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ABSTRACT 
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The problem of the reduction of an arbitrary truth function to the 

minimal union of basic cells is discussed. The solution to this problem has 

applications to pattern recognition and logical circuit design. An algorithm 

is pres.ented that solves the problem and generates the class of minimal 

unions. It partitions an arbitrarytruth function into a well-defined set of 

subfunctions (components) in such a way,that the partition is invariant under 

all transformations that preserve the topology of the original truth function. 

It is shown that this reduction exhausts .the minimal coverings of each sub-

function and generates from these all minimal coverings of the original 

function. The theorem that "A union of cells basic to a vertex contains no 

further cells basic to that vertex" is proved and is .used in the algorithm. 

-" 
The IBM 704 program (SALOME) that performs the reduction is described 

in.the Appendix. 
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The algebra of Boolean truth functions is interesting because it is, 

roughly speaking, the algebra obeyed by logical elements in computers and 

by patterns of light and .dark dots. Abstractly, it is the algebra of the sets 

l 
of vertices of an N-dimensional Euclidean cube. Its applications derive 

from the fact that any set of Boolean truth .functions can be reduced to a 

unique class of minimal functions. The minimal property is of interest in 

the design of economical logical circuitry, and the uniqueness property, 

in the simple characterization of sets of similar patterns of light and .dark 

dots. We examine some of the general aspects of the problem of simplifying 

truth functions in order to illustrate applications to computers and to define 

a .procedure for finding the class of minimal Boolean functions. 

The definitions of the terms given below are important for. the under-

standing of what follows. They are those generally used in applications to 

logical circuitry (wher.e eli~ments· aallib~ s·o gatetdta·St~p r,eaJ:i,z,e logic:aliJ!and''.and 

11Qr.)'loper.atioUJsha;nd may differ from usages current in abstract Boolean algebra. 

,Definitions 

Boolean Variable: A symbol that can be assigned the value 0 (false) 

or the value 1 (true). 

Boolean Expression (or vertex}: An assignment, to each of a set 

of N Boolean variables, of the value 0 or the value 1 in each case. 
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(If the variables are written as XN · · ·. X 3XZXl .. and the values 

assigned .are written in.the same order 1 · • ·. 010, each Boolean .expres$ion 

. on N variables corresponds to a unique ordered N-tuple, each of whos.e 

.components is either -0 o-r 1. These may. be read as binary numbers for 

convenience. They may al$o be read .as ·the coordinates .of a .point in an 

.N-dimensional Euclidea.n space and, since each coordinate can . .take .on only 

, the value 0 or l, the set of such expressions .on .N variables .corresponds 

to the 2N vertices .of an N-dimensional cube. This correspondence explains 

the alternate term. 1ve.rtex".} 

Truth .Table: A s:et of vertices on N variables .whose ; minimal 

. covering is .demanded. (For definiteness, we assume that we are .referring, 

in what. follows,. to a particular problem of a :truth table on N variables 

Don't Care Vertex:: A ve.rtex that may be included in the .covering _of 

the truth table where convenient. (The set of s.uch vertices is prescribed 

at the same time as the truth table. Together they specify, the problem to 

be solved. Every minimal covering _covers the entire truth table .. Where a 

more compact covering can be achieved by allowing one or more "don 1 t care 11 

vertices to be .included, they are also covered~ ) We .call the .table of 1\rue n 

vertices the short truth l table, and.the combined -table of 'It rue 11 and "doni t 

care VI vertices :the long truth table. 

Cell: If each of N Boolean -variables may be either affirmed or 

negated, then .2N distinct Boolean .expressions may_ be constructed from 

them. ·If N-k of the N variables are kept fixed (that is, either specifically 

. affirmed or specifically negated) and the other k are allowed to vary at 

will,. then.2k -distinct Boolean expressions can be generated. Whenever 

N-k variables are specified to be kept fixed, the set of 2k Boolean.expressions 

generated ;byvarying the remaining k is called a cell (of dimension. k). 

• 
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Complete CeU: A cell is complete if and only if each Boolean ex-

pression it can generate is on the .long truth table. 

Basic Cell (or Maximal Cell): •A cell, C, is basic to the covering 

,of a given .vertex, V, if and only if C (l) contains V, (2) is compete, and 

(3) is not a proper subcell of any, other complete cell. (It follows immediately 

that if C is basic to one vertex, it is basic to all vertices contained in it. ) 

Covering: A set of complete cells is a covering of a given truth table 

T if and only if each vertex of T is contained in at least one cell of the set. 

Irredundant covering: A covering is irredundant if and only if no 

proper subset of it is also a covering. 

Minimal Covering: A covering is minimal (with respect to some 

given crite.rion.) if its norm (with respe.ct to that criterion} is less than, or 

equal to, the norm of any other covering. 

In .logical circuit design, the norm usually adopted is the .number of 

. diodes :requir·ed for the instrumentation .of the logic. This can be expressed 

as a weighted sum of the number of cells and their dimensions. If K. is 
l 

the dimension of the ith cell, and .m is the number of cells; the norm for 

the covering is expressed as 

m 
am+ b L 

i.=l 

(N ~ K.), .for a,b >0, 
1 

where the particular values of a and b depend on the kind of logic used.. 

