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ABSTRACT

The nonspherically symmetric solutions to the Bardeen-Cooper-

Schrieffer theory are given a physical interpretation in terms of an

anisotropic fluid model. These solutions have been used previously to

predict a phase transition in liquid by He
3

by Emery and Sessler and

Anderson, Morel, Brueckner, and Soda. An investigation of the flow

properties of such systems is made that involves the calculation of the

effective mass for flow in a straight channel and the moment of inertia of

a cylindrical container of the liquid. The angular ~·dependent energy-gap

characteristic of this type of theory leads to an effective mass for flow

that depends on the angle between the axis of symmetry of the fluid and the

direction of flow. It also vanishes as the absolute temperature tends to

zero, although not as rapidly as for a spherically symmetric gap. The

moment of inertia, when the symmetry direction for the fluid and the

rotation axis are the same, is simply related to the mass for flow.
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L INTRODUCTION

The work of Bardeen, Cooper, and Schrieffer (BCS) provides a

1
remarkably successful solution to the problem of superconductivity"

The basic feature in their approach is tb.e strong correlation between

conduction electrons with equal and opposite momentum and spin. This

type of correlation probably pla.ys an essential role in other many-fermion

systems. For example, Van Hove has shown how the usual perturbation

theory for an imperfect Fermi gas breaks down under just those conditions

when the BCS approach is valid. 2

Direct extensions of the BCS theory have already been made to finite

3 1" "d H 3 4,5 .nuclei, infinite nuclear matter, and.lqul e. Of specia.l interest

is the prediction that liquid He
3

undergoes a phase transition at very low

temperatures to a highly correlated phase similar to the phase c .c-

f
6,7

observed or superc onductors. The predicted transition temperature

is of the order of 0.07
0

K, 1<>L se far no anomalous effects have been

8
observed just ab.,ve this temperature.

>;cSupported in part by the U. S. Atomic Energy Commission, and in part by

the National Science Foundation.

tW.ork performed while a visitor at the Lawrence Radiation Laboratory.
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The theoretical description of this phase transition differs from that

for the electrons in a superconductor in the following important respect o

If the Fermi surface in a metal is considered to be spherically symmetric,

then the correlation function in the original BCS theory is spherically

syulmetric. For liquid He
3

, on the other hand, the correlation function IS

not thought to be spherically symmetric ~This is a direct consequence of the

fact that the interaction at the Fermi surface for two helium atoms in a

relative S state is repulsive.) The possible existence of such solutions III

the BCS theory was first noted by Anderson. 9 The anisotropic correlations

contained in these solutions raise interesting questions of interpretation,

particularly for liquid He
3

, where there is no long-range order.

It is the purpose of this paper to discus s the physical significance of

these anisotropic solutions in the BCS theory. We often consider liquid He
3

as a specific example, although much of the discussion is more general.

The interpretation is mainly- given in term s of two quantities, the effective

mass for flow through a straight channel, and the moment of inertia for the

rotation of a cylindrical container of the fluid. These quantities determine

the ability of the fluid to transport linear and angular momentum.

Before the effective masses for flow and rotation are calculated In

Sections IV and V, Bogolyubov's "quasi-particle" form of the BCS theory

is reyiewed in Section II. The physical interpretation of the theory in terms

of an anisotropic fluid is also given in this section. In Section III the general

formulae for the inertial parameters are reviewed.
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II. QUASI-PARTICLE THEOR Y OF SUPERF LUID FERMIONS SYSTEMS

Bogolyubov has emphasized the quasi-particle nature of the BCS

theory.5 Bya quasi-particle approximation, we mean that the actual

Hamiltonian for this problem

form

truncated and transformed into the

(2.1)

The operators a.t(t and I3t (uk and 13k ) create (destroy) the excitations

of the many-partie Ie system. The se excitations have definite energy E(k)

and momentum k. The quasi-particle operators obey the same anti-

commutation rules as the corresponding operators for the actual particles

making up the system. (In order to avoid introducing a spin lab'cd, we use

two sets of quasi-particle operators.) The linear transformation between

particle operators and quasi-particle operators is

~
... u(k) a k + v(~ a t_

k
_

rJ

(2. 2)

13 k
'=' u(k) a_ k _ + v(k) at

,.v k+

or

.'-
v(~) 13~u(k)

-,'
a k + - uk +

(2.2a)

':~
u ta

k
_ _. u(k) 13 -k

v{k)
-k
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The operators atka (aka) create free -Darticle states of momentum k

and "spin" projection a::: ± 1.10 The anticommutation relations are

preserved for

2

I u(~) I + Iv(~)
2
I ::: 1 0 (2.3)

It has als 0 been as sumed that we have u( ~k) ::: u(k) and v( -k) ::: v (k) .

