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G. Ecker 
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March 28, 1960 

ABSTRACT 

Recent theoretical work has shown that under certain conditions 

enhanced interaction may be present in a plasma. This paper investigates 

the influence of such enhanced interaction on the characteristics of the 

positive column in a longitudinal magnetic field. The calculations are based 

on the Boltzmann transport equations, using an effective interaction param

eter. We find the following effects. From the law of momentum conserva

tion we see that enhanced interaction causes enhanced diffusion by counter

acting the influence of the magnetic field. Related to this is a pronounced 

influence on the radial potential distribution in the discharge. Both effects 

depend on the type of diffusion, showing characteristic differences between 

pure ambipolar diffusion, Simon diffusion, and intermediate types of 

diffusion. The law of particle conservation, which defines the electron 

temperature (T _) in the discharge, is only indirectly - via the diffusion 

coefficient - influenced by enhanced interaction. This influence on the 

electron temperature is in general small. In particular it is shown that 

nonuniform enhancement may not affect T at all. Finally the law of energy 

conservation yields, for a given electron temperature, an increase in the 

· ion (T+) and gas (To) temperatures, and with that an increase in T +/T _. 

More important, it shows that the relation X (T ) between the electron 
z -

temperature and the longitudinal electric field (X ) is strongly affected by 
z 

enhanced interaction. Utilization of these results suggests a new method 

to investigate experimentally the presence of enhanced interaction in the 

discharge. This method is based essentially on the measurement of the 

radial potential distribution. 
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ENHANCED INTERACTION IN THE POSITIVE COLUMN 
~:~ 

G. Ecker. 

Lawrence Radiation Laborator·y 
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' . ' 

March 28, 1960 

INTRODUCTION 

The large interest that exists in the containment of charged particles 

by magnetic fields requires the understanding of the mobility and diffusion 

processes in the presence of magnetic fields. Certain experimental evic 

d 
1• 2• 3 d . d" d"ff 0 1 . h t" f" ld ence seeme to 1n 1cate 1 us1on osses across t e magne 1c 1e 

larger than could be expected according to simple collision theory. 
4 

An 

explanation of this phenomenon was first offered by Bohm with the concept 

of drain diffusion. 1 More recent theoretical investigations account for 

enhanced interaction and enhanced diffusion on the basis of microinstabil
·t· 5,6,7 1 1es .. · 

~~ 
Professor of Physics, Institute of Theoretical Physics, University of Bonn, 

Germany. 

1 
D. Bohm, Characteristics of Electrical Discharge in Magnetic Fields, 

Edited by A. Guthrie and R. K. Wakerling, NNES. 

2
L. W. Davies, Proc. Phys. Soc. (London)_§_§, 33 (1953}. 

3w. H. Bostick and M. A. Levine, Phys. Rev. JJ_, 13 (1955). 

4 w. D. Allis, in.Handbuch der Physik (Springer- Verlag, Berlin, 1956) 

31_. p. 383. 

5
L. Spitzer, Tech. Memo No. 50, NY0-7989, Princeton Univ., 1957 . 

6 
I. B. Bernstein, E. A. Frieman, R. M. Kulsrud, and M. N. Rosenbluth,. 

Phys. Fluids, ~! 136 (1960}. 

7 
L. B. Bierman and D. Pfirsch, Cooperative Phenomena in Plasma 

Diffusion, Meeting of the Division of Plasma Physics, Monterey, 1959. 
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To furnish conclusive experimental evidence of enhanced diffusion, 

careful experiments on the positive column have been carried out by 

Bickerton and von Engel8 and also by Lehnert. 9 These experiments are 

essentially based on the following idea: 

If (X } is the axial electrical field component, n(r} the number z 
density distribution, and 1-l. _, 1-lt respectively the mobilities of the electrons 

and ions, then the total discharge current (I} is given by 

R 

I= 2rr(~_+~+) Xz 1 n(r} r dr. ( 1} 

On the other hand the law of particle: conservation requires, in the absence 

of volume recombination, 

L = 2TT • a. . 
w 

R 

T (Xz) 1· n(r)rdr (2} 

Where Lw is the particle number wall loss per unit l.ength of the column 

defined by the gradient dn/dr and the diffusion coefficient D ..L at the sheath 

edge near the wall (Index s}, and a.(T _} gives the number of ion pairs produced 

per electron and second as a function of T . 

There follows from Eqs. (1} .and (2} the relation 

a.( T- (~)] 

<~-L ~ + 1-lt>xz 

As a.(T } increases rapidly with T 

= 
L 

w 

I 
(3} 

, which in turn increases with X , it 
z 

is obvious that an increase in the particle loss L must result in an in-. w 
crease of Xz. With the help of (2} and (3} the increase in Xz may be readily 

8 
R. G. Bickerton and A. V. Engel, Proc. Phys. Soc (London} B, 69, 468 

(1946 ). 

9 B. Lehnert, in Second International Conference on the Peaceful Uses of 

Atomic Energy, Geneva, 1958 (United Nations, New York, 1959} ~' 

p. 349. 

f 
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related to the increase of D .L , if the following two assumptions are ful

filled: First, the enhancement of D L 1s uniform over the discharge cross 

section, then (dn/ dr} can be found from the Schottky theory. Second, the s . . 
enhancement process does not influence the relation T (X }. Then only 

- z 
elastic and inelastic collisions with the neutral gas are important arid 

T (X } can be taken from ~xperimental8 or theoretical k~owledge. 9 
- z 

In this way the experiments quoted above investigate the change of 

the diffusion coefficient Dj_ by measuring the axial field. X • . z 
Bickerton and V. Enge18 do not find indications of enhanced diffusion. 

Lehnert, 9 how~ver, reported a~ abnormal s~dden increase of X for . z 
magnetic fields beyond a certain critical field value (B }. This seemed to 

. c 
support the existence of enhanced diffusion due to "electromagnetic 

turbulence. 119 
10 . . . 

New experiments by Allen, Paulikas, and Pyle revealed that the 

column constricts at (B } and forms a helix spiraling in close contact with 
' . c 

the walls of the tube. The phenomenon is similar to observations made by 
. 11 . 

Elenbaas for the high-pressure mercury vapor arc. This phenomenon 

provides an explanation for the voltage increase by the lengthening of the 

column and th~ influence of rotation, which causes a continuous transition 

into regions of low temperature. 

10 
T. K. Allen, G. Paulikas,. ar1d R. V. Pyle, Instability of a Positive 

Column in a Magnetic Field, UCRL-9110 (in preparati.on). 