The.p1·ocedure .. outlined here gives the minimum circuitry only for two-stage 

logic of.the N-input, !=output type .. We are concerned only with norms of 

this type. The s.olution of the general multistage N-input, M-output problem 

has been examined, for example, by Prather. 
2 

His s.olution depends on the 

prior s.olution of the problem we are considering. 
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Adjacent Vertex: A vertex,. W, is .adjacent to another vertex, V, if 

and only -if there .is exactly, one Boolean variable, the i_th, s.uch that the 

.components V. and .W. c.orresp.onding to it differ, i.e .. V. -'- W ~ 
l. 1 . . . . 1-r- i 

Geometrically, this corresponds to the situation in which V and W 

are connected .by_ an edge of the N cube,. hence the name adjacent. 

Essential Cell: A cell, E, is .essential to the covering of the vertex, 

V, if and only_ if E (U contains .every"true or don'tt. care vertex.that is 

adjacent to V, and (2.) is .complete. If we relax conditipn (2), ,this .definition 

becomes that of cell L given in .Part II .. We prove there .that L .(and hence 

every essential cell) has the property: All c.omplete cells c.overing V are 

s.ubsets .of L ... If L is itself complete, it is .. called essential. 

If V has an essential cell E, then everyother cell covering V has a 

higher norm than .E. ·. We see this .. by noting ,that all other c.omplete ce.lls 

covering. V are of smaller dimension,. ki' because they are s.ubsets .of. E. 

Thus if a vertex pas an ~essential cell, E, . every, minimal covering .oLthat 

vertex .must contain.•E, 
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The first step in the reduction of the truth table is the inspection 

of each vertex of the short truth table, T, to determine whether or not it 

has an essential cell, E. If it has, we delete all the vertices covered byE 

from T, and examine the remaining vertices for essential cells. No cells 

of smaller norm are ignored by this procedure, because we know that 

essential ce.Us, where they exist, are the cells of smallest norm covering 

the .vertex in. question. If a vertex has no essential cell of its .own, it may 

, still be covered by a cell essential to some other vertex. 

After we have deleted all possible essential cells from T, we are left 

with a residue, R, of vertices not contained in any cell that is essential to 

a vertex .. We now have the unique minimal covering of the portion of T 

apart from R. Supposing that R is .not empty, as in general it is not, we 

then .find a whole .class of minimal coverings of R, each of which, when 

united with the essential cells for T, forms a minimal covering of T. Further, 

each such .minimal covering is composed entirely of basic cells, since any 

. nonbasic cell in a covering is always replaceable by a basic cell containing 

it, and the c.overing thus constructed is of smaller norm than the original. 

The theory developed so far is illustrated in the following example 

in pattern recognition. {Exploitation ofthis approach, incidentally, has 

been meager). Suppose that we have a 2 by 2 grid .on which each of the four 

points can be either dark ( ''of£ 11 or 0) or light (non n or 1 ). There are exactly 

2
4 = 16 P?ssible distinct configurations on such a grid. We can characterize, 

for example, that s.ubset comprising all the patterns possible on the "main 

diagonal'' of the grid. The patterns are: 

GO 
00 

00 
08 

00 
00 

80 
08 
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Numbering the positions l . 2 we: can symbolize ~he four patterns by 

3 4. 

1000, 0001, 0000, 1001. · These no'w represent the vertices .on.a.four

dimensional cube,. and form a truth table which we must .now cover .. The 

cell of dimension 2 $pecified by fixingbits"2 and 3 at 0 and allowing bits 

Jl and 4 to range at will, is essential to the covering of the first vertex of the 

table (in fact,. to all the.vertices). The set of patterns .on the main diagonal 

can thus be characterized by
1
the notation -00- (where - means that either 

zero or one may,be substituted at will). For c.onvenience we may adopt the 

notation.of Harris, 
3 

in which a "2" replaces the symbol - and the essential 

ce.ll 2.002 (or -00-) stands for the set of vertices generated by_ all possible 

-s.ubstitutions. of 0 a.nd -1. into the arguments where .n2n 1s appear .. ln.this 

case, 2002 stands for the set of vertices. (1000, 0001, 0000, liOOR). If, for 

c.ompactness,. we. read.these binary_ expressions as decimal numbers., -then 

we have"the set (8, 1, 0, 9} for our truth.table. Its minim(ll covering.is 2002. 

A short example and a detailed .calculation of minimization of logical 

circuitry. are given .. below. 

If some computer circuitry had to examine two input bits and give as 

output the logical 11or 11 of thes.e .bits, the required output for all pos-sible _input 

combinations would, be as ·follows: 

. INPUT COMBIN:'ATIONS 

Vertex .Label * Input X Input y Output. = X "or 11 Y 

0 0 0 0 

1 0 1 1 

2 l 0 - l 

3 l 1 .1 

* The label for each input combination is its,numerical valuer ead.as a binary 

number,.e. g.," for the case input X=l, input Y = 0, the label is (10) 2 = 2. 

loii 
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. The table prescribes that vertices 1, 2, 3 be covered and that vertex 

0 be left uncovered. (We cover those and only those vertices or input 

combinations whose corresponding output is 111 11.) 

Representing the truth table geometrically, we· have 

A 
0, l=l ~ l, 1=3 

0, 0=0 GJ-0Bl,0=2 

The encircled number gives the 

.output prescribed for that vertex. 