According to Eq. (2.3) we may write the two complex functions as

[ u~) ::: cos X (k) e
iT) (k)

(2.4)

l v (k) ::: sin X (~)
is (k)

e

It can be shown that all physical observables depend only on the difference

in phase,

<l> (k) ::: S (k) ~ T) (k) (2.5)

Hence the two real functions, X (k) and <l> (k) , characterize the quasi-

particle transformation. At absolute zero, Bogolyubov determined the

transformation in the following way. The Hamiltonian of the system is

written in the new representation with all creation operators to the left.

No quadrilinear terms are retained and the resulting truncated Hamiltonian

is diagonalized, i. e. forced to have the form of Eq. (2.1). This procedure

is equivalent to the BCS variational calculation of the ground-state energy.

At finite temperature s, the therm odynamic potential is minimized instead

(as discussed, for example, in Reference 6). As a result, the theory is

es sentially determined by the following coupled equations:
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tanh
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(2.6 )

£(~) = [E(k) - f.L] + ~I (k k ' Iv I ~ ~l ) U (k I)

+ [1 _ Z£ (k l
)] Iv(k' ) ,2 }

The function C 1S defined as

(2.7)

'"
C(~) =]:; (k - k Iv I~' - k l

) u"'(k') v(t l
) [1 - Zf (t' ) ] (2.8)

k '-
where

and

E(k) =

f(k)
1

f3E(k) + 1e _

(2.9)

(2.10)

The symbol fJ. stands for the chemical potential and E (k) for the unperturbed

single -particle energy_ For a spherically symmetric Fermi surface E

depends only on the magnitude k = I~ I. The matrix elements of the
J I

two-body potential are (~1 ~ 2 Iv l!s 1 !s 2 ); the forward scattering of the

guasiparticles, which appears in the expression for their energy in Eg. (2.7),

is
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Os 1'1 I v l!s !sl) =

We also note

(k k l

~ ~

(2.11)

C(k) = (2.12 )

where <\>(k) was defined in Eqo ~2.5), and

tan 2X (k) =
Icog I
S (k)

(2.13 )

In this brief resume of the theory, we have ind-icated explicitly the

possible dependence of the properties of an excitation on its vector momentum,

in particular, on its direction measured with respect to an arbitrary axis fl

he~:r2f cnt11 called the "quantization II axis, [The original BCS theory of

superconductivity for a sphericaUy- symmetric Fermi surface corresponds

to the special case of isotropic prc:p'Gj'i;;e,;.] The possibility of this anisotropy

stems directly from the lack of invariance of the truncated Hamiltonian

under an arbitrary rotation, which in turn arises from the direction

dependence of the excitation energies in Eq. (2.1). This absence of

rotational symmetry is due to the truncation proce s s, since the original

many-particle Hamiltonian describing thE liquid is certainly invariant

under arbitrary rotations. (It should be noted that the quasi-particle

transformation of the original Hamiltonian leads to a new Hamiltonian

that is still rotation-invarianL This is true even for the angular-dependent

solutions, since Eq, (2.3), the requirement that the transformation be

canonical, is satisfied. )
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Despite the fact that the model Hamiltonian is not invariant under

arbitrary rotations, there are physical situations to which the solutions

correspond. For example, at absolute zero, the ground state corresponds

to a fluid with a preferred direction common to the whole sample and

determined by the walls of the container. In this case, the arbitrarily small

interactions with the walls (which are not usually included in the original

rotationally invariant Hamiltonian) playa crucial role just as in the formation

of a crystal. Other cases in which the walls serve to establish preferred

directions are quasi~equilibrium situations corresponding to macroscopic

fluid flow, discus sed more fuHy in the next sections.

