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ABSTRACT 

By means of the Mandelstam representation, expressions are 

obtained for the two-pion-exchange contributions to the higher partial 

waves of nucleon-nucleon scattering. A set of ten invariant amplitudes 

is selected, of which each member obeys the Mandelstam representa­

tion. Dispersion relations are written for the amplitudes in which the 

discontinuities are absorptive parts for nucleon-antinucleon scattering. 

By means of the unitarity condition the absorptive parts are expressed 

as a partial-wave expansion in terms of the TTTT- nn partial-wave ampli­

h~des of Frazer and Fulco, except for the contributions of the pole in 

the pion-nucleon system which are treated exactly in order to ensure 

better convergence of the partial-wave expansion, Finally, the nucleon­

nucleon transition amplitudes in the angular momentum representation 

are expressed in terms of the invariant amplitudes. 
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I. INTRODUCTION 

Application of me son theory to the two-nucleon interaction 

h t d b f h . h d. ff. 1 1 ' 2 Th b . as o ate, een raug t w1t great 1 1cu ty. · e pertur at1on 

method of quantum field theory which worked so well in quantum 

electrodynamics is stymied in meson theory by the large magnitude of 

the pion-nucleon coupling constant, so that the convergence of an expan­

sion of the scattering amplitudes in powers of this constant is extremely 

slow -
1
- if the series converges at all. Recently a new approach has m . 

entered the picture, that of the dispersion relation of spectral represen-

tation, the most powerful variety of which is the two-dimensional disper­

sion relations first proposed by Mandelstam. 
3 

The validity of these 

dispersion relations, unfortunately, has only been proved to sixth order 

in perturbation theory, 
3

• 
4

• 
5 

and a rig0•rOIJI:S: proof based on the general 

principles of quantum field th~ory is not in sight. Nevertheless, the 

Mandelstam representation is plausible, and we shall assume it to be 

correct for the purposes of this paper. ·Indeed, the most convincing 

proof of its correctness would be if it led to results that agree with 

experiment. A recent article by G. F. Chew reviews the philosophy 

and practice of dispersion relations, both one- and two-dimensional, 
6 

with copious references. 

Dispersion theory is concerned with the study of the singularities 

of the scattering amplitude. These singularities occur for unphysical as 

well as physical values of the variables that describe the scattering ampli­

tude, and are associated with the possible real (i.e., with momenta on the 

mass shell) intermediate states into which the scattering amplitude can be 

expanded {see Ref. 6 for details). lh making approximations, the main 

assumption is that the closer a singularity is to the physical region the 

more important its contribution to the scattering amplitude will be. This 

assumption is necessary, since the close singularities are usually the only 

ones tractable by present methods, and it is also a reasonable one. For 

instance, if the residues of two poles are of the same order of magnitude 

then, obviously, the pole closer. to the physical region will make the larger 

contribution to the amplitude. Even if the more distant pole has a larger 
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residue, the change in the amplitude as a function of the variable in 

which the poles occur will be induced to a much larger extent by the 

nearer pole. In many cases the amplitude is normalized at some point 

(i.e., a subtracted dispersion relation is used) by means of information, 

usually experimental, not contained in the dispersion relations; it is 

then the change in the function that is of interest. The same reasoning 

applies to the branch-cuts. 

In the nucleon-nucleon problem the dose st singularities are 

the two one-pion exchange poles, whose use has already borne consider-
? able fruit. First there is the proposal of Chew, as carried out by 

Cziffra and Morave sik, 
8 

for the determination of the pion-nucleon coup­

ling c.onstant directly from n-p angular distributions. There is the 

modified phase shift analysis, 9 • 10 
first proposed by Moravcsik, in which 

the higher angular momentum states are given directly by the pole term 

while the lower ones are treated phenomenologically. There fs the cal­

culation of the Asymptotic D-wave function of the deuteron by Wong, 
11 

and the modifications of the effective range formula for nucleon-nucleon 
12 

scattering of Cini, Fubini and Stanghellini, and of Noyes and Wong; 

·the latter works, however, involve more of the Mandelstam representation 

than just the. poles. 

After the poles, the closest singularity is the branch cut due 

to the two-pion intermediate state; it is with this that the present work is 
I . 

concerned. Let p and p, be respectively the final and initial four-momenta 

of one of the nucleons, and t::: - (p
1 

-p) 2 be the invariant momentum transfer 

( h · h h ·2 2 2 ) I 1 1 . h we use t e metr1c sue t at p =g -p
0 

. n nuc eon-nuc eon scatter1ng t e 

physical region has t -~ 0, the pole occur:s at t=fJ-
2

, where f.l is the pion 

mass, the two-pion branch cut starts at t=(2f.l)
2

, and the contribution of 

the next heaviest intermediate state, viz. the three-pion state, starts at 

A. 

t = {3f.1)
2

. Thus the three -pion singularity is not·much further from the "' 

physical region than the two-pion singularity. There are, however, two 

main reasons for ignoring singularities other than the poles and the two­

pion cut. Firstly, at present we do not know how to treat the more distant 

singularities, especially those involving intermediate states of more than 

two particles. Secondly, it is hoped that the pion-pion resonance recently 
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13 
conjectured in order to describe. nucleon electromagnetic structure, 

will serve to increase the contri~ution of the two-pion state to the 

nucleon-nucleon scattering amplitude. In the phase- shift analysis of 

. 310 9 •
10

h h proton-protem scatter1ng at Mev t e two one-meson exc ange 

poles were found quite capable of determining the higher phase shifts 

(from L = 4 on up). The present calculation should be able to predict 

some ·of the higher phase shifts for which the one -pion exchange poles 

are inadequate. That the lighter intermediate states should determine 

the higher angular momentum states is very plausible on elementary 

grounds, since the lighter the intermediate state the longer the range of 

the force to which it gives rise. 

Briefly, our method is as follows: The nn amplitude can be 

expressed in terms of a set of ten invariant functions, which we shall 

call nMandelstam functions 11 because they are assumed to obey the 

Mandelstam representation. These functions also describe nll' scattering 

and can be related by means of the substitution law to the nn amplitude. 

The unitarity condition for the nn scattering amplitude can be written 

symbolically: 2Im(nnjnn) = ~·~nn li)(nnli )*, where the sum is 
:i: -

to be taken over all permissible "real intermediate states. The inter-

mediate state with the lowest mass is the one-pion state which gives 

rise to the one-pion exchange pole. The next least massive state is the 

two-pion state which gives rise to ·the two-pion branch cuts in the 

Mandelstam functions. For the reasons given above, states heavier than 

the two-pion will be ignored. It should be noted that since the 2 rr inter­

mediate state f?tarts at an energy less than the lowest possible energy 

for a physical state, we are using the unitarity condition in an unphysical 

region; this has recently been justified by Mandelstam, 
14 

The functions 
, - ) ' . 15 

\ n n !zrr have been studied by Frazer and Fulco (hereafter referred 

to as FF)on the basis of the Mandelstam representation. These functions 

can be evaluated by use of available pion-nucleon scattering data if the 

pion-pion phase shifts are known. The latter are now being calculated 

by Chew and Mandelstam, 
16 

again utilizing the Mandelstam representation. 

From the imaginary part of the nn amplitude as given by the unitarity 
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condition, we can determine the absorptive part of the Mandel starr:i 

functions, and by a dispersion relation get the complete function, which 

in turn will give us the nn amplitude. 

Frazer and Fulco's calculation gives < nn I 2rr) partial wave 

amplitudes; consequently, the nn absorptive part will be given as a 

partial wave (i.e., Legendre polynomial) expansion. Except for very 

low nucleon-nucleon energies, however, the absorptive part becomes 
2 

singular for values of t just above 4f.L , ·the latter being the lower limit 

of the dispersion relation. Consequently, the expansionfails to converge 

over a large part of the region of integration of the dispersion relation. 

The first singularity in the absorptive part is due to the existence of the 

one-nucleon pole of the pion-nucleon interaction (hereafter called the 

rrn-pole). This pole leads to the 11 box-diagram'' in the nucleon-nucleon 

system, which corresponds to the fourth-order two-pion exchange Feynman 
. . 4 5 

diagram of perturbation theory. Fortunately, as Mandelstam has shown, ' 

the contribution of the box diagram to the absorptive part can be evaluated 

exactly (cf.· Section VIII), so that only the remainder of the absorptive part 

need be given as a Legendre polynomial expansion. It can be shown that 

mathematically this expansion converges for values of t even greater 

than the three-pion exchange threshold, although there, of course, it soon 

ceases to give a reasonable approximation to the actual nn amplitude. It 

is hoped that the convergence is rapid enough for S and P wave two-pion 

intermediate states to suffice for the determination of the higher phase 

shifts of nn scattering. 

The portion of the absorptive part that is analytically continued 

by a partial wave expansion has its singularities neglected. This means 

that the imaginary part of the nucleon-nucleon partial wave amplitudes 

will come exclusively from the box diagram, and that the imaginary part 

due to the other contributions must be small for our method to be feasible. 

In general, this will occur only for partial waves of ~ufficiently high order 

and consequently small magnitude. 
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IL THE FRAZER-FULCO FUNCTIONS 

The rrn-pole gives rise to an anomalously large S-wave 

contribution to pion-nucleon scattering; a contribution presumably sup­

pressed by higher-order termso 
17 

The corresponding terms should 

also be suppressed in the nn amplitudeo Frazer and Fulco's calculation, 

however, does not appear to contain a mechanism which will bring this 

suppression about, the restriction that the rrrr .... nn amplitude have the 

phase of rrrr scattering probably not being sufficienL A phenomenological 

means of avoiding this difficulty is based on tb:e observation by Chew
18 

that the annihilation amplitudes of FF at zero incoming energy were very 

simply related to pion-nucleon scattering amplitudes at zero momentum 

transfer o In fact, the variable t of FF is the total energy for the anni­

hilation process and the momentum transfer for pion-nucleon scatteringo 

Thus, by using experimental pion-nucleon data in forward scattering 

dispersion relations, the 1T1T- nn amplitudes at zero total energy can be 

calculated and a subtraction made in FF' s integral equations to normalize 
19 

the functionso This has been done by Do Yo Wong, who finds that at 

zero energy the S-wave FF function so calculated is very much less than 

the value due to the rrn-poleo It will be remembered that in FF the left­

hand cut is determined from the rrn pole plus what is frequently called 

the "rescattering correction", which consists of a partial wave expansion 

as a function of the pion-nucleon scattering angle, and uses experimental 

pion-nucleon phase shiftso 
2 

verge up to t = -261J. 0 

According to FF, this expansion should con-
19 

Wong has compared the correct P-wave anni-

hilation amplitude at t = 0, as determined from ~Chew 1 s suggestion, with 

the one determined from FF 1 s integral using the rough estimate of the 

pion-pion phase shift obtained by FF from the nucleon electromagnetic 

structureo He found that in order to get agreement between the two values, 

it was necessary to extend the partial wave expansion far beyond t=-26fl.
2 

0 

This indicates that the left -hand cut of the FF functions cannot be deter­

mined from pion-nucleon scattering merely by a partial wave expansiono 

Ho,vever, the method permitting us to calculate the FF functions at t = 0 

also permits us to determine the derivative at the same poinL 
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By normalizing both the functions and their derivatives, it appears 

possible to determine what we shall call a "modified FF function "; 

which should be reliable; of course, the pi.on -pion phase shifts are still 

needed. 
19 

... 
'• \ 

.. 
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III. THE INVARIANT AMPLITUDES 

The S-matrix for a nucleon-nucleon .scattering process may 

be written: 

p, r, a; g, s, 

( III-1) 

Here p , g and p, g, are the four -momenta of the two final and initial 
I I 

particles respectively; r , s and r, s their final and initial spins or 
! ! . 

helicitie s and a , 13 and a, 13 their final and initial i- spins. The 

Dirac- spinor s U (p) are eight component entities in the product 
r a 

space of the i-spin and Dirac-spinor spaces; they may be written more 

explicitly as U (p) = u (p) X where: 
r a. r a 

xP = (~) , for the proton 

xn = U) for the neutron 

and u (p) is a four-component Dirac-spinor such that (iy . p + m)u (p)=O. 
r v v r 

The matrix M(p , g , p, g) is a 64-by-64 matrix in the product space 

of the two initial and two final particles. The definition of the S-matrix 

used here corresponds to that of Jauch and Rohrlich. 
20 

i i 

According to the substitution rule, the matrix M(p , g , p, g) 

describes nucleon-antinucleon and antinucleor.~antinucleon scattering as 

well as nucleon-nucleon scattering. This rule is implicit in the structure 

of perturbation theory (Ref. 20, Sec. 8-5) and also follows from the 
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d . f 1 f L h S "k . d z · 2 l' 2 2 
re uctlon ormu ae o e mann, ymanz1 , an 1mmermann, · 

as will be shown in Section V. For the scattering of a nucleon of 

' four -momentum q and an antinucleon of momentum q into a nucleon 

of·momentum p ·and antinucleon of momentum p the rule gives: 

4 I I 

5 (p - q + p - q) (-PT'"
0

_P_m_o....,:...-, -o-g-J 

1/Z 

-11} I _{ 2) y I I 
U\ '(P ) V (q ) M (p • -q • -p, 

\. 

