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ABSTRACT 

The Mandelstam representation is applied to the process 

'( + Tr - 2 Tr. It is shown that a homogeneous integral equation may be 

obtained for the p-wave amplitude whose solution allows one arbitrary 

real multiplicative constant, which at present must be determined from 

experiment. By the use of crossing symmetry, a simple and tractable 

approximate solution of the integral equation is obtained. Higher partial 

waves may be calculated in terms of the p wave. The order of magni­

tude of the new constant is estimated by considering the decay rate of 

the neutral pion, in which the amplitude for '( + Tr - 2 Tr should play a 

prominent role. 
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I. INTRODUCTION 

1 
Recently, Chew and Mandelstam have developed a new 

method for· calculating the interactions of strongly interacting particles 

and have applied this method to the problem of the pion-pion inter­

action. Their procedure is based on the two-dimensional representation 
2 

proposed by Mandelstam, which prescribes a method of simultaneous 

analytic continuation of scattering amplitudes into the complex planes as 

a function of both the energy-and momentum- transfer variables. In 

particular, this representation gives the location and character of all 

singularities of a scattering amplitude and enables one to write partial­

wave dispersion relations. Chew and Mandelstam have developed the 
. . 

theory further by adopting the philosophy that the functions are dominated 

by nearby singularities" Accepting this philosophy and applying the 

unitary condition, one obtains a system of integral equations in most 

scatter1ng problems, Frazer a:nd Fulco
3 

have applied these ideas to the 

problem of rr. + rr - N + N and then to the nucleon electromagnetic- struc­

ture problem. Here we use the same approach to calculate the matrix 
:::::: 

element for low-energy photopion·production from pions. 

If both the Mandetstam representation and the philosophy of 

the importance of nearby singularities are accep,ted, no further sub­

stantial theoretical work may be done in strong-coupling physics in­

volving photons andother elementary particles until we understand 

something about the problem of photopion production from pions, lp. 

other words, this problem plays a role similar to that of rr - rr 

scattering in any phenomena involving at least one photon. For 
4 

example, Ball has recently investigated photopion production from 

>:<A preliminary account of this work was given at the 1959 Thanksgiving 

meeting of the American Physical Society, November 2 7 -28t 19 59 

[I-Io-w·-sen 'vVong, BulL Am. Phys. Soc, 4, 407 (1959)]. 



-5-

nucleons and found that the process y + rr - 2 rr produces an additive 
. 5 

correction to the CGLN formulas. Further work on "photo" problems 

such as y + rr- y + rr andy+ N- y + N will also require a knowledge 

of the y + rr - 2 rr reaction. 

In the following section, kinematics, isotopic spin and 

partial-wave decompositions will be considered. It is shown by 

invariance requirements that the problem under consideration requires 

only a single invariant function. By assuming that this function has the 

Mandelstam representation, we are able to locate the singularities and 

hence to write dispersion relations for the partial-wave amplitudes. 

Using the unitary condition and the Omnis
6 

-Frazer-Fulco
3 

method, we 

find that the p-wave amplitude satisfies a homogeneous integral equation 

and depends on a single real parameter 1\. This constant, although not 

fundamental, cannot be related to fundamental constants at this stage of 

. the theory and must be determined from experiment. Higher partial 

waves for our process are related directly to the p wave, The p-wave 

integral equation is solved by the Chew-Mandelstam technique of 

replacing unphysical singularities by a series of poles, whose positions 
7 

and residues are determined by crossing symmetry. 

Finally in Section III, we discuss neutral-pion decay. It is 

shown that the decay rate is related to the unknown parameter 1\ 
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II. LOW -ENERGY PHOTO PION PRODUCTION FROM PIONS 

A. Kinematics 

Let the four -vector momenta of the pions be p 
1

, p 2 , and 

p3' and let K and e be the four-vector photon momentum and polarization, 

* respectively. Define the variables 

and 

2 
- (K - p2) ' 

which are related by the condition 

. ( l) 

(2) 

These three Lorentz-invariant variables are just the squares of energies 

in the barycentric systems of the corresponding processes a, b, and c 

in Fig. 1. We sue these variables because of the fundamental structure 

of the Mandelstam representation. 

In the case when the photon K and meson p 
1 

are the 

incoming particles (we shall call this channel I), the variables s 
1

, s
2

, 

and s
3 

are related to the energy and momentum transfer in the following 

ways:. 

2 + p2) sl = (p + K) = 4( l 
1 

2 
2kE + 2kp cos f) 1 s2 = (p2 - K) = l 

2 
cos f) 1' s3 = (p

3 
- K) - 1 2kE - 2kp 

* ~ ~ 
We use the fundamental metric tensor such that p 1 . p

2 
= P 1 P 2 - P 10P20 · 

Units are used in which 1i = c = l and fl = 1, where fl is the mass of the 

pion. 
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MU-20472 

Fig. 1. The three channels of the 'I + TT -+ 2TT problem. 
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where p and E are the magnitudes of the outgoing pion momenta and 

energy re..ye~ively, k is the energy of the photon, and we have 

cos () 
1 

= ~, all in the barycentric system. Energy-momentum 
p -

conservation leads to Eq. (2) and k == (s
1
-l)/2.Js

1 
The S matrix for photopion production from pions can be 

written as 

T 
S . (2 )4~:4 (K+ \ fi (4 ) 
fi = 1 iT v p l - p 2 - p 3 6 (16 p p p k) l/2 ' 

10 20 30 

where P
10

, P
20

, and P
30 

are the energies of the mesons. 