To arrive at a better understanding of the quasi-paxticle model with

angular-dependent solutions, we recall that the quantity enS) determines

the pair -corre l.ation function. The pair -corre lation function in this type

of theory describes short ... range order, with a correlation length of order

f3
c

i'lv
F

(where v
F

is the Fermi velocity and f3
c

-1 is the transition

temperature). In addition, the particle density is uniform and isotropic,

whereas the corre lation function is angular -dependent. In other words,

11
we are describing here an anisotropic liquid.

The correlation length in the BCS theory is rather large compared

with atomic spacings. For example" for He
3

, for which the transition

temperature is predicted to be of the order of 0.07
0

K, the corre lation

length is about 100 1l. For equilibrium at a nonzero temperature, this

implies the formation of a loose domain structure with a domain size no

smaller than the correlation length. The existence of a domain structure

for this system was suggested by Anderson et a1. 7 When the pair-correlation

function is anisotropic, each domain has a preferred axis and, in first

appr oximation, these domains are random ly oriented.
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The existence of domains is inferred from the following energetic

considerations. Partie les in the liquid interact strongly only if they are

within a correlation length of one another. Therefore the division of a

domain in two has associated with it an increase in the total energy of the

system which is proportional to the correlation length times the surface

area in contact. Thus a negligible change in the total energy of the sample

is required for the sample to break up into a large number of domains. At

a nonzero temperature the number of domains into which the fluid is sub~

divided is determined by the condition that the formation energy of a domain

is of the order of k T, As a consequence, at absolute zero, there is just a

single domain, as was previously remarked. On the other hand, as the

transition temperature is approached from below, the number of domains

increases rapidly, since the correlation energy approaches zero. For

quasi~equilibrium situations corresponding to fluid flow, these energetic

considerations must be extended; this is done in the following sections,

III. GENERAL FORMULAE FOR THE INERTIAL PROPERTIES
'" OF A SUPERF LUID

We now discuss the superfluid properties of the system in a quantitative

way, using the effective masses for uniform translation and rotation, Our

discussion is motivated by Landau's discussion of the superfluidity of liquid

He II. 12 For the special case of spherically symmetric solutions, Bardeen 13

and Khalatnikov and Abrikosov
14

have already discussed the relation between

the BCS 'th,eory and the two-fluid modeL These authors have calculated the

density of normal electrons, which is simply proportional to our effective

mass for flow. In this section we review the general statistical forrr:mlae

for the inertial parameters. The explicit calculation of the effective mass

for flow and the moment of inertia is discussed separately in succeeding

sections.
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WI:. consider the uniform flow of the fluid down an infinite channel.

If vis the m can C.rift vel.ocity of the excitations and if (~) is the mean

total momentum per unit volume, then the effBctive mass for flow is defined

by the equation

(3.1 )

The velocity v IS., by definition,_ the velocity (with respect to the laboratory

system) of the reference frame in which the quasi~particle distribution

function is that for a fluid at rest, i. e. Eq. (2.10) for this problem. Unless

st.ated otherwise, the effective mass for flow is that obtained in the limit of

zero velocity,

(3 P (v)
(3.2)

a v

v -. a

We (onvE:nient!y define a superfluid as a system with Mf(O) < nm, where

n is the density and ill the particle mass. This definition of a superfluid

emphasizes the contrast with a classical fluid with respect to a liquid's

abi Lity to transfer ill am entUrr1.

just P n :; M f (0) 1m"

We note that Landau v s normal density is



According to the general principles of statistical mechanics, the

mean momentum per unit volume is

Tr [
~f3(H ~ f-LN ~ p. v)

P e - - J

Tr [ e ~f3(H ~ f-LN ~ P v)
(3.3)

The symbol Tr [ ... ] indicates the trace operation appropriate to the

grand canonical ensemble., and H, N, and P are the ofBrators for the

Hamiltonian, the number of particles, and momentum density, respectively.

Carrying out the differentiation indicated in Eq. (3.2), using the fact

~ commutes with H - flN, and that (~ ) is 0 for v::: 0, we obtain the

formula for the effective mass for flow:

(3.4)

where
1\
v::: '!.,/v. The statistical average is carried out in the rest

frame (~ =: 0). We emphasize once more that this is just Landau's

definition of the norma 1 density.