( III-2) 
i. I 

T'he, bars over p and q on the left merely indicate that p and q are 

momenta .of, antinucl'eons.. The spin and i-spin indices have been sup-· 

pressed, and the o
21 

of (III-l) has been absorbed into the matrix element 

on the left. The overall sign of the left-hand side is not obvious and will 

be determined in Sectl.on V. The Dirac-.suinors V (p) are also eight-
" · r a 

component entities and may be decomposed into V. (p) = v (p) x , where · · ra r a 
v (p) is a four-component, negative energy Dirac-spinor such that 

r 
(-i'Y. p + m) vr{p) = 0, and the· xa are;~ 

x­
P 

= X p 

= xn 

for the proton and antiproton 

for the neutron and antineutron. 

Thus the i-spin spinor for an outgoing antinucleon stands on the right 

just its Dirac-spinor does .. The use of these i-spin spinors will be 

further discussed in Appendix A. 

We shall assume that the rin interaction is charge independent, 

in which ·case the S-matrix must be invariant under rotations in i- spin 

space. Since only two' invariants may be formed from the i-spin matrices 

in the product space of the two particle~, the matrix M may be split into 

two parts: 

M=M +T(l) (III- 3) 
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Throughout this paper our convention will be that the super script "l'' 
I 

refers to particles with momenta p and p whereas "2" refers to 
I 

those with momenta q and q even though, as will be seen below, two 
I 

particles with, for example, momenta p and p may both be in the 

initial state. 

Lorentz invariance ensures that the M± can be split up 

further: 

I I 

M (p, q p, q) = 
n - n 

~A (s,t, t)X (III-4} 
n 

+ ' ' n n M ( ) ...., B ( s, t, -t) X p' q p, q = ~ 

n 

n 
where the X are 16-by-16 matrices which may be functions of the 

four-momenta and the An (s, t,t) and Bn (s, t,t) are arbitrary functions 

of the invariant scalars s, t, and t only. For the momentum definitions 

of (III-I} and the process shown in Fig. 1, the latter can be written: 

2 I i 2 
s = - (p + q) = - (p + q ) 

(III- 5) 

I 

(q - p). 

In the barycentric system, with z 
1 

the cosine of the scattering angle and 

p 
1 

the modulus of barycentric three-.momentum, these variables become: 

2 2 2 
s = 4 (p 

1 
+ m ) = 4E 

1 

(III-6) 

t - -

where m 1s the nucleon mass. Comparing (III-I) and (III-2) we see 

that in the transition from the processdescribed by the first equation 
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q' 

-t t 

p q 

MU -20627 

Fig. 1. Nucleon-nucleon scattering: channel 1. The time direction 
is upward. 

.. 
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I I 

in Fig. 2, the matrix M(p , q , p, q) goes to M(p , -q , -p, q). 

Consequently the scalars become for the second process: 

2 
s = - (q - p) = 

I 2 2 2 
t = .. (p + p) = 4 (p

2 
+ m ) (III-7) 

t - -
I 2 

(p - q) =- 2 P2 (l - z2) 

where p
2 

is the modulus of the barycentric three-momentum and z
2 

is the barycentric scattering angle taken, as will always be the case 

for nn processes, between the two nucleons. If will be noted that 

in (III-6) s gave the total energy of the system, whereas in (III-7) the 

total energy was given by t. We shall accordingly call the process in 

which s was the total energy "channel 1", and that in which t was the 

total energy "channel 2". In addition there is the channel, shown in 

Fig. 3, in which 1 gives the total energy; this will be called "channel 3". 

According to the substitution rule, all three channels are described by 

the same matrix M. 

As long as the incoming and outgoing particles are on the mass 

shell, the variables s, t, and 1 are not independent, being related by 

equation: 

s + t + 1 2 = 4m . (Ill-S) 

In addition to requiring charge independence and Lorentz in­

variance, we shall assume that our interaction is invariant under charge 

conjugation, parity, and time rever sal. There is at pre sent no reason 

to'believe that any of these invariance principles are violated in strong 

coupling physics. The matrices Xn must accordingly be chosen so that 

.the interaction will be invariant under all these transformations. 

The procedure for finding a complete set of Xn is as follows: 
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p 

-t 

q 

t 

MU -20628 

•. 

Fig. 2. Nucleon-antinucleon scattering: channel 2. 
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• " 

q 

t s 

q' 
-

MU -20629 

Fig. 3. Nucleon-antinucleon scattering: channel 3. 
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In the composite space of the two particles construct all scalars (with 

respect to Lorentz transformations) which can be constructed out of 

the three independent momentum vectors and the 'I matrices. Eliminate 

matrices which can be reduced to another matrix because the spinor s 

obey the Dirac-equation, and also eliminate those which do not lead to 

in variance under time rever sal, charge conjugation, and parity. This, 

it turns out eliminates all but the following eight forms: 

[ Ys(l) iy( I). (q' + q)l [Ys(Z) iy(Z) (p' + p) l 

1( l) 1(2) (l) (2) 
; "s "s 

. (2) (2) l 
1 "s " ;2~ . 

jJ.' v = 0' l ' 2. 3 

where our representation is such that 

'I· = 
J 

0 
\ 

-i<J.\ 
J I' j = 

0 ) 
(l 0) 1,2, 3; f3 = i"o = , 

0 - l 

( III-9) 

Not all eight of these can be independent in the subspace in which the 

incoming and outgoing particles are positive energy nucleons. By using 

an explicit representation of the Dirac-spinors, e. g. 

u (p) 
r -

= -i'l . p + m 

r ]172 jzm (p 0+m) · · 

L 
where X is a two- component Pauli- spinor, we find that the eight forms 

r 
in (III-9) reduce to five forms, namely those of Wolfenstein and Ashkin, 

23 

'Nhich are frequently misnamed the "non-relativistic forms. 11 Since there 

are only five independent matrices in the nn channel, the scattering must 

• 
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be completely describable by only five arbitrary complex functions. 

Thus only five of the eight matrices of (III-9) are independent, and any 

five linearly independent ones should be sufficient to determine the 

scattering amplitude. In earlier works, e. g. Goldberger, Nambu and 
24 

Oehme , the first five were chosen: they are, however, less satisfac-

tory than the last five for two reasons. Firstly, the latter give rise to 

simpler crossing relations whereas in the former the crossing relations 

are complicated by having the Xn be explicit functions of the four-momenta. 

Secondly, and more importantly, the explicit momentum de­

pendence of the first five matrices forces the An and B n to have so -called 

"kinematical singularities" - singularities not associated with any inter­

mediate states, but due entirely to extraneous momentum factors. It has 

been shown by Grisaru and Wong
25 

that the last five matrices, which are 

in fact the Fermi !3-decay matrices, do not develop .any extraneous singu­

larities; we shall briefly describe their arguments. 
+ For convenience let us discuss only M-, the arguments for M 

being practically identical. Thus 

M = :E 
n n -

X A ( s, t, t ) (III- 10) 
n 

where the sum runs over n· = S, P, V, A, and T, the letters standing for 

scalar, pseudo scalar, vector, axial vector and tensor, respectively; and 

the xn are defined by 

XS = l ( l) 1 ( l): X P = ( l) ( 2) 
, 'Ys 'Ys 

. (2) (2) 
1'{5 'Y 

l 
2 ~ 

!J.V 

(1)•" (2) 
(J !J.V (J' 

=0,1,2,3 f.lV 

(III- 11) 

The denominators occurring 'in a perturbation-theoretic expression 

for M would be no different from those occurring in a spinless, scalar 

theory having the. same spectrum as the present theory. Consequently, it 

seems very reasonable to assume that each element of the matrix 
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L(p) = (-iy. p + r.n) 
. 2r.n 
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(III- 12) 

is an analytic function of the four four -vector variables p , q , p and q, 

except in those regions in which the amplitude of the spinless scalar 

theory would not be analytic. It then follows that for any n the 

function Tr { ')/?- X n ) would also be an analytic function of the four-

vector variables with the same region of analyticity as that of V?r· This 

with the fact that the trace is invariant under the orthochronous Lorentz 

group implies, according to the theorem of Hall and Wightman, 
26 

that 

the trace is an analytic function of the invariant scalars, except, of course, 

in the region mentioned above. From (III-10) and (III-12) we get 

Tr (}7{ Xn) = ~ 

where 

a 
nr.n 

r.n 

- r.n . 
a. (s, t, t) A (s, t, t) 

nr.n 

The a. ( s, t,t) are obviously analytic functions of s, t, and t, but they 
nr.n n -

·may vanish for some value of the invariant scalars, forcing A (s, t, t) 

to have a pole at that point, unless the traces on the left happened to vanish 

there too. Solving the above set of equations for A r.n we obtain: 

Ann (s, t, t) = ~ 
n 

where the !3r.nn are analytic functions and 6. = det II a.r.nn II . This deter­

minant, according to Grisaru and Wong, 
25 

is given by 6. = c(s, t, t)
3 

where c is a constant. Thus if our invariant amplitudes An and Bn have 

any extraneous singularities they can only be the poles that could occur 

when one of the invariant scalars vanishes. In Section VI we will derive 

a definite relation between An, Bn, and nn transition amplitudes for 

helicit.y states in channel 2. In this channel s is the r.nor.nentur.n transfer 

\1 
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and t the eros sed-momentum transfer, and it can be. made plausible 

that both An and Bn remain finite as s or t goes to zero. We shall 

return to this point in Section VI. The same procedure involving either 

channels 1 or 2 would establish that An and Bn remain finite as t goes 

to zero. We may thus conclude that the only singularities occurring in 

the invariant amplitudes An( s, t, t) and B ri( s, t, t) are those which also 

occur in the scalar, spinless theory, provided we choose the set of Xn 

given in (III-11). 
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!Vo THE MANDELSTAM REPRESENTATION 

At this point we make the crucial assumption that the analyti­

city properties of the amplitude of our spinless scalar theory are such 

·that the amplitude has a Mandelstam representationo Beyond what has 

already been said in the introduction (Section I), we shall not attempt to 

justify this assu.mption·her-e" The arguments of the previous section then 

show that if we choose the Xn of f,III-11), Leo, n = S, T, V, A, P, both the 
.n -, n -

A (s, t, t; and B (s, t, t) will also have a Ma.ndelstam representationo 

Consequently, An(s, t, t) may be written: 

1 
n v 

a
3 

(t ) 

t - t 
iT 

t - t 

u 

dt 

n v_o 
a

2 3 
( t , t ) 

i 

(t -t}(t -t) ' 
(IV- 1) 

with a similar expression for Bn(s, t,t)o The poles have been adequately 

discus sed in ReL 9 and will be ignored hereafter. The next two terms of 

(IV -1) are frequently called 11 su.btraction terms, 11 and correspond to dia­

grams of the type shown in Figso 4a and 4bo Figure 4b involves a two­

nucleon intermediate state, and Fig 0 4a shows the three -pion intermediate 

state that is the lightest intermediate state which can occur in a subtraction 

termo Since we are not including anything more massive than two-pion 

statef::, we can ignore all the subtraction terms 0 The weight functions a 
12 

n, 

• 

a 13 n and a.
2 3 

n are everywhere real, and each vanishes outside a region " 

bounded by a curve whose asymptotes are: 
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,• 

(a) (b) 

v 

MU -20631 

Fig. 4a and ~b. Typical "subtraction terms. 11 
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Mandelstam 
4

• 
5 

has calculated these boundary curves using 

the spinle s s scalar theory which, according to our earlier discussion, 

must give the same results as the pseudoscalar spin-one-half theory. 