The decomposition of T will be considered as follows: 

First, we decompose T into the product or sum of the products of an 

isospin-dependent function and an isospin-independent function. Next, 

the isospin-independent function (functions) is (are) decomposed into 

the product or sum of products of a gauge -invariant, Lorentz -invariant 

function and a function of s 
1

, s
2

, and s3" We can perform all these 

decompositions by using the known conservation laws or invariance 

properties such as the conservation of parity, conservation of G-parity 

( G-conjugation is the combined operation of charge conjugation and 

180-deg rotation about they axis in isotopic spin space), gauge in­

variance etc. With these inva.riance properties and the pseudoscalar 

nature of pions, we find that only a single pseudoscalar quantity can be 

formed from the four independent kinematic four -vectors, and the final 

2;r state must have isotopic spin one. Thus the problem under con­

sideration requires only one scalar transition amplitude. Therefore, 

we can define the scalar amplitude M{ s 
1 

s
2 

s 
3

) by 

(5) 

where a, f3, andy are the isotopic indices of the pions, and E P. and 
a~"y 

e X.lif.Lv are the conventional antisymmetric tensors of third and fourth 

rank, respectively. The fact that a single scalar transition amplitude 

is required for the problem is a great simplification; we believe this 

may be the unique situation in strong-coupling physics with such a n1ce 

property. 
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The consequences of crossing symmetry are very simple in 

this case. Interchanging the numbers of various pion pairs evidently 

amounts to interchange of the s variables. Thus we have 

since the product of the factors multiplying M in formula (5) are 

symmetric under any pion interchange. 

B. The Mandelstam Representation 

( 6) 

We assume that, except for subtractions that may be required, 

the invariant function M satisfies the two -dimensional representation 
. 2 

proposed by Mandelstam: 

1 
M=-z 

'IT 

00 

00 

+-1- (J 
'TT2 J J 4 

ds'
1
ds'

2
p

3
(s'

1
s 1

2
) 

(s'l-sl)(s'2-s2) 

00 

J~ 
ds'3ds' lp2(s'3s'l) 

(s'3-s3)(s'l-s1) 

Conservation laws preclude the presence of any poles. 

( 7a) 

Although the variables s
1

, s
2

, and s
3 

are not independent, 

being related by (2), we shall often write them all out explicitly in order 

to see the symmetry of the representation. The assumption of the 

Mandelstam representation is the essential tool for setting up an integral 

equation for the p-wave amplitude. We use the representation not only 

to locate the singularities of ~he partial-wave amplitudes in the s 
1 

(energy 

square in Channel I) plane, but also to relate the unphysical and physical 

cuts in this plane. This is discus sed in the following sections. 

Using the crossing relations[ Eq. ( 6)], we find that all spectral 

functions p in Eq. ( 7a) are equal and symmetric in the two variables. 

Therefore Eq. ( 7a) becomes 
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M = :z ~~ ~ [(x-s 3(y-s2) + (x-sz)\y- s3) + (x-s3;(y-s I)] p(x, y) dxdy. 

( 7b) 

As shown by Mandelstam, one can easily derive a one-dimensional 

relation from Eq. ( 7a)with either s 
1

, s
2

, or s
3 

fixed. The spectral 

function p is non zero in regions whose boundary can be calculated from 

perturbation theory or whose formulas are given by Mandelstam. It is 

shown that p is bounded by the following two curves [see Fig. (2)]: 

( 8a) 

( 8b) 

The curve for Eq. (8b) is obtained from Eq. (8a) by interchange of s
1 

and s 2 . From Eqs. (Sa) and (8b) it is evident that the region in which 

p is not zero is asymptotically bounded by the limits of integration in 

Eq. (7a): 

C. Analytic Properties and .Dics.:P£ll"a:;iinnRelations 

for Partial:... Wave Amplitudes 

Our approach to this problem requires the same sharp 

distinction between high and low angular-momentum states as in the 

problem of 1T-1T scattering of Chew and Mandelstam. The discussion of 

their work in this connection may be repeated almost word by word. 

Here we separate out the p-wave part for special consideration, the 

higher part of the amplitude to be calculated later in terms of the p-wave 

part. 

Using the method of Jacob and Wick; 
8 

we can write the 

partial-wave decomposition of our scalar amplitude M as 

(9a) 
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MU-20473 

Fig. 2. Boundary curve of the spectral function p ( s 
1

, s
2

). 
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where e 1' the angle of emission, is given by 

(~) 1/2 
s - 4 ' 

1 

a]'ld ~~1 is the derivative of Legendre polynomials of order 1. 