Cell A is the cell of dimension 1 represented by 21 

Cell B is the cell of dimension 1 represented by 12 

Note that cell A is essential to vertex l 

B is .essential to vertex 2 

Of the vertices adjacent to vertex l, one is on the long list. A contains 

this vertex and is complete, hence A is .essential to vertex 1. Neither 

cell A nor cell B is essential to vertex 3. (In fact, vertex 3 .has no 

essential cell, because no complete ceU containing vertex 3 also contains all 

vertices adjacent to vertex 3 that are on the long list. The long list is 

identical with the short list here .. In this cas.e vertices l, 2 are adjacent to 

vertex 3 and no complete ceJl contains ve'1rtices 1, 2, 3, implying immediately 

that vertex 3 has no essential celL} 

Together, A and .B cover all of T, hence R is .e.mpty .and our 

solution is .complete .and unique. Notice, also, that cells A and B are both 

l cubes {cubes of dimension 1) and that each contains one "'2" in its repre-

sentation (A= 21, B = 12.). In general, the representation of a k cube has 

k n2 ui 's and N-k fixed .arguments. 
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From this example, which gave a unique minimal covering, we pro

ceed to the detailed .calculation in a problem in which there is a class of 

minimal coverings. 4 There is a logical problem for s.ix inputs (N = 6) 

which leads to the following truth table (Table I). (Each vertex is again 

named by the numerical equivalent of its binary representations.) 

Our prescription requires that we examine each vertex of T to see 

whether or not it has an essential cell. 

The first vertex of T is 4 = 000100. 

The vertices adjacent to 4 are: 5 = 000101 

6 = 000110 

0 = 000000 

12 = 001100 

20 010100 

36 = 100100 

Each of these differs in exactly one bit from the representation of 

vertexA in accordance with our definition .of "adjacent. '' In addition, we 

note that of thes.e vertices: 

. 6 is on the true list and differs from 

12 is .on the true list and differs from 

36 is .on.the true Jist and differs from 

5 is on the don 1 t-care list and differs from 

4 in .bit 2; 

4 in .bit 4; 

4 in.bit 6; 

4 in bit l. 

The other adjacent vertices, 0 and 20 are on neither list. 

Ac.cordingly, we construct the s.mallest cell containing .all the vertices 

4, 6, 12, 36 and 5. Vertex 4 has an essential cell if and only if this cell (our 

L or PELL, discussed in Part II; PELL stands for Potential Essential 

deLL) is complete. 



True (Short List) 

4=000100 

6=000110 

12 = Q011l<ll0 

14 = 001110 

33 = 100001 

34 = 100010 

36 = 100100 

. 39 = 100111 

41 = 101001 

. 42 = 101010 

44=101100 

47 = 101111 

50 = 110010 

54= 110110 

57= 111001 

58= 111010 

61 = 111101 

62 = 111110 
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Table .I 

Long list 
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Don't Care 

1 = 000001 

3=000011 

5 = 000101 

7 = 000111 

9 = 001001 

11 = 001011 

13 = 001101 

15=001111 

l7 = 010001 

19,= 010011 

21 = 010101 

22 = 010110 

23=010111 

24 = 011000 

.25=011001 

26 = 011010 

27 = 011011 

28=011100 

29 = 011101 

30=011110 

31 = 011111 

49 = 110001 

51 = 110011 

53= 110101 

55=110111 
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The vertex 4 ·is represented by 4 = 00100. 

The smallest cell containing 4, 6, 12, 5 is :represented by 20~122, · 

and c::an be constructed by replacing the original value .of an argument of 

vertex4 by ''2" whenever. a vertex adjacent to 4 and differing ·from 4 in 

that .argument is .on tpe lpng truth table. 

In cell 202122, the 16 vertices that can be generated by 'v.iarying 

tih.e argumentS in which 112 11 IS appear (and hence the verticeS COntained 

the cell) are .4, 5, 6, 7, 12, l4, 15, 36, 37, 38, 39, 44, 45, 46, 47. The vertex 37, 

for example, is not on the long truth table, therefore the cell is not complete 

arid the vertex 4.does not have an essential cell. 

The next .vertex on the short truth table is vertex 6. The appropriate 

cell to examine is 022122. This cell contains, among others, vertex 20, 

which is not on the long truth table; 6, therefore has no essential cell either. 

We repeat the process .successively on the other vertices ofT, the 

short table, and we find in each case that the celt: appropriate to , the' vertex 

;is . incomplete until we reach vertex 33. The appropriate cell, 222001, 

for vertex 33 is complete and .is thus. the essential cell for vertex :33. The 

vertices it contains (l, 9, 17, 25, 33, 41, 49, 57) are all deleted from our short 

list, and placed in .the don 1 t care list. We then examine the remaining vertices 

of the short_ list and .find .that vertices 34, 36,47, 61 have .essential cells con

taining, .. respectively, the vertices, (34, 42, 50, 58), (4, 12, 36, 44), (7, 15, 

. 39, 47), (17, 21; 25, 29, 49, 53, 57, 61). 

When the-elements of--T- contained.in.all five essential cells are de

leted .from T and placed on .the don 1 t care _list the vertices 6, 14, 54, 62, are 

the only ones remaining uncovered. They comprise R, and the construction 

of the set of minimal coverings for them is discussed in.H. We have com

pleted the first step referred to in.IL 
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II. THE GENERATION OF THE CLASS OF 
MINIMAL COVERINGS 

A" Outline of the Algorithm 
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The class of minimal coverings (in terms of sums of products) of 

a given set {or short truth table*) of Boolean expressions can be generated 

by the following algorithm" 

First: Find the maximal s.et of partial coverings which must appear 

in every minimal covering ~the set of essential cells~. Remove from the 

truth table of expressions to be covered all expressions that are covered .by 

this maximal set, leaving a residue R, of expressions remaining .to be 

c.overed. (The expressions covered by, the ess.ential cells are thereafter 

treated exactly as don 1 t care vertices}. 

