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University of California
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‘June 9, 1960
ABSTRACT

By means of the Mandelstam representation, expressions are
obtained for the two-pion-exchange contributions to the higher partial
waves of nucleon-nucleon scattering. A set of ten invariant amplitudes
is selected, of which each member obeys the Mandelstam representa-
tion. Dispersion relations are written for the arhplitudes in which the
discontinuities are absorptive parts for nucleon-antinucleon scattering.
By means of the unitarity condition the absorptive parts are expressed
as a partial-wave expansion in termé of the mm— nn partial-wave ampli-
tudes of Frazer. and Fulco, except for the contributions of the pole in
the pion-nucleon system which are treated exactly in order to ensure
better convergence of the partial-wave expansion. Finally, the nucleon-
nucleon transition amplitudes in the angular momentum representation

are expressed in terms of the invariant amplitudes.



I. INTRODUGTION

Application of meson theory to the two-nucleon interaction

i

has to date, been fraught with great difficulty. The perturbation
method of quantum field theory which wbrked so well in quantum
electrodynamics is étymied in meson theory by the lai'ge magnitude of
the pion-nucleon coupling constant, so that the coﬁvergence of an expan-
sion of the scattering amplitudes in powers of this constant is extremely
slow IE if the series converges at all. Recénﬂy a new approach has
entered the picture, that of the dispersion relation of spectral represen-
tation, the most powerful variety of which is the two-dimensional disper-
sion relations first proposed by Mandelstam. 3. The validity of these
dispersion relations, uﬁfortuhately, has only been proved to sixth order

34,5 and a rigorous: proof based on the general

in perturbation theory,
principles of quantum field theory is not in sight. Nevertheless, the
Mandelstam representation is plausible, and we shall assume it to be
corfect for the purposes of this paper. -Indeed, the most convincing

proof of its correctness would be if it led to results that agree with
experiment. A recent article by G. F. Chew reviews the philosophy

and practiceléf dispersion relations, both one- and two-dimensional,

with copious references.

Dispersion theory is concerned-With the study of the singularities
of the scattering amplitude. These singuiarities occur for unphysical as
well as physical values of the variables that describe the scattering ampli-
tude, and are associated with the possible real (i.e., with momenta on the .
mass shell) intermediate states into which the scattering amplitudé can be
expanded (see Ref. 6 for details). In making approximations, the main
assumption is that the closer.a singularity is to the physical region the
more important its contribution to the scattering amplitude will be. This
assumption is necessary, since the close singularities are usually the only
ones tractable by present methods, and it is also a reasonable one. For
instance, if the residues of two poles are of the sam.e order of magnitude
then, obviously, the pole closer to the physical region will make the larger
contribution to the amplit.ude. Even if the more distant pole has a larger

e
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residue, the change in the amplitude as a function of the variable in
which the poles occur will be induced to a much larger extent by the
nearer pole. In many cases the amplitnde is normalized at some point
(i.e., a subtracted dispersion relation is used) be means of information,
usually experimental, not con_'t'ai‘_ned‘in the dispersion relations; it is
then the change in the function that is of interest. The same reasoning
applies to the branch-cuts. ' |

In the nucleon-nucieon problem the closest singularities are
the two one-pion exchange poles, whose use has already borne consider-
able fruit. First there is the proposal of Chew, 7 as carried out by
Cziffra and Moravcsik, for the determination of the pion-nucleon coup-
: ling constant directly from n-p angular distributions. There is the

9,10

modified p’nase shift analysis, first proposed by Moravcsik, in which
the higher angular momentum states are given directly By the pole term
while the lower ones are treated phenomenologically. There is the cal-
culation of the Asymptotic D-wave function of the deuteron by Wong,
and the modifications of the effective range formula for nucleon- nucleon
scattering of Cini, Fubini and Stanghellini, and of Noyes and Wong,
‘the latter works, however, involve more of the Mandelstam representation
than Just the. poles.

‘After the poles, the closest singularity is the branch cut due
to the two-pion 1nterrned1a.te state; it is with this that the present work is
- concerned. Let p and p, be respectlvely the final and initial four -momenta
of one of the nucleons, and t = - (p p) be the invariant momentum transfer
(we use the metric such that p =p —poz), In nuc]éeon-nucteonvscatteri‘n’g the
physical region has t»ng, the pole oc¢cur:s at t=p-, where p is the pion
mass, the two-pion branch cnt starts at te(Zp)Z, and the contribution of
the next heaviest intermediate state, viz. the .thre'e-pion state, starts at
t= (3|J.) " Thus the three-p1on singularity is not'much further from the
phy51ca1 region than the two-pion singularity. There are, however, two
main reasons for ignoring singularities other than the poles and the two-
pion cut. Firstly, at present we do not know how to treat the more distant
singularities, especially those involving intermediate states of more than

two particles. Secondly, it is hoped that the pion-pion resonance recently
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conjectured in order to describe nucleon electromagnetic structure,

will serve to increase the COntri\bution of the two-pion state to the
nucleon-nucleon scattering-amplitude.,_ In the phase-shift analysis of

9 1Othe two one-meson exchange

proton-proton scattering at 310 Mev
poles were found quite capabl'e of determining the higher phase shifts
{(from L = 4 on up). The present calculation should be able to predict
some-of the higher phase shifts for Which.thé one-pion exchange poles
are inadequafe, That fhe lighter intermediate states should determine
the higher angular momentum states is very plausible on elementary
grounds, since the lighter the intermediate state the longer the range of
the force to which it gives rise. =

Briefly, our method is as follows: The nn.amplitude can be
expressed in terms of a set‘of ten iﬁvariant functions, which we shall
call "Mandelstam functions'' because they are assumed to obey the
Mandelstam representation. These functions also describe nn scattering
and can be related by means of the substitution law to the nm amplitude.
The unitarity condition for the nn scattering amplitude can be written
symbolically: Zlm<nﬁ l nﬁ> = X i_nﬁ [i><n-ﬁ li >*y where the sum is
to be taken over all permissible'y‘l‘eal intermediate states, The inter-
mediate state with the lowest mass is the oﬁe~pion state which gives
rise to the one-pion exchange pole. The next least massive state is the
two-pion state which gives rise to the two-pion branch cuts in the
Mandelstam functions. For the reasons given above, states heavier than
the two-pion will be ignored. ‘It should be noted that since the 2 w inter-
mediate state starts at an energy less than the lowest possible energy
for a physical state, we are using the unitarity condition in an unphysical
region; this has recently been justiﬁgd by Mandelstam, 14 The functions
<nH f 2w) have been studied by Frazer and ].;"ulco15 {hereafter referred
to as FF)on the basis of the Mandelstam representation. These functions -
can be evaluated by use of available pion-nucleon scattering data if the
pion-pion phase shifts are known. The latter are now being calculated
by Chew and Mandelstam, _lévagain utilizing the Mandelstam representation.

From the imaginary part of the nn amplitude as given by the unitarity



condition, we can determine the absorptive part of the Mandelstam
functions, and by a dispersion relation -get the complete function, which
in turn will give us the nn amplitude. .

Frazer and Fulco's calculation gi\}es <n'r'f l 2m) partial wave
amplitudes; consequently, the nn absoi‘ptive, part will be given as a v
partial wave (i.e., Legendre polynofnial) expansion». Except for very
low nucleon—nu'c‘leon energies, however, the absoi‘ptive part becomes
singular for values of t just above 4|J.2, ‘the latter beingvthé lower limit
of the dispersion relation. ‘Consequently, the expansion fails to converge
over a large part of the region of integration of the dispersion relation.

The first singularity in the absorptive part is due to the existence of the
one-nucleon pole of the pion-nucléon interaction (Ihereaft‘er called the
mn-pole). This pole leads to the ”box'—diagram“'in the nucleon-nucleon
system, which corresponds to the fourth-order two;pi.on exchange Feynman
diagram of perturbation theory. Fortunaféiy’, as Mandelstam has shovvn,4’5
the éontribution_ of the box diagram to the absorptive part can be evaluated
exactly (cf. Section VIII), so that only the remainder of the absorptive part
need be given as a Legendre po_lynornilalvex'pansiOn.‘ It can be shown that
mathematically this expansion Converges fo_r‘v‘alués of t even greater
than the three-pion exchange threshold, although there, of course, it soon
ceases to give a reasonable approxirhation to the actual nn amplitude. It
is hoped that the convergence is rapid enough for S and P wave two-pion
intermediate states to suffice for the determination of the higher phase
shifts of nn scattering. ' _ ,

The portion of the absorpt‘ive‘ part that is analytically continued
by a partial wave expansion has its singularities neglected. This means
that the imaginary part of the nucleon-nucleon partial wave amplitudes
will come exclusively'from the b.ox diagram, ahd that the imaginary part
due to the other contributions must be small for our method to be feasible.

In general, this will occur only for partial waves of sufficiently high order

and consequently small r_naghitudeo



II., THE FRAZER-FULCO FUNCTIONS

The mn-pole gives rise to an anomalously large S-wave
contribution to pion—nucleoh scattering; a contribution presumably sup-
pressed by higher-order terms. 17 The corresponding terms should
also be suppressed in the nn amplitude. Frazer and Fulco's calculation,
however, does not appear to contain a mechanism which will bring this
suppression about, the restriction that the 7w - nn amplitude have the
phase of ww scattering probably not being sufficient. A phenomenological
means of avoiding this difficulty is based on the observation by Chew18
that the annihilation amplitudes of FF at zero incoming energy were very
simply related to pion-nucleon scattering amplitudes at zero momentum
transfer. In fact, the variable t of FF is the total energy for the anni-
hilation process and the momentum transfer for pion—nuéleon scattering.
Thus, by using expérimental pion-nucleon data in forward scattering
dispersion relations, the mn—nn amplitudes at zero total energy can be
calculated and a subtraction made in FF's integral eq’uations to normalize
the functions. This has been done by D, Y. Wong, 19 who finds that at
zero energy the S-wave FF function so calculated is very much less than

the value due to the mn-pole. It will be remembered that in FF the left-

hand cut is determined from the wn pole plus what is frequéntly called

the '""rescattering correction'’, which consists of a partial wave expansion
as a function of the pion-nucleon scattering angle, and uses experimental
pion-nucleon phase shifts. According to FF, this expansion should con-
verge up to t = -26}12, Wong 19 has compafed the correct P-wave anni-
hilation amplitude at t = 0, as determined from Chew's suggestion, with
the one determined from FF's integral using the rough estimate of the
pion-pion phase shift obtained by FF from the nucleon electromagnetic
structure. He found that in order to get agreemeﬁt between the two values,
it was necessary to extend the partial wave expansion far beyond t=-26pz.
This indicates that the left -hand cut of the FF functions cannot be deter-
mined from pion-nucleo.n scattering 'merély by a partial wave expansion.

However, the method permitting us to calculate the FF functions at t = 0

also permits us to determine the derivative at the same point.



By normalizing both the functions and their derivatives, it appears

possible to determine what we shall call a ''modified FF function *;

which should be reliable of course, the pion-pion phase shifts are still
19 '

.neéded.
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I1I. THE INVARIANT AMPLITUDES

The S-matrix for a nucleon-nucleon scattering process may

p, r, a; q, S, ﬁ>> =

i é4) ! / m4 1/2
21+"—2 (p+q ‘P_'Q)f—r—'—r—“—.
4m \P 69 oPo%

be written:

ﬁr'u'(” (p) I_JS’B‘(Z) (q') M (pvg q, P, q) Um(l) (p)>U55

() (q)
(II1-1)
Herep, q andp, q, are the four -momenta of the two fmal and initial
particles respectwely, s sI and r, s their final and initial spins or
helicities énd a, B and a, B their final and initial i-spins. The
Dirac-spinors ‘U (p) are eight compone.nt entities‘ in the product
space of the i-spin and Dirac-spinor spaces; they may be written more

explicitly as U (p) u (p) X q where:

b (é> , for the proton

>~
1

0
X.n = <1> for the neutron

and u (p) is a four component Dirac-spinor such that (iy. p + m)u (p)=0.