(10) 

In order to obtain the dispersion relations for partial-wave 

amplitudes, we write 

where 
00 r 

p(x,s'z) l_l_ 
x-s 1 

+ 1 l x+s 1 + s 1 

2
-3 

( 11) 

dx. (12) 

It is easy to see that p' ( s
2

, s 
1

) is the imaginary part of M for s 2 ~4, 

and s. 1 ~ 0 and the analytic continuation of this function is otherwise. 

In other words, the spectral function p 1 is the imaginary part of M 

when the photon and meson p
2 

are the incoming particles ( se shall call 

this channel II). Equation (11) is a one-dimensional representation of 

the amplitude M that. shows explicitly the dependence on the momentum­

transfer variables s2 and 83 and thus the angle e 1' since 

s =_.!_ [3- s -(s -1) 3 2 1 1 (
s 1 -4) 1/2 ] 
-- cos ()l s . 

1 

Using the formula 

1 
21 + 1 = 21(1+1) L (1 - z 

2
) P' 

1 
( z) M ( s l, z) dz ( 13) 
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in our partial-wave decomposition, we find 

00 

2 . 1 Im M( s 1 

2 , cos B 2 ( s 1 

2 , s 1 ) ) 
(1-z )P':.e(z) dz ds' 2 'S -4 1; 2 4 

Zs' 2+s 1-3+(s 1-l)( ~) z 

( 14) 

where e
2

, the barycentric- system emission angle for channel II, can be 

obtained from formula ( l 0) by interchanging s 
1 

and s
2

" 

Before discussing the analytic properties of partial-waves, 

let us make a subtraction byremoving the p-wave part of Eq. (7b): 
00 

M(s 1,cos e1) =M1(s 1)+* f ds'z !m M(s' 2 ,cos e2 ) 

4 

x [ ' ( l e ) + ' l e ) - K l( s l, s' 2 )] , s 
2

-s
2 

s
1

, cos 
1 

s 
2

-s
3 

s
1

, cos 
1 

( 15) 

where 

[ 
rs1 -4) 1/2 

_. . 2s'2 +s 1 -3+(s 1 -l\~ 

)( In (" -4; 1/2 
2s' +s -3-(s -1) - 1-

2 l l s l 

In our approximation on below, we shall let Im M( s
2

, cos 8 2 ) ~ Im M 1 ( s 2 ), 

assuming that iT-iT phase shifts are small in all states for i. > l; so that 

Eqs. ( 13) and ( 15) give the formula for the higher-angular-momentum part 

of the amplitude in terms of the p wave. 

It is not hard to locate the singularities of the M/s in the s 1 
(energy-square) plane from Eqs. (11) and (12). The Mi.'s are analytic 

in the whole complex s 
1 

plane_ e;x:c~pt for left-hand and right-hand branch 

cuts on the real axis. The right-hand cut funs from 4, the physical thres-
-

hold for two pions, to oo. The vanishing of the denominators in formula ( 11) 
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gives the left-hand cut from 0 to -oo. The discontinuity across the 

left-hand cut is related to the absorptive part of the amplitude for 

channel II by crossing relations. The apparent singularity from the 

vanishing of the second denominator in formula ( 12) was introduced 

artificially through the separation into partial fractions of one of the 

terms in formula ( 7b). This singularity can be easily seen to vanish 

after the integration in Eq. ( 13) is performed. 

In order to be able to write the dispersion relation for the 

partial-wave amplitudes, we must consider their asymptotic behavior. 

The unitary condition tells us that ·M.e ( s 
1

) goes to zero as s 
1 

approaches 

. f' . . 1 f d -3/2 G . d d b h' . b h . 1n 1n1ty at east as ast as oes s 
1 

. u1 e y t 1s asymptot1c e av1or 

and using the analytic properties we have found, we can write the follow­

ing dispersion relations without subtractions: 

Im M.e(s 1

1) ds' 1 
s'l-sl 

(16) 

For consistency, it is necessary that Im M£( s 
1

) vanish at -oo as well 

as + oo. We shall consider this later. 

Our next task is to evaluate Im M£ ( s 
1

) on the unphysical cut 

(-oo < s
1 
~ 0). In ·this region, we find, from the crossing-relation 

* formula ( 14), 

v( s 
1

) 

( 
. ./ 4 

(17) 

where 

and 

* See Appendix. 
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= 4(2£+1)~ r[
1 

( £ + 1 )( s 1 - 1 )( s 1 - 4) 1/2 

3-s
1

-2 s
2 

- s 1 ( ( s 1- 1 )( s 1-4) 1/2 

Although in Eq. ( 17) the variable s
2 

is the energy variable in the physical 

reg:ion for channel II, the upper limit v( s 
1

) is such that we hC!-ve 

cos e
2 

< -1. Therefore we must make an analytic continuation from the 

physical region. One method of continuation is to expand Im Mr s
2

, cos8
2
( s

2
, s1)] 

in Legendre polynomials: 

lm M( s
2

, cos e
2

) 

The region of convergence of our Legendre polynomial expansion 

can be determined from formula (12). Since a function of cos e
2 

can be 

expanded in Legendre polynomials within a singularity-free ellipse with 

foci at -1 and + 1, we must find the position of the nearest singularity in 

cos e
2

. This singularity can be located from the vanishing of the deno·­

minator of formula ( 12) in the region where p is not zero. Using formulas 

(8a) and 8b) for the boundary curves of this region, we find that the expan­

sion converges on the left-hand cut as long as we have s
1 
~-33.94. 

