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ABSTRACT

It is shown that sufficiency conditions for the validity of the Mandelstam
representation of a collision amplitude can be stated in terms of the location
of singularities of its physical branch when one of the energy variables is
real and positive and the second independent energy variable is compleg. It
is also shown that in perturbation theory the real singularities of the physical
branch must correspond to positive Feynman parameters provided that none
of the curves of singularities identified in this way have turning points in
positive spectral regions. The same condition will exclude complex singu-
larities in the physical sheet that are connected to the curves of singularities
on its real boundary. If there are any disconnected complex singularities
they must correspond to complex Feynman parameters.

It is concluded that sufficiency conditions for the Mandelstam
representation are the absence of turning points in positive spectral regions
and the absence of disconnected complex singularities in the physical sheet,
In the equal-mass case thesé conditions are both necessary and sufficient,
and real singularities in the physical sheet can be identified by requiring
that the Feynman parameters shall be positive. The conditions are satisfied

by ladder diagrams when there are no anomalous thresholds.
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I. INTRODUCTION

The aim of this paper is to obtain sufficiency conditions for the validity
of the Mandelstam re_presentationl in a form that is convenient for study in
perturbation theory. The Mandelstam representation implies that a scattering
amplitude has a branch that is analytic in the complex planes of the invariant
energies, s, t, and u except for branch cuts and poles on the positive real

axes. These are defined by the equations

‘ 2 2 2
s=(p; tp,) »t=(p) tpy) , u=(p; +p3) ., (1.1)
and
4 - : 4 _
Z p-=0,p-2=Miz,s+t+u= Z Miz,
1 1

(1.2)

where p;, are the external four -momenta of the colvliding particles. In

Section 2, it is .shown that sufficiency conditions for the representation .can

be stated in terms of thé location of singularities of the physical branch of

the amplitude A(s, t, u) when one of the variables s, t, u is.real and positive.
In ordér to study whether these conditions are in fact satisfied by an

amplitude defined by a perturbation solution in quantum field theory, we must

“This work was performed under the auspices of the U.S. Atomic Energy

Commission.

*On leave of absence from Clare College, Cambridge, England.
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have a method for locating singularities of the physical branch without
considering also those of the rﬁofe co_fnplicated unphysical branches. The
physical branch is defined. so that it satisfies the causality requirements of
quantum field theory in the physical scattering regions of the real, s, t, u
plane which forms the boundary of the physical sheets of the complex planes.
This definition leads to the usual prescription of associating every interﬁal
mass with a small negative.imaginary part to gi;\re (m2 - i€) in the Feynman
iﬁtegrals of the perturbation series. Singulai'ities of these integrals. can
always be associatéd with critiéél values of the: f‘eynman parameters in their
integrands. It is shown in.Section 3 that under certain conditions the real
singularities of the physiéal bi'anch can Be .idenfified by the requirement that
the critical values of the Feyﬁman parameters must be positive. - The conditions
used are the absence of turning points in those curves of singularities for
which the Feynman parameters are positive. These conditions are
sufficient, but probably are not always necessary in the generdl mass case.
They also ensure the absence of complex singularities that connect to real
curves of singulari'ties bn the boundary of the physical sheet. These conclusions
are not affected by the possible existence of ’disvconnected complex sin-
gularities. If these do exist, the I\‘/Ian.c.lelstaﬁj ‘representation would-have to
be m.odifi;.ed by the addition ofvcomplex contou-rs of integration.

The restriction to positive Feynman parémeters gré_atly simplifies
the discussion of curves of singularitie‘s. The problem of determining
whether an a.mplitude given by a pert.urbation seriesb s‘atisfies t‘hese conditions
has been discussed elsthere, 2 VVSome results of that paper (hereafter denoted

as I) will be used in.Section 3.
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II. SUFFICIENCY CONDITIONS

In this section we obtain conditions on the location of the singularities
of a branch of a collision amplitude for it to satisfy the Mandelstam rep-
resentation. The representation will be established by a double application
of Cauchy's theorem by makiqg explicit assumpt'ions about thé location of |
singularities. These a.ssumpti‘ons then proﬁde the sufﬁciency conditi(;ms that
we require. |

For simplicity we .use the equal-mass problem to illustrate our
assumptions. The general mass case requirés special considération in the
problem of proving these assumptions, but in establishing their sufficiency
it has nob special significance.