The matr1x M(p ) q , P, q) is a’ 64-by-64 matrix in the product space

of the two initial and two final particles. The definition of the S-matrix

used here corresponds to that of Jauch and Rohrlich. 20
According to the substitution rule, the matrix M(pv, qy, P, 4)

describes nucleon-antinucleon and antinucleor=antinucleon scattering as

well as nucleon-nucleon scé.ttering, This rule is implicit in the structure

of perturbation theory (Ref. 20, Sec. 8-5) and also follows from the
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: : . 21,22
reduction formulae of Lehmann, Symanzik, and Zimmermann, '

as will be shown in Section V. For thvé scattering of a nucleon of
’ |

four-momentum g and an antinucleon of momentum g into a nucleon
. :

of' momentum p ‘and antinucleon of momentum p the rule gives:

. / I R Z _'_‘\\ 1 4 \l/é
I 4r ‘ , A\ P p q quI :

s

U llgp’) ﬁz)(q?) M(p,-q, -p, q) V“)(p)U(Z)(Q')~

(III-2)
The. bars over p and qgv on the left merely indicate that- p and q' are
momenta of ;antinucleons. - The spin and i-spin .indioesbhave been sup-
pressed, and the 62.1 of (III-1) has been absorbed into the matrix element
on the left.” The overall sign of the left-hand side is not obvious and will
be determined in Section V. The Dirac- spinors V (‘p) are also eight-
_ component ent1t1es and may be decompOSed into V (p) = vr(p) X g where
vr(p) is a four- component negative energy Dirac- spinor such that

(-iy . p + m) V. (p) = 0, and the - X4 2Tey

v \ : :
_ _ (1 : .
/(5 = /(p = <O | for the proton and onhproton
[o) o
X— =X_ =1 for the neutron and antineutron.
n n A\l N SR _

Thus the i-spin spinor for an"‘outgoin'g antinucleon stands on the right
just its Dirac- spinor does. The use of ;thes_é- -i?-spin spinors will be
further dlscussed in Appendlx A, | _ ‘ |

‘ ~ We shall assume that the nn’ interaction is char'ge independent,
in which" case the S-matrix must be 1nvar1ant under rotat1ons in i-spin
space. Slnce only two invariants may be formed from the i- spm matrices
in the product space of the two partlcles, the matrlx M may be split into

fwo parts

M:M'+1(1‘>:,1(2) M. " L - (1II-3)

>
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Throughout this paper our convention will be that the superscript "1"
1

refers to particles with momenta p and p whereas '""2" refers to
those with momenta q' and q even though, as will be seen below, two
particles with, for example, momenta pI and p may both be in the
initial state. .

. . + :
Lorentz invariance ensures that the M~ can be split up

further:
- 1 1 n . n
M (p,q9 p, g0 = Z A (s, t, t) X (111-4)
n .
000 | _
M (p,q p,q) = Z B (s, t, t) X
a

where the X" are 16-by-16 matrices which may be functions of the

four -momenta and the A" (s,t,t) and B" (s,t,t) are arbitrary functions
of the invariant scalars s, t, and t only. For the momentum definitions
of (1II-1) and the process shown in Fig. 1, the latter can be written:

2
)

] 12
s=-(ptq) =-(p +q)

t=-(p -p¥=-(q -q° | | (LII-5)

i

f=-(p -9’ =-(q -p)

In the barycentric system, with z, the cosine of the scattering angle and

Py the modulus of barycentric three-momentum, these variables become:

2

s=4(p12+m2)=4E1

t= .Zpl2 (1 - Zl) (III-6)

T=—2p12(l+zl)

where m is the nucleon mass. Comparing (III-1) and (III-2) we see

that in the transition from the process described by the first equation
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MU-20627

Fig. 1. Nucleon-nucleon scattering: channel 1. The time direction
is upward.
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1 1 ' 1
in Fig. 2, the matrix M(p, q, p, q) goes to M(p, -9, -p, q).

Consequently the scalars become for the second process:

(g -p)t=-2p,% (1+3,)

[}
H

o+
"

<(p + p) = 4(p22 +m°) (111-7)

T=-(p-af=-2p,(1-2,)

where P, is the modulus of the barycentric three-momentum and zé
is the barycentric scattering angle taken, as will always be the case
for nn processes, between the two nucleons. It will be noted that
in (III-6) s gave the total energy of the system, whereas in (III-7) the
total energy was given by t. We shall accordingly call the process in
which s was the total energy '"channel 1", and that in which t was the
total energy ''channel 2'". In addition there is the channel, shown in
Fig. 3, in which t gives the total enefgy; this will be called ''channel 3'".
According to the substitution rule, all three channels are described by
the same matrix M. |

As long as the incoming and outgoing particles are on the mass
shell, the variables s, t, and t are not independent, being related by
equation:

s+t+T =4m°. (111-8)

In addition to requiring charge independence and Lorentz in-
variance, we shall assume that our interaction is invariant under charge
conjugation, parity, and time reversal. There is at present no reason
to'believe that any of these invariance principles are violated in strong
coupling physics. The matrices X" must accordingly be chosen so that
the interaction will be invariant under all these transformations.

The procedure for finding a complete set of X" is as follows:



Fig. 2.
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MU-20628

Nucleon-antinucleon scattering: channel 2,

L
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Fig, 3.

MU-20629

Nucleon-antinucleon scattering: channel 3.

-
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In the composite space of the two particles construct all scalars (with
respect to Lorentz transformatibns) which can be constructed out of

the 'th>re'e independent momentum vectors and the y matrices. Eliminate
matrices which can be reduced to another matrix because the spinors
obey the Dirac-equation, and also eliminate those which do not lead to
invariance under time reversé.l, charge éonjugation, and parity. This,

it turns out eliminates all but the following eight forms:

(1) (2) (1 (2)

R I ML R N S CURI RV L R P
- Y5(1) i) (g q)] [Y5(2) i e+ p)J ;
{1( b @), () Y5'(z>:
DR 0 @ @)y oDy @),
m, v=0,1,273 MY

where our representation is such that

"/. - \z ;
‘Y-:{ C _lgj\ia j= 1,2, 3; B:iyoz(l C>9

J .\-.\‘iaj 0

) oo (01 S 1y )
V5 7 Y1 Yy Y3 10/ %™ 2T WYp WY, Yo

Ncot all eight of these can be independent in the subspace in which the
incoming and outgoing particles are positive energy nucleons. By using

an explicit representation of the Dirac-spinors, e.g.

-iy . p +

ur(‘p): = hi P ml/z X.r

2m (p0+m)] ' 0
L

where X, is a two-component Pauli-spinor, we find that the eight forms

' 23

in (III-2) reduce to five forms, namely those of Wolfenstein and Ashkin,
which are frequently misnamed the ''mon-relativistic forms.'" Since there

are only five independent matrices in the nn channel, the scattering must
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be completely describable by only five arbitrary complex functions.
Thus only five of the eight matrices of (III-9) are independent, and any
five linearly independent ones should be sufficient to determine the
scattering amplitude. In earlier works, e.g. Goldberger, Nambu and

Oehme24 the first five were chosen; they are, however, less satisfac-

tory than the last five for two reasons. Firstly, the latter give rise to
simpler crossing relations whereas in the former the crossing relations
are complicated by having the X" be explicit functions of the four-momenta.
Secondly, and more importantly, the explicit momentum de-
pendence of the first five matrices forces the A" and B" to have so-called
""kinematical singularities'" — singularities not associated with any inter-
mediate states, but due entirely to extraneous momentum factors. It has
been shown by Grisaru and Wong’25 that the last five matrices, which are
in fact the Fermi f-decay matrices, do not develop any extraneous singu-
larities; we shall briefly describe their arguments.
F or convenience let us discuss only M, the arguments for M+

being practically identical. Thus.

M =32 X"A%(s, t, T) (I1I-10)
n

where the sum runs over n'=8, P, V, A, and T, the letters standing for
scalar, pseudoscalar, vector, axial wvector and tensor, respectively; and

the X" are defined by
S 1) (1), P 1 2 4 1 2
xS <) 4D xP o (D (2 V() @)

) = iy (DD gy (@) (2) )y T

DN} +—

= .
pv=20,1,2,3 MV
(III-11)
The denominators occurring ifi a perturbation-theoretic expression
for M~ would be no different from those occurring in a spinless, scalar

theory having the same spectrum as the present theory. Consequently, it

seems very reasonable to assume that each element of the matrix



on = LBy L@ gy Mo L (p) LB () o (111-12)
with
L(p) - ('1Y - P + m)

Zm

. : , .
is an analytic function of the four four-vector variables p, q, p and q,

except in those regions in which the amplitude of the spinless scalar
theory would ﬁot be analytic. It then follows that for any n the

function Tr (/?/,7 B X o } would also be an analytic function of the four-
vector variables with the same region of analyticity as that of 9’//_ This
with the fact that the trace is invariant under the orthochronous Lorentz
group implies, according to the theorem of Hall and Wightman, 2 that

the trace is an analytic funétibn of the invariant scalars, except, of course,

in the région mentioned above. From (III-10) and (III-12) we get

Tr (970 X = 2 a__ (s, t, DA™ (s, ¢, T)
m
where
a (s, t, t) = '.Tr I:L“) (p') L(Z) (qﬂ) ™ L(1) (p) L(Z) (q) < J g

The a - (s, t,t) are obviously analytic functions of s, t, and t, but they
"may vanish for some value of the invariant scalars, forcing An (s,t, t)
to have a pole at that point, unless the traces on the left happened to vanish

there too. Solving the above set of equations for A™ we obtain:

m _ Bpls: tt) -~ n
A (S, t, t ) = ————Z—-— TI'(WL X )
n
where the f are analytic functions and A = det H a ” . This deter-
mn mn _3
minant, according to Grisaru and Wong, is given by A = c(s, t, t)

where c¢ is a constant. Thus if our invariant amplitudes A™ and B" have
any extraneous singularities they can only be the poles that could occur
when one of the invariant scalars vanishes. In Section VI we will derive

n

a definite relation between A", B", and nn transition amplitudes for

helicity states in channel 2. In this channel s is the momentum transfer
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and t the crossed-momentum transfer, and it can be made plausible
that both A™ and B" remain finite as s or t goes to zero. We shall
return to this point in Section VI. The same procedure involving either
channels 1 or 2 would establish that A" and B" remain finite as t goes
to zero. We may thus conclude that the only singularities occurring in
the invariant amplitudes An(s, t, t) and Bﬁ(s, t, t) are those which also
occur in the scalar, spinless theory, provided we choose the set of x"

given in (III-11).
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1IVv. THE MANDELSTAM REPRESENTATION

At this point we make the crucial assumption that the analyti-
city properties of the amplitude of our spinless scalaf theory are such
‘that the amplitude has a Mandelstam representation. Beyond what has
already been said in the introduction {Section I), we shall not attempt to
justify this assumptionhere. The arguments of the previous section then
show that if we choose the X' of (III-11}), i.e., n=S,T,V, A, P, both the
An(s, t, t ) and Bn(s, t,t) will also have a Mandelstam representation.

Consequently, An(s, t, t ) may be written:

) n, ! o0 n
n —_— )] l a’z (t ) 1 1 a3 (t )
A (S,t,t)‘—‘—poles +7} dt ——-r—_+ F dt A
’ 2 t -t t -t
(3) (3 1)
] i [
1 (b’t) 1 ' 0/0 a3n(5,t)
IZm) (24 {s —s)(t -t) | i (Zm)z J Zp) (s -s)t -t)
. v
©0 : 0 azsn(t st ) )
i = ——— (IV-1)
+ dt dt ~ =’
/ ) / , ¥ - B
(2] (21)

with'a similar expression for Bn(s, t,t). The poles have been adequately
discussed in Ref. 9 and will be ignored hereafter. The next two terms of

" and correspond to dia-

(IV-1) are frequently called "'subtraction terms,
grams of the type shown in Figs. 4a and 4b. Figure 4b involves a two-
nucleon intermediate state, and Fig. 4a shows the three-pion intermediate
state that is the lightest intermediate state which can occur in a subtraction
term. Since we are not including anything more massive than two-pion

n
N " 12’
CI and a,, are everywhere real, and each vanishes outside a region
bounded by a curve whose asymptotes are:

states, we can ignore all the subtraction terms. The weight functions a

S

= (2m )Z and t = (2.},1)2 for aﬂzn(s,t), s = (_Zm)"2 and t = (Zp)‘2 for a3
_ ) —_ —
(s, t), and finally, t=(2p) and t = (ZH)Z for .a23(t, t).
)
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Fig. 4a and 4b, Typical "subtraction terms."