2. Moment of Inertia

We now consider a cyEndricaJ. container of the fluid rotating with

angular ve lac ity w about its axis of s ymmetry ~. If J is the operator
-'

for the total angular momentum of the system, then the moment of inertia is

defined by the re lation

(3.5 )
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We discuss only the limiting value
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I (O) -. (~. ~)
w=o

(.3.6)

By applying the same statistical equilibrium discussion used above for M f ,

the formula for the moment of inertia is found to be

Again., the statistical average is carried out. This result 1S given by Blatt,

15
Butler, and Schafroth.

IV. EFFECTIVE MASS FOR FLOW

The above formulae, Eqs. (3.2) and (3.7), show how Mf(O) and I (0)

are re lated to the statistical average of {P. ~)2 and ({,. '§')~ The evaluation

of these averages is carried out in the quasi-particle representation.

is exactly the procedure followed in a recent discussion of the moment

This

of inertia for the low-density theory of liquid He
4 16

In orde r to evaluate Eq. (3.4) for M
f

(0), we need the expre s sion for

the TYlomentUYD operator in the quasi-particle representation

P L ~ (uk
t 't 13 k

)- Uk - 13 k.-I

k

We next write the average of (P 9)2 as

(4.1 )

(k· ~) (k l

~ ,..., '"

13 k ) - 2 (u: uJ(I3: 13 k ) ).
,.J - - --

(4.2 )
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Since the statistical averages of uk t uk '
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and their squares are

all just f(k), the first line of Eq. (4.2) is zero and the second line leads to

the following equation for Mf(O):

2 13 :E
k

(k : -..)2 f(k) [ 1
"-'

f(k) ] (4.3)

As remarked previous ly, this is essentially Landau's expression for the

1
. 12

norma densIty. This formula shows explicitly how the excitation

spectrum, through the statistical factor f(k)determines the effective mass
'"

for flow.

For a spherically symmetric energy gap, C(k) = I:::. , corresponding

to the "excitation spectrum'l

k 2 _ k 2 \ 2
F 2

E (k) = ) + I:::. (4.4)
\ 2m
\

Eg. (4.3) becomes

Mf(O) 00
E I3 E

213 J dE
e (4.5)=

(e13E + 1)2nm I:::. / E 2 _ 2
I:::.

The most important contributions of the integrand come from the neighborhood

of the Fermi surface where E = 1:::.. It is convenient to rewrite this equation

as
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Mf{O) <Xl

A-
2 ( dx

x -+
--

nm 0 Ii x 2 -I 2A- x

UCRL-9223

(4.6 )

where A.::: (3 ~ ((3). It is now easy to establish the following asymptotic

ijmits of t.his integral, corresponding to the limits

and T - T (f:::,. - 0):
c

nm

1 A-O(T-T ,,6,.-0).
c

(4.7a)

(4.7b)

A more detailed discussion of M
f

at intermediate temperature is gIven by

Khal.atnikov and Abrikosov. 14 As T decreases from T
c

' M
f

decreases

(!inearly at first) to zero, vanishing exponentially as absolute zero is

approached. 1£ the energy gap is set equal to zero for all temperatures,

the case of the ideal gas is recovered. From Eq. (4.7b) we see that the

dfective mas s for the flow of an ideal gas is the true mas s.

For as ymmetric solutions, the angular -dependent factor Os . "2)2 in

Eg. (4.3) is now important. We intr oduce the spherical polar coordinates

(k,6,. ep) for the quasi~particle momentum t, with the preferred direction

~ of the domain under considroration as quantization axis, and the angle T

A 1\
b<:,twEt:n nand Vo We assume here that the excitation spectrum has

cylindrical symmetry about Ii : E" E (k, BY: and, for simplicity, that
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C = C(8). In this case, Eq. (4.5) must be replaced by
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nm
= 213

1

J
~1

3 2 2 1 2 2
d (cos 8) 2" (cos T cos 8 + 2" sin T sin 8)

00

x J dE
IC(8) I

E I3E
e

(4.9)

Current applications to liquid He
3

make use of the form

and thus

(4.10)

~2
(8)1 m

This function vanishes at several points, and the contributions to the

integrand of Eq. (4.9) from the neighborhood of these points are the most

important ones. As a result, M
f

does not vanish as rapaidly as T-O,

as it does for a spherically symmetric gap.