Assumption 2A. There is a region of the real .s, t plane and a complex

neighborhood of this region in which the amplitude A(s, t) has no singularities
or branch cuts.

Assumption 2B. With t real and within the bounds Set by the analytic

region of assumption 2A, the amplitude A(s, t) has no singularities in the
complex s plane except for brancﬁ points or poles on the real axis.

We will not explicitly include poles in our formulae, since they give
only trivial changes. The region of analyticity in the equal-mass case has
been obtained in I. A single application of Cauchy's theorem in the complex

s plane gives,

A(s,t) =
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1 [ [A(s* +ie, t) - A(s' - i€, t] ds'

2mi (s' - s)

ot | | @y

The region of analyticity and the two integrafion contours are illustrated in
Fig. 1, where the contours are denoted (a) and (b).

Assumpt.ion 2C, For all real and positive values of s except for a discrete

set of points, the amplitude A(s, t) has no singularities in the complex t
plane exﬁept for branch points on the real axis in the ranges .4m2 <t, and
t € -s. |

We can allow € .in Eq. (2.1) to tend to zero exéept in a negligible
part of the contours of integration. The assumption 2C permits a second
application of Cauchy's theorem, which transforms the first ihtegr.al on the

right of Eq. (2.1) into a double=dispersion integrai. The appropriate contours

are denoted (c) and (d) in Fig. 1, and the double integral is
: . 3} :
~1 z [ ds' [ dt’ el ¥
(2mi) " . , (s' -~ s) (t' - t)
. 4'm2 : 4m2

’ p (u, ’ Sv ) -
! > du' ds’ 2 ,
(2mi) (u' - u) (s' - s)

4m 4m

(2.2)
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MU-20362

Fig. 1. The real s, t, u plane, (u-= 4m2 - s -t). Branch
points and contours of integration in the complex
planes of s, t, u are indicated.
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where

Pl (s'., t') = limit [A(s' +ie, t' +i€) - A(s' - ie, t' +i€)

e—=0

- A(s'+ie, t' -i€e) +A(s' - i€, t' - i€)] (2.3)

and P, (u', s') is defined from Eq. (2.3) by the substitution

t' = 4m2 -s'-u'. ' (2.4)

If we made an assumption similar to assumption 2C but for s real
and negative, the integrand of the second iritegral on the right of ;Eq. (2.1)
could be transformed by C'auchy'é theorem, and we could formally obtain a
double integral. However this would not be in a useful form. . This is clear
from Fig. 1, which shows that the values of t in the integrand that we wish
to transform lie on the cut_.in.' the cjo'mplex t plane. Heﬁce there would be an
essential contribution to the integral from the neighborhood of these values.

A useful transformation of the integrand of the second integral in
Eq. (2.1) can be obtained by using oblique axes. These are defined by a
contour along which u is fixed and real. We require a further assumption.

Assumption 2D. For all real and positive values of u except for a discrete

set of points, the amplitude A(4m2' -t - u, u) has no singularities in the

complex t plane except for branch points on the real axis in the ranges

4:m2 <t and t< - u.

With this assumption, the integrand of the second integral in Eq. (2.1)

can be transformed into a dispersion integral along the conto‘ur‘s {e) and ({f)

in . Fig. 1. This leads to double-dispersion integrals

-0 o«

_ p, (', u')
- 1 > dsl d’l:2 3 —7
(2 wi) (t -t) (W' -u)
2

/—t 4m
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1 l d 4 'pz (u', s')
- ————— [ S
(2wi) = N

(2.5)

The integration elements ds, are taken with t' fixed, and dt, and ds,
are taken with u' fixed. The function Ps (t', u') is obtainéd from Eq. (2.3)
by using Eq. (2.4).

By repeating the vabove procedure with the first transformation.made
in the complex t plane, we obtain integrals along the paths (a'), (b'), (c¢'),
(d'), (e'), and (f') in Fig. 2. Clearlyi the double integrals are over the same
regions as those in expressions(2.2) and (2.5). An additional assumption has
to be made. |

Assumption 2E. For all real and positive values of t except for a discrete

set of points, the amplitude A(s, t);has no singularities in the complex s
plane except for branch points on the real axis in the ranges 4m2 < s, and
s §_= t.