Second: Partition R into clusters
5 

of uncovered expressions that 

we call the 11components 11 of R. Each component has the property that if 

any complete cell covers .two vertices of R, the vertices belong to the same 

compon.ent. 

Third: Construct the class .of minimal cover.ings of each component. 

Any sdectio~ of one minimal cove.ring from each class .constitutes a minimal 

covering of the entire residue R. 

Each covering of R, taken together with the essential cells of step 

one, forms a minimal covering of the entire short truth table. 

We now show that each part of the algorithm is .feasible. The first 

part has already. been success.fuUy examined by various investigators. 
6 

The 

second part is .developed below. 

* The short truth table .is the s.et of true statements; the long truth table.= 

short truth table plus the set of ndon 1 t caren statements. Every covering 

must cover the short, and be covered by, the long truth table. 
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B. . Proof of the Central Theorem 

Sublemma: If C is a cell containing (or covering) a vertex V, then 

for every argument i such that C. =f= 2 we have C. = V .• 
1 1 1 

Proof of sublemma: The cell C covers ,those and only those vertices 

generable by its variable arguments while keeping its fixed arguments 

constant. Hence all vertices of C agree with C in all of its (C 1 s) fixed 

arguments. Thus, no vertex differing from the representation of C in any 

fixed argument can be covered by C. 

Lemma 1: If B · and C are distinct cells, each basic to the covering 

of a particular vertex V, then there is: 

l. At least one argument, say the _Elth, such that Cm #=-2 and 

B =/= 2 and in addition, 
m 

2, At least one argument, say the _::th, such that Bn = 2 and 

Proof of Lemma: From the s.ublemma above we deduce that if 

B. =/= C. 
1 1 

for some i, ~hen B. 7/= 2 or 
1 

C. =/= 1 . 
2 and not both, since both 

B and C contain vertex V, Consider the set of i 1 s for which B. =/= C.. This 
1 1 

set is not empty, since B and C a.re distinct cells. 

Assume that for each such i, B. = 2 and C. =/= 2. This implies that 
1 1 

B contains C as a subcell, contradicting our assumption that C is basic 

to the covering of V, This possibility is .thus excluded. Similarly, the 

possibility is also excluded that C. = 2 and B. =f. 2 for each i where 
1 1 

B .. =/= C.. We conclude that there is at least on:e m such that C = 2 and 
1 1 m 

B of= 2 and one n such that B ·= 2 and C =/= 2. 
m n n 
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Theorem: 

If B (l), B (2), B (3), •. · B(r) are distinct cells "each basic to the 

cove,ring of a vertex V, and if· C is a .cell basic to V which is .contained 

in the union of the B (i) 1 s, then C is identical with one of B(i». 

Proof of Theore!l1: Assume C is distinct from each B(j). For each 

B(j), then, there is (by Lemma 1), at least one argument i for which 

B. {j} = V .. ::/= .2 and C. = 2. These i 1 s taken together,. for all the cells B (j) , 
1 1 . 1 

form a set of arguments whose typical member we shall denote l;>y k. The 

values of these arguments may be varied at will to give vertices covered.by 

cell C. 

If we fix all the arguments k so that they disagree with the correspond-

ing values .of the arguments of the vertex V, and specify that the remaining 

arguments agree with V, ,we have constructed a vertex W which lies in C 

but not in any of the B(j) B s. {This is .clear because wk ::/= vk for every k, 

but for at least one k, Bk{j) = V k'. by construction. He~ce, W differs in a 

fixed argument from B(j) for each B(j) and.is not covered by it. 

Vertex .W {and hence, Cell C) does not 8 therefore, lie in the union 

of the B (j) • s. 
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C. . Development of the Algorithm and the Partition 
of the Residue Into Components 
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Definition: A PELL (Potential Ess.ential ceLL) of a vertex V is any cell 

s.uch that: 

1. All complete .cells covering V are subsets of it. 

2. No proper subcell of it has property (1 ). 

The PELL of a vertex V is the smallest cell containing all cells 

basic to V, and in that sense can be called the cell-wise least upper bound 

of the unions of basic cells c.overing V. 

Lemma .2: For each V there .exists a unique PELL. Construct 

the set, S, of vertices on the long truth table which differ from V in ex-

actly one argument. If these arguments are then changed to variable ones 

in the representation of V, a cell, L,. is specified which is the smallest cell 

containing V and all adjacent true and don 1 t-care vertices. No complete 

cell can contain V and have any vad:cible argument not also variable in L, 

since that would imply the existence of an adjacent vertex which is on the 

lortg truth table and is not contained in S. Since any cell whatever must 

agree with V in fixed arguments if it covers V, all complete cells containing 

V are s.ubsets of L. 

It is clear from the construction that L is the smallest cell covering 

V and containing all of S. If any element, s, of Sis not covered by a subcell 

L 1 , of L, the complete cell composed of s and _V is n()t covered by L 1 • 

Then no proper s.ubcell of L can be a PELL; for V. The construction of a 

PELL for V is unique. 
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Corollary: The PELL for V contains all cells basic to V. 

Having prqved the centra,! theorems and lemmas, we can proceed 

to the development of the second part of the algorithm, the partitioning of 

the residue R into clusters. 

