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ABSTRACT

The nonspherically symmetric solutions to the Bardeen-Cooper-
Schrieffer theory are given a physical interpretation in terms of an
anisotropic fluid model. These solutions have been used previously to
predict a phase transition in liquid by He3 by Emery and Sessler and
Anderson, Morel, Brueckner, and Soda. An investigation of the flow
properties of such systerms is made that involves the calculation of the
effective mass for flow in a straight channel and the moment of inertia of
a cylindrical container of the liquid. The angular-dependent energy-gap
characteristic of this type of theory leads to an effective mass for flow
that depends on the angle between the axis of symmetry of the fluid and the
direction of flow. It also vanishes as the absolute temperature tends to
zero, although not as rapidly as for a spherically symmetric gap. The
moment of inertia, when the symmetry direction for the fluid and the

rotation axis are the same, is simply related to the mass for flow.
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I. INTRODUCTION

The work of Bardeen, Cooper, and Schrieffer {BCS) provides a
remarkably successful solution to the problem of superconductivity.
The basic {zature in their approach is the strong correlation between
conduction electrons with equal and opposite momentum and spin. This
type of correlation probably plays an essential role in other many-fermion
systems. For example, Van Hove has shown how the usual perturbation
theory for an imperfect Fermi gas breaks down under just those conditions
when the BCS approach is valid. 2

Direct extensions of the BCS theory have already been made to finite

345 of special interest

nuclei, 3 infinite nuclear matter, and liquid He
is the prediction that liquid He3 undergoes a phase transition at very low
temperatures to a highly correlated phase similar to the phase chav; s

observed for superconductors. 6,7 The predicted transition temperature

is of the order of 0.07O K, i sc far no anomalous effects have been

observed just akiwe thisz temperature.

;ﬁSupported in part by the U.S. Atomic Energy Commission, and in part by

the National Science Foundation.

TW,ork performed while a visitor at the Lawrence Radiation Laboratory.
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The theoretical descripticn of this phase transition differs from that
for the electrons in a superconductor in the following important respect,

If the Fermi surface in a metal is considered to be spherically symmetric,
then the correlation function in the original BCS theory is spherically
symmetric. For liquid He3, on the other hand, the correlation function is
not thought to be spherically symmetric. (This is a direct consequence of the
fact that the interaction at the Fermi surface for two helium atoms in a
relative S state is repulsive.) The possible existence of such solutions in
the BCS theory was first noted by Anderson. ? The anisotropic correlations
contained in these solutions raise interesting questions of interpretation,
particularly for liquid He3, where there is no long-range order.

It is the purpose of this paper to discuss the physical significance of
these anisotropic solutions in the BCS theory. We often consider liquid He3
as a specific example, although much of the discussion is more general.
The interpretation is mainly given in terms of two quantities, the effective

mass for flow through a straight channel, and the moment of inertia for the

rotation of a cylindrical container of the fluid. These quantities determine
the ability of the fluid to transport linear and angular momentum.

Before the effective masses for flow and rotation are calculated in
Sections IV and V, Bogolyubov's '"quasi-particle' form of the BCS theory
is reviewed in Section II. The physical interpretation of the theory in terms
of an anisotropic fluid is also given in this section. In Section III the general

formulae for the inertial parameters are reviewed.



II. QUASI-PARTICLE THEORY OF SUPERFLUID FERMIONS SYSTEMS

Bogolyubov has emphasized the quasi-particle nature of the BCS
theory. > By a quasi-particle approximation, we mean that the actual
Hamiltonian for this problem ¢ truncated and transformed into the

form

f t
0 = Eo * B E® ] o BB (2.1)

~

The operators 01: and Bl-i (ak and ﬁk) create (destroy) the excitations

~

of the many-particle system. These excitations have definite energy E(k)
and momentum 15 The quasi-particle operators obey the same anti-

commutation rules as the corresponding operators for the actual particles
making up the system. (In order to avoid introducing a spin lab2l, we use

two sets of quasi-particle operators.) The linear transformation between

particle operators and quasi-particle operators is

Q. = u(}l_() COI v(/ls) a‘T_k_ ,

~

(2.2)
B = wlk) a F vlgal,
or
ay, = u(k)ic a, + V(’lf) Bli )
- ) B (2.2a)
. = w0 By - vkl
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~

The operators aTkO‘ (akO ) create free -sarticle states of momentum k

~

1
and ''spin'' projection 0 = £ 1, 0 The anticommutation relations are
preserved for
2 2
[u®) [ + [vk) | =1. (2.3)
It has also been assumed that we have u{-k} = ulk) and v(-k) = v (k).