Mandelsta‘mél’ > has calculated these bouﬁdary curves using
the spinless scalar theory which, according to our earlier discussion,
must gi\}e the same results as the pseudoscalar spin-one-half theory.
Indeed, we shall find the boundary curves as a by-product of our calcu-
lation of the effect of the m-n pole in Section VIII, and they will turn out
to be those predicted by Mandelstam. Spin, it appears, is not an essen-
tial complication, it merely complicates the algebra. We give below the
curves obtained in Ref. 5. The weight function alZ(S’ t) is non-zero

inside the para-'bolic boundary curve ClZ’ {(cf. Fig. 5), which is:
3 .

(s - 4m’)(t - 4p%) = ap? | (IV-2a)

The curve C ; for a {s,t) is the same as C,, except that t >t. The

13- 12

curve 623 is the boundary of the union of the areas bounded by the two

parabolas: .

(¢ - am®) (¢ - 4p%) = 4

(t - 4p%) {t - 4m®)= 4p

(IV-2b)
4

The denominator of the last term in (IV-1) may be split into

partial fractions:

P 1 1, 1
— i ! v —_1 — !
(t-t)T -T) (t +T+s-4m°) |t -t R

where we have used the relation: s+ t+t = 4mz. With the aid of the

above result, (IV-1) may be rewritten as a one-dimensional dispersion

relation:
«© n v n 8
n _ 1 f AZ (S,t) 1 ,f ! A3 (S: t )
A b(S, t, t) = r dt —_— 1+ .‘T‘F ‘{ dt -7 — > (IV—3)
4i~’~2 ' t -t . J4;.L2 t -t
where we have set:
n, ' Vo
n ? 1 wf ] alz (S ’t ) 1 e 1 a23n(t ’ t )
A7 (S’t):F ! ds —-—-—T—————-—+F dt —— 5
',// 5 s - s , .t +T +s-4m
4m 41

0



1

n _ -
H t a (S ] t ) 1 a (t) t )

A s, T = 2 as 23~ 41 dt -2 .

m 2 s -8 2 t+t + s - 4m

The expressions for B" (s, t, t) are précisely parallel.
The range of the invariant scalars for an actual physical nn
scattering process in channel 2 is such that t }-4m2 and s, t <0. In

this range none of the denominators in (IV-4) can vanish, so that both
Azn and A3n are real; only the first denominator of (IV-3) can.vanish.

Therefore,

Im A™s, t, T) = A% (s, t); t324m®; s, T < 0. (IV-5)

Thus, once Im A" (s, t, t) is known in the physical region for channel

2, A2 (s, t} can be determined everywhere by analytic continuation.
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Fig. 5. Boundaries of the functions alzn(s,t) and blzn(s,t).
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V. SUBSTITUTION RULE AND CROSSING

In this section we shall use the reduction formulae to determine
the sign of the right-hand side of (IiI-2), and the relation between the
| A, (s, t)and A" (s, T) of (IV-3). |
if a ¥ (p) is the creation operator for a nucleon in an asymptotic
sté.te of momentum p, we define a two-nucleon asymptotic state by
Ip, q> = aJr {p) aT {q) ’ O> , and the conjugate state by <p, ql = <0 ‘ a(q)
a {p), where ‘ O> is the vacuum. .
For convenience we will let

1 1 1 (4)(

3 i 3 8
M(p.,q,p.q)=8"ptqg-p-q)Mip, q, P, q)

where M is the 64-by-64 matrix of (III-1). Suppressing spin and i-spin

indices, we'may rewrite the latter equation:

C [ LA 1/2
P, q ES—le,q = T3 7 T _
4m P g9 g Pg g

f 1 i

T, (60 0 (a) M ) P a0 B @ U ()0 (@) (VeD)

The indices i, j, k, and £, refer to the rows and columns of the matrices
and not necessarily to spin or i-spin quantum numbers.
The reduction formulae of Lehmann, Symanzik and Zimmerman

have been extended to spinors by Schweber; 22 whose formalism gives us:

v :
1 1 14 / 4 ' 1/2_ v P
<),q|51|pq> (1)6 K — U (p) U (a)

(2m) po q 0 quO

< [T, (y) 2 (x) 8 (x) 8 () T, )} l‘o> U, (p) U, (q). (V-2)




The functions Qj(x) is the jth component of the eight-component entity
that is the source function for the nucleon system, i.e. .

»(YHS + m) ¢ (x) =2(x), ¢ (x) being the field variable for the nucleon
fleld For Q(x) we have the relation: £ (x) = (x)(d Y + m). Regarding
the time-ordered product inside the vacuum-expectation value, the only
property which concerns us is that its factors anticommute. Comparing

(V-1) and (V-2) we see that:

.
1 i !

M (i3 g) (P o9 Poal)

<O[ T {Qj (Y")Qi(x') §k (x) S_Zl (y)} lo> . v-3)

For a nn scattering in channel 2 we have:

at -1(p X +q .y P.x-qy)

dx ye

dY

O ;> ) - 2k T, (pl)V (q')

\p P |S-l{ 49 (-ZTT{6 P 99 oPp99 ' R

[ /iY/dx dYei(p"’,Xv'*_p"X‘q'"Y"CLY)'
'<CIT\LkX)Q(X)Q(Y)Q(V)\}lo>v (p) U,(q) (V-4)

Since the components of the source functmns anticommute we find that:
_— v ' f
TY 82y () € () &2, (y) 2,y ) =
H t _ " ,
+ T{QJ (Y)Qi(x)ﬂk(x)ﬂl (y)} . (V.5)
Combining the last three equations we observe that the positive sign is

. ;\ 4 (4), ° q m*, \1/2
<o,5|s_1[q,a>- —, ¥ Ap tp-q -q) | = -
i P o4 opoqoj

) v )y M- g -p ) VI () U (q).  (v-6)

the correct one in (III-2), that is: .
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The analogous equat1on for nn scattering in channel 3, i.e., for

<p q IS 1|p, q > has a minus sign in front of the right-hand member.
Let us now turn to the relatlon between A (s t) and A3 (s t).

If in (V-2) the partlcle designated by p is 1nterchanged with that

des1gnated by q, the reductlon formula becomes:

1 1 V i4 m4 — I'_ 1
a.p|S-1]pg)=——" 1/ T, ()T (q)
, (2m) poqopoqo ‘

[ /d ,'dX/ —1(p xtq.y p.x-q.9)

OIT{Q (x m(y)sz (x) Q y)|o> U, (P) U, (q). (V-7

The time-ordered producf‘in (V-7) differs from the one in (V-3) only

in the order of the first two factors; consequently

/o ' i ' m4 1/2_ v 'v
<q » P s'l P,q = - 2 T L] U1 (P ) UJ (CJ )
' 4™ \P 999 Py 9

?

M (i§)(k4) (P, g, p q) U, (p) U, (q).

1 ] _ |
<q s p ‘;S'l ‘: \p ’ q >r . (V'S)

where the right-hand term is given by (III-1). On the other hand, merely

S-1

by interchanging labels in the final state of (III-1) we get:

i ? i {

//v u' [ \
\q,s,ﬁ,p,r,a S-l’p,r,a;q, s, B/=

. A ; 4 \1/2
—126(4)(p tq-p-q)|——r ;
an PodgPy9/
(1 1 1 A B |
o )SW:BV (q)u_' ' Y )M(q,p,1o,q)Ur_(l(_l).(p)UsB(Z)(q)°

(V-9)
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: . . ‘
In terms of the invariant scalars the interchange q <—p implies that

t——st. 'Comp_a.ring (V-8) and (V-9), and making use of the 'expansiori of

M as given by (III-3) and (I1II-4) we obtain: -

- n 1 1 n e T ‘l . -
-z X 6'0.0.6 A.(s,t,t)+1aa.7;6[35(s,t,t)

z B'p
< m . _ —
=z X 5,1 By’ AT 4Tl T BT T 0 | (V-10)

where X' is defined by:

5 e 5 60 7 Pley o B ia) -

_ | T 1 :
e P ) x™ Y ey u (2 (g,
It can éasily be shown that:

6aRB 652(1 = ‘ ‘.50.0“ 6(33‘3. + Lala . ,Iﬁ'f}
(V-11)

1 1 ._.l 1 o ‘ 1
Iaﬁ"lﬁa 2 36(10,65[3 Iaa'lﬁﬁ

J

and }__(m is related E(),Xn by the well-known ''reshuffle theorem'" of Fierz, 27

which gives the relation

Tm _ n o v
X —i} Zmn'x , L (V-12)

with

1 111

42 0 2-4
! _
[ Z = g 6 0 -2 0 6 ; C(V-13)

4 2 0224
1-1 :1-1 1
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where the order of the rows and columns is: S, V, T, A, P. Substituting
(V-11) and (V~12) into {V-10) and comparing -the coefficients of the i-spin

and B-decay matrices, we obtain:

1 m, — m, —
A(s,t,t)—-z = zmn[A (s,t, t)+ 3 B (s,t,t)}
m :
n - _ 1 m, — m, -—
B (s, t, t) = - 5 rZr)] Zmn[A (s,t,t) - B (s,t,t) } (V-14)

Equation (IV-3) states that:

S om, — 1 OF _1 Azn?(.s,_’_t') 1 7 ' A3n(5,t)
A5, T =~ | df S+ = at 2 (V-15)
™ L m
j4 2 t -t 4 2 t -t _
" n

with a similar expression for Bm(s,T,t). Upon substituting (IV-3) and
1

(V-15)into (V-14) and equating the integrands over t we get, finally:

— 1 {m - m, —

A (s, D)= -5 = Z |A(s,T) + 3B (s,t)}
- 1 _

B, (s, D)= - 7 = % A5, D) - B, (s, D) ] :

In the nn channel (channel 1), according to Eq. (III-6),

2 _
= Zp1 (l—zl) and t = —2p12(1+zl). For convenience, let us define:
. ) n ! 1
n,_ 2 1 [ v Ay (sit)
F (pl 3 Zl) = F /, dt ——
Jap? t -t \ (V-17)
) n 't
n 2 1 1 BZ (s, t)
G (pl 5 Zl) = ; dt _—
5 t -t J
4

Then, Eqs. (V-16) and (IV-3) imply that:

n - 2 1
A'(s, t,7) :EJ%pl, 2)) -5 2 ZHKL{F“%pIZ,-z1)+-3Gn%p12,- zﬂ]
m
B'(S,t,t):G (pl N Z]_) —Z 2 Zmn [Fm(plzy _Zl) —Gm'(plzi - Zl)
m ) '

(V-18)
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For the phase shift analysis it may be desirable to directly

" determine coefficients Aﬁn(s) and an(s) of the expansions:
n g n !
A(s, t, t) =3 (2£+1)A£(s) Bﬂ(zl) '
£=0 .
- : (V-19)
Bs, t, T)= = (24+1) B As)P (z,).
g o £ A
£2=0
Now, according to Heine, 28,29
0 1
i = ! = ()4 q, [t _+1\P, (2,).
t -t C2ft 1 =0 2p 2 Atlep 2 ) AT
S ] (LA P = Py Py
1 2 1 .
2p 1
(V-20)

where Q£ is a Liegendre function of the second kind, so that by virtue of
(V-17) and (V-18) and the relation Pﬁ(zl) = (-l)EPE(zl),

we may write:

| i
A, (s) = F, (plz) _%(_1)1 EZ_

[Fﬁm(plz) +3 Gﬁm(plz)]
m

n

B,"(s) = G, ey ) - 7 (-1 2o [Ffm(plz) - G, e, %) }

J

; (V-21)
where: l\
o f oy \\
2 1 !
F,"(p,“) = L [dtQ L +1\A(s,t)q
L Pl 2 ; ] 2 2
2Tp ; 2p
1 /4 2 1
e > (V-22)
2 l . 7 1 ! \ 1
G, (p,") = dt Q [t +1|B.(s, t)
2 ‘Pl Z i 2 2 J
27p 2p
1 2 1 /
4p

The Ql are fairly simple functions which can easily be calculated. :

they are tabulated in Ref. 29.