We now turn our attention to the question of the orientation of the

preferred axis {i with respect to the flow direction ¢ in an actual ex-

periment. Equation (4.9) may be rewritten

2 K . 2 K= cos T 1 + SIn T 2' (4.11)
nm
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=:

1

J
-1

2
dx x F(x) , (4.12a)

and

1
2

1

J
-1

2
dx (1 ~ x ) F (x) , (4.12b)

00

F(x)=313 J dE

IC (x) I
E

(4.12c)

The mass for £low, and therefore the total energy, is a minimum for

T ::: 0 and TI , or T =: TI/2 , depending on whether K
2

> K
1

or K
1

> K
2

holds.

In the special case, K
1

:::: K
2

' the effective rrRS s is independent of

T and all directions of the preferred axes are equally probable, energetically.

In this improbable case (K
1

= K 2 ), the fluid would maintain its domain

structure although the orientation of the various domain axe s would be

essentially uncorrelated. In the more likely situation, with K 1 1= K
2

the preferred axes and the flow direction are, on the average, either

perpendicular (K
2

> K 1 ) or parallel (K I < K
2

). (There is no difference

between T::'; 0 and T = 11). There is, of course, a statistical distribution

of the directions about these average values. Which of the two directions IS

most probable depends on the re lative magnitude of K
1

and K
2

. It is

difficult to make a general conclusion on this point without obtaining more

complete solutions to the basic equations (Eqs. (2.6) and (2.7) ).
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6.e for the
m

T -+ 0, the different energy gaps

The above question can, of course, be discussed in the approximation

of Eq, (4.10). 6,7 As

various m values are generally distinct, and the lowest energy is obtained

with the largest energy gap. The integrals K
1

and K
Z

can then be

evaluated for this value of m and the paralle 1 and perpendicular directions

distinguished. For example, the solution that give the lowest energy for

1. =1 is C = .6 11 Y 11' and a simple calculation gives K 1 > K
Z

This

means that the preferred direction in the fluid is perpendicular to the flow

direction in this case, As the temperature is increased, the fluid breaks up

into domains, and there are Boltzmann distributions boJ::hfa:t.~ domain direction::

and for the various solutions characterized by the different m value s,

V. MOMENT OF INER TIA

Before evaluating Eq. (3. 7) for the moment of inertia, we recall that,

in the derivation of this equation, it is assumed that (H ~ f.LN) and J.-Z;

commute. Since
/\

J. w is the projection of the total angular momentum
"'-'

along the axis of rotation, it follows that the operator H - f.LN must be

invariant. under rotations about .~. This condition is fulfilled for guasi-
--'

particles whose excitation energy does not depend on <p ; where k, B, and

<p are the spherical coordinates of the quasi-particle momentum k with

'0, as polar axis. This property is possessed by the approximate solutions

to Eq. (Z.6) given in Eq. (4.10), which are valid just below the transition

temperature. There is a wider class of functions that vary as e1m<p and

which, therefore, corre spond to an axially symmetric mode 1 Hamiltonian.

Since little is known about the general properties of the solutions to Eqs.

(Z.6) and (Z.7), however, we cannot exclude even more generat solutions,
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In any case, the calculation of the moment of inertia in this section is

confined to axially symmetric solutions for which the general formulae,

Eq. (3.7), is valid. This corresponds to the physical situation in which

there is a single preferred direction in the fluid parallel to the axis of

rotation.

We now evaluate Eq. (3.7) for the moment of inertia following the metho:l

recently used for the low-density theory of liquid He
4 16

The operator

for the projection of the total angular momentum along the rotation axis

is, in the notation of second quantization,

(5.1)

We ignore the negligib Ie contribution of the intrinsic spin of the partie les.