According to Eq. (2.3) we may write the two complex functions as

ulk) = cos yx (k) e M (K)

(2.4)

v (k) = sin x (k) eié (lj)

It can be shown that all physical observables depend only on the difference

in phase,
¢ () = L(k) - (). (2.5)

Hence the two real functions, yx (k) and ¢ (k) , characterize the quasi-
particle transformation. At absolute zero, Bogolyubov determined the
transformation in the following way. The Hamiltonian of the system is
written in the new representation with all creation operators to the left.

No quadrilinear terms are retained and the resulting truncated Hamiltonian
is diagonalized, i.e. forced to have the form of Eq. (2.1). This procedure
is equivalent to the BCS variational calculation of the ground-state energy.
At finite temperatures, the thermodynamic potential is minimized instead
(as discussed, for example, in Reference 6). As a result, the theory is

essentially determined by the following coupled equations:
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1 Clk*) 1
ral 2 - < 71 1| | 11 1t 1 A T
Cik) =- 5 Z (k -k v k'-k') tanh Zpb\k) ,

1t E(k') ~

< ~

~

(2.6)
E(k) = [e(k) ~p]l +Z (kk' [T |kk') if(k")
k' o~ ~ o~
! 1 2
L -2 (k)] vk |7}
(2.7)
The function C 1is defined as
Clk) = £ (k-k|v|k -K)u(K)vk) [1-26®k)], (2.8
k77 - ~ - ~ ~
where
2 2
E(k) = \/&, (k)+ | C(x) | (2.9)
and
f(k) = 1 (2.10)
<l 7 BB ‘

The symbol pu stands for the chemical potential and € (k) for the unperturbed

single-particle energy. For a spherically symmetric Fermi surface €
depends only on the magnitude k = {k ] . The matrix elements of the

i H
two-body potential are (k ; k > l v Il,fl 152 ) ; the forward scattering of the

quasiparticles, which appears in the expression for their energy in Eq. (2.7},

is
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Kk v kK J-&k'|v |kl kh+(k-k'|v|k-Kk ).

~ o~ ~ o~ ~

—

(kx'|v |kk')=

(2.11)
We also note
Ck) = | C(k) | ol (2.12)
where ¢(k) was defined in Eq. (2.5), and
ety
tan 2y (k) = - l—= (2.13)
- £ ()

In this brief resume of the theory, we have indicated explicitly the
possible dependence of the properties of an excitation on its vector mormentum,
in particular, on its direction measured with respect to an arbitrary axis A

i

herczforth called the '"quantization' axis. [The original BCS theory of
superconductivity for a spherically-symmetric Fermi surface corresponds
to the special case of isotropic propesiies. | The possibility of this anisotropy
stems directly from the lack of invariance of the truncated Hamiltonian
under an arbitrary rotation, which in turn arises from the direction
dependence of the excitation energies in Eq. (2.1}). This absence of
rotational symmetry is due to the truncation process, since the original
many-particle Hamiltonian describing the liquid is certainly invariant

under arbitrary rotations. {It should be noted that the quasi-particle
transformation of the original Hamiltonian leads to a new Hamiltonian

that is still rotation-invariant. This is true even for the angular-dependent

solutions, since Eq. (2.3), the requirement that the transformation be

canonical, is satisfied.)
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Despite the fact that the model Hamiltonian is not invariant under
arbitrary rotations, there are physical situations to which the solutions
correspond. For example, at absolute zero, the ground state corresponds
to a fiuid with a preferred direction common to the whole sample and
determined by the walls of the container. In this case, the arbitrarily small
interactions with the walls (which are not usually included in the original
rotationally invariant Hamiltonian) play a crucial role just as in the formation
of a crystal. Other cases in which the walls serve to establish preferred
directions are quasi-equilibrium situations corresponding to macroscopic
fluid flow, discussed more fuliy in the next sections.