The integrals over oblique axeis in this second case are the same as
in expression (2.5), but the integration elements are now dt1 taken with s'

fixed, and dt2 and ds2 taken with u' fixed as before. Using Eq. (2.4),

we have

du' = -ds' -dt' = - d.s1 - dt (2.6)

1

This permits us to combine the double integrals. After dividing by two, we
obtain the Mandelstam representation for A(s,t), namely, the two terms

shown in expression (2.2) and the term
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Fig, 2. The real s, t, u plane showing contours used in
the second double application of Cauchy's theorem.
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) o eyt W)
) at' du' L@
(2mi) , (t' = t) (u' = u) o

4m2' 4m2

For the complete amplitude, p;y , Py and P3 will be the same functions iﬁ
the equal-mass case. For parts of the arﬁplitude,v such as terms in the
perturbation series, they will not in general be the same functions.

We conclude that sufficiency conditions for the Mandelstam representation
require (a) a real region and its complex neighborhood in which a branch of
the amplitude A(s, t, u) is free from sin'glularities, and (b) analyticity
when each variable in turn is real and positive and the others are complex

but satisfy Eq. (1.2)
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III. THE PHYSICAL BRANCH OF A-,COLLISIC.)N AMPLITUDE

:The Mandelstam representation assu}nes it is the physical branch
of a collision amplitude that has the simple anal'ytic.ity'prop'erties that were
discussed in Section 2. In this section we show that the definition of the
physical branch in perturbation theory in terms of the rausal aniplitude:
in the real scattering regions is sufficient_ under certain conditions to define
the amplitude unambiguously throughout the physical sheet. It is shown
further that real singularities of the physical branch under the same conditions

can be identified by requiring critical values of Feynman parameters to be

real and positive.

A. The Real Boundary of the Physical Sheet

A scattering amplitude satisfying causality conditions and giving the
correct scattering in physical parts of the real s, t plane can be expressed

as a sum of terms corf‘esponding to the Feynman diagrams for the perturbation

series.  Each term has the form

n
L ' 1
F(s, t) = limit ¢ /dk1 . / -dkz | ( > > 1
] - I q; - m  +ie
, i=1

€ -0
(3.1)

in which 4 is the four-momentum in an internal line and depends linearly

on the internal momenta kj and the external momenta Py -

The integral on the right of Eq. (3.1) can be transformed, giving

: 1 L
| o (1 ‘Z o; )
FE (s,t) = <y dk1 .o dkz dal o dan —5 T
H’(k:G:P)]
0 0

(3.2)
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where

Voo ap) =Y o faf-w i) BRI

In the physical scattering regions, each four-momentum ‘qi is a real
Minkowski vector. Hence for € > 0 we have

qi‘2 =m12 + ie § 0. “ (3.4)

This proves that for € >0 in the phys.ical scattering regions, F€ (s, t) is
nonsingular. It is known also that as € tends to zero in these regions the
amplitude becomes sing.ula.r at normal thresholds, and its compdnent F may
Become singular at these points. The amplitude may also have singularities
below the first normal threshold if certain mass inequalities hold. These
singula'ritieé are called anomalous thresholds. If there are no anomalous
thresholds, the Euclidean region of the real s, realt plane is free from
singularities (see I, Sections 4 and 8).

The real s, realt plane is defined as the boundary of the physical
sheets in s. t, and y by taking branch cuts in the complex planes of these
variables along their real axes from the leading real branch point to infinity.
- In order to make this definition meaningful, we must show that the physical

branch of the amplitude can be defined near the real boundary of the physical

sheet.