11 
W. Elenbaas, High-Pressure Mercury Vapour Discharge, (North 

Holland Publishing Company, Amsterdam, 1951} p. 85. 
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OUTLINE OF THE PROBLEM 

It is the aim of this investigation to study in detail the influence of 

enhanced interaction on the characteristics of the positive column for the 

following reasons: 

Up to the present only the influence of a uniform increase of the 

diffusion coefficient D .L on the longitudinal field Xz has been calculated 

under the assumption that T (X ) is unchanged. 
- z 5 6 7 

As may be seen from the calculations 1 ' ' the primary phenomenon 

in the discharge is "enhanced interaction. " This produces as one of its 

results ''enhanced diffusion, "that is 1 an increase in D .L --which, however~ 

may be nonuniform over the discharge cross section, as the enhanced 

interaction depends on the density distribution. We wish to determine how 

such a nonuniform enhancement influences the particle conservation law, 

which defines the electron temperature in the discharge. 

Moreover there are other pertinent consequences of enhanced 

interaction. In addition to the increase of the diffusion coefficient the en

hancement process affects the energy exchange between electrons and ions 

and consequently the temperature conditions in the gas. We will show that 

the influence of enhanced interaction on the energy conservation law causes 

an increase in the ion and gas temperatures and,deviations from the relation 

T (X ) as calculated without enhancement process. - z 
The enhancement process influences the electric field X in a comz 

plicated way through the laws of momentum conservation (D .L ), energy 

conservation T (X ), and particle conservation (T ). One might raise the 
- z -

question whether there are other characteristics of the positive column 

that are influenced by enhanced interaction and might provide a suitable 

means for experimental study of this process. We will find, from the law 

of particle conservation, that the radial potential distribution is very strongly 

and characteristically dependent on the enh.anced interaction, and might well 

provide an appropriate experimental tool to investigate this phenomenon. 

The paper is divided into three parts, in which we calculate the 

influence of enhanced interaction on the law of conservation of particle 

numbers and momentum conservation and ene:tgy conservation, respectively. 

We base these calculations on the transport equations, which for an arbitrary -quantity V(v) read 
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a - - ::;:--at (n V) + '11 • (nv V ) 
e 
m 

-+ -+ e __. ..... __. 
X · '11 V + - n B xv · '11 V = v m v 

f 
(8) 

-+ -+ .. 3 3 
(V' -V) f.(v.) f(v) c. p. dr2dv dv., 

1 1 1· 1 1 
(4) 

i 

where f are the distribution functions, v the velocities, c the relative 

velocities, p. the scattering functions. 
-1 

The quantities without indices refer 

to the particle under consideration, the index (i) to the other particle com-

ponents with which_ the test particle collides. The prime (' ) characterizes 

quantities after collision. The bar indicates the v average. 

PART I. THE LAW OF PARTICLE CONSERVATION 

As is well known, the law of particle conservation follows from (4) 

by substituting V = 1,_ where ionization and recombination may be taken into 

account by using V' = 2 and V' = 0 respectively. The continuity equation 

(5) 

simplifies for our application to a stationary state (an/ at = 0) without 

recombinations (a = 0) to 
r 

-+ 
div (n v d) = an. (6) 

Obviously enhanced interaction has an influence on this balance only over 

the drift velocity 

/ - -+ -+ 
(7) v -· v f(v) dv, d-

(3) 
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-+ 
which is studied in the next paragraph. There we show that v d can be 

represented in the form 

-+ 1 -+ ) 
v d = - n \1 (Dj.~r (8) 

and that the enhanced interaction results in an increase of the diffusion 

coefficient D. Assuming enhancement uniform over the cross section one 

may consider D .L constant, and Eq. (8) together with (6) yields by separation 

of the variables the Bessel-function solution of Schottky• s theory, where 

the boundary conditions define 

a(T J = ( z:_ r D ...L • (9) 

and with that T . The results of Part III on the energy conservation allows 

one then to determine the field X . The number of particles lost at the wall, z 
L , may be taken from (3). 

w 
We notice that an increase in D ..L means only a moderate increase 

in T because T is logarithmically dependent on a., which again varies 

only porportionally to D.1_. This makes the Xz measurements less sensitive. 

However, even more restricting for the X measurements is the 
z 

assumption of uniform enhancement. As enhanced interaction may depend 

on the particle density, it must be considered as a possibility that there is 

enhanced interaction in the center of the discharge, but less near the wall. 

Naturally this will cause deviations in the density distribution. However, 

unfortunately, this does not affect the electron temperature directly. Be

cause T is defined only by (dn/dr) , and this quantity is little influenced by 
- s 

enhanced diffusion in the discharge center, the value of the electron tem-

perature is virtually unaffected. To prove this we want to show in the follow

ing that L , T , and X change only very little, even if we assume an ex-
w - z 

ces sive increase of the diffusion coefficient over the major part of the 

discharge cross section. 

It is difficult to solve the problem for an arbitrarily varying function 
I 

D ..l. (r). But to prove our assertion, we can easily evaluate the most Un-

favorable case, in which the diffusion coefficient (D .L ) has been increased 

to D ...L -+ ao in the range 0 ~ r < r 
0 

and is unchanged in the range 

r 0 .:::;. r < R (0 < r 
0 

< R). As is well known, the solutions in both regions 



-9- UCRL-9144 

can be written in the form 

for 0 ~ r < r o· (lOa) 

for r 0 ~ r < R. (lOb) 

with 

1/2 
y' = (a.'/D') • 

...L 

l/2 
y=(a./D.L) ' (l Oc) 

J
0 

and N
0 

respectively being the Bessel and Neumann functions of zero 

order. 

The finite value of n at r = 0 requires nz = 0. For very large values 

of D'.L (D.l_-+ oo) we have y' ...,. 0, that means we find the solution 

n(r) = n' 1 for 0 ~ r < r o· ( ll) 

On the other hand we require, by the usual arguments (f· i.
12

) n(R) -: 0, and 

find 

( 12) 

n(r) must be continuous at r 
0

, and we have therefore 

( 13) 

Also as D _L dn/ dr must be continuous at r = r 
0

, it follows 

Dl_ y'nl J 1 (y' r 0 ) = D.1_ y {n 1 J 1 (yr
0

) + n 2N 1 (yr 0 )}, (14) 

which for n_;_ -+ 00 yields 

(l4a) 

12 
G. Ecker: Proc. Phys. Soc. (London) B !:]__. 485 (1954). 
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Eliminating n
1

, n
2 

and n 1

1 
from Eqs. (12); (13), and (14), we find the 

relation 

with 

-
Jo(x) J 1 (x> -

X 
Jo(x) 2 

N
0

(x} = 
N 1 (x> -

:R N
0

(x) 2 

( 15) 

X= yR and - r 0/R. x = x• (l5a) 

This Eq. (15) defines y and with that T · and X for given values of 
z 

D ..L, Rand r
0

. In the limit r
0 

= 0 (15) simplifies to the usual condition (9). 

For r 0 f 0 the solution of Eq. (15) can be obtained with sufficient 

accuracy by graphical methods. This problem i;s simplified by the fact that 

different parameter values r 
0
jR can be accounted for by a coordinate trans

formation. .We have solved the equation for values 0 < r 
0 

< 0.85 R. 