Indeed, we shall find the boundary curves as a by-product of our calcu­

lation of the effect of the tr-n pole in Section VIII, and they will turn out 

to be those predicted by Mandelstam. Spin, it appears, is not an essen­

tial complication, it merely complicates the algebra. We give below the 

curves obtained in Ref. 5. The weight function a
12

(s, t) is non-zero 
'1 

inside the parabolic boundary curve c
12

, (cf. Fig. 5), which is: 
) 

2 2 4 
{s - 4m )(t - 4 f.l ) = 4!J. . (IV -2a) 

The curve C 
13 

for a 
13 

(~Jt} is the same as C 
12 

except that t --+- T The 

curve c
2 3 

is the boundary of the union of the areas bounded by the two 

parabolas: 

2 2 4 
(t - 4m ) (t - 4iJ. ) :::: 4j.1 

(IV -Zb) 
2 2 4 

( t - 4!J. ) ( t - 4m )= 4f.L 

The denominator of the last term in (IV -1) may be split into 

partial· fractions.: 

l l 
(, 1- + :::: 

(t -t)(t - t ) 
_, 2 

(t + t + s - 4m ) t 
l - ) 
- t t 

where we have used the relation: 
- 2 

s + t + t = 4m . With the aid of the 

above result, (IV -1) may be rewritten as a one-dimensional dispersion 

relation: 

00 n ' 00 n - i 

n - 1 L2 

i A
2 

{s,t) 
+l 

{ A
3 

(s, t ) 
A (s,t,t) dt j dt (IV- 3) = I 

IT IT I 
t - t )4JJ-2 

... - t 1.. 

where we have set: 
00 n v v 00 I i 

n I 1 ( i a 12 ( s ' t ) l 

~~2 
a23 n(t , t ) 

A2. {s,t) :::: 1 ds + dt 
1T I IT I . 2 

j4m2 
s - s t + t + s -L\:m 

~' 

.. 



00 

n 1 1 
A 3 (s, t ) = 1T 

I 

ds 

n I I 

al3 (s t ) 1 
-----r------ + -

1T 
s - s 

I 

dt 

n I I 

a
2 3 

(t , t ) 

t+t 
2 + s - 4m 

(IV -4} 

The expressions for 
n - . 

B ( s, t, t) are precisely parallel. 

The range of the invariant scalars for an actual physical nn 

scattering process in channel 2 is such that t ~4m2 
and s, t ~ 0. In 

this range none of the denominators in (IV -4) can vanish, so that both 
n n 

A 2 and A
3 

are real; only the first denominator of (IV -3) can vanish. 

Therefore, 

n - n . 2 
ImA (s, t, t)= A

2 
(s, t}; t?:-4m; s, t ~ 0. (IV- 5) 

n -
Thus, once Im A ( s, t, t) is known in the physical region for channel 

2, A
2 

(s, t) can be determined everywhere by analytic continuation. 
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I 

s=(2m+f1-)2 I 

I 
I 
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ell 

12 
w I ------t --- -------r-- -~-t-- -------

s=4m2 1 I C12 
I I 

t 

MU -20630 

Fig. 5. Boundaries of the functions a
12 

n( s, t) and b
12 

n( s, t). 

' 
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V, SUBSTITUTION RULE AND CROSSING 

In this section we shall use the reduction formulae to determine 

the sign of the right-hand side of (III-2 ), and the relation between the 

A
2

n (s, q and A
3

n (s, t) of (IV-3), 

If at (p) is the creation operator for a nucleon in an asymptotic 

state of mornentum p, we define a two-nucleon asymptotic state by 

I p,q) =at (p) at (q) I o), and the conjugate state by (p,ql = ( ol a (q) 

a (p), where I 0) is the vacuum, . 

For convenience we will let 

I I I ( 4) i i i 

M (p ,q, p,q) = 5 (p +q- p- q) M {p, q, p, q) 

where M is the 64-by-64 matrix of (III-1), Suppressing spin and i-spin 

indices, we·may rewrite the latter equation: 

lr' i > 1 "( ' q I S-1 I p, q = 41T2 

i i i i 

ui (p > uj (q) M~ij)(k.e) (p, q, p, q) uk (p) u.e (q), (V -1) 

The indices i, j, k, and .e, refer to the rows and columns of the matrices 

and not necessarily to spin or i-spin quantum numbers, 

The reduction formulae of Lehmann, Symanzik and Zimmerman
21 

have been extended to spinors by Schweber .• 
22 

whose formalism gives us: 

i ' u. (p ) U, ( q ) 
1 J 

(V -2) 
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The functions !J.(x) is the jth component of the eight- component entity J . -
that is the source function for the nucleon system, i. eo ~. 

{yf-La + m) (\; (x) =r-2·(x), lj; (x) being the field variable for the nucleon 

field~ For Q(x) we have the relation: IT (x) =~(x)(Cl yf-L + m). Regarding 
f-L. 

the time-ordered product inside the vacuum-expectat10n value, the only 

property which concerns us is that its factors antic om mute. Comparing 

(V-1) and (V-2) we see that: 

i I i 

M ( ij Hk .0 (p 'q ' 

( v- 3) 

For a np scattering in channel 2 we have: 

i I 

U.(p)V.(q) 
1 J 

~ f ( f I 
L i L1 i · . 

d ". d'". d4 d4 -l{p.x+p.x-j X y) X ye · 
q.y-q.y) 

(o (V -4) 

Since the components of the source functions anticommute we find that: 

T[?lk (x) Qi (x
0

) 1i1 (y) Qj (y
0

) } = 

+ T { Qj (y') Qi {x
0

) i\ (x) 1'i £ (y)} . (V_5) 

Combining the last three equations we observe that the positive sign is 

the correct one in '(III-2), that is: 

( 4 ) r 
1 

( IT)4j 71/2 (} ( p +p - q - q) . i I . . 

P oq oPoqo < 
i ~\ - +i 

P , P I s- 1 I q, q I - 47r2 

(V -6) 
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The analogous equation for nn scattering in channel 3, i.e., for 
I I 

( p , q I S-11 p, q J, has a minus sign in front of the right-hand member. 

Let us now turn to the relation between A
2

n (s,t) and A
3
n(s,t). 

I 

If in (V -2) the particle designated by p is interchanged with that 
I 

designated by q , the reduction formula becomes: 

<
I I \ .4 I 4 

q 'p IS - 11 p, q/ = _1_6 ·-.---m:--1 --
(21T) P oq oPoqo 

I I u. (p ) u . (q ) 
1 J 

f f ( ( I I I 

d4xl d4yl J d4x Jd4y e -i(p . x + q . y -p . x - q . y) 

(o IT {ni (x') O}y') 1Jk (x)i'l 1 (y) I o) uk (p) u 1 (q). (V -7) 

The time-ordered product in (V-7) differs from the one in (V-3) only 

in the order of the first two factors; consequently 

( q , p S-1 p, q = -~ m Ui (p ) I I I I I' ) . (' 4 .)1/2 i 

\ 4 1T P o q o Po go 

i i i 

M ( ij )( ki ) ( p ' q , p, q) uk (p) u .e (g). 

Hence, 

(q'. p' /s- ,, p, ~=- ~·. q' I s-J p.q) 

i u. (q ) 
J 

(V -8) 

where the right-hand term is given by (IU-1). On the other hand, merely 

by interchanging labels in the final state of (III-1) we get: 

f 
I \ I ' i I i 

js \ q ' s ' (3 ' p, r ' a. 
l I p, .r' a.· q, s, f3) = 

' 

i 5(4) (pi )to 4 ~ 1/2 
+ q - p - q 

m 

4'fr2 
i i 

q o Po go J 

u-(1) i i (q,)U I I 

s B r a. 
(2) I i I ( 1) (2) 

( p ) M( q ' p ' p' q) u .( p) u A ( q ) . . ra. Sp 

(V -9) 
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I I 

In terms of the invariant scalars the interchange q -E--p implies that 

t-E--t. Comparing (V -:8) and (V :-9), and making use of the expansion of 

M as given by (III- 3) and (III-4) we obtain: 

'T II 

-a a 

-m[ == ~ X 5 ' ~. ' Am( s t t) + 'T ' 
m af3 f3a ' -f3a 

where xm is defined by: 

- ( 1) I - (2) I -m (2) (2) . 
ur' (p) us' (q) X ~r (p) us (q) = 

u ,(1) (q') u ,(2) (pi) xm u (1) (p) u (2) (q). 
s r r s 

It can easily be shown that: 

6 
a' ~ 6 ~'a = ~ A( 6 

a' a 6 ~' ~ + !. a a · -' ~' ~) 
!a' f3 · .Z:f3

1 

a = }( 
3 ~a 1 

a Sf3
1 

f3 -:::.a' a · ::;_f3
1 

f3) 

-m n 
and X is related !P X by the well-known "reshuffle theorem" 

which gives the relation 

-m n 
X = ~ Z X 

with 

z 
mn 

n 
mn· '· 

1 
= 4 6 0 

2 

1 

0 

-2 

0 

; 1 

\ 
1 1 \ 2 -4 

0 6 
.i 

-2 -4 

-1 1 

(V-10) 

(V-11) 

f F
. 27 

o 1erz, 

(V-12) 

(V-13) 
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where the order of the rows and columns is: S, V, T, A, P. Substituting 

(V-11) and (V-12) into (V-10) an::lcomparing the coefficients of the i-spin 

and B-decay matrices, we obtain: 

n - 1 
Z [Am(s,t, t) + m -

t)] A (s,t,t) = - 2 L: 3 B (s,t, 
mn 

m 

n - l Z [ Am(s,!,t) m - l (V-14) B ( s, t, t) = - 2 L: - B (s,t,t) 
mn 

m 

Equation (IV-3) states that: 

00 m _: 00 n I 

m - 1 ( I A
2 

(s,t) 
1 

( I A
3 

(s,t) 
i dt .. - ) (V-15) A ( s t t) =- +- dt 

' ' 1T I 
1T 2 

I 

)4!J.2 t - t 
4!J. 

t - t 

m - ) with a similar expression for B (s, t,t). Upon substituting (IV-3 and 
_I 

(V-15) into (V-14) and equating the integrands over t we get, finally: 

n - 1 rm - m -] 
A 3 (s, t) = 2 ~ Zrrinl 2 (s, t) + 3B2 (s, t) 

(V-16) 

B 3n(s,t)=-};, ~[Azm(s,t)- B2m(s,t)] 

In the nn channel (channel 1), according to Eq. (III-6), 
2 - 2 

t = 2p 1 (l-z 1) and t = -2p
1 

(l+z
1

)" For convenience, let us define: 

00 n I l 2 l 
r i A

2 
(s,t) n I 

F (pl z ) =- I dt ' l 1T \ 

'4 2 t - t ~ (V -1 7) ./ !J. 
00 n i 

l J dt

0 B
2 

( s, t ) ! 
n 2 

J G (pl z ) =-
' 1 1T 

t - t 
4f.J.2 

Then, Eqs" (V-16) and (IV-3) imply that: 

n - n 2 
z 1) 

1 A (s,t,t) = F (p 
' - 2 L: 

1 
m 

Zmn [ Fm(p/.- zl) + 3Gm(pl2 - zl)l 

n - n 2 
z 1) 

1 B ( s, t, t) = G (p 
1 ' - 2 L: 

m 
Gm,(p I 2 • - zl ) l 

(V-18) 
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For the phase shift analysis it may be desirable to directly 

determine coefficients A .fn(s) and B.fn(s) of the expansions: 

I 

I 
00 

(V-19) 

Bn(s, t, t) = ~ (2.£+1) B.f~s)P.f(z 1 ). 
i =0 J 

N d .· H . 28,29 ow, ace or 1ng to e1ne, 

1 
00 

-----,1.---___ = :E ( 2 i + 1) _1_2 

2pl2f_t_2-+ 1-zl] .£=0 2pl 

l2P 1 

--y- = 
t -t 

(V -20) 

where Q£ is a Legendre function of the second kind, so that by virtue of 

(V-17) and (V-18) and the relation P
1

(z
1

) = (-l/P
1

(z
1

), 

we may write: 

[ 
m 2 m 2] 

F i (p 1 ) + 3 G i (p 1 ) 

n n 2 1 i 
B (s)=G (p )--(-1) 

£ £ l 2 
' [ m 2 m 2] ~ zmn F £ (p 1 ) - G i (p 1 ) 

(V-21) 

where: 

00 

(z:/ 
\ 

n 2 1 ( I \ I 1 F £ (p 1 ) = 2 ! dt Q£ + 1 l A
2
(s, t ) 

2'TTpl ; 2 J -"4f.L 
(V-22) 

00 c \ n 2 1 

1~2 
I t I 

G £ (p l ) = 2 dt Q£ -2 +1JB 2(s, t ) 
2'TTp 1 2pl 

I 

The 0 1 are fairly simple functions which can easily be calculated. : 

they are tabulated in Ref. 29. 
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VI. THE nn T-MATRIX AND ITS RELATION 
TO THE MANDELSTAM AMPLITUDES 

/ 

A function with a more convenient unitarity condition than that 

of the S-matrix is the T -matrix as defined by Moller. 
30 

If '(
2 

and '( 1 
refer to miscellaneous quantum numbers in the final and initial states, 

resp.ectively, we have in the barycentric system: 

where e2 4>2 and el <f>l are the barycentric scattering angles of the 
I I 

particles designated by k 
2 

and k 
1 

respectively, and w is the bary-

centric energy. If we restrict ourselves to two-particle intermediate 

states, the un.itarity condition for our S-matrix is 

I 

k ., k.;'(. 
1 1 1 

(VI-2) 
On· substituting (VI-1) into (VI-2) and carrying out the integrations over 

the intermediate momenta we get: 

1 21T * r r I I I \ . I ~ \ 
~ I d (cos e.) dcf\ ~20;'(2 IT leicf»i;'YY~o; ! \ 

I '(1 T 1e. cf>.; 'Y· I ' 1 i : I 1 1 1 
'Yi ; I t t 

I 

/ 

- l -"o 

(VI-3) 
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where we h~ve assumed that the T :-matrix is symmetric, i.e o 

which is true in our 

case on+y for cJ.2 = 4> 1 = 0 

For orientation purposes it may be noted that the T-matrix used 

here is related to the differential cross-section for distinguishable particles 

by: 

2lT ;;_ 
!_11 ~«J», Yz T 

I···-· 

2 

00;)'~ 

In the barycentric systematic the S-matrix for channel 2 is related 

to the T-matrix by: 

r , a; p, r; 
f I 

a, j S - l lq, .11 I ) 

s, 13; q' 's '13. 

