Yg v, ) (11.1’8)
+iA

c Cijk %4 TiM1 M3 T3 Vs V2 S
where

A (s,t,u,v,r)= A (s, t,u, v, 7).

This matrix element may be put back into the original form by
the use of the formulae



4
1 — i '
= - s T . fT I1.1
and
16
1 A A
F G, = = < AF G .
b0 BV Y Yoo (FY T Cgy

. The functions f and g are two-bytwo matrices, and the sum extends
over the three 7 matrices and the identity matrix. The functions

F and G are four-by-four matrices, and the sum is over the sixteen -
Dirac matrices, which are adjusted so that their square is unity.

- The resulting relations are.too complicated to be useful. They
may be simplifed by writing the transformation as a 51- by-51 matrix
connecting the ofiginal matrix elemen®s with the transformed matrix
elements. One can then diagonalize this matrix and determine the
eigénv_ectbrs, those combinations of the orignal matrix elements which
have simple transformation properties. . One then should find 51 conditions
on the matrix elements. o .

We have not done this, We define the ar.dplitude as the difference

of two terms,

o Ry
MA—MA MA°

The other terms in the general expansion transform in the same way

with
1>q= —
. p,tp
pog = 4+ 3 (11. 20)
2

. The crossing relation that appears in perturbation theory we
will assume to be true in general. The amplitude must be invariant

for P, < -P, and Uy TV, We combine this exchange with the
exchange of the two final nucleons.
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Then we have no change of sign for

Mp =My =Auyvgu g 7o Vo &y
t AU, T Ygupuz v, €k (11.21)
FAAC € YTy Y5 U U3 Ty Vo e
where '
A(s,t,u,v,r) = A(t,s,u, r,v).
We recognize this term as the second one in the eéxpansion.
We must then have
Aa = + Bb )
Ab = + Ba , (I1.22)
and
A =-B .
c c

The other terms in the transition are also related by pairs in this way,

with the exception of the last term, for which the conditions are

_Qa= + Qb o (I1.23)

QZ:-Qc'

E. Linear Independeﬁce

We now have expanded the general transition matrix into a sum
of 51 terms. We have found 25 conditions on the coefficients of these
terms but have not completely utilized the exchange symmetry. The
expansion is general but unwieldy.

It is not at all evident that the separate terms of the expansion
are linearly independent. Wé may find a relation between the terms
of the form

Zc M, =0, : (I1.24)
2 ATA

.
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where some of the 51 scalars CA are nonzero and MA has the

form ' .

MA 4®Au1 u3OA 5 ’ ‘ _ (I1.25)

Let us multiply this relation by each of the quant1t1es MB

and sum over the possible spin states for the four spinors:

7 % _ , ‘
; Cao 5in My Mg =0. | (11.26)
states

This set of 51 equations has a solution 6n1y if the de’términant,

< . |
det YY(AB = det sé—in My Mg | (IL. 27)
states

is zero. If this determinant is nonzero the terms MA are linearly
independent. -
We may think of each term M, as a vector in a space of

unknown dimensions. The general transition matrix, M, is in this

~, sense a vector formed from the set of basic vectors with arbitrary

"scalar coefficients.

We have defined the scalar product of two vectors as

(11.28)
spin
- states

The linear independence of the vector basis is then assured if the
determinant of the matrix formed by the scalar products of all the
vectors with themselves, Gram's determinanti, is nonzero.

One .can prove .that the number of independent vectors in the
‘basis is simply the rank of the matrix M . 20 The . rank of the matrix
may be found by transforming it or its determinant to diagonal form.
The rank is then the number of nonzero elements along the diagonal.

Onceithe number of.independ e‘nt? vectors s Kknowru one canicon-
struct the basis.

- We will not attempt to carry through this program.
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