Beyond the region of convergence of the polynomial expansion, 

a more subtle method of analytic continuation will be necessary. However, 

since we know from general principles that Im M£( s 
1

) must vanish as 

s 1 approaches - oo, it is reasonable to expect the contribution oflm M_e< s 1) 

for s 
1 

:;::.- 33.9 4 to be small. If we keep only the p-wave amplitude in the 

partial-wave expansion (96), we see that lm M
1
(s

1
) for s

1 
~ 0 oes to zero 

like s 
1
-
3/2., so that no cut-off parameter is needed. The situation is thus 

more favorable than in the problem of pion-pion scattering. The extra 

convergence here is a consequ'ence of the gauge condition. 
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D" The Integral Equation 

We shall proceed to transform the Cauchy integrals ( 16) 

into another form from which we hope to obtain solutions. Applying the 

unitary condition and adopting the assumption that the functions are 

determined by nearby singularities so that only the intermediate 

two-pion state need be considered, we write 

(18) 

where S
1

( s 
1

) is the pion-pion phase shift for the 1 angular -momentum 

state. 

Frazer and Fulco have extended the Om'ri.es investigations on 

the Chew-Low type Eq" (18) and find that M
1
(s

1
) 's satisfy 

where 

D 1 ( s 1 l ) Im M 1 ( s 1 l ) d s' l 

s 1 - s I 

5
1

(s'
1
)ds'

1 
l 

(s'l-sl)s'l J 

{19) 

(20) 

In this problem, the imaginary part of M
1
( s 

1
) for s 

1 
~ 0 is not known 

but is related to the p-wave amplitude through the crossing relation ( 17). 

From now on we shall concentrate on the f.= 1 solution and 

leave the calculation of higher waves to Eqs. (13) and (15). By substi­

tuting Eq. ( 17), where we approximate Im M.;; Im M
1 

in the integrand, 

into the Omn~s-Frazer-Fulco solution ( 19), we obtain a homogeneous 

equation for the p -wave amplitude" The homogenity of this integral . 

equation, whose solution is not unique at least with respect to a multi­

plicative factor, would be removed if we kept any contribution from ln.­

elastic processes. In the calculation below, we shall fix this 
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multiplicative factor 1\ as the value of M
1 

( s 
1

) at s 
1 

= 1. At present, 

we do not know how to relate this unknown parameter 1\ to fundamental 

~onstants, in particular to the electromagnetic coupling constant e, 

which certainly plays a fundamental role here. For the time being, 1\ 
must be determined from e}periment. Although we do not know the 

relationship between 1\ and other constants, we have no reason to be­

lieve that it is itself fundamental. It should be possible to calculate I\ 
if and when technigU:e.·s for handling high-mass singularities become 

availableo 

Eo The Pole Approximation 

To proceed further we need the denominator function D 1, 

for p-wave pion-pion scatteringo The pion-pion calculations of Chew 

and Mandelstam have not yet reached a conclusive stage but these 

authors have given an approximate form for D
1 

which corresponds to 

the replacement of the unphysical branch cut in the pion-pion amplitude 

by a finite number of poleso Further, they have shown that two poles 

lead to an accurate approximation in the physical region up to s 1- 40 o 

Once the parameters of the two-pole formula have b~en determined, it 

will be a straightforward problem to incorporate the information into 

the amplitude for '( + Tr _. 2Tro The determination of the pion-pion para­

meters is still in progress,?., 9 but we outline here, for further use, 

the form of the solution of our problem that corresponds to the pole 

approximation of Chew and Mandelstamo We shall illustrate the method 

with the one-pole, pion-pion amplitude, for which parameters have been 

given by Frazer and Fulcoo 

We thus propose to replace the left-hand cut of the amplitude 

M
1 

by poles with appropriate positions and residueso This philosophy 

of replacing cuts by poles has been successful in many circumstances 

and can perhaps be best understood by looking into the connection with 

the effective -range formulas of low-energy nuclear physics o It is 

well-known that the effective-range formula gives a useful description 

of low- energy nucleon-nucleon scatteringo If the formula is written in 

the form 



1 
f =­

q 
i~ r 2 

e sin 5 = ( 2 q - i q 

-18-

1 -1 
) a,, 

where q is the center-of-mass momentum, a is the scattering length, 

and r the effective range, we see that the s-wave effective-range 

formula implies that the amplitudes has two poles in the complex q 

plane at 

q I " i [ ~ + ( :2 - a 2 r ) 1/2] 
and 

q 2 " i [ } - ( :2 - .\ ) 1/2 ] . 
Usually, one of these poles q

1
, is in the physical sheet (-ig

1
) 0) and 

the other one is either in the unphysical sheet ( -iq
2 

(_O) or becomes a 

bound state pole" The effective-.range formula (22) can be now equiva­

lent! y characterized by a single pole q 
1

, the interaction pole, and its 

residue 

r = 1 

1 q 1 + q2 

i ( ql - q2)' 

and may be called the 11 one-pole formula 11
, This relation between poles 

and effective-range formulas has been known for some time, but was 

not emphasized and interpreted until recently by Chew and Wong after 

the Mandelstam representation was proposed" lO In fact, the interaction 

pole lying in the negative real axis of the q?· plane can be considered to 

be the replacement of left-hand singularities implied by the Mandelstam 

representation. 