-32-

VI. THE nn T-MATRIX AND ITS RELATION
TO THE MANDELSTAM AMPLITUDES

A function with a more convenient unitarity condition than that '
of the S-matrix is the T-matrix as defined by Moller. 30 If Y, and Yy
refer to miscellaneous gquantum numbers in the final and initial states,

resp'e'ctively, we have in the barycentric sy'stem:

i | f \

o o(4) ]
P87 (k, +k, -

+w \l/Zw \1/
et ] )

ki1 | kZ wzwz) \,k Iw' 1@
<92 ¢, Y, ,[T ’61 ¢ Y1> (VI-1)

where 92 b, and 61 $, are the barycentric scattering angles of the
i H

particles designated by k > and k 1 respectively, and w is the bary-

centric energy. If we restrict ourselves to two-particle intermediate

states, the unitarity condition for our S-matrix is

"33 \
Z,dkdkk,k,y Sk k,y ykosy Skk,v
2 2 | koo kg
Yl/ ,
_ (3),.' ' (3)
= 8y,v; &7 (k -k 1) &7k, - k).
(VI-2)

On " substituting (VI-1) into (VI-2) and carrying‘ out the integrations over

the intermediate momenta we get:

l
2 Im <920; Y, iT ; 910; \3

1 2 ' ) *

r / | ' % \

N
: b
i/

(VI-3)
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where we ha.ve ass_umed that the T-matrix is symmetric, i.e.

tlo oy ) ' *
<620 Yo ’T ’6 0; Y1/ 6 0; Y2 6 0; Yl s Wthh is true in our

Vcase only for 4’2 ¢1 = O N
For orientation purposes 1t may be noted that the T-matrix used

‘here is related to the dlfferentlal cross-section for distinguishable particles

by:
211' .

In the barycentnc systematlc the Samatrlx for channel 2 is related

2

to theT matrix by:
<P,r,a'p, r, a,'S-llq, s, B; q, s,£3>

T i9¢; s, 85 B, ﬁ'>
N | O (VI-4)

The angles give the direction of the nucleons (not antinucleons); the indices

- i6(4)(p+p -q- q)— <9¢;r,r;au
2 - .

¥ and s refer to helicity states as defined by Jacob and Wick, 31 rather
than to the more usual zZ ~component of spin states. In (VI-4) the nucleon
hel;,‘crcy and i-spin indices are always written before those of the anti-
nucleon, and their somewhat unusual assignment stems from the desire
to keep the satne set of indices for the same nucleon line, no mattér how
" the latter may be tw'iste_d in going from one channel to another under the
substitution rule. Finally, the bar over the T indicates that we are
referring to the T-matrix for channel 2.,.-

From (V-6) and (VI-4) we get:

T,OS,S sp>

\ ria,a
mzp. Co ‘ :
2 g oD 7o 6(2) oot (1) (2)
- U, (P)VS‘3 !(q)M(pi, -9,-P Q) V__ (p)Usfs (q)
2

(VI-5)

A
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according to (Iil-3) and Appendix A

8]

M=2(M P.+M 51), ' (VI-6)

0

where P. is the projection operator for a state with total i-spin I in

1
channel 2. Thus the T-matrix for a state with definite i-spin is:

/lﬂ 1 - T 3
§6¢;r,r T“O;s,s =

o |
m-p {1y (2)
—2— T )T (a) M

.-q -pq) v, ey Phg)

(VI-7)

where we must choose M’ for I=1 and M for I=0.

. For a particular i-spin the matrix M can be expressed in
terrhs of five arbitrary functions, which implies that only five of the
sixteen possible combinations of initial and final helicity states can be
independent. This can also be shown by api)lying time reversal and parity
invariance, and charge independence, directly to the helicity-state ampli-
tudes, using the rule given by Jacob and Wick. 31 It will be found that the
following five matrix elements are independent; they will be designated

by the numbers 1 through 5:

i 1 2 3 4 5

3

(r r){ss)

(FH)(++) (FH)(+-) (H)(--) (F-H+-) (+-)(-1) . (VI-5)

For simplicity we write:

1 ] — I
6.0: . =
<2 i T, T 00: s, s> TP- (zz)

where the matrix element is between the five basic states of (VI—S'),‘

—TI

Using (I1I-4) and (VI-4) we can express the T-matrix elements in terms

of the Mandelstam functions:
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2

— m p —
‘To(zz): 22 =z a An(s, t, t)

M 4 E2 n HB

(VI-9)
mzp

T 1(z2)= > 2 v a B" (s, t, t)

M 47 E, n pn

2
where the sum runs over n=S, T, V, A, P, and where
=Dy H3) Ly e (1) (2) .

2 in = Yp (P) v, (q) X" v p)ul " (q) (VI-10)

The p refers to the five basic amplitudés of (VI-8). In Table I the

functions aun are given; they have been calculated using the explicit
representation of the helicity-spinors described in Appendix B. In the

table, p and E are the barycentric three-momentum and energy respectively,
AZ = sz(l—z), gz = 2p2(1+z), where z is the barycentric scattering angle.

In terms of the invariant scalars we would have in channel 2 the relations:

A% = i, gz = - s, and 4E° = 4(p2 +m%) =t _ ,
Equation (VI-9) may be solved for the Mandelstam functions:
2
T E, 5
. An(s,t’T):/ﬁ]__z_Z > b T O(Z )
A _ np B 2
. mp, p=1
> (VI-11)
a _ 4w E2 5 _
Bs,t,t)= — = b T " (z,)
] - ng W 2
m p, p=1
where b =(a"') . The matrix||b_ ||is given in Table II.
, np np np.

In the physical region for channel 2 the functions bn are

real; from (IV-5) we have, therefore, in this region:

2
n _ 4w EZ > = 0
AZ. (s, t) = > = bn Irn2 T (z.)
> (VI-12)
n 4T 'E‘2 5 1
R = T
B, (s, t) > = bnp, Im2 T“"(Zz)

S



Table I

The Matrix

! a i !of Equation{Vi-10)

pn
N«
L% N
(' rYss ) s v T A P
! 2, 2 A% _yg? A% - g 2, 2
(£+)(++) p” /m 5 > -1 -E” /m
4p 4p
2 .
(++)+-) 0 _A_QEZ AL Ez 0 0
2mp 2mp
3 2, 2 A% g (2E®-m®)( Al -t 2, 2
(++)(--) o° /m m X ! £ fm
4p 4p” m
- -E” ¢° 2, 2 2, 2
2m p
> A% E® 2, 2 2 -
{(+-)(-+) 0 — -A" f2p -A" /2m 0




am——

Table 1I
The Matrix | b H Being the Inverse of ||a
_ | e el
L 1 2 3 .4 5
(r r)(ss ) (++)(++) (++)(+-) (++)--) (+-)(+-) (+-)-+)
A _
S w 2p2 m(g% - A% E*+m?) m? ap? ~m%(2p®-1?%) m?(2p®-A%)
2ALEp 2 20 L2 “_—sz 2
~2m> 2,,2 2, .2
A 0 ATE 0 -m“/ ¢ -m“/ A
T 0 2mE/ A 0 mz/gZ mZ/AZ
A 0 0 0 m®/ gz _m?/ A’
o _mz/ZEz m(g%-a%) w?) 252 —mZ(ZZEigz) mz(gEZ—ZAZ)
2A 4L E 2E° ¢ 2E° A"

_LE-
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where the subscript 2 after the "Im" indicates that we are referring to
the imaginary part in the physical region for channel 2.

Finally, we fulfil our promise of Section III and indicate that
the A" and B” remain finite as s or T goes to zero, We shall specifi-
cally discuss An, the arguments for B" being identical. According to
Jacob and Wick, 31 the amplitude T 0“ (z)may be written as a partial

wave expansion of the form:

1 _0’
60; r ,r ! T lOO; s, S

q .
where A and A are the differences between the nucleon and antinucleon

1

\ ) ,
VAo ° WO T

(VI-13)
helicities for the final and initial states respectively. The functions
d,," 7(8) are given in Ref. 31 and
— i !
T(I)(J)=/r,r s,s/u
¥ \
When t is zero, so is Azp and if in addition pzyé G then 8 is zero, too.

From Table Il we see that as A=0, b_, ~ 1/ Handb g ~1/A2for all n, while the

remaining bnp stay finite. For w =2 and p = 5 the d-functions in (VI-13)

T(J, I)

J .
are dOl (6), respectively; and from Appendix A of Ref. 31 we ob tain:

sin 6 P’V {cos 6)

T, o0 J
dgp (0) =
I+ 1)
J J+1 . J
d—].]. (6):("1) d}.l (TT—G) =
(1- cos 0) L ' i 1
ST [PJ(cos 6) - {1+ cos 6) P | (cos e)J ,
. -1 J -2 J . -
Thus, as 6 -0 both A dOl {(6) and A d_11 (0) remain finite.

Hence, by virtue of (VI-11), it is reasonable to assume that An(s, t, t)

remains finite as t - 0. This is not by any means a conclusive proof,



e 30.

2)_1/2 ’foz (ZZ) and

approaches one. A similar

since there is no guarantee that the series (1-z
-1 %0
(l—zz) T 2

5 (ZZ) remain finite as z
argument could be used to discuss the point s = 0 (i.e., QZ = 0)



- VII. THE POLYNOMIAL EXPANSION

We now turn to the problem of determining the functions
T

A.2 (s, t) and an (s, t}. . According to (VI-12), these functions can be
given in terms of In'l2 THI (zz), which in turn can be determined by
means of the unitarity condition {VI-3). For the reasons indicated in
Section I we shall assume that only the tWo—pion intermediate state
~contributions to the unitarity condition need be considered, and except
for the box diagram which will be calculated exactly, that, A, S and P
wave two-pion states will be sufficient to determine the higher angular
momentum states of nn scattering. Thus,; by using unitarity we can
~get Im T“I (zz) in the physical region for channel 2, i.e., s< 0 and
t> 4m , in terms of the FF functions, and then (VI-12) will give
Azrl {s, t} and an(ss t) and an (s, t} in this éame'region, Since
their analyticity properties are known from (IV-4), the absorptive parts
may be aﬁaiytically continued into the regibon s ‘.>\\4:m2 and t 34p°, in
which they are required for the dispersion relations (V-17). It should
be emphasized that whereas Imz Tp,l (zZ) and bnpu of {VI-12) may indi-
vidually be singular at many points in the unphysical region for channel 2,
when combined according to (VI-12) the result must have the analyticity
properties indicated by (IV-4), if the Mandelstam functions actually obey
the Mandelstam representation. ' '

In the two-pion approximation, then, the unitarity condition
(VI-3) may be written:

1

2T
[ [ *
= I .\ _ . AP | ) I
Im, TP‘(ZZ)—- JL/ZIi d(éose)‘/()d¢><920,x lT ,9¢><}0,le §6¢/
| - (VII-1)

1 o
where A and A are the nucleon minus the antinucleon helicities for the °

initial and final states respectively, and

\

TI 6‘4»/ is a T-matrix element for the process wm — nn.

i
’\'/9(]);)\
\
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) N—
Our T-matrix element is related to the CJL of _.FF. by:

' 1/2
1 I [ (p k) o>
<6¢;OITI 9¢>=‘1/’r\/7 LZT_ f J‘FJ'F-I
e | \ R R
<z9(b; +1 rrlioo = - <? o;.1:TI 0%}‘: 1/N2 gﬁ‘ ':f-+-1 ,

(VII-2)
'He.re P, and k are the baryczenlt;izc nucleon and pizonlr720menta, respec-
tively, i,e., p, = [(1/4) t-m ] K :[(1/4)t - J , and the
are the functions of FF Eqgs. (3.9) and (3.10), except that the i-spin
eigenamplitudes A0 and Al of FF Eq. (2.8) are used in FF Eqgs.(3.3)
and (3.4). Finally, the S-matrix of FF has been multiplied by 2—1/2 to
take into account the indistinguishability of the initial pions when in a
state of definite i-spin.