1. Choose from. R a vertex V. 

2. Con$truct all basic cells containing Y. 

a. Construct L, . the PELL of V. L cannot be complete 

or it would be an e s s entia! cell and V would .not lie in R. 

b. Choose a second vertex, V', in L. There is a smallest 

c.ell, G, containing V and V 1 • If G is c.omplete, construct any. basic ce.ll 

containing V and V 1 and delete all vertices covered by it from L. If G 

is not complete, d~lete V 1 from L. 

In either case, after the appropriate vertex or vertices have .been 

deleted .from L, s.elect a new V 1 from the undeleted portion of L and repeat 

Step 2b, until L is c.ompletely exhausted. 

Assertion: All the basic cells covering V have not been computed. 

Proof of Ass.ertion: The union of basic cells computed by procedure 

B conta.ins no further cell basic to V (by our theorem~, and the rest of L 

contains none, by construction. Since every cell basic to V is a subcell of 

L, we have computed all cells basic to V. 

3. After all the basic cells covering V have been computed, de

termine which vertices of R have been covered by them. Keep all such 

vertices in CORRAL, return to Step 2 and repeat the subsequent process.es 

until every vertex placed in .CORRAL at any stage has .been s.o processed. 

When.this is .done, we have computed .a component.of R and have a list of 

basic cells making it up. It is clear from the procedure that the same com

ponent would be generated no matter which vertex was chosen as initial V. 
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It follows from the above that we have computed all cell:s basic to any 

. vertex of any component, A .. Since all minimal coverings of A are composed 

entirely of cells which are basic to some vertex of A, every minimal covering 

of A is .a subset of the basic cells thus computed. 

D. Formal Characterization of the Partition 
in .Terms of an Equivalence Relation 

We now prove that the components form a partition of R (that is, we 

prove that R is .covered by the union of the components and that distinct 

components are disjoint.) Every vertex of R is ,covered by at least one 

component, since the process of construction does not terminate until this 

is true. We prove the disjointness of components by giving a formal 

characterization as follows: A nonempty subset, A. of R is a component 

of R if and only if: 

.1. Every pair V, W; of vertices of A obeys the condition V?!!. W 

where v ~ w if and only if there exists a sequence (chain) of cells cl' c2' ... ct 

such that 

a. c. is complete for 1 ~ i ~t 
1 

b. v is contained in cl 

W is contained .in ct 

c. C.n C.+ 1n.Ris not empty, for 1 .$ i < t 
1- 1 

2. A is not a proper subset of any subset of R that satisfies con-

dition(l). The relation=: gives a partition ofa set Rin.general if~, is: 

Symmetric (V ::1 W implies W ?i V) 

Reflexive (V '2! V) 

Transitive (V ~ W, W ~ Z implies V ~ Z) · 

for all V, W, and Z in R. 
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. We need to prove that the relation.~ as defined by conditions ( 1) (a) -

(l) (c) is symmetric,. reflexive and transitive. 

To be proved: 

(i) ~ is symmetric: 

V?:! W implies the existence of a chain c 1, c 2 , · · · Ct 

satisfying the conditions 1 a-c given above. If we renumber 

these c:ts in reverse order, we get a chain whose existence 

implies W ~ V. 

(1• 1. ) "' • £I . = 1s re ·ex1ve: 

There is always at. least one complete cell, C, covering 

every vertex V. This forms a chain satisfying conditions 

l (a) - (c) hence V ?:! V. 

(iii)~ is transitive: 

V ~ W implies the existence of a chain c
1

, c 2 , • • • , Ct 

for V,. W. 

W ~ Z implies the existence of a chain D 1, D 2 , · · · , D s 

for W:~ Z where ~oth chains satisfy conditions (a)- (c), 

contains v, ct contains . w 

contains W, D .contains Z. 
s 

If . Ct and D
1 

contain .w, since W is an ele.ment of R we 

conclude Ctn:q1,nR:'isnot empty and the chain c 1 , c 2 , · · · 

Ct'Dl, D 2 , · · · Ds satisfies conditions 1 .(a)-(c) for V, Z. 

We conclude V :t Z and that~ is a transitive relation. 
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It follows immediately that any two distinct components, A and A 1 , 

of R a.re disjqint,. for if they have a vertex V in common, a contradiction 

results: Assume a and a 1 are arbitrary vertices of A and A 1 respective.ly 

and that V lies in _both. This means a':!:. V and a 1 ~ V (or V ~ a', since 

.~ is symmetric. ) 

From the transitivity of relation~. a'?! V,, V ~ a 1 implies a~ a 1 , 

arid hence components A_ and A 1 are identical, contradictingg:ur:assumption. 

We conclude that the set of components forms a .partition of R. 

The foregoing justifies the use of the name. "component" for the sub-

sets forming on partition of R. In topology, a component of a set R is .a 

maximal connected subset of it. Definitions (D, 1) and (D, 2) confer these 

properties _on the subsets we have called _"components. 11 

E .. Discussion of the Uniqueness of the 
Maximal Additive Partition 

To each component there corresponds a set of basic cells that is 

disjoint from each of the sets of basic· cells corresponding to the other 

components. (If a basic cell appeared in two such sets, we. could c.onclude 

that the .two corresponding components intersected.) Since our norm is linear, 

the .norm for any covering of R by a .set U of basic cells equals the sum of 

the norms for the subsets ,of U covering the components. Conversely, we 

can consider those partitions P of R such that the norm for any union U 

of basic cells covering R equals the sum (over a11 the su1:>sets P. comprising .P) 
1 

of the norms for the subunions of U covering P.. A s.ubunion -S of U 
. 1 

covers P. if each .basic cell B of U is in S if and only if B covers .a 
1 

vertex of P .. 
l 



i•· 

UCRL-9227 

We s.ee that every such partition P must insure that every basic 

cell covers .elements of R belonging to a single subset P.: (If a basic cell 
1 

B covered vertices in da sf1rLc.t c subsets in any <:;overing of R containing 

B, B would .contribute twice to the norm of subunions, but only once to the 

norm of the original union, U. The s.um of norms of the subunions would 

not equal the norm of U. ) From this it follows that distinct subsets P ... and 
1 