To arrive at a better understanding of the quasi-particle model with
angular-dependent solutions, we recall that the quantity Ctk’) determines
the pair-correlation function., The pair-correlation function in this type

of theory describes short-range order, with a correlation length of order

. . . -1 . s
ﬁc ‘hVF (where vp s the Fermi velocity and BC is the transition
temperature). In addition, the particle density is uniform and isotropic,
whereas the correlation function is angular-dependent. In other words,

we are describing here an anisotropic liquid.

The correlation length in the BCS theory is rather large compared
with atomic spacings. For example, for I—Ie3 , for which the transition
temperature is predicted to be of the order of 0.07° K, the correlation
length is about 100 A. For equilibrium at a nonzero temperature, this
implies the formation of a loose domain structure with a domain size no
smaller than the correlation length. The existence of a domain structure
for this system was suggested by Anderson et al. 7 When the pair-correlation
function is anisotropic, each domain has a preferred axis and, in first

approximation, these domains are randomly oriented.
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The existence of domains is inferred from the following energetic
considerations. Particles in the liquid interact strongly only if they are
within a correlation length of one another. Therefore the division of a
domain in two has associated with it an increase in the total energy of the
system which is proportional to the correlation length times the surface
area in conltact. Thus a negligible change in the total energy of the sample
is required for the sample to break up into a large number of domains. At
a nonzero temperature the number of domains into which the fluid is sub-
divided is determined by the condition that the formation energy of a domain
is of the order of kT. As a consequence, at absolute zero, there is just a
single domain, as was previously remarked. On the other hand, as the
transition temperature is approached from below, the number of domains
increases rapidly, since the correlation energy approaches zero. For
quasi-equilibrium situations corresponding to fluid flow, these energetic

considerations must be extended; this is done in the following sections.

III. GENERAL FORMULAE FOR THE INERTIAL PROPERTIES
¥ OF A SUPERFLUID

We now discuss the superfluid properties of the system in a quantitative
way, using the effective masses for uniform translation and rotation. Our
discussion is motivated by Landau's discussion of the superfluidity of liquid
He II. 12 For the special case of spherically symmetric solutions, Bardeen1
and Khalatnikov and Abrikos ov14 have already discussed the relation between
the BCS theory and the two-fluid model. These authors have calculated the
density of normal electrons, which is simply proportional to our effective
mass for flow. In this section we review the general statistical formulae
for the inertial parameters. The explicit calculation of the effective mass

for flow and the moment of inertia is discussed separately in succeeding

sections.
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1. Eifective Mass for Flow

We consider the uniform flow of the fluid down an infinite channel.
if v 1is the mean drift velocity of the excitations and if <P> is the mean

total momentum per unit volume, then the effective mass for flow is defined

by the equation

<L-°> = ‘Mf (v} v. (3.1)

~

The velocity v is, by definition, the velocity (with respect to the laboratory
system} of the reference frame in which the quasi-particle distribution
function is that for a fiuid at rest, i.e. Eq. (2.10) for this problem. Unless

stated otherwise, the effective mass for flow is that obtained in the limit of

zero velocity,

9 P {v)
M0) = T (3.2)
: 9 v
v =0
We ¢onvenientty define a superfluid as a system with Mf(O) < nm, where

n is the density and mm the particie mass. This definition of a superfluid

emphasizes the contrast with a classical fluid with respect to a liquid's

ability to transfer momentum. We note that Landau's normal density is

just p - = Mi‘ (0) /m.
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According to the general principles of statistical mechanics, the

mean momentum per unit volume is

Tr[Pecﬁ(H:HNzguz) ]

<£’> = (3.3)

Tr[ e PEH - BN =P vy

~

The symbol Tr [ - ¢ - ] indicates the trace operation appropriate to the
grand canonical ensemble, and H, N, and 13 are the operators for the
Hamiltonian, the number of particles, and momentum density, respectively.
Carrying out the differentiation indicated in Eqg. {3.2}, using the fact

P commutes with H - pN, and that <P> is 0 for v =0, we obtain the

formula for the effective mass for flow:

Mio) =p (& 9°) . (3.4

A . . . .
where v = v /v . The statistical average is carried out in the rest
frame {v = 0). We emphasize once more that this is just Landau's

definition of the normal density.