. . ( 4) I I 2 ( I I 
= i5 (p t p-q-q )- f)+; 

p2E2 
r , r; a a s . 

' ~. ~> 
(VI-4) 

The angles give the "direction 'of the nucleons (not antinucleons); the indices 

r and s refer to helicity states as defined by Jacob and Wick, 
31 

rather 

than to the more usual z2.component of :spin states. In (VI-4) the nucleon 

helicity and i- spin indices are always written before those of the anti­

nucleon, and their somewhat unusual assignment stems from the desire 

to keep the same s·et of indices for the same nucleon line, no matter how 

the latter may be twisted in going from one channel to another under the 

substitution rule. Finally, the bar over the T indicates that we are 

referring to the T -matrix for channel 2 0 

From (V-6) and (VI-4) we get: 

= 

(VI- 5) 
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according to (III-3) and Appendix A 

(VI- 6) 

where PI 1s the projection operator for a state with total i- spin I in 

channel 2. Thus the T-rnatrix for a state with definite i- spin is: 

/ i i i 1-I I ') \ e + ; r , r T I 0; s, s = 

2 
m p2 

u' 
r 

(1) 1 {2) 1 ± 1 I (1) (2) 
(p _) vs 1 (q ) M (p , -q -p, q) vr (p) us {q) 2 

4 rr E
2 

(VI- 7) 

where we must choose M+ for I = 1 and M for I = 0. 

For a particular i-spin the matrix M can be expressed in 

terms of five arbitrary functions, which implies that only five of the 

sixteen possible combinations of initial and final helicity states can be 

_independent. This can also be shown by applying time rever sal and parity 

invariance, and charge independence, directly to the helicity-state ampli­

tudes, using the rule given by Jacob and Wick. 
31 

It will be found that the 

following five matrix elements are independent; they will be designated 

by the numbers 1 through 5: 

= 1 2 3 4 5 

i I 

{ r r H s s) = { ++ H ++) ( ++H +- > (++H--) < +- H +-) ( +- H- +) (VI- 5) 

For simplicity we write: 

I I I r, r T oo· s s = T ') I 
' ' IJ. 

where the matrix element is between the five basic states of (VI-B): 

Using (III-4) and (VI-4) we can express the T-rnatrix elements in terms 

of the Mandel s tarn functions: 

/ 
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2 

T 0 
(z ) = 

m P2 
~ 

n 
t, t) a A (s, 

IJ. 2 2 IJ.n 411" E
2 

n 
(VI-9) 

2 
- 1 m P2 n 

t, t) TI-l (z 2 )= 2 :E a B (s, 
411" E

2 n IJ.n 

where the sum runs over n = S, T, V, A, P, and where 

The IJ. refers to the five basic amplitudes of (VI-8). In Table I the 

functions a!J.n are given; they have been calculated using the explicit 

representation of the helicity-spinors described in Appendix B. In the 

table, p and E are the barycentric three-momentum and energy respectively, 

,0,.
2 

= 2p
2
(1-z), ~ 2 

= 2p
2

(l+z), where z is the barycentric scattering angle. 

In terms of the invariant scalars we would have in channel 2 the relations: 
A 2 - .. ::t- t' 2 d 4E2 4( 2 2) 

L..J. - ·'"' , ,. = - s, an = p + m = t. 

Equation (VI-9) may be solved for the Mandelstam functions: 

41T
2

E 5 O 
An(s, t,t) = /-1 2 2 :E bnll Tll (z2) 
. m p2 !J.=l r r 

(VI-11) 

n -
B {s, t, t)= 

where b n~ = (a -I )n~ The matrix I /b n~ ]is given in Table II. 

In the physical region for channel 2 the functions b are 
n!J. 

real; from (IV- 5) we have, therefore, in this region: 

2 
5 411" E

2 - 0 
:E b 1m

2 
T 2 

jJ.-1 n!J. IJ.( z 2) 
m P2 

n 
A

2
(s,t) = 

2 (YI-12) 
411" E

2 
5 

- 1 
2 :E b 1m

2 
T 

m p2 jJ.-1 n!J. ~J.(z2) 



fl. 
i ! 

(r rXss) 

1 

(++)(++) 

2 

(++H+- > 

3 

( ++)(--) 

4 

(+-)(+-) 

5 

(+-)(-+) 

n 

'-· 

s 

2/ 2 p m 

0 

2/ 2 p m 

0 

0 

Table I 

The Matrix fl;.------n
1 
.of Equation(VI-10) 

I fJ.ll I 

v 

6.2 -s2 

4p2 

6.~E 
2 

2mp 

2 2 
6. - ~ 

2 
4p 

2 r 2 -E -;, 
2 2 

2m P 

-6.2 E2 

2 
2 2 

p m 

T 

.2 ¥2 
l:i - ~ 

4p 
2 

6.t;,E 
2 

2mp 

(2E2 -m2)(6.2 -t 2) 

4 
2 2 

p m 

-t 2 /2p2 

-6.2 / 2P2 

A 

, 
- J. 

0 

1 

t;, 2 /2m2. 

-6.2 /2m2 

p 

-E2/rn2 

0 

E2/rn2 

0 

0 

I 

w 
0' 
I 



1-1 1 I I 

(r r)(ss ) 

~ 
(++)(++) 

s m2/2p2 

v 0 

T 0 

A 0 

p -m
2
/2E

2 

Table II 

The Matrix lib !.\ Being the Inverse of II a II ; nj.L. j.Ln 
' . I 

2 
( ++)( +-) 

m(~2 -~ 2)(E2 +m2) 

2~~ E p 
2. 

-2m 
3 

"6_ ~ E 

2 mE/ ~t-

0 

m(~ 2 -~2) 

2~ t E 

3 4 
( ++ )(--) ( +-- )( +-) 

m2/2p2 
2 2 2 

-m (2p -~ ) 

2p2 ~2 

0 -m2/t2 

0 m2/ ~ 2 

0 m2/ ~ 2 

m
2
/2E

2 
2 2 

-m (2E-~ ) 

2E2 ~2 

5 
(+-)(-+) 

m2(Zp2-~2) 
2p2 ~2 

-m2/~2 

m2/ ~2 

-m2/ ~2 

m 2 ( 2 E2 - ~ 2 ) 

2E2 ~ 2 

I 
w 
--J 
I 
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where the subscript 2 a.fter the 11 lm 11 indicates that we are r-eferring to 

the Jrnaginary part in the physical region for channel 2. 

Finally, we fulfil our promise of Section III and indicate that 

the An and Bn remain finite as s or t goes to zero. We shall specifi­

cally discuss An, the arguments for Bn being identical. According to 

Jacob and Wick, 
31 

the amplitude T 0 
( z)may be written as a partial 

!-1 
wave expansion of the form: 

< 
1 1·-0I u\ 

00 

2J+l -i( }...
1

-~ - 8 
80;r,r T /00; s,s;'= ~- ( 411"-)e dAA1 J( 8 )·Tf.L (J) 

' J-0 

(VI-13) 
i 

where A. and A. are the differences between the nucleon and antinucleon 

helicities for the final and initial states respectively. The functions 

d 1 Jt 8) . . R f 31 .......J AA \ are g1ven 1n e . au..t 

T(J, I) 

When t is zero, so is b.
2

, and if in addition p 2 -F Q then 8 is zero, too. 

From Table II we see that as b.- 0, bn
2 

·- 1/ ~and bnS ~ 1/6 
2for all n, while the 

:remaining b stay finite. For f.L = 2 and f.L = 5 the d-functions in (VI-13) 
n~-t 

are d 0 1 
1

{ 8), respectively; and from Appendix A of Ref. 31 we obtain: 
i 

J sin e p J (cos 8} 
dOl (B)= 

jJ(J + l) 

d 1(8)={-l}J+ld
11

1 (TI"-G) = 
-11 

( 1- cos 8) 
J(J+l) 

r 
i l P 1 (cos 

l 
8) - (1 +cos 8) P J (cos 8) ii J 

-1 J -2 J 
Thus, as 8 -~>0 both b. d

01 
(8) and b. d_

11 
(8) rE(_main finite. 

Hence, by virtue of (VI-ll}, it is reasonable to assume that An( s, t, t) 

remains finite as t _,. 0. This is not by any means a conclusive proof, 
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-1/2 - 0 since there is no guarantee that the series ( l-z
2

) T 
2 

(z
2

) and 
-1 -0 

( l-z
2

) T 
5 

(z
2

) remain finite as z
2 

approaches one. A similar 

argument could be used to discuss the point s = 0 (i.e. , !; 
2 

= 0). 

\ 

.·---
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VH. THE POLYNOMIAL EXPANSION 

We now turn to the problem of determining the functions 

A
2

n (s, t) and B
2

n (s, t)., According to (VI-12), these functions can be 

given in terms of Im
2 

T f.LI (z
2

), which in turn can be determined by 

means of the unitarity condition (VI-3). For the reasons indicated in 

Section I we shall assume that only the two-pion intermediate, s_tate 

contributions to the unitarity condition need be considered, and except 

for the box diagram which will be calculated exactly, that, A, S and P 

wave two-pion states will be sufficient to determine the higher angular 

momentum states of nn scattering. Thus, by using unitarity we can 

get Imt Tl-1
1 

(z 2 ) in the physical region for channel 2, i.e., s ~ 0 and 

t ~ 4m , in terms of the FF functions, and then (VI-12) will give 

A
2 

n ( s, t) and B
2 

n ( s, t) and B
2 

n ( s, t) in this ~arne region. Since 

their analyticity properties are known from (IV -4), the absorptive parts 

may be analytically continued into the region s Y4m
2 

and t >'4f.L
2

, in 

which they are required for the dispersion relations (V -17). It should 
I be emphasized that whereas Im

2 
T ( z

2
) and b of ( VI-12) may indi-

f.l. niJ. 
vidually be singular at many points in the unphysical region for channel 2, 

when combined according to (VI-12) the result must have the analyticity 

properties indicated by UV -4), if the Mandelstam functions actually obey 

the Mandelstarn. representation. 

In the two -pion approximation, then, the unitarity condition 

(VI-3} may be written: 

u 

where X. and A are the nucleon minus the antinucleon helicities for the 

initial and final states respectively, and 

/ e' cfl> A T I B$ \j is a T-matrix element for the process ;r;r- nn. 
\ 
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,....____. 