Sibcethe mr=nn amplitudes are obtained as partial waves of
definite helicity, we make a partial wave expansion according to the method
of Jacob and Wick:31

<e'¢'; A ’TI _e¢> -

1
. , : /
= (Zitrl ) el(M--)\)cb e-lMG /
J.M

T (7, M)

>dM)5_J<e") dpgo”(6),

(VII-3)
where the d-functions are those of Ref. 31, M is the z-component of
the total angular momentum, and the blank in the ket on the right-hand
side refers to the lack of helicity of the two-pion state. Substituting

(VII-3) into the unitarity condition (VII-1), and making use of the relations:

2w .
/ cHM-M )¢ do =2m &

0
T , .
2 &1
. J J _ JJ
/ sin 0.d 0 dyo” (0) a7 (0) = 3L
jO
d J

Mx (0) = 6M)\’ we get:
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I (1 J ' \Va R A
Im, T "z,) = 1/2 ?(‘47)‘1)&\' ("z)<X )< TN )
- (VII-4)

The functions <X ITI(Jg M) !> are actually independent of M owing to

i1, N

rotational invariance; they are related to the f:l: (t) of FF by:

(1] ~ F (0
(0 !T(J) ‘>= IN2 = —E— £, ()

2 2

K

o . o | |
<+1 TI(J))/z \/.1 !TI(J) [/: I N2 /;‘_2 (p, k)7 17 (1), (VII-5)
\ H .

in which the ‘f:hIJ (t) are those of FF, except, again, that the i-spin
eigenamplitudes of FF Eq. (2.8) must be used. For example, Eq. (3.16)
of FF would read:

NI(J+1) 1

2J%1
(pq)

with BJO -N6 BJ(+), BJI - ZBJ(‘). Actually, the £,%(t) should be the

modified FF functions discussed in Section II of the present work.

I

J I
£ = 1/8n 71 (Byop - Byyr)

' In order to calculate thezabsorptie parts, we substitute the

ImZ THI(ZZ) of (VII-4) into (VI-12) and express z,, k, E2 and P, in terms

2,
of s and t. The resultis a Legendre function expansion in terms of

_ s \_ Zs+t—4m2
z, = - 24‘#1)—- >—]-
2p t - 4m

In the region of interest for the dispersion relation we have

s >4m2 and o St ;41.1.2, so that IZZ '>| for all of the range of integration
in (IV-3), and the expansion may diverge. According to Neumann's
theorem, 32 a Legendre function expansion in z = cosf converges inside
an ellipse in the complex =z-plane that has foci at +1 and —1., and passes

through the nearest singularity. In the present case z, is always real,

2
and it is easily seen that the expansion for Azn(s, t) will converge except

for points at which AZn (s, t) is singular. From (IV-4) we note that for

s> ‘.l,%,-mz, A,(s,t) has a singularity in the region in which alzn' () t}is

non-zero; this, according to (IV-2a), will occur when: t>\4|¢2+ 4p (s-4m2)—

1
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which would give us a very short range of integration before the ‘expansion
begins to diverge. The curve C12 is, according to Mandelstam, 45 the
boundary of the contribution of the mw-n pole alone to the spectral functions
alzn (s, t) an:i blzn (s,”t), other contributions not entering until we reach -
the curves C 12 and C 12 of Fig. 5. Since the wm-n pole contributions to
the 1T1'r—>r_1§ amplitude are easily determined, we can by means of (VII-1)
and (VI-12) calculate its effect on the absorptive parts, without recourse
.to a partial wave expansion; this is done in Section VIII. Each absorptive
part in the two-pion approximation will consequently consist of three terms:
A,%s, t) = Af,z_n(s, t) +‘A”Zn(s,t) A s 0. (V-6
with a similar expression for B B (s, t). In the above equation Alzn(s, t)
is the partial wave expansion in terms of the modified FF functions,
A“Zn(s, t) g1ves the w-n pole term (i.e. the box-diagram) in unexpanded
form, and A (s t) is a partial wave expansion of the pole term, in-
volving the same number of partial waves as A' s, t). The function
22 (s,t) is required because the FF functions already Contam the 7-n
pole contrlbutlons in partial wave form which must be subtracted out by
means of A (s t). '

The curve C 12 in Fig. 5 is the boundary of the three pion
contribution and can be calculated using Mandelstam's method = by
considering an intermediate state involving a pion and a particle of twice

the p'i‘O.nmass.. 33 The result is:

. - 2 . 2 2 \ '1/2
t"4HZ= H2+“§&—_2-+4H2 <1+' : 2> <1<+ _ég_zi‘} )
. s-4m _ s-4m . s-4m - : _
(R . .
with the asymptotes: t = 91.1.2, s = 4m2, The curve C 12 is the boundary

of 'the higher order two¥pion exchange contributions, and has asymptotes
2. o

t=(2n) and s = (2m + p)Z. It can be determined by merely replacing one

of the nucleons in the calculation of C12 by a particle of the mass of a

nucleon plus a pion, the result is:

t - 4’ = ‘.l.&_[zu(mm) s + (m” - )(Zm + p)] °
[(S - 2) s - (2m +pu) J
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‘For s less than the asymptote of C 12 i.e., for a nucleon kinetic

energy in the laboratory system T, < 287 Mev, (s—4m2=4p.12=2m TL),

the series for Azn (s, t), in the two-pion app‘ro:icimation, will converge

for all values of ¢; however, once t crosses C 12 the two-pion approxi-
mation soon loses its validity, although it will not do so immediately since
the three-pion contributions will, in all probability, be initially small. For
T, =700 Mév, Cjsand c"

L 12 ‘ ,\
term has been subtracted out, the partial wave expansion will converge up

intersect at . t = 9.2|J.>2; thus, once the w-n pole

tot=9.2 for TL< 700 Mev. For values of TL> 700 Mev the expansion
1t
will converge for values of t given by C 12°
The foregoing remarks illustrate a general property of scattering

amplitudes that was first pointed out by Mandelstam. Consider a
scattering amplitude in the approximation that only the lowest mass two-
particle intefmediate state is included. If thé interaction is such that no
box-type diagram exists, i.e., there is no three-particie vertex like the
pion-nucleon vertex, then in the lowest approximation the actual values of
the two-dimensional spectral functions may be ignored, and only the bound-
ary curves are needed. This, for example, is the state of affairs in the
pion-pion problem. If, however, there is a three-particle vertex such that
a box-type diagram ekists, the value of the spectral function due to the box-
diagram must be known in closed, i.e., not partial wave, form. In prin-
ciple, as we shall see in theiext section, this is always possible.

- Finally, we write A'Zn (s,t) and B'Zn (s, t) in terms of the modified |,
FF functions. From Appendix A of Ref. 31, we get for the functions:
d'D\'J (Q)', with z = cosf ' |

d D(¢9)=1 d 'O(e)=o )\and)\'7/0
700 S 9 ’

d oo (0) = =z, d'lo(e)z - YNZ AN - 22, d'“ (6)=1/2 (1 + z)

- d 711 (‘6) =1/2 (1'-4;). - ” | | '. (VII-7)

Using (VII-4) with J = 0 and 1 only, together with (VII-5), (VII-7) and
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(VI-12), and recalling from FF that f+02J+1(t) ‘;“-fﬂZJ(.t)= 0, we vge.t:
- . — 2 |
'S _ 4w t - 4p 0
A P (s, t) = — J f (L)
2 " (t-4m2)? t +0
A Vs 0=aTs,0=8% 6, 0=4,(s =0 |
_ 2,3/2 b o2
'S 37 (t - 4p”) 2 1.
B (s, t) = - , -(2s +t - 4m 8 if (t)
2 \® 326172 (4 - 4 : { [T+1 |
2 ‘z | LY 1 2
- «En(_t+4m ) E (0 £ (F) +_.t f_l. (t)
‘ o 23/2[- . - o .
'V _ 3w (t= 4u") 1 1%
B, (s, t) = - 35 — s (4N2m f (t) f (t)
Pt 32 —“‘_(4mz_t)t172‘[ +1 -1
R EAC 2]
. e a2 3/;;"173_ > '1
B ‘ZTI(‘S’ t) = %TZ'_ (t 4*; ) Tt -.l[i——ﬁ:'f:’_"l(t) £, * (1)
__ o 4mT-t : :
X
1 ‘
- lf‘l (t)‘ l }
B‘é’A (s, t) =0
P _ 3w (t'-4u7)3/2 2{«/2 1 1
B, (s, t)= - == (2s +t -4m°)| Y< £ T (t) £ . (t)
2 32 (amloy) 11/ | m M+l -1
1
- (1) | (VII-8)

The expressions for Ezn(s, t) and ']‘an (s, t) may be obtained
from (VII-8) by merely substituting the functions g:tIJ (t) for the fil‘.}(t),

where the former are the w-n. pole term partial waves given in (VIII-2).
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VIII. THE w-n POLE CONTRIBUTIONS

In this section we calculate the contribution to AZn (s, t) and
an (s, t) due to the w-n pole, or box-diagram, both in terms of partial
waves and as a closed expressmn

The functions correspondmg to the f 41 (t), but containing mly
the m-n pole term will be denoted by g:‘:I (t) They are easily obtained
from FF. From Eq. (4.1) of FF we get for the pole term in the bary-

centric system of the process T -enmn ;

BP(*) (z) = 47 g° ( 5 ; P 21 ) (VIII-1)

_ 2E" " - 2pkz  2E"-p” + 2pkz _
where A” and Bi are the invariant functions of FF with the subscript-P
standing for pole, g is the renormalized unrationalized pion-nucleon
coupling constant (gz% 14.4), p and k are respectively the nucleon andpion
momentum, z is the cosine of the barycentric scattering angle, and
E2 = p2 -{4 mZ = 1{2 +>p2.' Makmg use of FF Eqs. (3. 17'), (3.15), and (2.8},

as well as the expansion used in our (V-20) we eas11y obtain:

. '\/6 g m v /v
80 (t) == Q. =5—\-& 0 | J even
_ C (p k) 2p 7J \Zp J. J
= 0, J odd.
\ A
g = Yo gNIGHD) | g <l‘ -Q —Y—)
-0 23+ 1)(pk) J-1 Zp) 741 {2p) |, I even
= 0 J odd
I 2g°m Y y | |
gy (B) = = 5= Q. (52), J odd
(pk)J Zp. J2p

= 0 | ' J even



-47-

(23+1)(pk)”

T,y _ 2g N JI(J+]) v Y
gy (t) 3 —————g [%-1(‘25) - Q51 (29} ,» Jodd

il

0, . 5 , L L _ Jeven. (VIII-2)

The Q are the Legendre funct1ons of the second kind used in (V-20); and
since t wh1ch is the total energy in our channel 2, is also the total

energy for the process 'mr—»nn, we have:

t = 4E% = 4(k% + u°%) = 4(p® + mz)
and
- 222 b0
: k '\/t -4}12

To get the A2 (s, t):and B (s, t) we need merely to replace’
1 Tt by Ba1 (t) in (VII-8). : : o L ,

We now turn to the problem of calculatmg the unexpanded mT-n
: ’ ll

pole terms A (s, t) and B (s, t). From the equation in FF, and
our (VII 2) the T matrlx for the pole term in the process wmw > nn can

be written:

. ’ (i)»> p)l/2 (#) vy as o
8 ¢; T Bd ) = (= —~—— B Z)h, (0, 60 d),
<¢ Te o |58) =5 GEg PR (Bm (08 0
here:
h>\ (6 &, 6¢?' = ﬁr'(p'? il . }il Vr(p), i .)\'= rl ST (VIII-3)

1;.“ 1- is the barycentric three-momentum of one of the incoming pions

R

— it makes no difference which one, since overall signs are irrelevant

for our purposes — Bp:t(Z) is given by (VIII-1) in which:
1
B X v ' '
Z=T~l=zz+yy cos (68 - &),
where

4]
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The functions h \’ when evaluated in terms of the helicity spinors given

in Appendix B, are

(I ] : ' ‘14"
h (04, 04 =- = |yt YO (Z + z)
1 + =z

i y' ei(b (Z + z)

h (06, 04)= —
VA

Ec |
™ Yy

hy (66, 04)= kZ. (VIII-4)

The unitarity condition (VII-1) now tells us that:

1 2T
= (%) _ pk ' ) *
Im_, T (z,) = —B= dz [ déh '(6.0,04) h, (00, 0d)
2 “Pu 22 w(an) B [1 /0 h(%; ) _

(%), & {F)
By (Z) Bp (z).