B. Near the Real Boundary of the Physical Sheet

When € is positive, the integration in Eq. (3.2) over the internal

momenta can be carried out unambiguously. This gives
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6 (1. Sif“i) C (agy-2t-1
: no2X ;

F_(s,t)=c¢ da; - - . da
€ 2 1 n D€ (a,s, t)

(3.5)

where D€ is the discriminant of & as a function of k, and C is the
discriminant of qu obtained from { by putting m, = 0, s =0, and t =0,

The discriminant D € has the form |
'De (a, s, t) = s f(a) +tg (a) - K€ {a) , (3.6)

. . | 2 .
where 'Ke {a) is a function of the external masses Mr , the internal masses
m, - i€, and the variables a. _The coefficient of ie is C{a), which is
positive when the variables a are real and positive since it is then the

discriminant of a positive definite quadratic form. It follows that with € >0,

and s and t both real, we have

D_fa, s, t) f 0 ’ (3.7)

along the path of integration iﬁ the a variables. This result shows that
analytic continuation through the whole of the r-egl s, redl t plane can be
carried out for F€ (s, t).

For certain real values of s and .t’ "'Fs {s,t) becomes singula.r
as € goés to zero. At these values the singularities of the integrand of
Eq. (3.5) either pinch the contour of integration or occur at the end point,
a, = 0. These singularities are zeros of - D(a, s, t) as a fﬁnction of the
a variables. They must also occur at real positive values of each o.i s

since, when € is positive, Eq. (3.7) holds and it is never necessary to

distort the contour of integration from the real path, 0 to 1.
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If there are no turning points in the curves of singularities, f(a) -
and g(a) are both positive at the critical a values that correspond to a
singular point of the amplitude (see I, particularly Section 7)., - We will
assume for this d-iscussiori that this condition is valid. Then near the critical

values of a we can write

»De (a, s, t) =(s +ie') fa) + (t +ie"") g(a) - K(a) . - (3.8)

= D(a, s +i€' , t +ie'") | (3.9)

where €' and €'' are positive, and

K = Kg.gl@) (3.10)

The relation (3.8) is not valid in general at all positive values of
a, since f and g do not always remain "posi‘tive away from the critical
values of o..- Howe\'rer,’ away from ithese values, at least one of the a,
will give éingularitiés that are not coinciden;c, and theyvcan therefore be
avoided by ;a éuitable small distortion of ithe éontouf of Aintegration, -This
distdrtion is.not reéuired near the 'cfitical values of a, where the imaginary
part of s | or t suffiées to prévéht thev .singularities being on the contour of
integration. |

At a ﬁofmal threshold in s, for example, g (a) is .zero‘. Then the
singularity can be avoided by giving .s a small positive imaginary part.
Thev above discussion of curves sf singularitib‘es shows that, in the absencé;
of turning p(;ints, é, s.mall positive imagin‘abry part in s’ will also avoid these

singularities in the region where s is positive. For a discrete set of real
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vahies of t (the normal thresholds}), the I_ocation”_of_sivngularities' ;is
independent of s, but analytic continu_atiqn past them is defined by ‘givin.g

t a vsmall positive imaginary part. The»discussiorn can be extended in an

. obvious manner to regions where‘ the variable u is positive. These results
are summarized in the following theorem.

Theorem 3A

Provided there are no turning points in the curves of singularities
of the physical branch of the amplitude in positive spectral regions, the
amplitude can be analytically continued through the complex neighborhood

of the real boundary of the physical sheet.

C. Positive Feynman Parameters and the Physical Branch of the Amplitude

We consider first the situation in which the curves of singularities
have no turning points. From Theorem 3A the amplitude is single-valued
under analytic continuation near the entire real boundary o.fvt.he physical
sheet. In the limit as the feal boundafy is a'pproaéhed there may be
singuiarities. These éingularities rﬁust correspond to positive values of
the Feynman pararﬁeters a, since the path of 'integfation does not need to
be distorted in any significant ;;vay. in the clomplex neighborh-ood of the
boundary. It follows that negative Feynman p'arameters are important on
or near the real boun<'ia>ry> or.ll.y if the amplitﬁde is no.t single -valued on the
" physical sheet. It can be multivalued only if there are complex singularities.
From Theorem 3A these cannot bAe ‘connected to sihgularities on the real
boundary. Hence they mﬁst be disconnected Compiex singularities. Even
if these discoﬁnected singtilarities exist, we can still chdosé that

branch of the function whose singularities are given by the positive a
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condition and make it single-valued by introducing suitable branch cuts in
the complex part of the physical sheet. This will'be the physical branch of
the function,

Theorem 3B.