Our T -matrix element is related to the cJ- o£ • FF by: 

1/2 
~ I I I I I" > (p k) \e <f>; o /T 9cf> = 1/~ 2 

2lT 

< '" I~ I " I I I i I 

e <f> ; + 1 1 T i o o = \e o ; 

.I 
++ 

\ ( k} 1/2 
p 2 "rJJ:-.. I oo \ = 1/.Jz "-~ I z" - +-

(VII-2) 

Here p
2 

and k are the barycentric nucleon and pion momenta respec­

tively, i,e., p 2 =[{l/4)t-m
2J l/2 

k=[(l/4)t -f/] 1
/

2
, andthef+/ 

are the functions of FF Eqs. (3.9) and (3.10), except that the i-spin 

eigenamplitudes A
0 

and A
1 

of FF Eq. (2.8) are used in FF Eqs.(3.3) 

and (3,.4). Finally, the S-matrix of FF has been multiplied by 2-l/2 to 

take into account the indistinguishability of the initial pions when in a 

state of definite i-spin. 

Sibte~the lT:JT-+nn amplitudes are obtained as partial waves of 

definite helicity, we make a partial wave expansion according to the method 

of Jacob and Wick:
31 

I /) J I J T (J,M) dM~. (e )dMO (e), 

(VII- 3) 

where the d-functions are those of Ref. 31, M is the z-component of 

the total angular momentum, and the blank in the ket on the right-hand 

side refers to the lack of helicity of the two-pion state. Substituting 

(VII- 3) into the unitarity condition ( VII-1), and making use of the relations: 

2lT I 

( ei(M-M )cf) dcf> = 2lT 15 1 

)" MM 
0 

lT 

( 
I 

J J 
sine de dMO (e) dMO (e) = 

) 0 

J 
dMA. ( 0) = l;.M'X.' we get: 

2 ~JJI 

2J + 1 
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Imz'i'~ I(z2) = 1/2 I: ( 2i: I) dn' J( 92)/A• Tr(J, A) I>~ I TI(J, •d) 
J \: (VII-4) 

The functions ( }\ / TI(J, M) /) are actually independent of M owing to 

rotational invariance; they are related to the f±J (t) of FF by: 

< 
•;' ' lk (p k)J 

o !TI(J) I)= 1/,.fz ,J ~ zEz f+/ (t) 

<+1 TI(J)I;"= <-1 r TI(J) f;' = 1/,.)2 /k {p2k)J f_/ {t). (VII-5). \ : ,Jp;_ 
J 

in which the f±I (t) are those of FF, except, again, that the i- spin 

eigenamplitudes of FF Eq. (2I.8) must be used. For example, Eq. {3.16) 

of FF would read: 

f J = l/81T .j J(J+l) 1 (B I B I) 
-I 2Jfl (pq)J-1 J-1 - J+l 

with BJO = ,J6 B/+), BJ
1 

= 2B}-). Actually, the f±J(t) should be the 

modified FF functions discussed in Section II of the present work. 

In order to calculate tne:;absorpti\e parts, we substitute the 

Im 2 T
1
_/(z 2 ) of {VII-4) into (VI-12) and express z

2
, k, E

2 
and p

2 
in terms 

of s and t. The result is a Legendre function expansion in terms of 

z 2 = - (~2 + 1 )\ = - ( 2 s + t - 42m2\. 
2p t - 4m f 

In the region of interest for the dispersion relation we have 

s ) 4m
2 

and oo >t 3:" 4JJ.
2

, so that j z 2 ·I) I for all of the range of integration 

in (IV -3), and the expansion ~ay diverge. According to Neumann• s 
32 

theorem, a Legendre function expansion in z = cos8 converges inside 

an ellipse in the complex z-plane that has foci at +1 and -1, and passes 

through the nearest singularity. In the present case z
2 

is always real, 

and it is easily seen that the expansion for A
2
n(s, t) will converge except, 

for points at which A
2 

n ( s, t) is f?_ingular. From {IV -4) we not; th~t, for 

s ::> 4:::m
2

, A 2 ( s, t) has a singularity in the region in which a 
12 

n ( s: t)js 
' ...... 2 4 2-1 

non-zero; this, according to (IV -2a), will occur when: t > 4JJ. + 4JJ. ( s -4m ) , 
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which would give us a very short range of integration before the ·expansion 
4 5 

begins to diverge. The curve C 
12 

is, according to Mandelstam, ' the 

boundary of the contribution of the 1T-n pole alone to the spectral functions 

a 
12 

n ( s, t) and b 
12 

n ( s, t), other contributions not entering until we reach 
I II 

the curves C 
12 

and C 
12 

of Fig. 5. Since the 1T-n pole contri l:utions to 

the 1T1T-nn amplitude are easily determined, we can by means of (VII-1) 

and (VI-12) calculate its effect on the absorptive parts, without recourse 

to a partial wave expansion; this is done in Section VIII. Each absorptive 

part in the two-pion approximation will consequently consist of three terms: 

· n · 1 n · 11 n ·~n 
A 2 ( s, t) = A z ( s, t) + A 2 ( s, t) - A 2 ( s, t} o (VII-6) 

with a similar expression for B
2 

n (s, t)o 
I n 

In the above equation A 
2 

(s, t) 

is the partial wave expansion in terms of the modified FF functions, 
" n A 2 ( s, t) gives the 1T-n pole term {i.e. the box-diagram) in unexpanded 

form, and A2 n ( s, t) is a partial wave expansion of the pole term, in-
1 

~olving the same number of partial waves as A 
2 
n'(s, t). The function 

n . . . 
A 2 ( s, t) is required because the FF functions already contain the 1T-n 

pole contributions in partial wave form which must be subtracted out by 
~ n 

means of A 
2 

( s, t)o 
I 

The curve C 
12 

m Fig. 5 is the boundary of the three-pion 

contribution and can be calculated using Mandelstam 1 s method
4

' 
5 

by 

considering an intermediate state involving a pion and a particle of twice 

h .. . 33 h 1 t e p.1onmass. T e resu tis: 

with the asymptotes: t = 9f1.
2

' s = 4m
2

. 

4 112 \]1/2 
_...:..,r-__,2,.... ) . ' 
s-4m. 

i I 

The curve C is the boundary 
12 

of the higher order two-pion exchange contributions, and has asymptotes 

t = (2f1.)
2 

and s = (2m + 1J.)
2 

0 It can be determined by merely replacing one 

of the nucleons in the calculation of C 
12 

by a particle of the mass of.a 

nucleon plus a pion, the result is: 



II 

'For s lessthantheasyrnptoteof C 
12

, i.e.,foranucleon·kinetic 
2 2 

energy in the laboratory system TL ~ 287 Mev,(s-4m =4p1 =2m TL), 

the series for A
2
.n (s, t), in the two-pion approximation, will converge 

I . 

for all values of tj however, once t crosses C 12 the two-pion approxi-

mation soon loses ~ts validity) ~!though it will not do so immediately since 

the three -pion contributions will, in all probability, be initially small. For 
~, II 2 

T~=:::.700Mev,c12and C 
12 

intersect at.t:::: 9.2f.1; thus, once the rr-n pole 

term has been subtracted out, the partial wave expansion will converge up 

to t = 9.2 for T L ~ 700 Mev. For values of T L> 700 Mev the expansion 
II 

will converge for values of t given by C 
12

. 

The foregoing remarks illustrate a general property of scattering 
4 5 

amplitudes that was first pointed out by Mandelstam. ' Consider a 

scattering amplitude in the approximation that only the lowest mass two­

particle intermediate state is included. If the interaction is such that no 

box-type diagram exists, i.e., there is no three-particle vertex like the 

pion-nucleon vertex, then in the lowest approximation the actual values of 

the two-dimensional spectral functions may be ignored, and only the bound­

ary curves are needed. This, for example, is the state of affairs in the 

pion-pion problem. If, however, there is a three-particle vertex such that 

a box-type diagram exists, the value of the spectral function due to the box­

diagram must be known in closed, i.e., not partial wave, form. In prin­

ciple, as we shall see in the next section, this 1s always possible. 
I I 

Finally, we write A 
2 

n (s, t) and B 
2 

n (s, t) in terms of the modified 

FF functions. From Appendix A of Ref. 31, we get for the functions: 
J . 

d A.A.' ( ~), with z = cos8 

D 
d

00 
(8) = 1, d '

0
(8)=0 A.A. , 

I 

A. and A. f 0 

I 

d 00 ( 8) = z, 
I 

d 10 ( 8) 
2 

- z ' 
I 

dll(8)= 1/2 ( 1 + z) 

·' 
d 7 1 1 ('(j) = 1/2 (i - z ) . (VII-7) 

Using (VII-4) with J = 0 and 1 only, together with (VII-5), (VII-7) and 
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(VI-12), and recalling from FF that f+OZJ+l(t) 1'<f±1
2

J(t)=0,vJeget: 

I S 4 1T 
A2 (s,t)= 22 

(t-4m ) 

0 
f+O (t) 

2 

I v I T . I A I 
A 

2 
(s, t) = A 

2 
(s, t) = A 

2 
(s, t) =A 

2 
(s, t) = 0 

1 S 3rr (t - 4f.1
2

)
3

/
2 

2 [ 
1 

1 j
2 

B 2 .(s, t) =- / 2 . 2 (2s + t- 4m 8jf+l (t) 1 
32t

1 2 
(4m - t) I 

(t~ 4f.l2>3/2 r . 1 
• 2 1/2 l4.f2m f+ 1 (t) 

( 4m -t)t 

- t I f -I I (t) 12] 

•v B 2 (s, t) 
3rr 
32 

f_ll*(t) 

I T 31T ( 4 2 ) 3/2 "1 /4[.rz: . 1 1 * 
·B .

2 
· ·( .s, t). = t - f.l ;t · · ·.· - f .. ( t) f ( t) 

32 2 . m:- +1 -1 
4m 7 t . . 

'··A , .. 
B

2 
(s,t)=O 

' p( ) 3rr (t- 4f.12)3/2 ( , 2) [ .J2 f 1 (t) f_ll (t} B 2 s, t = - -32 2 s + t - 4m . m- + 1 
(4m 2 -t) t 1/ 2 

. 1 121 -I f- 1 ( t) J . (VII-8) 

,..., n ,..., n · 
The expressions for A

2 
( s, t) and B

2 
( s, t) may be obtained 

from (VII-8) by merely substituting the functions g±/ (t) for the f±/(t), 

where the former are the rr-n pole term partial waves given in (VIII-2). 
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VIII. THE 1T-n POLE CONTRIBUTIONS 

In this section we -caiculafe-the- contribution to A
2 

n ( s, t) and 
. n . 

B
2 

(s, t) due to the 1T-n pole, or box-diagram, both in terms of partial 

waves and as a closed expression. 

The func;:tions corresponding to the f±I J(t), but containing mly 

the 1T-n pole term will be denoted by g±/(t). They are easily obtained 

from FF. From Eq. ( 4.1) of FF we get for the pole term in the bary-

centric system of the process 

A ± = 0 p 

-1T1T -nn: 

B (±) (z) = 41T g2 ( 1 + 2 2 1 ) 
p 2E

2 
-f.l

2 
- 2pkz 2E -f.l + 2pkz · 

(VIII- 1) 

where A± and B± are the invaria171t functions of FF with the subscript- P 

standing for pole, g is the renormalized unrationalized pion-nucleon 
. 2 

coupling constant (g ~- 14.4), p and k are respectively the nucleon andpion 

momentum, z is the cosine of the barycentric scattering angle, and 

E
2 = p 2 + m 2 = k 2 

+f.1
2 

Making use of FF Eqs. (3.17), (3.15), and (2.8), 

as well as the expansion used in our (V -20) we easily obtain: 

- 2 
g J( t) =. ,) 6 g m 

+0 (pk)J 

= 0, 

J .[6g2.JJ(J+l) g_o (t) = 

J 
g+ 1 ( t) 

(2J+ 1 )(pk)J 

= 0 

2 
= 2g m 

(p k)J 

= 0 

J even 

J odd. 

Q Y' [ ( \ 

J -1 2p) J even 

J odd 

J odd 

J even 
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J 2~2.J J(J+l) . '( { y 
g_l (t} = (2 J+l){pk)J QJ-1 \iPj - 0 Jtl (~ l J odd 

= 0, J even. (VIII-2) 

The Q J are the Legendre functions of the second kind used in (V .:.20); and 

since t, which is the total energy in our channel 2, is also the total 

energy for th'e process ·rrrr-+nn, we have: 

and 

.......- n - ·n .. . . 
Togetthe A

2 
(s, t):and B

2 
(s, t}weneedmerelytoreplace 

. J J ' 
f±I (t) ·by g±l (t} in (VII-8). 