The result is shown in Fig. l, where we have plotted the value 

xr = x/x0 as a function of r 0/R. We note that the value> of xr does not 

depend on any special discharge data, such as ionization potential V., 
1 

pressure p, excitation levels, etc, However, to find T -r = T_/T _0 and 

Xzr = Xzjx 0 as a function of r 0/R, we have to know a(T _) and T _ (Xz)' 

which requires reference to definite discharge data. We have chosen as 

an example helium with T 
0 

= 5 X l 0
4 

°K, and use T (X ) as calculated 
9 - - z 

by Lehnert. It should, however, be noted that according to our results 

in Part III a change of this relation in the presence of enhanced interaction 

must be expected. 

Finally the relative number wall loss can be found, from Eqs. (3), 

(lOc), and (15a), to be 

L wr 

L 
w 

= 
LwO 

= 
2 

X 
r 
~ zr 

( 16) 

All these quantities are plotted in Fig. l versus the parameter 

r 0/R limiting the region of enhanced diffusion. The results fully prove our 

assertion given above, since they show that even if we have an infinite 

diffusion coefficient (D L -+ o0) for the main part of the discharge (r 0 = O. 7 5 R), 
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0.8 1.0 

MU-19945 

Fig. 1. This figure shows x , the solution of eq. (15) normalized 
to unity at r 0 = o; LJL~0 , the relative wall loss; T _/T _

0
, 

the relative electron temperature; and Xz/X 
0

, the relative 
longitudinal electric field as functions of r fr. Here r limits 
the region of enhanced diffusion (D.1. -. oo),

0 
R is the ra'aius 

of the discharge tube. 
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the change in the longitudinal field strength (X ) and the change in the electron z 
temperatu;ce (T _) amounts to only a few percent. An increase of D ..1....-+ .oo 

in the center part r 0 = 0.4 R would not be measurable, but fully overshadowed 

by the effect of the magnetic field on the diffusion coefficient D J_ in the range 

r 0 < r < R. 

We conclude, therefore, that measurement of the electron temperature 

cannot conclusively eliminate the presence of enhanced diffusion in the dis

charge, because even under the extreme conditions discussed above (i.e .• 

D ..1.... -+ 00 }, enhanced diffusion over the major part of the discharge would 

hardly affect th~ T values. Whether Xz measurements may allow a con

clusive check on the phenomenon depends on the influence of enhanced inter

action on the relation T (X ). which will be studied in Part III. 
- z 

One other point of interest may be noted in connection with the results 

of Fig. 1. That is that also the wall losses are only moderately influenced 

by enhanced diffusion as long as a small region near the walls is not affected. 

This feature- -which, of course, is not limited to the special discharge under 

consideration- -may be of interest for the problem of plasma confinement in 

a magnetic field. 

PART II. THE LAW OF MOMENTUM CONSERVATION 

The law of conservation of momentum follows from Eq. (4) if we 

identify V with mv. For the electron and ion component of our ensemble 

b . 13 h . we o ta1n t e equations 

-+ 
r 

-- -- + Bxr + + 
fJ.+ 

(-~ -- -- p+ 
=nX-\7 -e-. (17a) 

13w. P. Allis and S. J. Buchsbaum: Notes on Plasma Dynamics, Summer 

Program (1959) M. I. T. 
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--+ --+ 
-B x r + + r) en -nX .. ~(·P -) , ·. 

' . e . ·( l7b) 

--+ --+ 
where r , r + are the particle current densities and where we have 

- - --+ )( .... 
. P ± = :i?' ± + v d± \ v d± m; ( 17 c) 

++ -+ 
p is the normal pressure tensor, v d the drift velocity; f.l± are the 

mobilities due to the interaction with the neutral gas only, r) is the resistivity 

of a fully ionized gas. 

These equations can be separated into co:rnponents with respect to a 

cylindrical coordinate system. . TO find the radial distribution the z com

ponents are of no interest. The other equations read 

f.lt B r 8-:- + r rt + a+ (r r+ - r r.:.) = 

B r 8_ + r r- + a (r r- - r r+) = - nf.l X - r 
a - <fr (nD ), (l8b) 

-f.l+ B r +r l) + a+ (r l) - r l) ) = 
r + o+ o+ o-

a 
88 (nD +) (l8c) 

f.l_Brr_+r 8 _ta 1 a 
r 88 (nD _) (l8d) 

where we remember that f.l± is constant, and introduce the abbreviation 

and 
e-

n, . ( 19) 

assuming that P ± can be approximated reasonably by a diagonal tensor of 

constant scalar value nkT±. 

To Eqs. (i8) we add the condition 

r = E r L· r- r -, (20) 
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This condition covers at the same time the case of ambipolar diffusion (e = 1) 

and Simon diffusion (e = 0). For other values 0 < e < 1 it is assumed that a 

fraction (1- e)r r+ leaves the discharge by Simon diffusion. Even the case in 

which the Simon contribution depends on the radial coordinate can be approxi

mated within the range of Eq. (20) by a step solution. 

Equations (18) and (20) are five expressions hr the five variables X , r +' 
r r 

r r :..' r (J + and r (J ... 

If we add Eqs. (18a) and (18b) after multiplying by f.L_ and f.L+ re-
., 

spectively, we eliminate X and obtain 
r 

a r =- ~ r+ or 
(21) 

Equations (18c) and (18d) allow us to express the .azimuthal particle current 

densities r (J± in terms of the radial particle current density r r-+· We have 

or 

r 8+ = (22a) 

r 
8

;;;, = (22b) 

B( f.L+ + Ef.LJ 

l+a++a_ r r+ (23) 

This last quantity is proportional to the azimuthal electrical current. Intro

ducing Eq. (23) into (21) gives us the radial particle current density, 

1 a nfD+~- +D_~+t· r -r+- - 2 
B f.L-t-f.L- f.L .... + € f.L_ ar f.L_ + € f.L+ (24) 

1 + 
l+a+-+a_ f.L +e f.L+ -
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The assumption is justified that the diffu.sion- coefficients P +' D '- as. define.d 

in (19), are constant or at most vary only slightly in comparison with the 

number density n(r) (Note !J.t• !J. =canst; also Part III). We may then 

write (24) in the form 

(25) 

Consequently the. apparent diffusion coeffident for simultaneous 

ambipolar and Simon diffusion in the presence of magnetic fields, takirig 

into account the electron-ion interaction, is given by 

D+!J.- +D_!J.+ 

!J._ + € jJ.+ 

2 
B !J.+!J.- !J.+ +€ !J._ 

I+ a++ a~ !J._ +E !J.+ 

(26) 

1 + 

This formula shows that .the diffusion coefficient always increases with in-_ 

creasing interaction (a _• a+) .. Enhanced interaction reduces the decrease 

of the diffusion coefficient caused by the magnetic field. 