Pj must be disjoint. (For any vertex V of R, there is some basic cdl 

that c.overs it. If V lies intwo components, s.uch a basic cell covers· 

vertices in two distinct components ,a contradiction. We have seen.that each 

subset P. of R under P contains, with any vertex V, all vertices V 1 of 
1 

R such that there is .a complete cell covering V and V 1 • If we specify that 

each subset be the minimal subset having this property, we have reproduced 

the partition.into c.omponents as defined above. 

To summarize the results of the preceding paragraphs: 

L The decomposition of R into components is a partition of R and 

has the additive property Q. The norm for any_ covering of R by a union, U, 

of basic cells is equal to the ~um of the norms for the subcoverings .of the 

components. (A subcovering of A is.the s.ubset of cells, C, of U such that 

C covers a vertex of A). 

2. Conversely, any decomposition of R into minimal subs.ets having 

additive property Q is identical with the decomposition into components. 

In this .sense, the Bartition into components is the maximal additive partition. 

The property Q implies that any minimal covering, M, of R is 

composed entirely of minimal s.ubcoverings of components. (Every covering 

of. R decomposes into subcoverings of components and if any such subcovering 

is not minimal, a subcovering of lower norm could be substituted, giving by 

property, Q, a covering of R having a norm lowe.r than that of M. This 

contradicts ,our assumptions of the minimality of M. 
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:FinaLly, since all minimal subcoverings of the components .are gen-

erated by the algorithm, it follows that all minimal coverings .of . R are 

also generated. If there are q ,clusters and pi minimal coverings .of the 

ith component, there will be p 1_p
2 

· · · pq minimal coverings of . R. These 

will be generated, however, by p + p +' · • + p coverings, a much smaller 
·1 2 q 

number in general. 

F. Remarks on the Formal Analogy Between a 
Component and an Irreducible Representation of a Group 

The partition of R iritd comp()nentrEI;A;:is such that each component 

has the important property that any covering of a vertex of A covers a 

portion of R contained entirely within A. Stated slightly differently, A 

is .an .invariant subspace of T under all covering operations. 

This procedure bears a striking resemblance to a procedure in the 

the.ory of representation of groups by which the matrices representing the 

elements of the group are reduced (by linear transformations on the base 

vectors) to the form of squares appearing along the matrix diagonal. There, 

each such square corresponds to a subspace of the entire linear space which 

is invariant under the action of the group being represented. Our components 

correspond to these invariant subspaces with the basic cells covering the 

vertices of the component corresponding to the base vectors of the invariant 

subspace. The .decomposition is unique in both cases. A component con-

taining .a .vertex V is also the closure of. V within R under the operation 

of covering by complete ce.lls and .is a .precise analog to an irreducible 

Markov chain with vertices playing the t'01Le of states. 
7 

.. 

... 
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G. Illustration of Algorithm by a Computation .on a 
Sample Truth Table 

UCRL-9227 

As an example, suppose, for a given truth table, that the vertices 

uncovered by essential cells are: 

Vertices Basic Cells Covering These Vertices 

Cell No. Cell 

6=000110 1 002122 

14 = 001110' 2 022ll2 

54= 110110 3 021122 

62 = 111110 4 212110 

5 210112 

6 112210 

7 110212 

8 211210 

Let us form the square, symmetric matrix M whose rows and 

columns are labeled by. the vertices Vi of R and whose elements are 

specified by the rule M .. = 1 if there is a complete <:ell which covers V., 
lJ 1 

and V., M .. = 0 if not. 
J lJ ~ /1.1 . 

,l/L./[ For our example, R =~~.54, 62). 

6 14 54 62 

6 1 '1 ,. 

14 1 1 

54 1 1 

62 1 1 
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MU-20984 

Fig. la. Diagram of Cluster l: Cell 022122, which contams 
it, is shown. 
Cluster l contains vertices (6, 14) of R and basic 
cells 022112 (covering vertices 6, 14), 021122 
(6, 14) and 002122 (14). 

·Key for Fig. l. 0 at a vertex denotes that the 
corresponding vertex is on the long list, but not 
in R. ~ at a vertex denotes that the correspond-
ing vertex is in R. 

No box at a vertex denotes that the corresponding 
vertex is not on the long list. 

,.. 
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rm- ----------- 5':1 ... Ji!21 ~ 

"il 

---U+----:-"' n2J -----m __._-I--

MU-20985 

Fig. 1 b. Diagram of Cluster 2; Cell 212212· which 
contains it is sho\.vn. 
Cluster 2 contains vertices(54, 62) of R and basic 
cells 212110 (covering vertices 54,62), 210112(54), 
110212(54), 112210(54, 62), 211210(62). 