(VIII-5)
here

Z - z,2 + y,y cos b.
In (VIII-4) the subscript ""P" shows that the pole contribution is meant,

and the "W refers to the five basic helicity states of (VI-8). Egquation
(2.8) of FF implies that:

Irn.Z TPH(O) (ZZ)

7 (+)
6 Irn2 TPIJ« (ZZ)

. (-)
Im2 TP]J, (ZZ)

4 IrnZ TPP- (z,).

2

The integrals (VIII-5) can be performed, but since they are

messy we shall not burden the reader with the intermediate details, but
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.. merely withv_the'results._ In Appendix C we shall indicate how the

integrations may be done. The result is:

- — 0 —_— o _.:‘..
Im Tpy (z) = Im Tpy7(z)

4 Y .
+ 2

=_.____3g m k 2_(w +w) - X n<—'~Y Z")HJ.

8'rrE p p Y- p, :

= 0, \_ 3g mk . '

Im TPZ (z)= - T67Eyp {(1 - Z)W'1
Y, \
_z y t2p ) |
(1+ZT)WZJ+Zp In (Y-‘ 2p>}

. . , | . |
= 0, . = 3¢g7 k- 4p o
Im TP4 (z) = Temp(1¥z2) { [Yz (1 - Z) - (3 - Z)j W, -

o2 S ﬁ
(__ - DL+ z) W, gln (M)-Z (1+ z)}

v. Y - 2p
N - 4 2
= 0 . -3g k 4p
ImTPS_(Z)—' léwp(l-z){<l_ YZ>(1-z)W1
| 4p° +2
-3+ 2) - B (o) | W, L an (VSR )
—Z(I-Z)}
4 2
1 1 _ gm k
Im Tpl (z) = Im TP3 (z) = 811-E2p (Wl - WZ)

4 :
= 1, _  -g'mk Y+
Im Tps (z) = BrpEy {(1 - z) W, + (1 + z) w, Zp ( b )}

Im T Yz = —g4k A _ 4 5
‘P4 ‘¥ T Bwp(l ¥ z2) 3—z-—P—(l+z)]W,1



_B50 -

2 .
+ ____4;2 )-(1+z)w2A-%Azn (Y+2p

= 1 _ g4k yz \ 1 W
Im Tpy (2) = - geprz oy (\L - Z};z/( -2 Wy

r 2 T . \
s 3+z-2_(1-2)| w, -Ym(¥Xr2R (VIII-6)
: YZ 2 p Y -2p

Here, y has the same 'meaning as in (VIII-2), v is sin 8, and

2 x. +1
W = Y In _];—
1 2 ' x, -1
4p (1 - z) X 1
2 x, + 1
W, = ki In 2
2 2 x, -1
4p (1 + z) X 2
r ] 1
2 2 1/2 2 2 i1/2
Xlziv-gp (1 + z) / Xz{v-‘lp (l-z)s/
5 : ’ 2 2
['415 (1-2z) [4p (1+2) |
From (VI-12) and (VIII-6), together with the relations
s = - sz (1+z); t = 4(p2+m2) = 4E2, we can get the w-n pole contributions

to the absorptive parts in channel 2; these turn out’to be:

|

i

A S(s, t)

2 ) 2 |4m® (25 4t - 4m®)?
‘.51]- 's(s'-i‘-‘t—4m2)' t | ‘s(s+t-4m2)
[ 2 .2 1w
EPENC. ) Wy § B | 0
t .st(s+t-4m"™) s2 (s+t—4m2)2j (4m2 -t)
1 2 1 2 ;l-t 4 2
sttt ot | W
(s+t-4m ") Y (stt-4m 7) |
1 [Z 2 1 2s +t - 4m2

- —_— - - = W
2
[t s+’c—4m2 S sY 2
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ny r
Ay (880 5s+t-am?) |1 (4m” - 1)
3'11-1 s (s + t-’4m2) t s(s + t—4m2)
@2sttam®) |, 2 t4m®-9® Yo
st(s + t-4m2) s(s + t—4m2) J (4m2-t)
12 2 1 (4m>-t) |
tslstr - 2 z — W
sis s + t-4m v (s+t-4m™) j
1 2 2 1 (4m® -t | W
4o ——— = - 2+—;—+ > 2
(s +t-4m™) l_L s+t-4m” ° Y s }
IIT 2
Az 88 2(@s +t-4m’)4m® - 1) |, (t+2s -4md)
3 T 2 2.2 2
n s (s+t-4m") s(s + t-4m")
f 2 2 W [ 2 3
(4m”~ - t) 0 12 1 (4m~-t) |
X |1 7 Z . " s|s z T 2 W
s{s + t-4m ™) (4m"™ -t) l s + t-4m Y (stt-4m”)
) ’ J
1 2 1 (4m? - t)
* 7 7~ 5T =z | W,
(s + t-4m"™) S+t -4m s Y s
"Ag 4y \ 1 . *.
Ay (st 2 b (28 +t-4m?%)° 1 1 ‘!
3 = - 2 v B v 7| W
s(s + t-4m") " s{s +t-4m") [s (s + t-4m") 1 '
1 r2 1 (Zs+t—4m2) ]
“sis >~ v 3 o W
' s +t-4m Y (s + t-4m"™) _! :
) : 2. 1
1 ; 2 1 (2s #t - 4m"™) |
- 7| e W,
(t+s~4m)§s+t-4m -y s " :
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Hp
Al ALY _ 2 | 4m? (2s+t- 4m?%)°
3n >s(t+ s—4m2) t s{s +t -4m2)
4 (am® - n° 2 2101 ] Yo
T oot (dm -ty z z
L st{(s + t-4m") s (s + t-4m )J (4m™ -t)
1[2 L2, R O N
s ‘E t 2 2 2 1
L s+t -4m Yy {st+tt-4m)
~ : ; ‘!
1 2 2 “l+zs+t'-4m2§ W
B 2 t 2 s Tz T T
(s +t-4m") ‘ s+t -4m Y s |
sns-(- ) > .
B s, t : '
22 = (és+t'4m;2 % + (t + s)(s - 4m?) (W, +2)
n / ts{s+t-4m ) J
|
+l E_+£+ 1 +(Zs+t—4m)gw
s |s ¢ t+s -4m° y(s+t—4m2)j !
[ 2
+ 1 Z'EZ" 2 =l+(Zs+tZ—4m) WZ
(s +t-4m"™) t+ s -4m vy s
" 2 2 2
B (s, t} _ -1 5 - 4m + (4m”~ - t) ] (W +2)
»211.” s{s +t _4m2) t s{(s +.t - 4m2) 0
] 2
+ _]._ '_%+— _ -—1 _ (4m - t) Wl
S[S s+t-4m v (s +t-4m°)
(s +t -4m°) t+s - 4m S v© s
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IIT( )
B s, t ‘ '
2 -t lumiio? e am® o ns | (Wyt2)
n s (s+tt-4m")
12 1 (4m”- t)
e - ) 1 W
s s+t -4m Y(s+t-4m”) -
. X :
- 2 2 s 2 2
(s +t-4m") s+t-4m _ Y s
IIA .
B, (s, t)=_(4m2_t)(t+2s—4m2) (W + 2)
n sz(s +t- 4mz)Z 0 ‘
1|2 1 (2s +t - 4 2.) :
R — 4 S L W
S 1® s+t-4m .y_(s+t-4m)J
. 2];
1 2 1 (2s+t-4m7)
2 z s ) W2
s +t-4m s +t-4m , Y s J
HP '
B (s, t) 2 D 7']
2 - 2(25“'4?% 2 4 (e 4. s)(s - 4m”) (W, + 2)
n ts (s +t -4m") [
12,2 1 (2s + ¢ 4”2) E
I R 2+Zs "mz LWy
s 18 s+t -4m Yo(s +t-4m”) |
1 2 2 1 (25 +t - 4 %) |
+—_——_?MIF_——_-—Z__+ sz_m WZ’
(s +t-4m") s+t - 4m s Y s
o , - ' : (VIII-7)
where
1/2
4 2.1
n:ng4 Ek = Trg‘v[t(t4—4:p ) J
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Wt - 4m2) 12 4

/ ) |
- Y y+2p - Y ) |
W, =Y g (LIER ). 2= n -2.
0 2p \Y - op (t - 4m%)1/? ¥(t - 4m%) /% L

In terms of the scalar 1nvar1ants of channel 2 the functions

w andW are:

1
2 x1,+l
W, = Y In
1 x, -1
2{s +t -4m"~) x 1
W - Y2 x2+1
2 s x x, -1
<. . =[4p4+(t—4p }s + t) 1/2
1 l(t—4|.x)(t+s—4m)
. =Lu4-(t-4uz)(5-4mz) 12
2 —s(:t—4p2)
y = t-2.|.1,2
- 2.1/2
(t - 4p7)

The above logarithmic functions are defined on those Riemann sheets
which make Aznn(s, t) and BZ"n (s, t) real in the physical region for
channel 2. For the dispersion relation, however, they must be analyti-
cally continued into the region s >4m2, t 5\492 and care must be taken
to remain on that branch of the logarithm which gives a real absorptive
part for s <0, t >4m2. »

The function W, is actually;

0

Y
(t j 4m2)1/2

the Q being a'Legendre functmn of the second kind, and both it and its

argument are real for t >4m2.> For 4p. <t < 4m2, W becomes:



/ v -
2 -1/2 .

Wo = 17 o F ) o2
i(4m” -t) i, ¥(4m” - t) -i

- 2y -1 (4m2 - t)l/2
= > T tan
(4m~ - t) /2 Y

-2, 4p® <t < 4m”®.

Note that there is no discontinuity at t = 4m2, and that
(t - 4mz)-1 WO'-> (3y2)_1 as t—= 4m2.

The function W1 is no problem since it has no singularities in
the region of interest and X is real throughout. '

In the function WZ’ x, becomes pure imaginary for:

4
s >0, 0<(t-4p’)< 2
s -4m

so tha_t W2 must be written:
2 i 1
-y In 2

2si x2 1x2 -1

= :X, ta.n—1 xl , Oétan'-l- : {%’r—.
2 | zl 2

WZ becomes singular when

w5

) .
ap® - (t - 4u®) (s - 4m®) = 0,

i.e., at the curve CIZ of (IV-2a), ‘and is complex inside the region
bounded by ClZ’

2

. 1 +|x 2 . 4 '
W2= h Zs\'(fx In 1 —x2 + ;/s“'; ’ t-4p2> —:1_“_2 ! S>4m2'
, lZI . ’ 2 ' 2 s - 4m

The Mandelstam' functions, as calculated here, will be real except for an

imaginary part coming from the imaginary part of WZ' The nn phase



_56-

shifts for which our calculation has validity will be small, so that the
imagiﬁéfy parts of the amplitudes will be negligible. Moreover, the
imaginary part of the amplitude can easily be determined once the real
part is known We will cdnsequently ignore thelimaginary. part of W2°

To summarize, for s >4m2, t >4|J.2 the three functions WO’

Wl’ and W.2 are:
2,-1/2
WO = Y 7172 Iin ¥t - 4m2)_1/2+1 -2, t>4:rn2
(t - 4m"™) yit - 4m™) -1
‘ ‘ 2 1/2] 4
= = ZZY 72 tanml (4m - t) -2, 4}.1.2 <'t<4rh2
(4m"~ - t) Y
2 x. +1
W= s tn|o— ) >4
2(s +t -4m )xl 1
L [4p4+ (t -4p°) (s + t) 1/2
! (t—4p2)(t+s-4m2) :
2 / ' 4
W, = tan"t (), 0<t-ap? < S
‘ Zl %2 s - 4m
0<ta.n‘1 1 <X
X 2
™|
2 1+ =, 4
= - e in 1;=>;Z=i’t'4“2>4“‘2
| 2' _ '! 2| s - 4m
< 4;14—(’(—4“2)(5 —4m2) 1/2
2 .
- s (t- 4H2)
- t"2i~12
v = 175 I (VIII-8)
(t - 4u7) 2 a ‘
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IX. ANGULAR MOMENTUM DECOMPOSITION OF nn AMPLITUDES

In this section we relate the amplitudes 'Aﬂ n(vs) a1f1d B;@ 1’i(s) of
(V-19) to nucleon-nucleon phase shifts. Since all previous phase-shift
calculations have ‘been done in terms of z-component of spin rather
than helicity states, we will use the former throughoht this section.