For the reasons set forth above we are also interested in the radial 

potential distribution. The radial field may be found by introducing Eqs. (25) 

and (22b) into (18b), 

X 
r 

au 
lfi' 

1 
jJ. 

D+!J.- + D _!J.+ 

jJ. + € jJ.+ -

1 + 

[ 2 2 
- [ e-t u - (£ -I)) J !J._B (a+(l-E)-€) 

l+a++a_ a £nn 
2 or 

B f.l+!J.._ jJ. +€ jJ. 
·+ 

1 +a +a jJ. +€ jJ.+ J -

(27) 
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The radial potential distribution calculated by integration of (28) and using 

(19) is 

eU 
12T 

(28a) 

where C is an arbitrary integration constant and c
0

, • • • 1 c 5 are defined 

as follows: 

2 2 c: 1 =-e(l+!J._B); 

and the abbreviations 

.D = am 

(28b) 

(28c) 

are used. 'Introduction df (28b) in (28a) is not advisable, as it yields ex

tremely messy expressions which cannot be simplified. 
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However, a niore ~dequate general description can be achieved by 

remembering 

fJ. >> fJ. ' . - + 
(29) 

and by disposing of the arbitrary constant C (by choosing U = 0 at r - 0). 

We then find, from (28), 

with 

eU 
kT 

x = n(O)/n; 

1 + u u ll-1+ 
. + - f-L_ 

a4 
1 + -

X 

T 
a 1 = ( 1 + T +) ( 1 - e ) a O+, 

- E :~ J 
2 

1 + u+ + e u+ u _ 

(30a) 

(30b) 

As may be seen from (30b), we do not neglect a O+ in comparison to 

a 0 _, in spite of (28c) and (29). The reason is that in the presence of 

collective enhanced interaction a O+/ CJ 
0

_ = f-L+/ fJ. _ may no l.onger be correct. 

(see Part III). 

We further note that the preceding integration also gives a good 

approximation in the case of varying 17(r), provided that the variation of 17 

is::appreciably smaller than that of n(r). Rapid changes of 17 may be accounted 

for by step solutions similar to the procedure used in Part I. 



-18- UCRL-9144 

Equation (30) is still too complicated to be discussed in general form. 

We consider therefore in the following the radial potential distribution for 

the two most important cases of pure ambipolar and pure Simon diffusion. 

Results for any special combination may be readily taken from (30). 

We note, here, only that within certain limits the distributions for mixed 

diffusion (E) at a magnetic field B are identical with those of ambipolar 

diffusion (E = 1) at a magnetic field B, if (B/B}
2 = € holds. 

The Ambipolar Radial Potential Distribution 

The ambipolar case is characterized by €. = 1. Introducing this m 

(30) and observing ((2:~· w;+f)ind readily 

1 + u u - --
eU + -_fl._ T-
kT - - in x + 

1 + u+ u _ 

in 

1 + 
(J 0-+ (J 0+ 1 

1 -tu+u- x 

1 + 
(J 0~ :T (J 0+ 

(31) 

We demonstrate this dependence of u on X = no/n in a semilogarithmic 

plot in Fig. 2. 

According to Eq. (31) the potential distribution is essentially affected 

by the magnetic field (B), the electron-ion friction, YJ• and the ratio 

fJ.+ T _/fl._ T+. 

Obviously U values can exist only in a certain area which is limited 

by two U curves, u
0

(x) arid U
00 

(x), corresp'onding respectively to magnetic 

field values B = 0 and B-+ co. They are 

e u
0

(x) 

kT 
= -inx, (32) 
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0.1 

eU o~=--

kT_ 

-0.1 

-o.gLI ----~2~LL3--~5--~8~10 _____ 2L0--~30----~~~ 

x =n0 /n-

MU-19946 

Fig. 2. This figure gives the ambipolar radial potential distribution 
(U) as a function of the density ratio x = n

0
/n(r) for parameter 

values of q = u+u_B2 in the range o -+ oo. 

a 0 _ + a o+ = 5 · T _/ T + = 1 o. 
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and 

kT (33) 
eU (x) 

00 

In the semilogarithmic plot of Fig. 2 these relations are represented by 

straight lines, the lower limit u
0 

being independent of the discharge condi

ions, the upper limit U
00 

being defined by (T+/T _ - J.L,/ J.L _). 

From Eq. (33) we see 

for J.L + T _ ;::. f.i. _ T +, (34a) 

u ~ 0 (34b) 

That means the am bipolar potential can never assume positive values- -no 

matter how high we choose the magnetic field--U the relation (34a) holds. 

On the other hand, if equation (34b) is valid, then we can always arrive at 

positive potential values,, if we choose the magnetic field B sufficiently 

strong. 

This result is reasonable and can readily be understood from the 

diffusion coefficients of the electrons and the ions in the magnetic field. 

We would expect the sign of the ambipolar field to depend on the condition 

D 
D = 

-B 1 + uz = D+B' 

which for large magnetic fields yields exactly the criterion 

T 

J.L 

as found from the general treatment above. 

(35) 

(36) 

We understand further from Eq. (29) that the influence of the magnetic 

field becomes important as the value of the parameter u+ u _ approaches 

unity. For negligible electron-ion interaction, rJ = 0 the relation U(x) is 

simple because in the semilogarithmic plot all distributions are given by 

straight lines. The magnetic field affects only the slope of these lines. 
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The situation is more complicated when the influence of 11 is not 

negligible. Under all conditions the additional second term in Eq. (31) gives 

a negative contribution to U(x) and produces deviations from the straight 

lines. This effect is apparent in the curves of Fig, 2, which describe U 

as a function of the density x = n 0/n for the case T +fl- > T _fl +. We have 

chosen this example because it applies to most of the experimental conditions 

encountered, and shows also the most conspicuous distriJ:Hltions. Of course, 

it is also desirable to know the potential distribution as a function of the 

radial distance from the discharge axis, U(r). This requires the knowledge 

of the density distribution n(r). Figure 3 shows U(r) as calculated from 

Fig. 2 by using n(r) = n
0

• J
0

• (2.4 r/R). Although this Bessel function might 

not describe the true density distribution in the discharge, this is unimportant. 

Figure 3 serves only as a means to demonstrate the principal features, and 

the conclusions we draw in the following hold for any density distribution 

n(r) that is monotonically decreasing towards the wall. 

In Figs. 2, 3 we distinguish three different types of U curves, The 

first type occurs for small magnetic fields and is concave in the direction 

of the negative U axis, U values decrease steadily with increasing x or r. 