2. Moment of Inertia

We now consider a cylindrical container of the fluid rotating with
angular velocity w about its axis of symmetry 6. I J, is the operator

for the total angular momentum of the system, then the moment of inertia is

defined by the relation



13- UCRL-9223

We discuss only the limiting value

100} - ‘58‘{5 (L 5) (3.6)
w=0

By applying the same statistical equilibrium discussion used above for M.,

the formula for the moment of inertia is found to be

1) = p (- ). (3.7)

Again, the statistical average is carried out. This result is given by Blatt,

Butler, and Schafroth. 15

IV, EFFECTIVE MASS FOR FLOW

The above formulae, Eqgs. (3.2) and (3.7), show how Mf(O) and I (0)
are related to the statistical average of (P . /X\)Z and (J~ :o})z The evaluation
of these averages is carried out in the quasi-particle repre.sentation. This
is exactly the procedure followed in a recent discussion of the morﬁent
of inertia for the low-density theory of liquid He4 . Lo

In order to evaluate Eq. (3.4} for Mf (0), we need the expression for

the momenturm operator in the quasi-particie representation
- s (o ¥ g1
B= 2 koo g B (4.1)

2
We next write the average of (P - )7 as

(@ §>Z>~—-kz]é LD 2)((0.1; @ ) —<ﬁg B )) ((apeary - (6L Bb&)
+ f (5_3)24@2 a}sa:{sab>+ <51j pbﬁ}; 5h>_z<ag a1><5kﬁk>)
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T

Since the statistical averages of a. ap BkT ﬁk , and their squares are

all just f(k), the first line of Eq. (4.2) is zero and the second line leads to
the following equation for Mf(O):
VA -
M (0) = 2B Z (k:v)" f(k)[1-£(k)]. (4.3)
Kk ~
As remarked previously, this is essentially Landau's expression for the
1

normal density. 2 This formula shows explicitly how the excitation
spectrum, through the statistical factor f(k)determines the effective mass
for flow.

For a spherically symmetric energy gap, C(k) = A, corresponding

to the "excitation spectrum"

2 .2 0\ 2
kK -k \ ,

E (k) = F + oAt (4.4)

\ '.,_\\ 2 m
Eq. (4.3) becomes
M (0) o BE
L - 2 [ dE r e (4.5)
n m A /Ez_Az (P 1 1)

The most important contributions of the integrand come from the neighborhood

of the Fermi surface where E = A. It is convenient to rewrite this equation

as
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M, (0} 0 ) SN

X +A N 1)2

nm O x2+2)\x

—
¢

(4.6)

where N =B A(B). It is now easy to establish the following asymptotic
iimits of this integral, corresponding to the limits T = 0 (A ~» AO)

and T»TC(A~>O):

v 2w e")‘ A > o (T»O,A—»AO) (4.7a)
Mo
nm
§ 1 A—=20 {T—»TC VARSI N (4.7b)

A more detfailed discussion of Mf at intermediate temperature is given by
Khalatnikov and Abrikosov. 14 As T decreases from TC , Mf decreases
(lineariy at first) to zero, vanishing exponentiaily as absolute zero is
approached. If the energy gap is set egual to zero for all temperatures,
the case of the ideal gas is recovered. From Eg. (4.7b) we see that the
effective mass for the flow of an ideal gas is the true mass.

For asymmetric solutions, the anguliar-dependent factor (k - Q)Z in
Eg. (4.3} 1is now important., We introduce the spherical polar coordinates
(k, &, ¢) for the quasi~particle momentum k, with the preferred direction
A of the domain under consideration as quantization axis, and the angle 7

A N . . ;
batween n and v. We assume here that the excitation spectrum has

cylindrical symmetry about i : E = E (k, 6); and, for simplicity, that



-16 -

C = C(6). Inthis case, Eq. (4.5) must be replaced by
M._(0) 1
f = 2B [ d (cos 6) % (cos2 T <:os2 6 + % sin‘2 T sin2 6)
nm -1
o BE
X | dE E =
| ct6) | /2. c@) [* (ePE £ 1)2

Current applications

and thus

to liquid He3 make use of the form

(0 Y, (6, 9),

UCRL-9223

(4.9)

(4.10)

This function vanishes at several points, and the contributions to the

integrand of Eq. (49 from the neighborhood of these points are the most

important ones.

As a result, M

f

does not vanish as rapaidly as

as it does for a spherically symmetric gap.

