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I. INTRODUCTION 

Superconductivity was discovered by Kamerlingh-Onnes m 1911, 

who found that the resistivity of mercury vanished below 4.2°K. Since 

then, much effort has been expended in attempts to find a theoretical ex­

planation for this and other properties of superconductors. Recently, a 

great measure of success has been achieved by Bardeen, Cooper, and 

Schrieffer, and independently by Bogoliubov, These notes begin with a 

discussion of experimental facts, and. follow with -a detailed discussion 

of the BCS-B theory, Also included are treatments of the thermodynamics 

and electromagnetic properties of superconductors. 
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II. EXPERIMENTAL FACTS 

These can be outlined as follows: 

A second-order phase transition occurs at critical temperature 

T c; there is no latent heat (and hence no entropy change) in the transition, 

but the specific heats are discontinuous. The critical temperature T at 
c 

which a material becomes superconducting rs of the order of a few °K. 

Thermodynamics can be successfully applied for the superconducting transition. 

This implies that the transition is reversible, which was demonstrated by 

van Laer and Keesom in 1938. Superconductivity may be destroyed by the 

application of a sufficiently strong magnetic field; the critical value of the 

magnetic field H is zero at T = T , but increases as T ) 0 to a 
c c 

value H
0 

at T = 0. 

There is evidence for the existence of an energy gap for individual 

particle-like excitations, notably in the dependence of specific heat on 

temperature, which goes as exp (-T
0
/T). The gap width seems to_be zero 

at T , increasing to around 3T or 4T at 0 degrees. 
c c c 

The Meissner effect, according to which the magnetic field & = 0 

in the interior of a superconductor, cannot be explained on the basis of an 

assumed infinite conductivity. Since the current is finite, the electric .field 

E is zero, and hence\· V'XE is zero; thus by Maxwell's laws, dB/dt = 0, -· 
and flux lines would be frozen in a superconductor, if they ever existed 

there. But Meissner and Ochsenfeld showed in 1933 that flux lines are 

forced out of a metal as it passes through a superconducting transition. One 

may say, accordingly, that a superconductor then acts as a perfect dia­

magnet. 

Because of the extremely low resistivity of superconductors(less 
-17 

than 10 of room-temperature resistivity), currents appear to be main-

tained indefinitely in them. But this result must also be interpreted in the 

light of the Bloch theorem; that the lowest state of a quantum-mechanical 

system, in the absence of a magnetic field, can carry no current. 

It has been observed that there is a relationship of the form T _y'M = c 
a constant, where M is the mass of the ions in the crystal lattice. This is 

definitive evidence that· lattice vibrations must be accounted for in a theory 

of superconductivity. The theory of electron-lattice interactions, first 

worked out by Frohlich in 1950, does account in a general way for such a 

relationship. 
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Wave functions of electrons involved in superconductivity seem to 

be correlated over a length 
t. -4 "'o ::::: 10 em. 

III. A SURVEY OF OLD IDEAS 

F. and H. London proposed an addition to Maxwell 1 s equations as a 

phenomenological theory of superconductivity. It was postu'Iated that the 

superconducting current obeyed the equation \1 X. (A:j ) = - -1
- B. The 

- c -
resulting theory has been very successful in macroscopic descriptions of 

superconductors; however, it will not be extensively described here. 

Frohlich, in 1950, proposed a theory of superconductivity based on 

electron-phonon interactions. This theory gives the correct isotope-effect 

dependence, but predicts a transition tempe,rature in disagreement with 

experiment. The fundamental principle is that two electrons may interact 

by the exchange of a virtual phonon. Exactly which interactions are im­

portant is not obvious, especially when one considers the extremely small 

e~ergy difference between normal and superconducting phases. By thermo­

dynamic arguments, the energy difference is - H
0 

2
/8 n, which is of the 

order of 10-
8 

ev/electron; this is to be compared to a kinetic energy of 

about 10 ev d.etetti:on. Many terms in the Hamiltonian must be ignored 

which are large compared with the terms responsible for superconductivity; 

but it is assumed that the difference between these terms for the normal 

and superconducting states is small, compared with the superconducting 

interactions. Now, the condensation energy W 
0 

is of the order of kT c per 

electron. Because this energy is small, only electrons near the Fermi 

surface possess it. The number of electrons above the surface, according 

to the well-known properties of the Fermi-Dirac distribution, is of the order 

of N(O)kT , where N(O) is the density of states per unit energy at the Fermi 
c 

surface. The total interaction energy is expected to be of the order 

N(O)(kT c)
2

. This indicates T c ::::: H
0

, which has been confirmed experi­

mentally. 