Provided there are no turning points in curves of singularities obtained
with the positive condition on the Feynman parameters, the physical branch
of the amplitude can be defined so that (a) it is single-valued in the physical
sheet, and (b) all its singularities on the real boundary of the physical sheet
are given by the poshitive condition on the Feynman parameters.

This discussion assumes the absence of turning points. If there are
spurious turning points (see I, Section 7D), there will be comlex branch cuts
which prevent the simple analytic continuation obtained in Theorem 3A. With
anomalous turning points, there are two possibilities. Either the résulting
complex singularities go into a nonphysical sheet, in which case Theorem 3A
will still be valid, or they remain in the physical sheet and connect to real
singularities on another branch of the curve of singularities. In the latter
case, the conditions of Theorem 3A do not hold, and Feynman parameters
may not always be positve for the physical branch of the amplitude. Barmawi
has pointed out that this happens in fourth-order perturbation theory with
superanomalous thresholds and the physical bnangh has some singularities
correspbnding to neg'ative'Feynman parameters.

‘In the equal-mass case, there are no anomalous thresholds. Hence
any turning points that exist must be sp.ur'ious, and if they occur in positive
spectral regions, they will cause a breakdown of the Mandelstam representation.
Hence in this case the absence of turning points in positive spectral regions

is also a necessary condition for the validity of the representation.
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D. . Disconnected Complex Singularities

When s lis real and t is complex with .a positive imaginary part,
we can see from Eq. (3.8) that D(a, s,t) is nonzero provided a is real
and g (a) is nonzero. Thus the zeros of D do not cross the real a axis '
except where g (a) is zero. In the simple case of ladder diagrams, or
diagrams formed by reducing ladders, the functions f (a) and g(a) consist
only of positive terms on the path of integration. Then unless_theré are
anomalous thresholds, D will not vanish for s realand t complex, and
theré will be no disconh_ected complex singularities. For the equal-mass
case, ladder diagrams have no anomalous thresholds and hence no disconnected
singularities, nor do they have spurious turning points. It follows that these
ladder diagrams satiéfy the Mandelstam representation. This result has
also been proved by R. _Cu'tkqwskié% and by G. ‘W_anders5 using the Bethe -
-Salpeter equation. |

In general, in a region where g(a) is negative, some of the zeros of
D will cross the real a axis as t goes complex, and will lead to distortion
of the contour of integration. When t is nearly real, this distprtion is
unimportant, as was seen in ‘Theorem 3A. As the imaginary part of t
increases, the variables a become complex and the condition that g(a)
vanishes is no longer necessary for other zeros of D to cross the real a
axis. There may then be new coincident singularities of the integrand on the
right of Eq. (3.5). It is still necessary for D as well as its derivatives
with respect to each a;. to be zero if the integ;al in .Eq, _(3.5) is also to be
singular. The latter condition cannot be satisfied unless some of the ‘a;

are complex.
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If there are such disconnected complex singularities, they will cause
a breakdown of the Mandelstam representation by the. introduction of additional
branch cuts in the physical sheet. The diffiiculty in eliminating the possibility
that they exist lies in their very tenuous relation to the positive condition on
Feynman parameters, which holds only for real singularities under the
conditions discussed earlier. This obscures the identification of the Riemann
sheets in which disconnected complex singularities occur, since in all sheets.
including the physical one, they involve Feynman parameters that are complex

and have no simple relation to their values for real singularities.

ACKNOWLEDGMENT

The author wishes to thank Dr. C. Enz, Dr. J. Lascoux and Mr. J.

Tarski for some valuable discussions.



-20- | UCR L-9254

FOOTNOTES ' -
/

S. Mandelstam, Phys. Rev. 112, 1344 (1958).

R. J. Eden, The Analytic Structure of Collision Amplitu'des'in '
Perturbation Theory, UC.R‘L-‘91'36, March 25, 1950, v

M. Barmawi, Physics Department, University'of Chicago, private -
communication.

R. Cutkowski, Physics Department, Carnegie Institute of Technology,
private communication.

QG. Wanderé, Mandelstam Representation for the Ladder Apprbximation
of the Bethe -Salpeter Formalism. Institut fur Theoretische Physik der

Universitat Hamburg preprint (1960).



This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, '"person acting on behalf of the
Commission'" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