In general, we would obtain a 11 multiple-pole formula 11 by 

replacing the left-hand branch cuts by a series of poles. The 
11 n-pole formula 11 thus obtained should contain 2n parameter--the 

residues and positions of the poles, For our y + rr - 2rr problem, 
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replacing the left cut by poles correspo,pds to approximating M 1 ( s 1) 

for s 
1 

-~ 0 by a finite number of delta functions here and enables one 

to transform the integral Eqo ( 19) into an algebraic and trivially soluble 

equationo But the question now arises how to determine the residues and 

positions of the poles, which correspond to the strength and range of the 

various contributing interactions 0 Recall that a parameter A must enter 

into our final solution, so we might as well introduce it through the 

residues of one of the poles. The rest of the parameters may be deter­

mined from the crossing relation Eqo (6)o 

As in the 7T-'IT problem, we have a point of maximum symmetry. 

This occurs at the unphysical point s 
1 

= s
2 

= s 
3 

= 1, or s 1 = 1 and 

z 
1 

= cos f) 
1 

= - ,.,)3 i, where M is real. By differentiating the general 

crossing relation ( 6) or the Mandelstam representation with respect to 

these variables, we can derive an infinite number of conditions on the 

derivatives of the amplitude M at the symmetry point (referred to 

hereafter as SP). Three of these conditions which may be useful for our 

further discussions, are ;, 

M (s
1 z 1) = constant, s = 1 

1 
(22a) 

aM (s
1 z 1) 

0, = a sl 
SP 

(22b) 

and 

2 
z 1) a ;_~ ( s 1 00 = 

a~ 1 a z 1 SP 

(22c) 

In addition, from the Mandelstam representation we can also find the 

following relation: 

s = 1 1 

2 = constant x ( 1 - z 
1
) o (2 3) 



-2.0-

Equation (24) together with the crossing conditions (22a) to 22c), imply 

- /\ 
SP 

or M
11

(1)=0 (24a) 

for 1! ;::,. 3, and 

aM
11 

(s
1

) 

1 
=0 as 1 

s = 1 
l 

(24b) 

for all 1!' 

2 
a M

11 
(s

1
) 

=0 
as 1 

2 
s = 1 1 

(24c) 

for 1! ?5 and 

2 a 2 M
1 

(1) a M 3 ( s 
1

) 1 = 
as 1 

2 s = 1 - 6 
as 1 

2 
1 

(24d) 

These relations are exact, but only Eqs" (24a), (24b), and 

(24d) are of direct use in determining the pole parameters for the p wave, 

The additional relations needed depend on Eq" ( 15) which is only approxi­

mate" To obtain these formulas, let us write Eq. ( 15) in the following 
11 

form: 

M( s 1 z l ) .:::::. 
l 
11"· 

00 

f 
4 

X 

Im M
1
(x) dx 

+ 
X - S 

1 

[ 1 x-s
2

(s
1

, z 1) 

00 

1 f Im M
1 

(x) 
TT 

4 

+ 1 ] dx. ( 2 5) 
x-s

3
(s

1
, z l) 
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Evidently, the first integral is the ·contribution from the right-hand cut 

and the second integral that from the left. This equation, although not 

exact, satisfies all the exact crossing relations (22a) to (22c) and (23). 

The importance of Eq. (25) lies in the fact that at the symmetry 

point the contribution from t~;~ left cuts is simply related to that from the 

right. Defining 
00 

R l ~ 
Im M

1 
(x) dx 

M (s
1 z 1) = -

1T X - S l 

and 

l 00 

M 1 (x) [ 
1 1 

~r 
Im + dx, 

L 
z 1) 

X - 52 ( s 1' z 1) X - s3(sl' zl) M (s
1 = 

with the obvious meaning for the notations, we see from Eq. (25) that 

at the symmetry point we have 

and 

= 5 
a2MR 

as 2 
1 

Using these relations and Eqs. (24a) to (24d), and remembering 

ML =MIL (1), 

MR = Ml R ( 1), 

and 

= 
8 2 M R ( 1) 

1 
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we obtain 

Ml L ( 1) 2 
R = M

1 
(1), (2 6a) 

a M
1 

L ( 1) 'aM- R ( i) 
1 .. 

as 
1 

- -
as 1 

(26b) 

and 

a 2 M L (1) 1 
a 2 M R (1) 

l . 1 = 5 2 
as 1 

2 
a sl 

(2 6c) 

There are relations of this kind for all derivatives at S 
1 

= l, but these 

three will serve our purpose if we consider only one- or two-pole 

formulas. In general, the more poles we put in to replace the left cut, 

the more accurate the p-wave solution we would obtain and the more 

derivative conditions we need. 