(Note that vertex 22 lies both in Cluster 1 and in 
Cluster 2 .. This is no contradiction because 22 
is a don 1 t care vertex. If 22 lay in R, Clusters 
1 and 2 would become a single cluster). 
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Schematic 
representation 
of a 3- cube 

MU-20986 

Fig. lc. Schematic diagram of a truth tabl~, T, having 
two minimal coverings each with a different number 
of basic cells. 

Short list: (2, 3, 4,6) 
Long list: (2, 6 + cells D

1 
and Dz) 

Cells A= (2,3) = 000012 
B = (2, 6) = 000210 
c = (4, 6) = 000120 

D = = 222021 
Dl = = 222102 

2 
The minimal coverings are (A, C), (D

1
, D

2
, B). 

Each has norm 12. 
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It is always possible to "diagonalize" M by permutations of rows 

and columns, The sets of vertices corresponding to each subsquare are the 

components of R. The procedure of diagonaliz.ation geometrically is simple. 

Choose a vertex Vi and place its row at the top, its column to the left, 

Next permute again so that all other vertices that have entries in their first 

row (or in their first column, since M is symmetric) have their corresponding 

rows (columns) brought up (left) past all the rows (columns) of vertices not 

having this property. After this is done perform the corresponding operation 

on the vertex row corresponding to row and column 2. "When the last vertex 

row and column is reached, the process will be cpmplete. 

It is useful to note that if V. and V. are covered by a complete 
1 J 

cell, then there is at least one basic cell covering them. We have seen how 

to generate all the basic cells covering the vertices of a component. It is 

important that although a cluster A may be covered. by cells containing 

vertices not in A, such cells do not contain any vertices of R that are not 

in A. 

In our example, we now write down the table U whose rows are 

labeled to correspond to the basic cells C. and the columns, to the vertices 
1 

V., of the cluster. U .. - 1 if C. contains V., if not, U .. = 0. 
J lJ 1 J lJ 

Basic Cell No. l 

2 

3 

4 

5 

6 

7 

8 

6 14 .54 62 Vertex 

1 l 0 0 

l l 0 0 

0 l 0 0 

D 0 1 1 

0 0 1 0 

0 0 1 l 

0 0 l 0 

0 0 0 l 

Notice that U has the same diagonal structure as M. 
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The process of diagonalization {or component formation) can now be 

visualized. The steps for this specific case are reviewed (referring to the 

chart): 

L Choose the lowest numbered vertex V, in R (Vertex 6). 

2. Find all basic cells covering V (cells numbered 1, 2). 

3. Set aside all new vertices in R that are covered by these cells 

(vertex R4). 

4. Repeat Step 2 with each new vertex found {cell 3 is now added). 

5. Repeat Step 3 with each cell found in Step 4. (No new vertices 

of R are covered). If new vertices are covered, repeat 

Step 4, if not, 

6. When all basic cells about all vertices are computed, the component 

is completed. Delete from R all vertices of the component 

(6, ~4 are deleted, leaving 54, 62) and perform Step 1 

again on the remainder of R (which gives us vertex 54) 

and continue through Steps 2 through 6 until R is empty. 

R has then been partitioned into components (two in this 

case.~, with the set of basic cells and the vertices they 

must cover both available. We now go to the relatively 

straightforward, third part of our algorithm. 

Given .a list of all the basic cells covering a component we wish to 

select all the subsets of this list which form minimal coverings of A . We 

fiJ:st c.ompute all possible coverings of A containing cell 1. This is done 

by adding cell 2 to the partial covering qf 'A begun by cell l, if and only if 

it covers at least one vertex that 1 leaves ·uncovered. If cell 2 does not. have 

this property, cell 3 is examined, and so on. If cell 2 does have this property. 

cell 3 is added to the partial covering begun by cells 1 and 2, if and only if 
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it covers .a vertex le£t uncovered by the union of cells 1 and 2. The process 

continues until all the vertices of A. are covered. Suppose <:;ells 1, 2, 6, 9 

comprise the covering so constructed, we next exhaust all coverings con

taining c.ells l, 2, 6 by,trying to replace cell 9 withre'lllO or some other 

cells of higher number. , When we have reached the highest numbered basic 

cell covering A, we will have exhausted all coverings containing 1, 2, 6. 

We then exhaust all coverings containing cells 1, 2 by the analogous pro

cedure- of seeking to continue the partial covering begun .by cells l, 2 with 

a cell numbered greater than 6 and proceeded as before. Finally, we exhaust 

all cells containing cell 1 by s.eeking to continue the partial covering begun 

by cell l with a cell numbered higher than 2 and proceeding as before. When 

all coverings .containing cell 1 have been covered, we start a new covering 

with cell 2 until we have computed all coverings containing cell 2 but not 

ceU 1 . This procedur~, too, is repeated until the end of the list of basic 

cells for A is .reached. 

At that point we have a .set of coverings of the component A .that 

contains. as a subset all irredundant c.overings by, basic cells and hence all 

minimal coverings of A. By -inspection of the norm for each covering we 

can select out the minimal covers of A. We could also select the irredundant 

s.ubset of these coverings. 

To illustrate this procedure .of selection of coverings, we us.e .the 

example given in part G. There, component l has 3 basic cells and .2 

vertices to be covered, vertices 6. 14. 
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Cell Lalone c.onstitutes a covering of component 1, as does .cell 2. 

Cell 3 does .not appear in. any minimal or irredundant covering of component 1. 
I 

Component 2 can ,be covered by, the following sets of cells (as gen-

erated _by the procedure cited): 

(4), (5, 6), (5, 8), (6), (7~ 8). 