We now turn to the problem of calculating the unexpanded 'IT.-n 
· · 11 n · "n 

pole terms A 2 (s, t) and :S.
2 

(s, t). From the equation in FF, and 

our (VIi-2), the T-matrix for the pole term in the process TTTT- nn can 

be written: 

here: 

k = r -. r, (VIII-3} 

::; 1 is the barycentric three-momentum of one of the incoming pions 

-. it makes no difference which one, since overall signs are irrelevant 
± 

for our purposes Bp ( Z} is given by (VIII-I) in which: 

I 
k .E' i I I z = . -:1 = z z + y y cos < e «J»), pk -

where 
I I 

z = cos e y = sin e etc. ' ' 
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The functions h A' when evaluated in terms of the helicity spinors given 

in Appendix B, are 

[ y 
icJ» y ' e - i+' ( Z + z) ] 

e 
1 + z 

[ y ei+ 

I 

] 
I icf> y e ( Z + z) 

' ' 
1 + :i 

I I Ek 
h < e 4» , e 4») = m 

I I 

h 0 (e cf>, e cf>) = kZ. (VIII-4) 

The unitarity condition (VII-1) now tells us that: 

- (±) - pk 
Im 2 T p ( z 2 ) -. 4 2 

f.J. 4(4Tr) E 

Bp(±)(~): Bp{±) (z). 

(VIII- 5) 

here 

In (VIII-4) the subscript "P" shows that the pole qmtribution is meant, 

and the "f.l." refers to the five basic helicity states of (VI-8). Equation 

(2.8) of FF implies that: 

Im T ( 0 ) ( z ) = 6 I T ( +) ( ) 
2 Pf.J. 2 m2 Pf.J. Zz 

The integrals (VIII- 5) can be performed, but since they are 

messy we shall not burden the reader with the intermediate details, but 
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me:rely with the results. In Appendix C we shall indicate how the 

integrations may .be done. The r e s ul t is : 

- 0 - 0 ... 
lm TPl (z) = lm Tp3 (z) 

= 3g4 m2k.[.!_{w + W ) - Y.. in(y + 2p) + 1]. 
S'ITE2 p 2 l 2 2p y - 2p 

I T 0( ) - 3 g m k ("1 - ) W 4 . { 
m P2 z = 16'1TEyp . z 1 

- 0 
lm Tp4 (z) = """T""'7'_3..:::g,...4.,.....,k,...,......_ { r 4yp22 

16'1Tp( l+z) l 
1 

(1- z)- (3- z) j w1 

-(
4

P
2

2 
-l)(l+z)W

2 
"11n(y+ 2p)-2{l+z)} 
p y - Zp . 

Y. 

- 0 
lm Tp5 (z) =- (l-z)W

1 

Im TP/ ( z) = l;;,. ~ [(I -z) W 1 + ( I+ z) W 2 - 2YP l n ( ~ : ~~ ) ] 

Im Tp/(~) = 8 n;(gl\k z) {[ 3 4 2 . . ] ' 
- z - + ( 1 + z) w1 y . 

.. , 
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4p 2 - _'( n n ( '( + 2 :[) \ 1 + ( 1 - -+--2 ) (1 + z) w2 . x . J 
'( p .. · '( - 2pj 

- 1 
Im TPS (z) = g 

4 k {(l 2 \ 
_L)(1-z)W 1 4p2 8rrp (l.;. z) 

+ f3 + z -
4

P 
2 

( 1 - z) J- w - X J. n ('Y + 2 
P \) . l '(2 2 p '( -2p 

Here, '{ has the same meaning as in (VIII-2), y is sine, and 

2 
w = -~'Y ___ _ 

l 4p 
2 

( 1 - Z) X l 

w = 2 

X = 1 

2 
'Y i.n 

2 
4p (I + z) x

1 

r 1 
! 'Y2 - 4p 2 ( 1 + z )j l/2 

l
. 2 

4p ( l - z) 
X = 

2 
f 2 2 

'( - 4p (1 -

l 4p
2 

( 1 + z) 

I 

z) ! 1/2 
I 
J 

From (VI-12) and (VIII-6), together with the relations 

(VIII-6) 

2 2 2 2 
s = - 2p ( l+z), t = 4(p +m } = 4E , we can get the rr-n pole contributions 

to the absorptive parts in channel 2; these turn out'to be: 

ns 
A

2 
(s, t) 

3f1 = 2 [4m
2 

(2s + t - 4m
2

)
2 j 

2 -t- - 2 
s( s + t - 4m ) s ( s + t - 4m ) 

_l!±t _ (4m
2

- t)
2 

+< 4 2_ >·[-1 + 1 11 --'-----2~ m t 2 2 2 
st( s+t-4m ) s ( s+t-4m ) j 

+ I_ [ ~+ ~ + 1 . 
s t s (s+t- 4 m2) 

+ 2 s + t - 4m
2 

Jl 
2 . 2 

y ( s+t-4m ) 

l 2 
2 

( s+t-4m ) 2 
s+t-4m 

~ + 2 s + t - 4m
2

] 

S'( 
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A

2 
(s, t) 

311 

2 __ 2(2s + t-4m ) 
2 

s ( s + t-'4m ) 
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ri_ 
l t 2 l ( 4m - t) 

s(s + t-4m
2

) 

(2 s + t-4m
2

) .,~ 4 m2 _ t(4m
2 

- t)
2 

J' 

st(s + t-4m 2 ) s(s + t-4m 2
) 

wo 
2 

( 4m -t) 

"T 
A

2 
(s, t) 

311 

+I_ r~ + ~ 
s s t 

! 
1 

+ 2 
( s + t~4m ) 

1 
2 

s + t-4m ·/( s + t-4m
2

) 

2 
2 +l+(4m - t 

2 s 2 
s + t - 4m y s 

2(2s + t-4m
2

)(4m
2 

- t) (t + 2s -4m
2

) 
-- 2 22 + 2 

s ( s + t - 4m ) s ( s + t- 4m ) 

X 
( 4m - t) 1 - --'-------',,--

r· . 2 
(4m -t) W r 2 2 l 

s(s + t-4m
2

) 

wo 
2 

( 4m -t) 
- I_ I ~ -__ 1 --..,.. 

8 8 
s + t-4m

2 

l 

2 2 1 
y ( s+t-4m ) 

"A 
A

2 
(s, t) 

311 - -

1 
s 

~ 

t 

2 I 2 2 j r _ ( 2 s + t- 4m ) + _1_ + 1 
2 ll 2 2 2 2 s(s + t-4m ) s(s+t-4m ), ls (s+t-4m) 

r 2 l 1 l! + 
1 (2 s + t -4m ) 

wl 2 + 2 2 I s 
s + t -4m y ( s + t-4m ) 

J 

2 
___ 1_ i 2 + I_ _ ( 2 s + t - 4m ) 

2 I 2 s 2 
( t + s - 4m ) i s + t - 4m · y s 

t 

w 
2 

l 
I 
I 
! 

I wo 
J 
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tip 
A 

2
(s, t) 

311 
2 -. ___:.---..,-, --~2 

s(t+ s-4m) 

·4 - ~ -
' t 
l 

('4m2 - t)2 

. 2 
st( s + t-4m ) 

2[1 I} wo -t) 2 + 2 2 
s ( s + t-4m ) J ( 4m -t) 

. 1 
+­

s 

l 

+ ~ + ___ 2_'""""'2,..--.. · + (24m2 - t) 2 ·]· 
t s + t -4m y (s + t -4m ) 

r-

2 . 1 
·-- + 

2 s + t -4m 

l 
2 : 

l 

lf w2 2 
s + t - 4m 

2 s 2 J ( s + t -4m ) '( s 

,,
5

. 
B

2 
(s, t) 

- -2, 
2 

(2s + t - 4m } 
2 2 2 

t s ( s + t - 4m ) 

1 

[
. l 
t
2 + (t + s)(s - 4m

2
) j (W 0 + 2) 

2 
t + s -4m 

2 -1 
+ ( 2 s + t - 4m ) 1 

2 2 I 
y ( s + t - 4m ) J 

+ 1 [r ~ _ 2 . = ..!. + ( 2 s + t - 4m
2

) l 
2 t 2 s 2 

(s + t -4m ) t + s -4m y s 

"V r B (s, t) __ -1 
-----.,..2 2 

211 s( s + t -4m ) 
L 

r 
2 l + 1 l 2 2 -1 _ (4m - t} _ W - ls +r- -s 2 2 2 1 

s + t - 4m y ( s + t - 4m ) 

1 [i - 2 2 l 
+ _!. + ( 4m 

: t) J w2 2 
s- 4m 

2 s 2 ( s + t -4m } t + '( 



"T 
B ( s, t) 

2 
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= 2 . 2 2 
s ( s + t -4m ) 

[(4m
2 

- t/ + s
2 

+(4m
2 

- t) s ] 

- _!_ r~ -s s 
1 

2 
s + t -4m 

(4m 2-t)j ~, 
- 'Y2(s+t-4m2 ) · 

1 
l 

(4m 2 t) . 
2 - j. 

'( s 
-- -s 

"A 
B2 (s, t) (4m 2 - t)(t + 2s- 4m 2 ) 

- - 2 2 2 
211 s (s+t-4m) 

~. 

- _!_ r~ + 1 2 + ( 2 ~ + t - 4m2 ) 2 J! w 1 
8 8 

8 + t _ 4m 'Y. ( s + t - 4m ) 

+ s + t

1 

-4m 2 [ s + t ~ 4m2 

l 
. ( 4 2) i 1 2s + t - m ! 

+-- 2 j' 
s '( s 

r' · 1 - .l lt2 
..;. (~ f . s)'(:s - 4m t-1 j ( W 0 + 2 ) 

+ 1 r~ + ~ + 1 2 
s l s t s + t - 4m 

2 i 
+ ( 2 s + t - 4m ) 1 W 

2 2 . 1 
'( ( s + t - 4m ) J 

+ -( s-+-:-_-4_m___,2 ) [ f - s + t 
2

- 4m2 
. 2] 1 + ( 2 s + 

2
t - 4m ) W 

2
, 

s '( s 

(VIII-7) 

where 

4[ 2 11
/

2 
4 7T g t( t - 4!J. ) J 

11 = 7rg Ek = - 4 
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W = L in i 'I + Zp - 2 I ) 
0 Zp \ y - Zp 

In terms of the scalar invariants of channel 2 the functions 

W 
1 

and w
2 

are: 

2 
w l = ___ '1.:..__----;;z:----

z( s + t -4m ) xl 

2 
( x2 + I) wz - '( in - ?s x

2 
x

2 
1 

xl- = r 4f' 4 + (t ~ 4f'-2)(s + t) ]1/2 l ' 2 2 (t = 4!J. )(t + s - 4m ) 

4!J.4 2 2 ]1/2 
x2 = - ( t - 4!J. )J s - 4m ) 

- stt - 4!J. ) 

2 
y = t - 2jJ. 

(t - 4!J.2) 1/2 

The above logarithmic functions are defined on those Riemann sheets 
II II 

which make A
2 

n( s, t) and B
2 

n ( s, t) real in the physical region for 

channel 2. For the dispersion relation, however, they must be anal yti­

cally continued into the region s >4m
2

, t >' 4!J.
2 

and care must be taken 

to remain on that branch of the logarithm which gives a real absorptive 
2 

part for s < 0, t > 4m 

The function W 
0 

is actually; 

the 0 1 being a Legendre function of the second kind, and both it and its 
2 2 2 

argument are real for t > 4m . For 4!J. < t < 4m , W 0 becomes: 



/ 
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I ' 
{ 2 - t) -1/2 + i) 

wo y f iy{4m - 2 = 
i {4m2 - t) l/Z 

n , 2 
- t) - 1/2 -i \ y(4m 

Zy tan- I [ ( 4rn 2 ; t) 1/2] -2, 4fJ. 2 < t < 4m = 
t) l/2 {4m 

2 -

2 
Note that there 1s no discontinuity at t = 4m , and that 

2 
as t- 4m . 

2 

:'fhe function W 
1 

is no problem since it has no singularities in 

the region of interest and x
1 

is real throughout. 

In the function W
2

, x
2 

becomes pure imaginary for: 

s >0, 
2 ' 

s- 4m 

so that W 2 must be written: 

W 2 = - y2 .£n (~) 
2sijx2 ) ijx2 1-l 

2 
= y 

~ )xz' I 
-1 

tan 
1 

r;l' 
W 2 becomes singular when 

i.e. , at the curve C 12 of {IV -2a), and is complex inside the region 

bounded by C 
12

, 

W 2 = - 2 •~~21 H~~ 2 ' 2 4tr 4 2 
+ Y lTl , t - 4•• > _ ___,_.-_ ___,_, s > 4m 

ZSTX:ll 
r 2 ' • 

s1x21 s - 4m 

The Mandelstam' functions, as calculated he:te, will be real except for an 

imaginary part coming from the imaginary part of W 
2

. The nn phase 

. :a, 

( 
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shifts for which our calculation has validity will be small, so that the 
. . ' . ~ . 

imaginary parts of the amplitudes will be negligible. Moreover, the 

imaginary part of the Cl.mplitude can easily be determined once the real 

part is known, We will consequently ignore the imaginary. part .of W 
2

. 