We are now in a position to derive pole formulas for our 

problem. The "one -pole" case will be considered fir st. Let us write 

I\' 
s

1
+a 

+ ~ foo. 
. 4 

M
1
(s 1 

1
) e -iSl(s' 1) sin6

1 
(s'

1
) ds' 

1 
S I 1 - S 1 

where /\ 1 is real, and -a is real and positive. This assumption evidently 

corresponds to setting 

for s 1 ~ 0, so that from Eq. ( 19) we have the p-wave solution 

Ml (sl) 
1\i D

1 
(-a) 

= ( s 1 +a) n
1 

( s 
1

) (2 7) 

v,rhere '' 

/\' = f\( l+a) n
1 

( 1) 

n
1 

(-a) 
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since we have defined A = M
1 

(1). If the Frazer-Fulco one-pole D
1
(s

1
) 

'\~:\·. 

function is used for a resonance at s 
1 

= ''lO we find a .= 5. 7 from the 

crossing relation (26a). Since the calculation of the two-pole pion-pion 

parameters is still in progress, we are not able to give "good" two-pole 

y +,. -+- 2rr results here, but we derive the two-pole formula for future 

reference. Writing 

for s 
1 
~ 0, where 1\ 1 and /'\ are real, and a and b are real and 

positive, we find 

[ 
D

1 
(-a) 1 Dl (-b) 

, 
Ml(sl) 1\v + j ( 2 8) = (s

1
+a} D

1 
(s

1
) (s

1
+b) D

1 
(s

1
) 

where 

1\t = 1\nl(l) 
[ D1 (-a) 

( 1 + a) + ''-I 
Dl (-b) l-1 
( 1 + b) 

The parameters a, b, and /\
1 

may be determined from the crossing 

relations (26a) to (26c). It turns out that no a, b, and 1\ can satisfy all 

three crossing conditions (26a) to (26c) if the Frazer-Fulco one-pole 

form is used. However, if we fix the position of one of the two poles 

between zero and -4.92 (0 ~a~ 4.93) and ignore the second-derivative 

condition, we find that the first two conditions of Eqs .. (26) do have 

solutions for a, b and /\
1 

. The results of this calculation show that 

the p-wave amplitude in the physical region is not sensitive to the 

positions of the poles, as can be seen from Table I. The table also 

lists the values of b, 1\, and /\v for different values of a. The fact 

that a and b must be between 0 and -4.93 indicates that relatively 

small contributions to the p-wave amplitude come from the far-away 

left-hand singularities. 

Note finally that in the physical region, the difference between 

our one -pole and two-pole solutions is not great. Thus we may be con­

fident of the accuracy of our two-pole results once the parameters of the 

two-pole ,.,. scattering formula are known. 
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Table I 

Table of parameters and p-wave amplitudes for various values of a. 
u - ~.. Ml{s1}7A 

a b L A s =4 s =8 s = 12 s =2o A 1 1 1 1 1 

a5.7 .4.47 

b4.93 0 4.5 2 -0,021 

b4.0 1 .13 5.2 . -0.152 

b3.0 2.25 1 L5 8 -0.169 

c2.62 5.8 5 - L54 

a One-pole solution see Eq~ (27) . 

b Two-pol~ solution see Eq. (28) . 

0.96· 

0.98 

.0.994. 

0.995 

1.01 

0.453 0.35 
D

1
(8) D

1
(12) 

0.455 0.345 
D

1
(8) D

1
(12) 

0.46 0.35 
D

1
(8) D

1
(12) 

0.458 0.35 
D

1
(8) D

1 
{ 12) 

0.465 0.355 
D l ('8) D

1 
{ 12) 

c A single pole and a dipole placed at -a. In this case, M
1

( s 
1

) is given by 

+ 
Al ] . (sl+a)2 

0.241 
D

1
(20) 

0.239 
D

1 
(20) 

0.236 
D

1 
(20) 

0.235 
D

1
(20) 

0.241 
D

1 
(20) 

s 1- 00 

6.2 
slDl(sl) 

5.82 
s.l Dl(,s 1) 

5. 78 
slDl(sl) 

5. 73 I 

slDl{sl) 
N· 
~ 
I 

5.85 
slDl(sl) 
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F. A Method of Determination of A 

Recently, Chew and Low have proposed a general method for 

analyzing the scattering of particle A by particle B, leading to three 

or more final particles, in order to obtain the cross section for the 

interaction of A with a particle which is virtually contained in B. 
12 

This method is useful for unstable particles such as pions and neutrons 

from which free targets cannot be made, and hence can be applied to 

determine the unknown parameter A. of photopion production from pions. 