_ The minimal and .irredundant covers are 

Minimal 
Covers 

Irredundant 
Covers 

. Component 

1 

Cells (1 ), (2) 

Cells ( 1)' (2) 

Component 

_2 

Cells ( 4), (6) 

Cells (4), (6) 

(5, 8_)' (7 1 8) 

There are 2 minimal coverings of component 1, and 2 .minimal coverings 

of component 2; . hence .there are 4 minimal coverings _of R. 
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CONCLUSION 

The procedure we have examined gives, for an arbitrary Boolean 

truth function, the class of sums of Boolean products, each nHilhe:r of which 

is minimal under what we have called a 11linear norm". One application of 

2 
this solution would lead, by, a procedure devised by Prather, to a solution 

of the N-input, M-output· problem. Our solution is of the N-input, !-output 

problem. Our scheme is .desirable because: (1) It is well adapted for 

mechanization by digital computers- -this has been accomplished in a program 

• 
entitled SALOME--(see Appendix)o (2) It treats the problem in terms of 

fundamental topological units, simplifying the description of results. (3) It 

provides a framework of structural sets on which to build further investigations, 

in contrast to the unstructured set that is the starting point of the problem. 

(4} It gives the entire class of minimal (as well as the entire class of 

"Irredundant 11) coverings by basic cells. This is of use in any fundamental 

' 
research into the structure of Boolean functions. (5) In common with many 

. earlier schemes, it employs only notions that are invariant under choice 

of description. If we transform the description of our logic, for example, 

by interchanging 0 1 s .and 1' s everywhere.,. the solution to our problem in 

the transformed coordinates is generated.by transforming our original 

s.olutions. similarly. 
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APPENDIX 

. DESCRIPTION OF SALOMf 

IBM 704 program SALOME takes a truth table T of vertices and 

a table of don 1 t-care vertices as input. Its output is a set of coverings of 

T by_ basic cells with the subset of minimal coverings noted from among 

these. Unless it1is altered (as can easily be done), the norm assumedis 

M 
\ 

M+ L (N - k.), where M = the number of cells in the covering and k. 
i=l 1 1 

is the dimension of the ith cell. 

Specifications 

Running time. About 12 seconds for a .typical table for N = 6. 

N For higher N, running time should go up more slowly than 2 , and would 

depend on the structure and density of the truth table. 

Storage Needed. For N = 17, a 32-K memory is needed. This would 

not be adequate if any component had .more than 1024 cells in it. 

Input. Vertices are specified by punching one vertex on a card 

starting in column 12 .(column: 13 for BCD). The decimal, octal, or BCD 

representation of the .vertex should be preceded in columns 8-ll by, the 

appropriate three-letter code (DEC, OCT, BCD). In BCD, the symbols 

T, F are used for 1, 0 and entire cells maybe entered, using the BCD mode, 

by the use .of the symbol U (unspecified) for the notation. 112 "· The number 

of arguments •. N,. in the truth table.is loaded into the decrement of octal 

location 4000 by a single card .preceding the transfer card. 
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Output. The entire true and don't-card lists are printed out on tape 9, 

with representation in BCD as well as in decimal (if octal is desired in place 

of decimal, sense switch 6 should be down). 

All the basic cells and their norms are listed by component, as well 

as the class of coverings of each component with norms for each. 

Sense Switches and Options 

Sense Switch 1. 

Must be down_ until all data cards have been loaded, then it is 

. superfluous. 

Sense Switch 2. 

Until data cards have been loaded: 

UP: Input in OCT or ·DEC form 

D6):W1N: Input in BCD form 

After data cards have .been loaded: 

U:P: Does not fill in flag positions 

DOWN: Counts the number of traverses of program part a .set of 

flacgs· and.stores· this number in region FLAG in storage. 

Sense Switch 3~ 

UP: (Always) 

Sense Switch 4. 

UP: Gives a list of coverings containing only. a few per cent of 

redundant coverings. (Second slowest option) 

DOWN: Redundant coverings will comprise half or more of output 

unless .Sense Switch 5 is up. 

Sense Switch 5. 

UP: Only ,irredundant coverings are listed as output (slowest option) 

All irredundant coverings by basic cells are given. 
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. DOWN: Redundant coverings comprise half or more of output unless 

All the vertices in the input cards will have been listed when the 

program stops just after all the data cards have been read. This 

allows use of the program not only to reduce a truth table, but also 

to list vertices in cells already computed without going through the 

entire reduction~ The ce.lls in question are .loaded in.the BCD 

format specified above and the program is run .only until the program 

stop after all the cards have been loaded. 

Order of deck. 

1. Deck of instructions (without transfer card). 

2. N card: In absolute loading format, a card containing the value of 

N (number of arguments in input truth table) in .the decr4ament 

of first word (8L), and specified to be loaded into octal. 

location 4000. 

3. Transfer card. 

4. True vertices, listed one per card. (Starting in column 12 if 

listed in DEC or OCT; starting in column 13 with a 

blank in column 12 if listed in BCD). In columns 8--11 

the appropriate 3 letter code. (DEC, .OCT, BCD), DEC 

and OCT cards may, be mixed if desired and the order of 

the vertices is irrevelant. If repetitions occur, they will 

be ignored. 



..:3a- UCRL-9227 

<L 

5. Don!_t-ca~vertices (if any) preceded by a ca'rd punched .in SAP 

./ 

Note. - Every covering given by SALOME is composed ,entirely of basic cells. 
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