We encounter the second type of U curve when the magnetic field passes 

through the value B
0 

given by 

II II B 2 = 1 ,...+,...- 0 . (38a) 

Here the ambipolar potential first decreases, as for type l, but at a certain 

x (r ) the potential passes through a minimum value and increases for m m 
x > x (r > r ), The position x (r ) is very large for magnetic fields close _ m m m m 
to B 0 and approaches the value xm = 1 (r = 0) for B = B

1
• B

1 
being defined 

by 

(38b) 
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1 
0.1 

0 eU 
k T_ 

-0.1 

- 0.6
0
'-----L--.......L.--....JJ..--....1...----1.-..I.!f...J 

0.2 0.4 0.6 0.8 1.0 

r/R ----

MU-19947 

Fig. 3. The ambipolar radial potential distribution is plotted as 
a function of the relative radial distance r/R. The parameter 
values are identical with those in Fig. 2. 



UCRL-9144 

The point x . (r } of the potential minimum U rna y be called the '-'point of m m m . 
ambipolar field reversal". It is important to note that this phenomenon of field 

reversal is found only in a definite range of the magnetic fields limited by 

B
0 

< B < B
1 

defined in (38}. The depth of the potential minimum decreases 

with increasing magnetic field. Finally, when B is greater than B 1 we have 

the third type of U curve, for which the U values increase steadily with x. 

The preceding features may be readily understood by differentiating 

Eq. (31} and calculating the position x of the minimum, which yields 
m 

X = m 

(J 0-+ (J 0+ 

T+ 
- u u - 1 
T + -

(39) 

The Radial Potential Distribution for Simon Diffusion 

Simon diffusion is characterized by € = 0. Introducing this into 

Eq. (31}, we find the corresponding radial potential distribution, 

eU 
K'T 

= - £ n x - -(1 t T +) a O ( 1 - _!_.) + (1 t T + \u 2 
' T- +\ X Tj + (

. a o-+ a 0+ 
1 + 1 + uZ x 
in~+ 

1 

(J 0- + (J 0+ 
) +--____,--

1 t U· 
J. .!.l 

(40) 

Again we discuss separately the case without (n = 0) and with (n f 0) electron

ion-interaction. 

If electron-ion friction is negligible the potential distribution assumes 

the extremely simple form 

=- £n x. (41) 

The most striking feature of this case is that the distribution is independent 

of any discharge parameter- -independent not only of the mobility and diffu

sion coefficient of the ions (f-l +' D + ), but also independent of the magnetic field. 

Moreover, comparis'On with (32) shows that the potential distribution for 

Simon diffusion with or without magnetic field is identical to the corresponding 
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ambipolar potential distribution without magnetic field; if we have 

!J._>> 1-Lt and D _ >> D+. 

These results can easily be made plausible .. Without B, the ambi

polar potential is given by 

which approaches the discharge -independent distribution (41 ), as D +/D _-+ 0. 

The reason for this is that for a small ratio of D +/D _ the am bipolar field 

must almost completely compensate the electron diffusion to reduce r r-
to the small value of r rt' The ambipolar field cannot therefore depend on 

D +' as long as this is small in comparison with D _. On the other hand, the 

ambipolar field does not depend on D either, because the mobility IJ. 

varies proportionally with the diffusion coefficient D . (The influence of 

T is shown in Eq. (42)). 

As we require e = 0 for pure Simon diffusion, we have exactly 

the same conditions as in the ambipolar case D +/D _ -+ 0. Here too, the 

radial field m'ust fully compensate the electron diffusion effect, and it is 

therefore not surprising that we find an identical distribution of U. The 

independence of the parameters D + and D _ follows in exactly the same manner 

as described in the preceding paragraph. And as D + and D _ do not influence 

the ambipolar field, the magnetic field B cannot have any influence on the 

distribution. One might think that the same argument would hold for the 

ambipolar case, requiring B independence for the ambipolar field too. This 

is not so, because with increasing B the condition D
0
+/D

0
_ << 1 is violated. 

(See Eq. (26 ). ) 

The influence of friction contributes two terms, both always negative, 

one dependent on and the other independent of the magnetic field. In general 

the independent term 

(40a) 

is small in comparison with the main term (40) because a O << 1. It is note m 

worthy that in the magnetic term, 
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1 + 
a 0- +a 0+ 

-(!+ ;: ) 
2 

2 in 
l + u+ 

(40b) u+ a 0- +a 0+ 
1 + 

1 

1 + 2 X 

u+ 

as should be expected, only u + but not u _ appears. 

The radial potential distribution for pure Simon diffusion is shown 

in Fig. 4 as a function of x = n
0
/n and in Fig. 5 as a function of the radial 

distance r/R. Figure 5 was calculated on the same basis as described in 

connection with Fig. 3. 

The Simon potential 1s always negative below the curve for Eq. (41) 

and concave towards the negative U axis. The limiting curves for B = 0 

and B = oo are 

= - .£ n x - (1 + T + ) a ( l - .!.. ) , 
T 0+ X 

(43a) 

eU 
00 / T ) 

= :.. 1.£ n x - ( l + T: 1 
(a O+ + a 0 _) ( 1 - x ) . ( 4 3 b) 

Ambipolar Field Reversal as a Means of Detection of Enhanced Interaction 

In the outline of this investigation we have raised the question whether 

there are other characteristics of the positive column that depend on the 

electron-ion interaction and may provide a suitable means for experimental 

detectio~ of enhanced interaction. It appears that the results for the ambi

polar potential distribution derived above can be used to obtain reliable 

information on r) from measurements of the radial potential distribution. 

This may be seen as follows: 

The equations (38a, b) yield immediately the relation 

B 2- B 2 
1 0 

B2 
0 

a 0- + q 0+ = (45) 
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MU-19948 

Fig. 4. The radial potential distribution for Simon diffusion (U) 
is given as a function of the relative density x = n /n(r). The 
parameter values are identical

2
with those stated i'b Fig. 2. 

In addition we have f!_/ f!+ = 10 . 
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Fig. 5. The radial potential distribution (U} for Simon diffusion 
plotted versus the relative radial distance r/R. ·All conditions 
are identical with those of Fig. 3. 
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which offers a simple procedure to determine r) • We measure the lowest 
exp 

magnetic field B 0 for which we can reliably find field reversal, and we 

measure also the highest field B l for which we can still reliably see field 

reversal. Because of 

we then have 

(J 0- + (J 0+ ::;:.. 

B' 1 

(B' )2 - (B' )2 
1 0 

__ (_B_'_)""'"2-- ., 

0 

(46) 

(47) 

Accordingly, the presence or absence of enhanced interaction depends on 

whether in the following equation the (>) or the (=) sign holds: 

(ao + aO+) - exp 

(a 0- +a O+)norm 

(B' )2 - (B' )2 
1 0 (48) 

( Bo' )? e· n 0 (fJ. + f.l+)r) - norm 

Here, r) designates the normal electron-ion interaction which, con-norm 
sidering only individual Coulomb interactions, can be evaluated with the 

help of stochastic methods. The well-known result is 
14 

r) = 7.3. lo- 9 (49) 

It may be mentioned that Eq. (48) includes relatively little uncertainty. The 

quantities e, f.l± are known with sufficient accuracy; r) is given by 
norm 

(49); B 0 and Bl can be reliably measured because they refer to a rather 

conspicuous quality of the radial potential distribution, namely the point of 

field reversal. Knowledge of the density distribution n(r) is not required, 

as the distrubution U(r) must show field reversal for the same range of B 

values as U(x) because of the monotonic character of n(r). Only the maximum 

density n 0 in the center of the discharge enters the relation. 