Let us consider the reactions '( + p - p+ 1T + + 1T and 
+ 0 '( + p - n+ 1T + 1T • (Fig. 3). We conjecture the existence of a pole in 

the momentum-transfer variable 1:1
2 = (p

1
2 

- p 2 )
2 

at. -1. The residue 

of the pole in D. 
2 

is found from the general formula given by Chew and 

Low: 

Lim 
2 

D. --1 

a2a(W2, 1:12) 

aw2a1:12 
T a (W), 

(29) 

where f
2 .=. o.oa and a2 a 1 aw 2 a 1:12 

is the differential cross section 

for '( + p - p + 1T + + 1T- in the variables D. 2 and the total energy of the 

two outgoing pions W in their barycentric system, KL is the photon 

energy in the rest frame of the target proton, and a T(W) is the total 

* eros s section for photopion production from pions which is given by 

2 (30) 

provided we neglect all higher partial-wave contributions. 

*The cross section for 1T +, 1T and 1r
0 is the same. 
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' ' ' \ 
-

I 
I 

I 
I 

K 

MU-20474 

" ; + -
Diagram of y + p -- \ TT+ + tr0 + p. 

LTT + TT + n 

This figure shows the pole of interest. 
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IlL NEUTRAL-PION DECAY 

One application of the y + 'IT- 'IT+ 'IT process is to calculate 

the decay rate of neutral pions. Goldberger- and Treiman were the first 
0 

to analyze 'IT decay by using dispersion relations, but they considered 

nucleon-antinucleon pairs as the most important intermediate states and 

neglected multi-pion states. 
13 

It seems to the author that this may not 

be a good approximation, since it involves only contributions from far­

away singularities but not from near ones. Here we adopt a different 

approach and consider the contribution of the least massive state. This 

can be done if we extend a photon variable q
2 

into the complex plane 

instead of the meson variable _p
2 

used by Goldberger and Treiman. 

Following the standard method, one has (see Fig. 4) 

\ 

( q (f') K( v) TIP (3)) ~ ,/a fd~ x eikx ( q(}') I Jv (x) 1 p(3)) ,• v. 

Qc (31) 

Because of translation invariance, Eq. ( 31) becomes 

4 2 2 
5 (p-q-k) F (-q ; -k ; 

v 
( q ( fJ.) k( v) T ) 

i(2'IT)
4 

p ( 3) = 

where we have 

2 
-p ) 

I 

EV 

(32) 

and p is the pion four -momentum. The indices fJ. and v refer to the 

polarization state of the photons of momenta q and k, respectively. 

The number "3" inside the matrix element represents a neutral meson 

in the initial state; J is the source of the electromagnetic field and 

satisfies 
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- K (E') 

q(E) 

MU-20475 

Fig. 4. Neutral pion decay, with only the 21T intermediate state 

considered. Wavy lines are photons; broken lines, pions. 
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From general invariance arguments, the F function can be 

written in the form: 

2 2 2 Tr 2 2 2 
F(-q ; -k ; -p ) = E A q kA E E I(-q ;-k ; -p ). (33) 

at-'f.Lv a I" fJ. v 

We can write this form because F must satisfy three conditions: .. ' 

(a) K. e = 0 (b) q. e' = 0 and (c) e. e 1 = 0. The gauge-invariant 

photons require the first two conditions. The last condition is due to 

the fact that the meson is a pseudoscalar spinless particle, and the 

polarizations of two photons decaying from it must be perpendicular to 

each other. 

We assume that, with both p
2 

and k
2 

on the mass-shell, the 

scalar function f( -q
2

) is analytic in the whole complex q
2 

plane 

except for a branch cut on the real axis from - 4 to - oo. Using these 

analytic properties, we can write the dispersion relation for f( -q
2

): 

2 2 
Im f( CJ ) dCJ 

2 2 
(34) 

(J - q 

Using the unitary condition, we can express the absorptive 

part of F in formula ( 32) as 

Since our approach is to assume that the function is determined 

by nearby singularities, no intermediate states except the least massive 

state--the 2'TT state- -will be considered here. Actually, we should not 

neglect the 3'TT contributions, especially if they produce a resonance or 

even form a bound state at roughly the same energy as the two-pion 
14 >:< 

resonance. ' 

, .. 
,.The author wishes to thank Professor R. J, Eden of Cambridge 

University for indicating this point to him. 
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At present, however, we are not able to handle this part. By considering 

the 2:TI intermediate state only, we have 

3 2 
2 J d pl d 

1
2 4 

A {- q ) = 2 iT" e t.J 2 p 0 3 5 < q - p 1 - P 2 ) 
V f.L { 2TI) 

x ~ . (o J {O)IP1{i), P 2{j))(p 1{i), p 2{j) J)O)IP{3)) {35) 
1 spm f.L 

The first factor of the integrand, i.e. the matrix element describing the 

disappearance of a pion pair with the creation of a photon, may be 

written as 

{ 36) 

where F t {S) is the hermitian conjugate of F (S), the pion form factor 
iT" iT" 

and is given by 

F {S) = 
iT" 

where the D
1 

function is given by formula {20). The second factor in 

Eq. ( 35) is just the matrix element for photopion production from pions: 