To summarize, for s >4m
2

, t > 4f.l
2 

. the three functions W 
0

, 

w 1' 

wo 

wl 

and W 
2 

are: 

'I .£n [y(t- 4m2)-l/2+ I l -2, t > 4m 
2 

= 
-: 4m2) l/2 '(( t - 4 m 2 ) - 1 / 2 - l 

= 

= 

(t 

Zy 
tan 

- l [(4m2~ t)l/21 -2, 4f.L 
2 

(4m2- t)l/2 

2 
t>4j..L2 'I .£n 

2( s + t 
2 

-4m ) x
1 

~XI 
xl \) 

- l 
tan 

- -

X = 2 

I 1 ) 

~· 

2 
y 

2s 
lx21 

0 <tan -1 I 

lx2j 

h t !x2 ~ .£n \1 -lxz : ' 
1 I 

Tr 
< 2 

t 4f.L2 > 

[ 

4 2 2 ] l/2 4f.L - (t- 4f.L ){s
2

- 4m ) 

- s { t - 4f.L ) 

< t <4m
2 

4f.L4 

s - 4m 
2 

(VIII-8) 
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IX. ANGULAR MOMENTUM DECOMPOSITION OF nn AMPLITUDES 

In this section we relate the amplitudes Ai. n(s) and Bi. ti(s) of 

( V- 19) to nucleon-nucleon phase shifts. Sin:::e all previous phase- shift 

calculations have been done in terms of z-component of spin rather 

than helicity states, we will use the former throughout this section. 

The T-matrix in channel l is (cf VI-5): 

9 4» ; 

< 
,., 

r , s a, r, s; a., 

(IX -l) 

where the indices r , s , r, s now refer to z-components of spin rather 

than to helicities. 

p = .!.. ( l - 7"( l) 
0 4 -

l ( l) 
pl = 4 (3 + 7" 

so that: 

M= M"'"" + 'T 
( l) 

= (M 

The i-spin projection operators in channel l are: 

(2) 

! ) 

(IX-2) 

The T-matrix for a scattering in a state of definite i- spin and definite 

initial and final total spin is: 

(IX- 3) 
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i 

where u and u are l, 0, and -1 for the triplet spin state, and u = S 

will designate the singlet state. 

combinations of the terms: 

The functions c 1 n are the proper 
(J' (J' 

( l) 1 (2) 1 n u ' (p ) u 1 (q ) X u 
r , s r 

(l) (p) u (2) (q) 
s 

I 

to give the final and initial total-spin states designated by u and u; 

they are tabulated in Tabl~ Ill, and have been calculated using the 

explicit Dirac-spinor representation of Appendix B. The c
0 

1 an of 

Table III are not all independent, since according to Wolfenstein and 

Ashkin, 
23 

time reversal invariance gives rise to the relations: 

From (III-4) and (IX-2) the functions Din(s, t,t) are: 

(IX-4) 

Finally, the right-hand side of {IX-3) has been multiplied by l/2 because 

nucleons when in states of definite i- spin and definite ordinary spin are 

indistinguishable particles, whereas the matrix M is calculated as 

though, they were distinguishable. 

The Din can be expanded in terms of Legendre polynomials: 

00 

Din= L: (2£ + l) D/n P
1 

(z) 
£=0 

(IX- 5) 

where the D In 
£ 

n n 
are related to the A

1 
and B

1 
of (V-19) and (V-21) by 

On n n '\ 

D£ = A£ - 3 B£ l 
( (IX- 6) 

D£ 
ln =A n + B£ 

n 

J £ 



n 

n 
c 

ss 

n 
coo 

n 
c10 = 

-c-lOn 

n 
COl 

-c n 
-0-1 

n 
ell 

n 
c -1-l 

n_ 
c l-1 --

c 
1 

n 
- 1 

Table III 

The Functions c 1 n of Equation (IX-'-3) 
(J (J -

The Table actually contains 2m 2 c I n. z =cos e, y =sine. 
(J (J 

s 

2 2 
p (J-z) +2m 

2 2 2 
(E-m) z - p z 

+2Em 

(E~m)y[E+m 

-(E-m)z] 

- ( E-m)y fE+m 
2 - . 

- (E-m)z ] 

l 2 2 2 
- f{E-m) z - 2p z 2 - . 

2 
t (E + m) 

l . 2 2 
2 ( E--m) ( l - z ) 

~ 

v T 

4p
2 

+ Zm
2 2 2 

-2(p z + 3E ) 

-2m(E-m) z 
2 

2[E(E-m)z 
2 

2 ) 

+4p z + 2Em + 3p~z + Em] 

,JZy(E-m)[mz -,.JZ(E-m)y[Ez 

-2( E+m)] + 3(E+m)] 

.J2 (E-m)y(Ez + -..JY (E-m)myz 

E + m) 

2 2 2 
E(E-m)z + 2p z -m[(E-m)z 

+ E (E.+ m) = (E + m)] 

A 

2 2 
-2(2E + m ) 

2 
-2[(E-m)mz 

2 
2p z - Em] 

..J2 (E-m)y[mz 

+(E+m)] 

,.f2(E-m)y(Ez 

+ E + m) 

2 2 
E(E-m)z + 2p z 

+ E (E + m) 

2 
E( E-m)( l - z ) 

2 2 
-m(E-m)( 1-z ) E(E-m)( 1-z ) 

p 

2 
p ( l - z) 

2 
-p z ( 1- z) 

2 
P y (1-z) 

rz 
2 

P y (1-z) 

,._;2 

1 2 
- ~p (l- z)

2 

1 2 2 
- 2 P ( 1-z ) 

I 
'\:)'1 
-.0 
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·· In 
The purpose of this section is to relate the D .R. which are 

obtain.ed from the dispersion relations to T -matrix· elements in the 

angular ~omentum representation: ( J, M, L, S! TI jJ, M, L, S) , 

where L and L are the final and initial orbital angular momenta, S 

the total spin and M = J . Note that J, M, S and I are all conserved 
z 

and that the matrix element must be independent of M owing to rotational 

in variance. To see that S is conserved we observe that an exchange of 

particles in the initial state vector produces a factor: 

(-l)L+(S+ l) +(I+ 1) = (-l)L+S+I 

which must be negative by the Pauli principle; that is, L + S +I must be 
I 

odd. Now I is conserved, and parity conservation requires that L - L 

be even, so that if L + S + I is to be odd for the final as well as for the 
I 

initial state, S - S must be even. For the scattering of two spin-1/2 

particles sf - si = 0 or 1, hence in this case sf - si = o, and s is 

conserved. Consequent! y, we may write the T -matrix elements that are 

non-zero as follows: 

For the spin- singlet: 

(IX-7a) 

For the spin-triplet, we have matrix elements T I when the initial and 
LJ 

final L values are the same; specifically these elements are: 

T J/ = <J, M, J, 1 M, J, 

I TJ+lJ=\J, M, J± 1,1 I I I ! T J, M, J, ± 1, 

I 

and when L - L = ± 2: (IX-7b) 

TIJ = 
I 

M, J + 1, 1 ; TI J, M, J - 1, 

= <J, M, J - 1, 1 I T 1 J, M, J + 1, 1) 
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where the latter equality comes from the symmetry of the T-matrix. 
34 

The above expressions are related to the aLJ of Stapp et.al. as 

follows: 

aL = iT L' aLJ = iT LJ' 

The T-matrix can be written: 

where: 

Y LL (8<!>) being a spherical harmonic, defined as in Appendix A of Blatt 

d ~~· . k. pf 35 s· an vv e1ss o. . 1nce 

y LL (00) = 
z 

vve obtain 

J 2L + 1 
4TT 

I I I I I \ 

\&<f>,CJ !T jOO,CJ;= 
/, i I '! II 1 ;------·-· 

·!:: y I I (84>) \L L (J IT '!LOCJ .J 2L + 1 
L' , L L L z \ z I 4rr 

I 

where now L ::: CJ - CJ 
z 

angular momentum. 

(IX-8) 

by conservation of the z -component of total 

The c 1 n of (IX- 3) are functions of sinB and cos 8, and by 
(J (J 

using the recursion relations for Legendr.e polynomials! (IX-3) can be 

rewritten in the form: 

y I I 

LL 
z 

I 

< 8<f>) K . , IL 
(J (J 

(IX-9) 
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1 

IL I 
where the K 1 are known functions of the D n , and of E and p, but 

(]' (]' X 

have no angular dependenceo Comparing (IX-8) and {IX-9) we see that: 

i ~ )~ IL i I I I I 2L + 1 
K 1 = ::E L ' L = (]' - (]' ' (]' I T I LO (]' . . ' . 

(]' (]' Z I · 4~ 
L .... 

(IX-10) 

I 

In the spin-singlet case L = I= J, and we immediately get the 

relation: 

T I 
J 

K 
ss 

IJ (IX-11) 

In the spin-triplet case matters are not as simple, since we 
i I i i 

may have J = L or L + I and L = L or L + 2, and it is necessary to 

project out the T-matrix element referring to the various values of J 

and Lo For this purpose we calculate from the K 1 IL
1 

the functions: 
(]' (]' 

H v Iu = 
LJ :E, 

(]' =0±1 

i 

< J u, L, 

i 

K' IL 
(]' (]' 

(+X-12) 

where < J, u, L
1 

l I L 1 

L
1 

z = u -=- u , u) is a Clebsch-Gordon 

coefficient that relates the LL u representation (recall that u stands 
z 

for S = l, S = u) to the J M L S repre sentationo From conservation 
z 

of angular momentum: 

I i 

M = L + u z 
=L +a, 

z 

I I 

but L = 0, so that M = u and L = u -u 0 Upon combining (IX-10) z z 
and (IX-12), and making use of the orthogonality properties of Clebsch-

Gordbn coefficients, we get: 

H ' Iu.= 
LJ 

(IX-13) 
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Now: 

I 

and s1nce the interaction conserves J only, the J = J term will contri-

bute in (IX-13) thus: 

H 1 Iu 
LJ 

i 

= ~ I I /J, a, L, 1/ TI / J, u, L, 0 <J, u, L, 1 
L=L 'L+2 \ I 

;fL;l 
f""""41T· 

(IX-14) 

For L = J only one term occurs in Eqo (IX-14), namely the one m 

which L = J; thus we have 

Using this equation for· u ·= + l or -l (for u = 0 both sides vanish 

' i~entically) we can express the T J/ in terms of the H J/u When 

L = J + l, for example, there will be two terms in (IX-14) corresponding 

to L = J + l and L = J - l, hence 

IJ< I ) ~ + T J,u,J- l, l J- l,O,u f'--:rir o (IX-15) 

Equation (IX-15) is actually a set of three equations, one for each per-

mis sible value of 

T I d . IJ 
J+lJ an T 0 

u, and each equation involves the same two quantities 

Any two of these relations are independent and can be 
I IJ . Iu 

used to solve for T J+l, J and T m terms of the HJ+lJ . Similarly, 

T I d TIJ b b . d . f H . Iu s·· the · HL1 Jiu J-~ an can eo ta1ne 1n terms o J-lJ . 1nce 

are .known functions of the D P. I by virtue of (IX-12), the T-matrix 

elements have been expressed in terms of the Mandelstam amplitudes. 