T-0,

We now turn our attention to the question of the orientation of the

preferred axis A with respect to the flow direction /\>

periment.

Equation (4.9) may be rewritten

M,(0)

nm

CoOs

. 2
TK1+s1n ’TKZ,

in an actual ex-

(4.11)



“17- UCRL-9223

where {x = cos 6)

; 2
Kl = [ ax x” F(x), (4.12a)
-1
1 2
K, = 5 ] dx (1 - x7) F(x), (4.12Dh)
-1
and
0 8E
F(x)=3p [ dE E °-
G (%) | \/EZ e [P PE 4yt
{4.12¢)

The mass for flow, and therefore the total energy, is a minimum for
7=0 and 7, or T = w/2 , depending on whether KZ > Kl or Kl > K2

holds,

In the special case, Kl = K‘2 , the effective mmss is independent of
7 and all directions of the preferred axes are equally probable, energetically.
In this improbable case (K1 = K2 ), the fluid would maintain its domain
structure although the orientation of the various domain axes would be
essentially uncorrelated. In the more likely situation, with K, /‘! KZ ,

the preferred axes and the flow direction are, on the average, either
perpendicular (KZ >K, ) or parallel (K1 < KZ ). (There is no difference
between 7 =0 and 7= 7). There is, of course, a statistical distribution

of the directions about these average values. Which of the two directions is
most probable depends on the relative magnitude of K’1 and KZ' It is

difficult to make a general conclusion on this point without obtaining more

complete solutions to the basic equations (Egs. (2.6) and (2.7) ).
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The above question can, of course, be discussed in the approximation

6,17 As T — 0, the different energy gaps Alm for the

of Eq. (4.10).
various mm values are generally distinct, and the lowest energy is obtained
with the largest energy gap. The integrals K1 and K2 can then be
evaluated for this value of m and the parallel and perpendicular directions
distinguished. For example, the solution that give the lowest energy for
£=1 is C:All Y11 ., and a simple calculation gives Kl >K2 . This
means that the preferred direction in the fluid is perpendicular to the flow
direction in this case. As the temperature is increased, the filuid breaks up

into domains, and there are Boltzmann distributions both for ‘the domain direcricr:

and for the various solutions characterized by the different m values.

V. MOMENT OF INERTIA

Before evaluating Eq. (3.7) for the moment of inertia, we recall that,
in the derivation of this equation, it is assumed that (H - wN) and ;I, . /cg
commute. Since J- © is the projection of the total angular momentum
along the axis of rotation, it follows that the operator H - pN must be
invariant . under rotations about @ . This condition is fulfiiled for quasi-
particles whose excitation energy does not depend on ¢ , where k, 6, and
¢ are the spherical coordinates of the quasi-particle momentum k with

~

:@ as polar axis. This property is possessed by the approximate solutions

to Eq. (2.6) given in Eq. (4.10), which are valid just below the transition
temperature. There is a wider class of functions that vary as elmq) and
which, therefore, correspond to an axially symmetric model Hamiltonian.

Sirice little is known about the general properties of the solutions to Egs.

{2.6) and (2.7), however, we cannot exclude even more general solutions,
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In any case, the calculation of the moment of inertia in this section is
confined to axially symmetric solutions for which the general formulae,
Eq. (3.7), is valid. This corresponds to the physical situation in which
there is a single preferred direction in the fluid parallel to the axis of

rotation.

We now evaluate Eq. (3.7) for the moment of inertia following the method
recently used for the low-density theory of liquid He4. 16 The operator
for the projection of the total angular momentum along the rotation axis
is, in the notation of second quantization,

J- (5.1)

ey

kk' ko “k'o

= Z Z L
kk'o

We ignore the negligible contribution of the intrinsic spin of the particles.