I I 
., E3 .. E f36 {pl) (p2)@ Kli 

(Pl{i); p2(j) J )0) p(3))= {-.J;-) M lJ {~ p:O p;O PO) l/2 

where · 

M " M [ - (p 1 + Pz )2, - (p 1 - Pz / l , { 3 7) 

Substituting Eq. (36) and (37) into (35), letting q 1 = p
1 

+ p
2 

and 
l 

Q = 2 (p 
1 

- p
2 

); carrying the isotopic- spin sum, and integrating over 
4 4 

d q' and d Q, we have 

2 er ( 2 4 )3/2 
A( -q ) = -- E q K E E I .:__-q-"--:,:---,-~-

48TI af3f.Lv a f3 f.L v (-q2) 1/2 
t 2 2 

F TI { -q ) M 1 { -q ) . 

{ 38) 
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Notice that the integration over d
4 Q projects out the p wave of M only. 

This is also evident from the fact that the photon has spin one. Comparing 

Eqs. (33) and (38), we obtain 

2 
f ( -q ) = 

e 
r t 2 2 2 

F rr ( u ) M l ( u ) du , 

and the pion decay rate is given by 

2 

The numerical evaluation of f(O) is carried out by using 

Simpson 1 s rule in steps of 0.01 for t from 0 to 1, where t = 4/u
2 

. 
0 

We use Eq. (28b) for M and find that the decay rate of the rr is 
1 

given by 

7.0 X lo- 16 

2 
A 

sec, 

I 2 * where \ is expressed in the unit of e(e = 1/137). For A = ± 1.3, 

. . 1 4 lo- 16 h 1' . f 0 l"f . 7" 1s approx1mate y X sec, t e upper 1m1t rom rr 1 etlme 
15 

experiments performed by Harris, Orear, and Taylor. 

*= Dr. J. S. Ball, of Lawrence Radiation Laboratory, has applied the 

Mandelstam representation to the 'Y + N - rr + N problem and finds 

that IAI is less than 1.3 in order to make his calculated cross-section 

compatible with experimental data. The author wishes to thank Dr. Ball 

·for information about his results before publication. 
\ 
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IV. CONCLUSION 

Fr'Gm the assumption that the matrix element for photopion 

production from pions has the Mandelstam representation, we have 

been able to formulate a set of integral equations for the partial-wave 

amplitudes. In our approximation, this set of equations has been 

reduced to a single homogeneous integral equation for the p-wave ampli­

tude, whose solution depends on an unknown parameter 1\, and to 

formulas for the higher partial waves in terms of the p wave. 

Using the pole-approximation technique of Chew and Mandelstam, 

we have been able to solve the p-wave integral equation and have given the 

explicit form of the two-pole formula in terms of 1\. and three other para­

meters. These parameters can be calculated in a straightforward manner 

from crossing relations, once the parameters of the two-pole 1T-1T formula 

are known. 

We have proposed a method to determine 1\ by extrapolation of 
+ - + 0 

the cross section for y + p-+ p + 1T + 1T andy+ p-+ n + 1T + 1T . However, 

this experiment is very difficult and can only determine the parameter .1\.., 

up to its absolute value. We have estimated the order of magnitude of 1\ 
here by considering the decay of neutral pions, assuming that the y+1f-+21f 

process should play a prominant role. Our calculation is based on the 

assumption that only the least-massive intermediate states contribute to 

the dispersion integral, but there is no good reason to expect the 31T 

contribution to be negligible. A better estimate of 1\ may come from 

photopion production on nucleons, where Ball has shown that y+1T-+21T makes 

an important and characteristic contribution. Other problems in which A 
appears include the calculation of 31T contributions to the nucleon isotopic 

16 
scalar form factors. Up to now, however, no one has succeeded in 

treating the matrix element (NN 131T), which is also needed here. 
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APPENDIX 

The sign function e(x) used in Eq. ( 17) is defined as 

e (x) 

for 

The sign function arises because of the complicated s
1 

dependence of the 

denominator in Eq. ( 17). Since we have 

2i Im 
1 

1 = 

1 

_ 6 _ 2 s ( s 
2 

_ 2 s _ 2) I ( ( s _ 4, 1/2 
=- 2'1l"ie s 1 (s:- 1 ~(s 1 -1) X 15 2s2+s 1-3+(s 1-1) +J z 1), 

from the limits of s/ {4 and-} [3-s
1
-(sc I) ("! -4

) !/~ z 1] for s 1 < 0}, 

one sees that the argument of the sign function a1{..,ays lies between the 

limits x
1 

and x
2

, where we have 
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-2 (2s
1 

+ 1)(2s
1

- 5) 
X = 1 s

1
(s

1
-1)(s 1-4) 

and 

intherange.OQ<!s
1

<0. Thesetwofunctions x
1 

and x
2 

vanishfor 

the unique va1~e s 1 = - t . They are both positive ~or -oo <_ s 1 < - } 
and both negative for - 2 < s 

1
-< 0 so that we may simply wnte 

1 
e ( s 1 +2) in the left-hand cut discontinuity. 
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