In (IX-16) below we give give the result of this procedure; the 

functions de signa ted by ~ are the T -matrix elements due to the one -pion 



-64-

exchange pole, which we have ignored up to now, and which have been 

given previously.9 ·The functions c _n (j = 0, l, 2, 3, 4; n:: S, V, T,!'-, P) 
J . 

are given in Table IV. For the spin- singlet: 

For the spin-triplet: 

I A I p 
T J J = T J J + 81rE{ 2 J + 1) {[ 

2 n 2 n l In 
;; .. (E+m) c 1 +p c 2 J(2J+ 1)DJ 

+ p2 c3n [J DJ+/n + (J + I) DJ_/n]} 

I 

: [[ ZJ
2 

( E + \n) 2 
c In- 2 Em c In 

[ 
2 n 2 n] In + {2J + 1) (E + m) c 1 -p c 2 ) DJ+ 1 

2 n . In [ n n] + 2J(J + 1)(E- ~) c 1 DJ-l +{2J+l) 2{J+1)c 4 -c 3 

X 2 D In } p J 

T I = ~ + ---=-P--.,..... 
J - 1 J J- 1 J 81rE( 2 J + 1) 2 ~ {zJ(J+ I)(E- m)2 cln DJ+Iln 

[ 
2 2 n n 2 n 2 n ] In +. 2{J + 1) (E + m) c 1 - 2Em c

1 
- (2J+l) (E+m) c

1 
-p c

2 
) DJ_

1 

n n 2 In } +{2J+ 1){2Jc 1 +c
3 

)p DJ 
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1 1 

2 0 

3 - l 

4 - 1 

-65-

Table IV 

C.n of Equation (IX-16) 
J 

v T A 

l 

1 

2 

3 

6
.2 

- E 

1 

-1 

0 

3 

-... ~--

1 

1 

2 

-1 

p 

2 
p 

0 

-1 

1 

0 



r J } 2 n 2 n In 2 n In 
+l(2J+l)p c 2 +(E-m) c 1 DJ-l +(2J+l)2p(c 2 -c4~DJ . 

(IX-16) 

I 

Note that because of the Pauli principle L and L are odd for I = S and 

even for I f S, where S is the total spin. 

For the sake of completeness we give the one-pion exchange terms 

explicitly: 

For the spin- singlet: 

. . 2 

1\ I ICI.rPg [ 
T J = (2-J+l)2E (J + 

2 
alpg 

2E 
= J = 0. 

For the spin-triplet: 

2 
;\ I . -a: IP g . ·. r 
TJJ = {2J+l)·2E l JQJ+l + (J+l) QJ-1 

2 
-a pg 

1\ I I (Q Q ) 
T J+lJ = (2J+q 2E J+l - J 

2 
/, I -ai pg 
'T J- l J- = (2 J + 1) 2 E ( Q J - Q J- 1 ) 

- (2J + I) aJ] 

:;\IJ- (:IJ:~:2 Ei/J(J+I) [ QJ+I + QJ-I -2 QJ] (IX-17) 

whe're a 1 = I, a0 = - 3; and Q J (1 + ~-'22 ) is a Legendre function of the 

second kind. Note that in (IX-17) Q _2t must be taken to be identically 

zero. For the relations between our T-matrix elements and phase shifts, 

see Ref. 34. 



-67-

X. CONCLUSION 

Because of the lack of reliable values for the FF functions, 

no numerical results could be included. It is hoped that the calculations 
36 

of the modified FF functions currently being made by Ball and Wong 

will soon remedy this lack, and it should then be possible to calculate 

several of the phase-shifts just below those adequately given by the one­

pion exchange pole. 

Calculations very similar to, but much more ambitious in scope 

than the present ones, are being carried out by Goldberger, Grisaru, 

Mcdowell, Noyes, and D. Worig. 
37 

These authors write dispersion 

relations for partial wave amplitudes in the nucleon-nucleon channel, 

which will enable them to involve the unitarity condition in that channel, 

and thus derive a set of coupled integral equations by means of the n /D 
16 I 

technique of Chew and Mandelstam. They also include coulomb 

corrections, as well as phenomenological singularities to represent 

three -pion and higher mass contributions, and should consequently be able 

to predict successfully the values of the phase-shifts of much lower angular 

momentum states than can be done by the method presented here. 

In our procedure we have neglected what in the language of partial 

wave dispersion relations is called the right-hand or unitarity cut (cf. ReL 16), 

for example, except for the contributions of the rrr-n pole; thus the amplitude 

that we get is an integral over the left-hand cut alone. 

Considerations similar to ours have been employed in a recent 
38 ' 

paper by Amati, Leader, and Vitale, although these authors do not in-

clude the complete unexpanded Tr-n pole term. 
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APPENDICES 

A. The I-Spin Formalism 

The i- spin formalism for antinucleons used in this thesis is 

not new, having been treated by Malenka and Primakof£, 
39 

yet seems 

sufficiently rare in actual application to merit some discussion. 

The formalism is based on the observation that the field variable 

tj;(x) for a four-component-spinor field involves both the particle and its 

anti-particle, so that when the neutron and proton fields are combined 

into one eight-cornponent-spinor field it is natural to write its field 

variable: . 

·(· tj; (x) \ 

<j>(x) - <¥: (x) ) (A -1) 

where tj; (x} and tj; {x) are the proton and neutron field variables res-
p n 

pectively. The adjoint spinor 1s then 

LiJ ( x} 
n 

(A -2) 

where ;v (x) = tj; t(x} f3 etc., and f3 is given just below (III-9). Expanding 
p p 

tj;(x) in terms of creation and destruction operators: 

where the index a can be + or - corre spending to 13 =. + 1 or -l 

respectively, destroys a particle and b an antiparticle, and all ordinary­
a 

spin indices have been suppressed. The U and V are defined as follows: 
a a 

U (p) = u{p) X 
a .. a. 

{A-3) 

V (p) = v{p) X-
a a 



-69-

with x+=(~) .x_=(~)andxa:=x(-a.)" The u(p) and v(p) are 

ordinary four -component Dirac- spinor s. 

It is immediate! y obvious that with these definitions the matrix 

f loses all meaning as an i-spin operator for antiparticles; instead, the ....... 
i- spin operator for both particles and antiparticles is now: 

1 )'- 3 T = 2 : tjJ 13! tjJ d x: (A -4) 

where ~ is actually (~ ~) and the ":" indicates that a normal product 

is to be formed. The 1mportant point here is that the i- spinor of the 

outgoing antinucleon stands to the right of ., while that of the ingoing 

antinucleon stands to the left, just as their "spin-spinors 11 do. Con­

sequently, under the substitution rule the U and V spinors behave 

precisely as the u and v spinors do. 

From (A-4) and the relations: 

u (p) 13 u (p) = v(p)l3v(p) = E/m 

v (p) 13 u (p) = u (p) 13 v (p) = 0 

we get: 

With these rules, states consisting of a nucleon and an antinucleon no 

longer combine into states of total i-spin by means of the usual Clebsch­

Gordon coefficients. If the state with total i- spin 1 and 1
3 

= + 1 is 



,, 
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where: 
:l 

then: 

Similarly: 

Since the I = 0 state is not coupled to the I= 1 states the overall sign 

of the former is arbitrary. We thus have: 

1, 1)=/pn) 
I 1, o ) = -~~ [ In n) -\ p P)] 
\1.-1)= -lnp) 
}. o) = ~[Inn) + / P P) ]. 

(A-6) 

In channel 2 a projection operator· for a state with total i- spin 

I may be written: 

7' 
( 1) ' ( 2) 

7' (A-7) 

In this channel, however, "particle 111 refers to an outgoing nucleon and 

outgoing antinucleon, whereas "particle 2" refers to an incoming nucleon 
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and antinucleon ( cf. (III-2) 0 Thus, for example, we should have in 

this channel: 

/p n I 'T( 1) 0 ., In p \ = X t 'T X- . X- t 'T X \ . - -21 / p- n p - n 

where x =x =x- x-=x =x p + p' n - n' 

and 

I -~ I-) \p n . 1 I np 

( 1) ., . 
If we apply the i-spin states of (A-6) to the operators 1 and 

z:( 2
) with the proviso that the states are in chant1el 2, we get: 

( r', I , I \ 

I 3 11 I I, 13) = 2 ~I' I ~1
1 

I I= 0 
3 3 

= 0 1 = 1 

(r', I I 31 '!..( 1 ) . '!..(2) I I, 
\ 

13/ = 2 Iii' I 61' I 
3 3 

I = 1 

= 0 I= 0 (A-8) 

From Eqs. (A-7) and (A-8) we find: 

so that 

- 1 p =- l, 
0 2 

1 ( 1) 
I\- 2 ., 

(2) 
'T 



-72-

B. The Dirac-Spinors 

This appendix is concerned with the explicit representation of 

the Dirac-spinors, helicity and z-component of spin, used in this thesis. 

The z -component of spin spin or s ur(p) are obtained by applying 

a Lorentz transformation in the -p direction to a spinor having the spin 

r in the rest system. 

where: L(p) = -i 'Y • p + m 
2m 

........... 

as in (III-12) 

The spinor v (p) is the charge conjugate of u {p) 
r r 

v (p} 
r 

~~ * = c u (p) 
r 

Since 

we have 

v (p) r: 
= /2m 

r.J m+ Po 

I 0 \ 

L(-p) \-i~yxr) 

(B -1) 

-(B-2) 

The helicity spinors are obtained by first rotating a spinor in 

the rest system until its spin direction is the same as, or opposite to, 

the direction of the momentum p and then applying a Lorentz trans-....,..._. 

formation in the direction -p. Thus 
~ 
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u (p) = ~ . L(p) L: ('n') 
r m +Po 

( Xr ') 

\ 0 
(B-3) 

1 + u 
. /\ 

! n u 
z 

Jz(l +cos e) ' 

/\ 
where n is a unit vector in the direction of p, e is the angle qetween 

'ri and an arbitrarily chosen z-axi~. The operator L. ('ri') is then the 

rotation operator RcJ), e; -:~ of Jacob and Wick
31 

for the spinor case. 

For antiparticle we use (B-2): 

* )~ * C L (p) L (n) 

I \ 
.X ) , r 
I 

'. 0 

(B-4) 

In Ref. 31 the two particle states are defined so that in the 

barycentric system the same rotation can be applied to both particles. 

Consider two particles of momenta p 
1 

and Pz and helicities r and s 

in the barycentric system 0 Then the spinor for one particle is: 

2m 
m+E 

where n 
1 

is in the direction of 2l , whereas the spinor for the other 

particle is: 

( 1\ 

A I X s) 
L( p 2 ) L: { nl ) \ 0 ' 

inaccordancewith Eqs. (13), (14)and(l5)ofRef. 31. InSectionVI 

the antiparticles of channel 2 were always. taken to be spinors of this 

latter type, so that the direction of scattering was defined by the nucleons 

· rather than by the anti-nucleons 0 
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C. Integrals 

We sketch here the method by which the integrals of Section 

VIII may be performed. 

The integrals of <fl are done first. They are most easily per­

formed by making the substitution ~ = e i<J> and then integrating over the 

unit circle. 

The resulting expressions can alw.~ys be written as a sum of 

integrals of the following types: 

d 
z 

a+!) 
z 

1 
d 

12 
r z 

= I --r/2 
)-1 

X 

1 
d 

13 =L z 
i X 1/2 {a+!)z) 

where 

x1/2 J !32 2 
+ 2a z z2 + 

2 !32(1-z 2) = z a -
2 

with {!3 ~)2 !32' 
2 

> !32' = a 

and where it must be remembered that the integrals should be performed 

when the variables that are not being integrated over are in the physical 

range for channel 2. 

Since 11 and 1
2 

are merely special cases of 1
3 

we shall only 

show explicitly how the latter rna y be done. 

For this purpose consider the integral~. 
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r=Jdzt" 
-1 ) 0 

d«f> 
1 

I 

(a+j3 z) (a+ 13 Z ) 

where 

2 1/2 2 1/2 
Z = z

2 
z + ( 1 - z ) · ( 1 - z 2 ) cos cf>. 

The integral over 4> gives: 

I = 2rr j 
-1 

dz 

so that I = 21T 1
3 

. 
A A /, 

On the other hand, define three unit vectors n, n 1, and n 2 
such that 

.1\ z = n 
/\ 

Z = n 

B f h F 1 f h b . . f d . 40 y means o t e eynman rues or t e com 1nahon o enom1nators 

we find that 

1 
d3~ 

13 
1 { dt f = 21T 

(a +ft 0 N) 2 

-
where !'". 
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Let us pick a coordinate system in which N is along the z-axis, and 
i i -

let 8 cf> be the direction angles of -;:':;' with respect to this new axis. 
I 

Then since "" N is independent of cf> we get n. 

1 1 

13 £ dt { dz 
= 

(a:+ N ) z 
. z 

i 

N =I~ I where z = cos e and 

The last expression is easily integrated over z to give: 

l 

13 = z ( 
' 

dt 

I 

..!o 

so that: 

13 
z 

ln ( x + I) = 
1/2 l/2 " 2 i 

(2a
2 2 i X - 1 

(f3 - f3f3 z2) - f3 - f3f3 z2) 
' ' 

( 2 2 i 

) 1/2 2 a - f3 - f3f3 z2 
X = 

\ ~2 - ~~ z2 
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