The symbol L stands for the projection of the orbital angular momentum

of one partie le along

satisfy the re lations

Its matrix elements in momentum space

(5.2a)

(5.2b)

=

and

=

(5.2c)

(5.3a)

(5.3b)
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Equations (5.2a), (5. 2b), and (5 .2c) follow froTI1 the requireTI1ents of

herTI1iticity, inver sion invariance, and tiTI1e ~reversal invariance. The

last relation, Eq. (5.3), expresses the property of L as the generator

of infinitesiTI1al rotations about~. Upon transforTI1ation to the quasi~

particle representation by direct substitution of Eq. (2.1) ,Eq. (5.1)

becoTI1es

J
;\
n = :::< ~*

U (~') +v(k) v (!sf)

(5.4)

A-

We note that J. n involves only "diagpnal operators," i. e.,

operators involving the saTI1e nUTI1ber of creation and destruction operators.

That no other operators occur (such as products of two creation or two

destruction operators) is a direct consequence of the axial symmetry of

the q uasi ~particIe transforTI1ation. Another cons eq uence of this s YTI1metry

is

J ~ 10>=0,

where '0 > is the ground-state or quasi-particle vacuum. Furthermore,

the expectatim value or the ensemble average of ~. 11 is always zero,

since it involves the terms in Eq. (5.4) for which k = k' and L
kk

, = O.

The square of J "Ii which appears in Eq. (3.7) is

(J
rv



In the averaging

-2 I -

of this expression, the terms ~~l
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= k I and k = k I
~l ~ 2 ~2

do not occur because the corresponding matrix elements vanish. The only

nonzero terms are those involving four a or four f3 operators

(5.5 )

<a1, a k ,) ) + ( ~1 ~~)(1 - (~1' ~l<') J

According to Eq. (5.3), the only nonzero terms in this equation are for

k and!s' differing only in their azimuthal angles <l> and <l> I. Since the

quasi-partie Ie transformation does not depend on the azimuthal angle, the

u l s and Vi s drop out complete ly [when Eq. (2.3) is used] and all the

statistical factors are the same:

or, using closure,

:L
kk '

f(k) [1 - f(k) ]

2
1: f(k) [I - f(k) ] (L ) kk
k

(5.6 )

For the diagonal matrix element of L
2

appropriate to a cylindrical

container, we have



where

/ 2 2)\x + y =
1
V
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J' d3 2 2r (x + y ) .

UCRL-9223

The moment of inertia is therefore

1 2
2" (kX~) f (!s) [1 - f(k)] . (5.7)

For a spherically symmetric gap the angular average of ~ (kXn)2

is equal to the angular average of (k 'V)2 which means

I( 0)

r;- =
M (0)

f

mn
(5.8)

where 1
0

is the rigid-body moment of inertia. For an ideal gas, therefore,

we have 1(0) = 1
0

,

This result for the spherically symmetric case has been obtained

17-18 , .
previous 1y by more tedious methods. The statIstIcal approach

employed here is more attractive because it emphasizes the role of the

energy spectrum of the system. It is particularly easy to apply to quasi-

particle models, which encompass a large class of approximations to the

many-body problem.

For the asymmetric case [E = E(k, 8)] , Eq. (5.7) maToe trans-

formed to

1(0)
~ = K Z ' (5.9)

where K Z was defined by Eqs. (4.12) and (4.13). This result IS easily
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understood by recalling that, for the case considered in this section, the

flow ve locity is always perpendicular to the quantization axis. Hence we

expect that Eq. (5.8), originally written for the spherically symmetric case,

should now be valid when we use Eq. (4.11) for M
f

(O)/nm with T = TI/2.

It must be emphasized that the results of this paper are based on

the quasiparticle approximation and that the interaction between quasiparticles

has been ignored. These interactions may be important for the calculation

of the moment of inertia, 17 but the inve stigation of their effect has not yet

been completed. Similarly, the problem of viscosity has not been discussed.

However, we do expect the viscosity to vanish at low temperatures in the

limit of small flow velocities. This follows from the fact that in this limit

only a very limited class of excitations are possible in view of the modified

energy spectrum in the super£luid state. In any case the viscosity should be

drastically reduced below the viscosity in the normal fluid which, in the

-2 19
limit T -.+ 0, varies as T .

The authors have been helped by conversations with numerous

colleagues and owe special thanks to Dr. P. W. Anderson and Dr. V. J. Emery

for their comments.
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