The T-matrix in channel 1 is (cf VI-5):

' ' ' 1 $ l \
<9¢;r,s;a,{3 iT 00; r, s; a, B)

=T (_l)(P') ﬁs’ﬁ'(z)(q') M(p' q, P Q) Um( lv)(p) Usﬁ(Z)(q)’

- (IX-1)

. 1 H .
where the indices r , s, r, s now refer to z-components of spin rather

than to helicities. The i-spin projection operators in channel 1 are:

p,=x(1- 0 A3
Py=z0G+1 1)
50 that:»
M=M + :‘1) : 1(2) M’
= (M7 - 3M%) By (M + M) P, | (IX-2)

The T-matrix for a scattering in a state of definite i-spin and definite
initial and final total spin is:

/ , 2 !
&e b, G iTI!OO,U> =2 P oz "D, 1M TN (1x.3)
: (4m)" n ,

g 0
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: !
where ¢ and ¢ are 1, 0, and -1 for the triplet spin state, and o =S

will designate the singlet state. The functions s O_n are the proper

combinations of the terms:

=\ 2 gy kD pya_ )

S Weh (a)

s

1
to give the final and initial total-spin states designated by o and o;

they are tabulated in Table III, and have been calculated using the
: "

explic'it Dirac-spinor representation of Appendix B. The <, of

Table III are not all independent, since according to Wolfenstein and

L. 23 . . . . . . " .
Ashkin, time reversal invariance gives rise to the relations:

e n n _ n n n
N 2 z(clo +'C01 ) = Y(Cll - C90 " 1.1 ).

Frbm (II1-4) and (I1X-2) the functions DIn(S’ tt) are:

p® = A" _ 3B

n

(IX-4)
DIn ; An + Bn

Finally, the right-hand side of (IX-3) has been multiplied by 1/2 because
nucleons when in states of definite i-spin and definite ordinary spin are
indisti_’nguishable p‘articles, whereas the matrix M is calculated as
though they were distinghuishable.

The DIn can be expanded in terms of Legendre polynomials:

o0
D= 3 (204 1) Dzln P, (z) (IX-5)
=0 .
- In n n
where the DZ are related to the Al and Bi of (V-19) and (V-21) by
On _ n . n )
D, = A!2 - 3B, l
i (IX-6)
In _ n n <
D, = Aﬂ +B, J



" Table III
The Functions CO_'O_ of Equation (IX-3)
The Table actually contains 2m“ ¢ ' 7. z =cos6, y = sinf.
n. S A" T A P
Cssn pz(_l-z) + Zm2 4:p2 + Zm2 -Z(pzz + 3EZ) —Z(ZE2 + mz).‘ pz(l - z)
COOn (E-rn)zz2 -p =z -2m(E-m) zz Z[E(E—m)z'2 —ZL(E--m)rnz2 —pzz (1-2)
2
+2Em +4p2z + 2Em + 3p z + Em] .szz - Em]
n_  (E-m) °y (1-2)
<10 = _.é_rE_Y[E+m N2y(E-m)[mz -N2(E-m)y[Ez N2 (E-m)y[mz p—z}—_——
' 2
"€ 19" -(E-m)z] -2(E+m)] + 3(E+m)] + E+m)]
' (E-m) | ‘y (1-2)
cOI“ -_%X[Elfm NZ (E-m)y(Ez + -NZ (E-m)myz N2 (E-m)y(Ez Pyl -2)
“Co® - (B-m)z ] E + m) + E + m)
Cl’ln %[(E-m)zz;- szz E(E_—m)z2 + Zp-zz -m[(E—m)z2 E(E-m)z2+ szz - % p2 (1 - z)z
<y # (E + m)° + E(E +m) - (E + m)] + E(E + m)
¢, " %(E.—m)z (1-2°%) E(E-m)(1-2z°%) ~m(E-m)(1-2%) E(E-m)(1-2°) - .21- p? (1-2%)
n
c.11

_6(;_
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The purpose of this section is to relate the Dlln which are
_obtained from the dlsper sion relations to T- matr1x elements in the
angular momentum representation: /J M, L SITI ;J M, L, S>
where L and L are the fmal and 1n1t1a1 orbital angular momenta, S
the total spin and M = Jz. Note that J, M, S and I are all conserved
and that the matrix element must be independent of M owing to rotational
invariance. . To see that S is conserved we observe that an exchange of

particles in the initial state vector produces a factor:

F(S+ 1) +(I1+1) L+S+1

(-1)* . = (-1)
which must be negative by the Pauli principle; that is, L+ S +1 must be
odd. Now 1 is conserved, and parity conservation requires that L L
be even, so thatif L + S+ 1 is to be odd for the final as well as for the
initial state, SI - S must be even. For the s.cattefiug of two spin-1/2
particles Sf - Si = 0 or 1, hence in this case Sf - Si = 0, and S is
conserved. Consequently, we may write the T-matrix elements that are
non-zero as follows: |

For the spin-singlet:

Tl = <J, M, J, 0 [T . M, 3, 0 \ . | (IX-7a)

/

For the spin-triplet, we have matrix elements TLJI when the initial and

final L values are the same; specifically these elements are:

T;; = <J,_M, I, LT |3, M, 7, 1/

/

TJ'F].J_ \J, M,'J:t 17 1 !T J: M’ J: + l’ 1 4

¥
and when L - L =% 2: : : (IX-7b)

A ] i !
Tl - <J, M, J+1,1;TI;J, M, J-1, 1>

|
.<J,M,J—11TIJMJ+1 1>
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where the latter equality comes from the symmetry of the T-matrix.
: - 34

The above expressions are related to the a3 of Stapp et.al. as

follows: ' '

o.J = —iTJ.

v The T-matrix can be written:

/ . . Cot (RIS \ | \ .
< 0, 0 ! TI 2‘90¢0’ cr> = §L<9¢ !L L}é LZ‘,O‘."";‘ TIJLLLU/<LLZ!90¢Q/ .
where: ‘

/
(o0 | LLZ> = Y. (64),

YLL (0¢) being a spherical harmonic, defined as in Appendix A of Blatt
Z
and Weisskopf. 35 Since '

Y. . (00)= J2L+l
LL, S T

Z

we obtain

/ Vo Ii L /n ! 1 11 e
( 8o, 0 T lOO, g) = T YL L (6) (L L o IT. +LO0a J 2L+ 1
\ ' L', L z N\ Z I r
(IX-8)
! !
where now L 2 = 0 - 0 by conservation of the z-component of total

angular momentum.
The Coion of (IX-3) are functions of sin'® and cos 6§, and by

using the recursion relations for Legendre polynomials, (IX-3) can be
rewritten in the form: |
) T
1 ! . )
(/9¢>,0 ITI 00,0)= = Y,' ' (66) K ' ‘& (IX-9)
\ ’ L' L L 2 o 0
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1

IL

where the KG‘O_ are known functions of the DI_I, and of E and p, but

have no angular dependence. Comparing (IX-8) and (IX-9) we see that:

’ . '
1 1 ot 1
SR> <3,,L L= 0-0,0 ’TJI LO%> Jfliﬁal , (IX-10)
i -

g g 1.

In the spin-singlet case L = 1= J, and we immediately get the

relation:
I % 47 1y _
Ty = Namr Kes (IX-11)

In the qpm trlplet case matters are not as simple, since we
may have J = or L +1and L = L or L + 2, and it is necessary to
project out the T-matrix element referring to the various values of J

!

and L. For this purpose we calculate from the KG‘O_ the functions:

) 1 i 1 ILV
H.' = 3 <Jo-,L,1’L,L =0-0, 0 KG'U ,
o =0%1 ' z
(IX-12)

o 1 1 P v ’ :
where <J, o, L',1 | L Lz=cr—-'cr , 0> is a Clebsch-Gordon
coefficient that relates the LLZG representation (recall that ¢ stands
for =1, SZ = g) tothe J M L S representation. From conservation

of angular momentum:

f

1 .
M=L +0 =L + 0,
z z
' .
but L = 0, so that M = o and L = 0-0 . Upon combining (IX-10)
and (IX 12), and maklng use of the orthogonahty properties of Clebsch-

Gordon coefficients, we get:

' = <J o, L, I‘TI'L 0,0 [2EEL  (1x-13)

Ly L=L,L'%2. P/ N T m
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Now:
1 /v o
L0oc ) =X ]J o,L,1 KJ,O‘,L,ltL,O,U
J1 :
. : t
and since the interaction conserves J only, the J = J term will contri-

bute in (IX-13) thus:

R I ¢ I ,1><J,0,L,1 1/—Z—I—;-‘—:——l.
L=L,L+2
(IX-14)
]
For LL = J only one term occurs in Eq. (IX-14), namely the one in

‘which L = J; thus we have

Io _ I ‘ /27 + 1
HJJ _TJJ <J,U’J,1-J’O’O> —411_—-

Using this equation for ¢°= + 1 or -1 (for ¢ = 0 both sides vanish
identically) we can express the -TJJI in terms of the HJJIG. When

1
L =7J+ 1, for example, there will be two terms in (IX-14) corresponding

toL—J+1 andL"J—l hence

Io I 2J+3
HJ+1J —TJ+1J <JOJ+Il J+100>

TU<J,0,J-1,1'J-1,0,0> 2J4’wl. (IX-15)

+-

- Equation (IX-15) is actually a set of three equations, one for each per-
missible value of o, and each equation involves the same two quantities

I
TJ+1JI and T J. Any two of these relations are independent and can be
used to solve for TJ_’_1 JI and TIJ in terms of the HJ_HJIO. Similarly,
I J 1o - 1o
T
3-17 and T can be obtame;ﬁl in terms of HJ 13 Since the HL 3
are known functions of the Dl by virtue of (IX-12), the T-matrix

elements have been expressed in terms of the Mandelstam amplitudes.
In (IX-16) below we give give the result of this procedure the

functions designated by T are the T-matrix elements due to the one-pion
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exchange pole, which we have ignored up to now, and which have been
‘given pr‘eviously.g “The functions cjn (j=0,1,2,3,4;,n= S, V, T, A, P)

are given in Table IV. For the spin-singlet:

I1_ N1 p : n In 2, n n
Ty =Ty * svEET+1 f{‘“*”co Dy tpley -cp)

' In In
[JDJ_1 +(J+1)DJ+1 }}

For the spin-triplet:

' I_ A1, p : 2 n 2 n] In
Tyr = Tyr * swERI T f{[(E”“) €y *P oo 2T+ 1) Dy

2 n In In
tp ¢y "JDJ+1 +(J+1)DJ_1 ]}

/

T‘J+1J.If.=A ‘.{F\JHJI +8-rrE(2pJ + 1)° f{[z J.Z(»E * ’m>2v°1n.72 Em )"
+(2J+ 1) |[(E + m)° cln-lcf2 Czn) DJ+1In
+ 2J(J + INE ) m)zcln DJ—'IIn HZJH)[Z(JH)C:"C;]
% pZ DJIn }
T =?~T-” ) 81rE(2i +1)° . {ZJ(J £ (E - m) ey Dy,

2
+ 25+ DHE + m)? ¢\~ 2Em ¢ "= (23+1) (E+m)2c1n-p2c2n)] DJ_IIn

In

n n, 2
+ (2T + 1)(27 <y +c3 ) p DJ
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Table 1V

The Function Cjn of Equation (IX-16)

s v o T A P
0 p2 + 2m? Z(Zp2 + mz) _6E® .-2(2p‘2 + 3m _vp
1 1 1 1 1 0.
2 0 1 -1 1 -1.
3 -1 2 0 2 1
4 -1 3 3 -1 0
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A 1 | |
7= 71+ ————-—p“”“”)z z »[(ZJH) p° c,” - (E - m)* c,” ]DJHIH
8TE(2J+1)° n L

.
4 [(ZJ +1)p° c,” + (E - m)° canDJ_iln +(2J+1)2p2(czn—c4n)DJIn}.
| (IX-16)

Note that because of the Pauli principle L' and L are odd for I =S and
even for 17! S, where S is the total spin. |

For the sake of completeness we give the one-pion exchange terms
explicitly: |
For the spin—éinglet:

/\1 ng .
(—_+1—T2—E (F+ 1) Qp v Q; - (2I+ 1) Qg ’J’_éo
alpg
= —=r (9 - Q) J=0.