Let N/V be the number of valence electrons per unit volume, The 

Fermi sphere is full (in momentum space) to the Fermi wave number kf' 

so that N/V = 2 (4n/3h
3

) (fi kf)
3

, counting the spin·>' multiplicity of 2, The 

number of states d(N/V)/dE per unit energy interval_ at the Fermi energy 

Ef is (3/2) (N/VEf), and the number of states with a given spin N(O) is just 
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half this number. 
22 -1 -3 

N{O) is of the order of 10 ev em , and, as mentioned 

above, the energy width of the electrons above the surface is kT , or about 
-4 c 4 1 

10 · ev. This corresponds to a width in k-space of .6.k = klkT c/E ) ~ 10 em- • 

. The coherence length of electron wave packets s
0 

is roughly {.6. kf l, and 

t - 4 f f '='o is about 10 em. This last relationship, of course, ollows rom , 

application of the uncertainty principle to the correlated wave packe~. The 

total number of electrons in such a wave packet is of the order of 

s3 
k'f cN(O) ~ 10

6
• This is only a small fraction of the total number of 

electrons contained in such a volume, and is related to the fact that only 

electrons near the surface of the Fermi sea may contribute to a super-

conducting interaction, because of the exclusion principle. However, 10 
6 

electrons is still a very large number among which to bombine correlations 

into a theory. 

Before quantitative discussion of Frohlich 1 s arguments, a brief 

review of the theory of electrons in metals is in order,. following the article 

by Sommerfeld and.Bethe (1933) in the Handbuch der Physik. The crystal 

lattice is composed of positive ions surrounded by a co~e of bound electrons; 

outside these are the nearly free valence electrons. The crystal lattice is 

periodic; there are three vectors !•.3•.5• having the length and orientation 

of three sides of the unit cell. If a lattice point is at X, there is also a 

lattice point at !- + _:, 2.• ~· The vectors!·~·~ need not be orthogonal, 

but we shall make the simplifying assumption that they are. 

First, consider the motion of the lattice points alone. The heavy 

ions depart only slightly from their equilibrium positions under normal 

conditions, so it is convenient to expand the potential V{X ) of the ions about 
-.m .. 

their equilibrium positions. Let m. be the ith component of the equilibrium 
1 

positior+ of the mth ion, and X . the ith component of the position of the 
m1 -

mth ion. The potential expanded about equilibrium is: 

V = V 0 + i ; k v;!_ (Xmi - mi) (Xnk - mk) + ... ' 
mn 

(1) 

where V 
0 

is evaluated at the equilibrium positions 

is, as usual, 

m .. 
1 

The kinetic energy 

T = l:; 

mi 
p( . 
. m1 

.. )2 m. 
1 

(2) 
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The classical equations of motion can be derived from Eqs. (1) and (2), 

and lead to the following form for the displacement from equilibrium u 
-rn 

of the mth atom: 

X -m~u:.: l ~. rbW·J· 
-m -rn jl'Jwj ~wj l 

-· 

iw·m·~w t ,..,..,, ,.,.,.. w 
e 

~iw· m + iw t] 
b * -- w + . e 

WJ 
(3) 

Here N is--t-he total number of lattice ions for any wave number w; there 

are three independent polarization vectors E .• For our purposes, they 
- WJ 

may be taken as mutually perpendicular, with one polarization vector along 

the wave vector w, and the other two perpendicular to it. The indicates 

a complex conjugate. The w can be found as a function of the wave 
w 

numbers w by substituting in the classical equations of motion. For long 

wave lengths, the sound velocity S = w/w is independent of w, so w = wS. 
w 

TQ.e wave numbers w form a discrete set 9 when suitable boundary 

conditions on the displacement u are assigned at. the edges of the crystal 

containing N lattice ions. We may further restrict the values which w 

may have to lie inside the first Brillouin zone- that is, -rr/a < w < n/a , 
X 

etc. , where a is the length of the side of the unit cell lying along the x 

direction. lnthe Debye approximation, the unit cell is considered to have 

a spherical shape, of the same volume 

there_ is a maximum wave number w
0 

where no is the volume of a unit cell. 

as the actual unit cell. In this case, 

· f- 2 (3/4n.-.
1
.
0

) 113
, sahs y1ng w = rr ~' 

0 

By substituting Eq. (3) in Eqs. (1) and {2), we may express the total 
. * energy E = T + V in terms of the numbers b and b : 

2 * E = m .~ w . (b . b .+b . p wj), 
Wj WJ WJ WJ WJ 

(4) 

-
where M is the ionic mass. This Hamiltonian may be quantized immediately, 

by analogy with the procedure used for quantizing the electromagnetic field. 