The symbol L stands for the projection of the orbital angular momentum
of one particle along 1 = ® . Its matrix elements in momentum space
-~ ~

satisfy the relations

Lo = Lk"{ K (5.2a)

Lo = Lo (5.2b)

kai = - Lﬂ‘kki H (SZC)
and

Ly = Do O e %8, 0 -5, (5.3a)

Ly = 0. (5.3b)

~
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Equations (5.2a), (5.2b), and (5.2c) follow from the requirements of
hermiticity, inversion invariance, and time-reversal invariance. The
last relation, Eq. (5.3), expresses the property of L as the generator
of infinitesimal rotations about :rE Upon transformation to the quasi-

particle representation by direct substitution of Eq. (2.1} ,Eq. (5.1)

becomes

3-8 =5 Loduld) u k) +vi) v & ] (e e + B B
kk' ~ ~ ~ ~ ~ ~

(5.4)

We note that J - n involves only ""diagonal operators," i.e.,

~

operators involving the same number of creation and destruction operators.
That no other operators occur {such as products of two creation or two
destruction operators) is a direct consequence of the axial symmetry of

the gquasi-particle transformation. Another consequence of this symmetry
is

A
J - n 0 > =0,

~ ~

where 0 > is the ground-state or quasi-particle vacuum. Furthermore,

the expedatim value or the ensemble average of J - f1 is always zero,

~

since it involves the terms in Eq. (5.4) for which k = k' and L’wk' = 0,

The square of J. N which appears in Eq. (3.7) is

~

vk kl‘ Lkg kzn [u(lfl )uﬂp(li,li )+ V(kl) V“(kln )]

s ; P . ' + ’ + +
X Luliyu (") +vlisy) vl D] (o oy By By Moy g v TP Byr )

~ ~1 =
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In the averaging of this expression, the terms kl = kl' and kZ = kZ'
do not occur because the corresponding matrix elements vanish. The only

nonzero terms are those involving four a or four B operators

. sk >k 2
QJ' ﬁ)&> T Lpge Ly w09 u (@) + v(k) v |

(5.5)

o (o) o (o a0 0o ) |

According to Eq. (5.3), the only nonzero terms in this equation are for
k and k' differing only in their azimuthal angles ¢ and ¢' . Since the
quasi-particle transformation does not depend on the azimuthal angle, the
u's and v's drop out complet‘ely [when Eq. (2.3) is used] and all the

statistical factors are the same:

<<g-§)2> =2 T 1)1 -] Lig, Ly
k k' ~ ~ ~ o~ o~

or, using closure,

<(g-§)2> = 2 Z f(k)[1 -f(k)] (L‘?‘)kk . (5.6)
k ~ ~ ~—~

For the diagonal matrix element of L2 appropriate to a cylindrical

container, we have

2 1 A2 2. 2
(LA = 7 kx®)® (" +y° ),
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where

<x2+y2> = % J d3r(x2+y2).

The moment of inertia is therefore

1{0) = <x2+y2> 28 = -;— (EXE)Zf(E) [1-£(k)] . (5.7)

—
>
3]

For a spherically symmetric gap the angular average of 5 (kXn)

is equal to the angular average of (k - /\?)Z , which means

~

M (0)
T E— (5.8)

0 mn

where IO is the rigid-body moment of inertia. For an ideal gas, therefore,

we have I1(0) = 1

0
This result for the spherically symmetric case has been obtained
17-18
previously by more tedious methods. The statistical approach

employed here is more attractive because it emphasizes the role of the
energy spectrum of the system. It is particularly easy to apply to quasi-
particle models, which encompass a large class of approximations to the
many-body problem.

For the asymmetric case [E = E(k, 6)] , Eq. (5.7) may-be trans-

formed to

. = K, , (5.9)

where KZ was defined by Eqs. (4.12) and (4.13). This result is easily
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understood by recaliing that, for the case considered in this section, the
flow velocity is always perpendicular to the quantization axis. Hence we
expect that Eq. (5.8), originally written for the spherically symmetric case,
should now be valid when we use Eq. (4.11) for Mf (0)/nm with 7 = 1T/Z.

It must be emphasized that the results of this paper are based on
the quasiparticle approximation and that the interaction between quasiparticles
has been ignored. These interactions may be important for the calculation
of the moment of inertia, 1 but the investigation of their effect has not yet
been completed. Similarly, the problem of viscosity has not been discussed.
However, we do expect the viscosity to vanish at low temperatures in the
limit of small flow velocities. This follows from the fact that in this limit
only a very limited class of excitations are possible in view of the modified
energy spectrum in the superfluid state. In any case the viscosity should be
drastically reduced below the viscosity in the normal fluid which, in the
limit T - 0, varies as Tm2 . 19
The authors have been helped by conversations with numerous

colleagues and owe special thanks to Dr. P. W. Anderson and Dr. V.J. Emery

for their comments.
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