For the spin-triplet:

2
AN SR <]- S |
-@r+no;|

T15 = @302E [JQJ+ ) Q;
2
- -~a.pg
-‘/1§ I_ (__)—2}+1 o5 Qg1 - Q)
J+1J
2
4 1_ T°1Pe
U5-15 * ez (95 - 952
Aty Y — |
= ——(ZJH)ZE YIT + 1) QJ+1+QJ_1 -2 Qg (IX-17)
) 2
where a, = 1, a, = - 3: and Q \ P 2 is a Legendre function of the

second kind. Note that in (IX-17) Q P rdust be taken to be identically

zero. For the relations between our T matrix elements and phase shifts,
see Ref, 34.
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X. CONCLUSION

Because of the lack of reliable values for the FF functions,
no numerical results could be included. It is hoped that the calculations
of the modified FF functions currently being made by Ball and Won'g36
will soon remedy this lack, and it should then be possible to calculate
several of the phase-shifts just below those adequately given by the one-
pioﬁ exchénge pole. ' )

Calculations very similar to, but much more ambitious in scope
than the present ones, are being carried out by Goldberger, G_I;isa.ru,
Mcdowell, Noyes, and D. Worg. 37 These authors write dispersion

'relations for partial wave amplitudes in the nucleon-nucleon channel, .
which will enable them to involve the unitarity condition in that channel,
and thus derive a set of coupled integral equations by means of the n /D
technique of Chew and Mandelstam. 16 They also include coulomb’
corrections, as well as phenomenological singularities to represent
three-pion and higher mass contributions, and should conséquently be able
to predict successfully the values of the phase-shifts of much lower angular
momentum states than can be done by the method presented here.

In our proc'edure we have neglected what in the language of partial
wave dispersion relations is called the right-hand or unitarity cut (cf. Ref: 16),
for example, except for the contributions of the m-n pole; thus the amplitude
that we get is an integral over the left-hand cut alone. -

| Considerations similar to ours have been employed in a recent
paper by Amati, Leader, and Vitale, 38 alfhough these authors do not in-

clude the complete unexpanded w-n pole term.
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APPENDICES

A. The I-Spin Formalism

- The i-spin férmalism for antinucleons used in this thesis is
ﬁot new, having been treated by Malenka and Primakoff, 39 yet seems
sufficiently rare in actual application to merit some discussion,
The formalism is based on the observation that the field variable
. y(x) for a four fcompor;ent—spinor field involves both the particle and its
~ anti-particle, so that when the neutron and proton fields are combined

~into one eight-component-spinor field it is natural to write its field

e -
e = |, () -  (a-

n

. variable:

where qu(.x) and q;n(x) are the proton and neutron field variables res-

pectively. The adjoint spinor is then
bo(x) = (¢p(XL by () | | (A-2)

where fﬂp(x) = LIJPT<X) B etc., and B is given just below (III-9). Expanding

U(x) in terms of creation and destruction operators:

v = <2v)3/2j p/\/E {a (»)U_(p) ¢ % (p) v (p)e P |
(A-2)

" where the index a can be + or - corresponding to 13 =+1 or -1
respectively, destroys a particle and ba an antiparticle, and all ordinary-

spin indices have been suppressed. The Ua. and Va are defined as follows:

c
o
il

alp) X o
' (A-3)

<
S
il

' v{p} XE
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with Xy = ((1)) y X _ = (?) andA Xg = X(-o.) . The u(p) and v(p) a?e

ordinary four-component Dirac-spinors.
It is immediately obvious that with these definitions the matrix

loses all meaning as an i-spin operator for antiparticles; instead, the

7’-
i-spin operator for both particles and antiparticles is now:
1 — 3 .
I=x U BTYdx: - (A-4)
where B is actually g g and the '":"" indicates that a normal product

is to be formed. The important point here is that the i-spinor of the
outgoing antinucleon stands to the right of T while that of the ingoing
antinucleon stands to the left, just as their ''spin-spinors'' do. Con-
sequently, under the substitution rule the U and .V spinors behave
precisely as the u and v spinors do.

From (A-4) and the relations:

u (p) pulp)=vEpPvip) = E/m

?(p) Bu(p)=u(p)pvip)=0

we get:
‘Ggr i T, ; {r, =Jd3p [aj(m a(p)- b, (p)b_ (piJ
jT_ =T, -iT, =jd3p [a_*(p) a,(p)- b (p) b, (p) J
| ) ..
éT3 =2 ] a’p [a;f(p)a;r(p) -2 Yp) a (o) + 5, T(p) b, () - b_'f(p),b__(m]

(A-5)

With these rules, states consisting of a nucleon and an antinucleon no
‘longer combine into states of total i-spin by means of the usual Clebsch-

Gordon coefficients. If the state with total i-spin 1 and 13 = +1 is

- l%)




T
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Since the I =0 state is not coupled to the I1=1 states the overall sign

of the former is arbitrary. We thus have:

by
S T
5

0, 0>=’\}—_2“n5> +'p5>}

In channel 2 a projection operator for a state with total i-spin

I may be written:

B, = a;1+b; l’('l) . 1(2) : (A-T7)
In this channel, however, 'particle 1" refers to an outgoing nucleon and

outgoing antinucleon, whereas "'particke 2" refers to an incoming nucleon
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and antinucleon (cf. (III-2) . Thus, for example, we should have in

this channel:

/o= | AD SN\ t , o
R TII AR AT T -
where X, =X, = X5, Xz TX_F Xy

and

'/p3{1|n§ = x Tx= x=Tx_.
\ ! ‘ P n P n

If we apply the i-spin states of (A-6) to the operators 1 and

‘T(l) . '1'(2) with the proviso that the states are in channel 2, we get:

" v ] ! A\ .

I, 1 '11,1):2&' 5. I=0
< R ! 1T °1, 1,

o =0 1=1

v (1) (?.)l, \

I, 1 l’r . T I, 1,7 = 26&'. &' _
< 3T ke 3/ I 13131_17

= 0 | 1=0 (A-8)

From Eqs.v (A-7) and (A-8) we find:

_ 1 - 0. = -1

377 Pg=0; a; =0, by =5
so that

5 _ 1 s -1 (1) (2)

t
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B. The Dirac-Spinors

This appendix is concerned with the explicit representation of
the Dirac-spinors, helicity and z-component of spin, used in this thesis.

The z-component of spin spinors' ur(p) are obtained by applying
a Lorentz transformation in the -p direction to a 'spinor having the spin

r in the rest system.

| . | ‘s | |
R m r| : - )
0,(0) = g Lep) o) | (B-1)
where: L{p)= NP I™M = .5 in (1I-12)
Zm :

wofo) e 2)

The spinor vr(p) is the charge conjugafe of ur(p)

| vi(p) = C u (p) - . -(B-2)
where
/o fo \
C =
-ic O
y

Since

Cyvy C_1 = *

M YH
we have
: o / 0 kY
v (p) = [ " \
B ot . ’\/ I

L(-p) [ .
m+t Py -1 0'y X r /

The helicity spinors are obtained by first rotating a spinor in
the rest system until its spin direction is the same as, or opposite to,
the direction of the momentum p and then applying a Lorentz trans-

Anan

formation in the direction -p. Thus
A
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_ \
o xy .
u_(p)= =22 Lp) 5(a) | ) . (B-3)

0
f A
l1+0c!n

. " o Z »
Zé)= N2(1 4 cos6) ,,

o

'/\ - . . . . N : '
where n 1is a unit vector in the direction of p, 6 is the angle between
o A
n and an arbitrarily chosen z-axis. The operator > (n) is then the

. .31 .
rotation operator R(’5 8, -& of Jacob and Wick™" for the spinor case.

For antiparticle we u_se’ (B-2):

* % * i
@ e e Or)
o 0 A\
= oD L(-p) Zin) | -i Gy X . ) (B-4)

In Ref. 31 the two particle states are defined so that in the
barycentric system the same rotation can be applied to both particles.
Consider two particles of momenta P, and P, .and helicities r and s
in the barycentric system. Then the spinor for one particle is:

2 A X
ur(pl) = \/_———mm+-E L(pl)Z(n.l) 0

r
where n, is in the direction of P> whereas the spinor for the other
particle is:

~ 2 /X_s,\
u_(p,) = :/——m+E L(p,) z(n‘l)f\ 5 )

in accordance with Eqs. (13), (14) and (15} of Ref. 31, In Section VI
the antiparticles of channel 2 were always‘ taken to be spinors of this
latter type, so that the direction of scattering was defined by the nucleons

-rather than by the anti-nucleons.
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C. Integrals

We sketch here the method by 'which. the integrals of Section
VIII may be performed. .

The integrals of ¢ are done first. They are most easily per-
formed by making the substitution £ = ei¢ and then integrating over the
unit cir cle.

- The resulting expressions can always be written as a sum of

integrals of the following types:

,'1’ d'z
I = ’ —_7
1 \J_l a+ﬁz
1
d
I = [ _Z‘ ’
2 T1/2
J-1 7
! d
I, = z
] ’
3 f (a+pz) x1/2
-1
where

) -
X /2 = \/62 z‘2 + 2a z z, t az- ﬁz(l—zzz)

and where it must be remembered that the integrals should be performed
when the variables that are not being integrated over are in the physical

range for channel 2.

Since Il and 12 are merely special cases of I, we shall only

3
show explicitly how the latter may be done.

For this purpose consider the integral}
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1 2

[ = dz dé —
. (a+B z) (a + B Z )
' -1 0
where -
> 1/2 , 1/2
Z=z2z+(l-z) : (1~z2) cos é.

The integral over ¢ gives:

1
dz

I = 2w —r
(a+tp z) X

172
-1

so that I = .Z'rrI3 .

. A ' N
On the other hand, define three unit vectors ?1, n,, and 62

such that

_ A AT _A A
zZ = n n,, Z = n . n,, 2z, =1, n2
and the integral becomes:
L= L a’a _
= — . -
3 2m (a+pA. 31)(a+ﬁr}- )

By means of the Feynman rules for the combination of denominators4

we find that

1
. . L 3,\
I, = 21_" de — z
(a+f . N)
O ;-

where

' .
N = ﬁﬁlt+ﬁ’ﬁz(1-t).
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Let us pick a coordinate system in which N is along the z-axis, and
i i e

let 8 ¢ Dbe the direction angles of A with respect to this new axis.
t

Then since M . N is independent of ¢ we get

o

1 1 ;
13 = dt __dZ"Y_'Z—
(g + NZ )
0 ' -1
1 " '
where z = cos 8 and N=| N |-

The last expression is easily integrated over z to giVe:

— dt
I; = ¢ / I 2
A * -
so that:
I _ 2 _ ’ /x+ l\'
37 TS L 77, , l/TZvn\x-l)
(B"-BB z,) ({207 -p" -BB z,)

/;az ) BZ ) ﬁﬁizz 1/2
X = > T
\ B - BB ZZ
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