14
L. Spitzer, Physics of Fully Ionized Gases (Interscience Publishers, New 

York, 1956), p. 84. 
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So far the argument is based on the assumption that T _, T+, and 

T7 are constant over the discharge cross section. This assumption may not 

hold because of a dependence of the enhancemen: process, that is of the 

"effective T7• " on the radial coordinate. We will show now that even in this 

case we may still use the procedure outlined above, provided that the 

variation of the effective T7 is small in comparison with the variation of 

n(r). 

Again, let B0-Bl be the range of magnetic fields for which the 

ambipolar potential goes to positive values near the walls and has a negative 

gradient (dB/ dx) at the center. From Eq. (31) it follows that positive 
c 

potential values are possible only if we have 

(50) 

near the wall. (Index s. ) 

On the other hand, differentiating Eq. (39) and requiring a negative gradient 

at the center ( (dU/dx) < 0 ), we find 
s ' 

(~uu-~ . T + -- c 
(51) 

As may be seen from Part III, the ratio T /T increases with B and 
+ -

decreases with distance from the center towards the wall because 

a 0 _ +a O+ = en T7 (J.!+ + fJ. _) increases with B. and decreases with increasing 

r under the assumptions stated above. Taking this into account and com

bining (50) at the field B0,and (5.1) at_ B'l, we find again 

(B' )2- (B' )2 
1 0 

(a o- + a 0+ > c > (52) 

which is identical with (47), only now restricted to the center (Index c). 

Equation· (52) is applica.ble, ·except when the variation of the en

hancement parameter (effective n) with the radial coordinate is more 

pronounced than the density variation. However, it is still possible in this 

case to interpret the experimental results with the help of Figs. 2 through 

5, using step solutions in suitable choosen intervals. 
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This last case demonstrates clearly that the procedure of meas

uring the radial potential distribution is appropriate for the study of en·

hanced interaction. Namely, if we consider the radial potential dist:dbu:tion 

for the experimental conditions underlying Fig. 1, Part I, we find that the 

enhancement (Dl -+ oo) in the range 0 < r < r 
0 

has a very conspicuous effect 

on the potential distribution. As can be seen from (31 ), this distribution 

changes in the range 0 < r < ro from 

1 + ( ~+ T+) 
~- T_ u+u-

eU in x (53a) 
kT - -

1+u+u-

to 

1 + ( :~ + l)u+u-
eU .fn x -::- -in x . (53b) 
kT = 

1 + u u 
+ -

Clearly this change will be detectable even if the range of enhancement 

limited by r 
0 

is so small that according to Fig. 1 there is practically no 

change in the longitudinal field gradient X • 
. z 

Moreover, it should be noted that the procedure of measurmg the 

radial potential distribution and the magnetic fields for ambipolar field 

reversal allows still another check on the presence of enhanced interaction. 

As was already mentioned, and is shown in Part III, the ratio T+/T _ in

creases with increased electron-ion interaction. Now, using (50) at the 

magnetic field B 0, we have 

( ;~ ~ > 
:.:I 

(54) 

exp 
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If (T /T ) defines the value of the temperature ratio expected for + -norm 
normal interaction conditions, then we have additional proof for enhanced 

interaction if we find 

> 1; (55) 

(T+/T ) can be taken from the knowledge of pressure and electrical -norm . 
field (X ). 

z 
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PART III. THE LAW OF ENERGY CONSERVATION 

As was indicated in the foregoing sections, we expect that en

hanced interaction causes deviations of the temperatures (T _, T +' T 0 ) from 

those values which we would expect under normal conditions without en

hancement process. In this sectionp therefore, we calculate the particle 

temperatures, taking into account electron-ion interaction. 

To do so we start again from Eq. (4), substituting now V = v 2 

yields, for a stationary state, the relation 

= L 
i 
/ 
(8) 

-+ -+ 2 2ne -+ 
\1 • nvv - -- X m v d = 

[ 
2 2 -+ .3 3 

(v') - v ]f.(v .)f(v) p. c. dQ dv dv., 
1 1 1 1 1 

(56) 

-+ 
where v d is the drift velocity. In the most general case the scattering 

function P· must be considered as a sum, 
1 

P· = Po· + 1 1 ~ 
X 

p .• 
X1 

(56 a) 

This 

where p
0

. accounts for the elastic and p . for the inelastic collisions. For 
1 X1 

the elastic collisions we express the integrand as usual with the help of the 
>'r: 

relative velocities and the velocity v of the center of gravity, 
g 

2 
v = 

2m. 
1 

mtm. 
1 

~ -.r _... 
v · (c . · - c . ) g 1 1 

(57) 

and using the collision frequency in the center-of-gravity system, defined· 

as 

v . = n. / c. p. 0 (1 - cos X ) d X , g1 1 1 1 g g 

we have 

···•· see, for instance, Ref. 4 

(58) 
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)2) 
2 2 2m. v . 

[ ( v 1
) - v ] drl = 1 g1 

m+m. 1 

and, with that, 

1 2 2 - -[ (v 1 
) - v ] f (v i) f (v ) c. piO 1 

(8) 

= 

- -v c. 
g l 

n. 
1 

3 3 
drl dv dv. = 

1 

v . 
g1 

UCRL-9144 

(59) 

(60) 

With respect to this last integration it should be mentioned that in general 

the collision frequency v . depends on-the velocities. However, in Eq. (60) 
g1 

v . has been replaced by a constant average value, similar to the procedure 
g1 · 13 · · 

and justification given by _Aflis and Buchsbaum for the case of the momen-

tum balance. 

Introducing the collision frequency for momentum transfer in the 

laboratory system by 

we find 

j, 2 2 - -+ [ (v 1 ) - v ] f. (v . ) f (v ) 
1 1 

8) 

m. 
1 

v. = v . -· ----:----1 g1 m+m. 
1 

(61) 

3 3 
2

vi { Z z} c. p
1
.
0 

drl dv dv. = --+- n m.v. - mv . 1 1 m. m 1 1 
1 

(62) 

For inelastic collisions we use 

2 2 
(v 1 

) - v = 
2e 
m 

v. 
X1 

(63) 

and with the inelastic collision frequency 

v. = n. JP· c. drl, 1X 1 1X 1 
(64) 
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it is 

-+ -+ 
L (v.) f(v) c. 
1 1 1 

X 

Introducing Eqs. (65) and (62) into (56) results in 

~ 2 2ne 
nvv - -

m 
1 

-+ 

2v.n 
1 

m.tm 
1 

2 2 
(m.v. - mv ) 

1 1 

X 

i, X 

UCRL-9144 

2e 
v. v. 1X 1x· ·m 

(6 5) 

nv. V. 2e 
lX 1X 

m 

(66) 

Now, to eliminate X, we again use Eq. (4), choosing V = v. We find 

ne -+ -+ -+ -+ +--+ ~ -+ -+ 
- m (X~ B xv d) + \l v v n = (_ vi (v id - v d)n ~ 

-+ 
v. vd, 1X . 

i 

remembering 
v .•m. 

j -+ -+ 
(v' -v )cipiO drl = m. J . 1 -+ -+ + (v.-v)(l-cosx )c.p. 0dx = 

m mi 1 g 1 1 g 
g1 1 

mtm. 
1 

(2) 

(67) 

(68) 

and using (56 a) and (61 ). Again a constant average value for the collision 

frequency is used. 

Substituting X from (67) into (66) 1 we find 

\ 2vinm 

L m.+m 
1 

i 

+ (2nv. vd
2 

- 2nv. · e V. ) -
1X 1X .. m 1X 

1X 

+ 

-+ -+ 2 -+ -+ +--+ 
\l • nv v + 2 v d · \l • (v v n). 

(69) 
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Here the last term is negligible in comparison with the second-to-last 

term, because the drift velocity is practically perpendicular to the 

divergence of the pressure tensor. The random energy of the particles 

under consideration is 

(2 2 ). 
vk - v dk •· 

Introducing this into (69) yields 

T· ~ 
i 

+ 

v.m 
1 

m+m. 

ix 

1 

v. 
1X 

I 

~ = v. 
i 1 

( 

2 
vdm 
-2-

[ m": mi 

2 
mvd 
-2-

1X eV. ) 
,... -2- -

1 
4 

+ 

2 
mv. 

m 1 

m+m. -2-
1 

-+ -+ 2 
\1 • m n vv 

n 

(70) 

;d] m -+ 

- 2 v id. 

(7 1) 

We may now use this general formulation to get information about 

the temperature of the ions (T+)' electrons (T _), and neutral particles 

+ 

(T 0 ) in our discharge. In each case simplifications of Eq. (69) are possible. 

First of all it seems sufficient to calculate for all particles only 

the temperature T averaged over the discharge cross section. This is true 

because we expect the quantities T _, T , and T
0 

to be nearly constant over 
·+ 

the discharge diameter, which may be seen as follows. 

For low values of a_, a+ the value of T _ is governed by the 

field X and the collision frequency with the neutral gas atoms (v 0 ). X z - z 
-+ -+ 

must be independent of r because of \1 xX = 0 and the cylinder symmetry 

of the problem. v _
0 

is constant because of the uniform neutral gas density. 

Consequently T .should be independent of the radial coordinate. Again for 

small a-.+ the ion temperature must be constant, as it is defined only 

by the field X .• the electron temperature T , and the collision rate with 
z -

the neutral gas, all independent of r. Finally the neutral gas temperature 

T 0 must be practically constant, as the time rate of energy loss per unit 

area of the wall is small in comparison with the energy flux represented 

by the divergence term in Eq. (71 ). 
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The situation changes, however, with increasing a_, a+. Judging 

from (71) one might assume that T and T + show now a radial dependence 

because of the radial dependence of a , a+. However, this conclusion 

would be incorrect, because values of a_, a+ necessary to produce a 

temperature effect (a_, a+ ::G' 1) occur only in the range of enhanced 

collective interaction. But under these conditions Eq. (71) should actual! y 

include an additional term of energy exchange between like particles, which 

tends to establish a temperature distribution uniform over the discharge 

cross section. The cause for this additional term can be readily under

stood. Going back to the Boltzmann equation, one sees that the relation 

(4) should in principle include in the summation of the right-hand side 

also a term accounting for the collisions of like particles. However, as 

is well known, this term cancels out in consequence of the conservation 

of momentum and energy in an individual collision. But as soon as collective 

phenomena come into play in the presence of enhanced interaction, this 

term is no longer zero and must be added to (71 ). The same mechanism 

that enhances the electron-ion interaction, a · , also increases the ion--,+ 
ion and electron-electron interactions, therefore counteracting any 

appreciable temperature gradient of T +' T _. 

Let us then average (71) over the cross section by multiplying with 

21Trdr, integrating from 0 - R, and dividing by the total particle number, 

1rR 
2 

( n). Using Gauss 1 s theorem for the divergence term, we arrive at 

(T) ~ <:~/: = 
1 1 

~ (viJ{(~v;) eV. } - 2 1X m (7la) + -.2-
2R(n) 

(n vv ) 
w 

i, X 

) 
Here we have applied 

(v)(~vk2) (. 
-2 

(Tv) - (T)(v) 
m2vk) - •· 
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making use of the fact that the temperatures are, in comparison with n(r), 

only moderately varying with radial distance. The index ( ) designates 
w 

values at the discharge wall. 

Although in all future formulas we shall be using average values, 

for convenience we shall omit the symb~l ( ) . 

We first discuss the ions (m = m+). As was already stated, the 

main energy loss of the ions is due to the interaction with the neutral gas. 

In comparison with this the wall loss, represented by the last term in (7la), 

may be safely neglected. The electron mass is ne~ligible compared with 

the ion mass (m << m ), and for the same reason we have m
0 

::::: m . 
- + + 

Ions perform practically no inelastic collisions (v +x = 0). The drift 

velocity of the neutral gas is zero (v dO = 0). With this we deduct from (71) 

for the ions the relation 

2 
m+v dt 

2 

1 + {:~ 
1 + 

vd-} + --· v 
dt + 

(7 2) 

As can be readily verified from the foregoing, the quantities v + _, v +O are 

related to n. f.!t• f.! by 

n = 2 
e n 

We use, further, 

2 
m±vd± 

Td± = 2 

= 
m_v_+ 

2 
e n 

(J + = 

= 

= enn f.!+' (J = = 

e 
m 

enn f.! 

(7 3) 

(7 4) 
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and find therewith 

1 + 2·a+ 1 + 2a + 
+ (7 5) 

1 + 2a + 1 + 2a + 

where T d- can be neglected in comparison with T _. 

Before discussingthis equation let us derive the corresponding 

relation for the electrons, using- -except for the inelastic collisions, which 

we do not omit in this case- -the simplifications and abbreviations given 

above. With Eqs. (73) and (74) we arrive at 

T = T d- fl + 

+ 

'l a v 
'd+ + T"+"'a_ v d-

a 
+ 1 +a 

X 

Again this equation can be simplified by making use of 

<< 1; << 1; << l. 

(76) 

(76a) 

Finally, let us study the neutral-particle component. Again the 

simplifications and abbreviations introduced above may be used except for 

the omission of the divergence term. For the neutral particles this term 

is the only source of energy loss within the frame of our discussion (no 

radiation), and therefore cannot be neglected. Otherwise one would simply 

calculate the equilibrium temperature of the neutral gas for a given electron 

and ion temperature. As there are no inelastic collisions we find, using 

(7la), (73), and (74), 

T = 0 
1 + 

2m f.l 

2m f.l 

m --.. 2 
ZRn (n v v )w 

(77) 
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The absolute magnitude of the second· term1 which accounts for the wall 

losses, is difficult to evaluate. However, it is relatively easy to relate 

its magnitude to standard discharge conditions without enhanced diffusion. 

To do so we describe as usual the energy loss at the wall by 

m 

RvO+ 

- 2 (n vv )w 
n 

(78) 

where T w is the temperature of the wall. If we let T oa and TO+ be the 

standard gas and ion temperatures, respectively, then we find 

2m IJ-

(T-- T oa) m + iJ-+ + (T 0+ - T oa) 

2m iJ-
(79) A= 

Introducing Eqs. (78) and (79) into (77) and using the abbreviations 

a = r = T/T oa' (80) 

we arrive at 

(

.'T -r ) 
( 1 + 2a) r 0 = r + + r _ 2a - ~ _ ':;. w { (r+ 0 -I) + Zn(r_ -I)~, (81) 

which defines r
0 

in terms of r and r . 
+ -

Equations (7 5), (76 ), and (81) describe the temperature conditions 

in the discharge. 

These· equations can be applied in different ways. If one as sume.s 

X is a given quantity, then (67) allows us to express the drift velocities as 
Z. 

functions of Xz' and (75), (76), and (81) may be used to find T -~ T+~ and 

T
0 

as functions of the enhancement parameters (J _, (]+. 
However, in our present investigation it is more appropriate to 

consider the electron temperature as a given quantity. Indeed, T is 

prescribed by the requirement\ of the particle-conservation law and may 

be evaluated from Eq. (3). With T _ given, the values ofT+ and T 0 as 

functions of the enhancement parameter (J + can be found from (7 5) and (81 ). 
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In application to usual discharge conditions some simplifications 

of these equations are possible, for instance T >> l. Also, as is well 

known and rna y be readily verified, the first term in (7 5) representing the 

field influence on the ion temperature is negligibly small in comparison 

with the second term. If we use, further, 

with 

m fl. 

a= m+f.L+(T
00

) ' 

a=a· ~ + 

s = en n fl. (T ), + + 00 

(82a) 

(82b) 

we have the following two relations for the ion and gas temperature: 

3/2 
T t . t T t · 2 · S t - >JTt T Q = 2S T I 

+ -

(83) 

As T is known from Eq. (3) and T+ and T
0 

are known from (83), we may 

use (76) to find the value of the field X . To this end we have to express . z 
the drift velocities as functions of the electric field with the help of (67). 

We multiply Eq. (67) with the unit vector in the z direction. Then, after 

writing it out for electrons and ions respectively, we can solve for the 

drift velocities, and find 

X z 
(84) 

With the usual assumption that the main drift motion is in~th.e axial direction, 

we find, by introducing (84) into (76) and making use of (76a), the following 

relation for the field: 

x2 
2 . (l+a++a_ >2 If.!: 

= 
(T_-T0 ) +a_ (T_-T+) 

z 1 
l-a 1 + a m {! _ L vOx eVx} 

Q X V -0 Td-
(85) 

Equation (85) describes the dependence of X on the enhancement parameters. 
z 
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In this connection it is necessary to make an additional comment 

onthe ratio a+/a_ ofthese enhancement parameters. From Eq. (74) one 

should think that the ratio a+/ a_ is a. constant given by the ratio of the 

particle mobilities in the neutral gas without ion-electron interaction and 

without magnetic fields, 

v+-
= = v -+ 

(86) 

Ho'wever, this is not correct. As can be seen from the de17ivations of v +

and v -+' the magnitude of this ratio is determined mainly by the persistence 

of motion in a single electron-ion collision. This persistence factor is very 

much larger for the ions than for the electrons. However, in the presence 

of enhanced interaction due to collective phenomena the persistence no 

longer comes into play. Therefore the ratio a+/ a_ may be larger than the 

value given by Eq. (86) if enhanced interaction is effective. 

To demonstrate the effect of enhanced interaction on the temperatures 

we have calculated r + and r 
0 

from (83) for several parameter values, 

a = 2T a/ (1 - T ), 
w 

(87) 

and a constant electron temperature T = 50. The result is given in Fig. 6. 

Clearly, this figure shows that enhanced interaction can cause appreciable 

increase in the ion temperature and also to some extent in the neutral gas 

temperature. In particular the ratio T+/T _ always increases with the en

hancement parameter. According to Eq. (26), the parameter a_ + a+ 
must be larger than unity to cause enhanced diffusion. We do not know what 

the values of a+ and a_ separately are. However, we would like to stress 

again that the relation (86) cannot be used. Rather, it is to be expected 

that with predominant enhancement and therefore decreasing influence of 

the persistence, the ratio a /a ; will increase:·· . Under these cir-, + -
cumstances an influence on the ion and neutral-gas temperatures can be 

expected simultaneously with the change in the diffusion rate. 
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2<T+T--
MU-19950 

Fig. 6. This figure gives the relative ion {r+) and gas (T 0 ) 

temperatures (see eq. 80) as a function of the enhancement 
parameter 20' + T _ for three values of a {see eq. 87) and a 
constant electron temperature 'T = 50. 
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Most interesting is the relation (85) which connects the electric 

field with the electron temperature X (T ). In general the dependence on 
z -

the enhancement parameters is rather complicated because of T + and T 0 . 

However, under normal conditions (T+ << T _, T 
0 

<< T _ and 

L v 0xeVx/v_ 0Td- <1 ), Xz is essentiallyproportionalto (1 + a++a_). 
X 

We have stated in Part I that an increase in D j_ and with that a 

decrease in the particle loss influences the electron temperature T only 

moderately because of logarithmic dependence and certain numerical 

factors. This small change in T _ would result in a comparatively small 

change of X , if the classical relation for X (T ), as given by Lehnert9 
z z -

were applicable. In this case it would be expected that X measurements 
. z 

would not be a sensitive means for detecting enhanced interaction. But 

using the relation X (T ) as given by (85), one observes that, independent 
z -

of the particle loss, X 
z 

losses. This makes X 
z 

of enhanced interaction. 

is strongly affected by the additional energy 

measurements more promising for the detection 

It should be noted, however, that the a values in this Part III are 

all average values, and consequently a nonuniform enhancement might still 

not be detectable from X measurements, but could be found from ambipolar 
z 

potential measurements as described above. 

I should like to thank Dr. Thomas K. Allen, Dr. Wulf Kunkel and 

Dr. Robert V. Pyle for interesting discussions. 

This work was done under the auspices of the U. S. Atomic Energy 

Commission. 

Information Division 
sa 



This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
m1ss1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides acce~s 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 