Upon quantization, b * becomes b f , the Hermitian adjoint, and the 

b 1 s and b t 1 s obey certain commutation rules. In order that the energy be 

expressible in the ordinary form 

E = ~ nw . (b t . b . t ~ ) 
WJ WJ WJ L. 

(5) 



_! ..... .• 

-10- UCRL-9318 

it is convenient to redefine the, quantities b, by multiplying them by the 
. 1/2 

factor (2mw ./g) . Then the usual boson commutation rules hold, 
~ ~ 

and by applying them it is easy to see that Eq. (5) is equivalEmt to Eq. (4) .. 

It must be remembered that u , as given by Eq. (3), must also be multiplied 

by (2m .jJ6.)l/Z , since it inv;i'ves the b' s linearly. " 
WJ 
. So far, the w . have been determined from the ion-ion interactions 

WJ 
alone, without accounting for the valence electrons. The interaction will 

lead to a small change in every frequency; this will be discussed in detail 

later. 

We are now in a position to calculate the electron-ion interaction. 

The total Hamiltonian of the ion cores plus valence electrons is 

2 p. 
H= x...zrn + l:: 

im 
v (x . - X ) + H. + l:: 

-1 -m . lOU 
ij 

2 
e (6) 

where i, j run over valence electrons, m over ions, v(x. = X ) represents 
...J. ....n1 

.the electron-ion interaction, H. is given by (5), and the last term is the 
lOll · 

electron-electron Coulomb interaction. In order to eliminate infinities which 

,appear in the sei>arate terms of Eq. (6) (but not in the sum)~ we suppose there 

is subtracted, from the electron-ion interaction, the interaction of each 

electron with a uniform positive charge, and from the electron-el~ctron 

. int7raction the self-energy of a uniform negative charge, and. from the ion·-· 

ion interaction the self-energy of a uniform positive charge. This does not 

change the Hamiltonian, since the sum of these energies is zero. The 

potential v is expanded around the equilibrium points m of the ions: 

1;. v (x. -X ) = 1; v (x. - m) - l:: u · 'V v(x. - m) + · · · . 
-:1. -m -:1. - ....n1 -1 . -

(7) 

In the absence of the interaction- second term in Eq. (7) _the electrons move 

:ln a potential v(x. - m), plus the compensating uniform negative ch:arge 
~1 - . 

potential. . We denote the sum of these potentials by V(x. ). The SchrBdinger 
1 . 

equation for each electron (ignoring Coulomb effects) is 

( :: ~ V (x)) <j>k <;;) = Ek <j>k (_::) • (8) 

The solutions ar'e Bloch functions l)Jk <.:> ik• X = e - -uk (x) , where uk (_:) 

has the periodicity of the crystal lattice. The electrons may be decribed 

by the occupation numbers of the states k; in other words, the elect:r.on 
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field may be second-quantized with the introduction of Fermi-Dirac operators 

Cks• ~s:~ '(s is a spin index} obeying the anticommutation rules 

[{;:s' Gk' s J (9) 

The matrix elements of the interaction - second term in Eq. (7}­

may be reduced to a rather simple form, if one makes several assumptions: 

Ek depends only on the magnitude of !' not its direction; Ek is large 

compared with the energy --6w . of the phonon involved. Under these 
WJ 

assumptions, the only non vanishing matrix elements are for longitudinal 

phonons, and momentum is conserved between phonons and electrons. 

matrix elements are: 

The 

( !_ 1-~. vvl!. + ;;:)= } c{~z} 1/2 bw 

2" t.fiw 1/2 

< k 1- u · V'V I k - w) = - - 1 
C ___:!!__. } b t 

- - - - 3 5 2 w NM 
( l 0) 

S is, as above, the sound velocity of the crystal lattice. The quantity C 

is the expectation value of the electron kinetic energy, as can be seen by 

using Green 1 s theorem, and is of the order of 10 ev. Since only longitudinal 

phonons are involved, the polarization index on b , b t is dropped. If one 
w w 

knows the matrix elements of a perturbing energy in the Schrodinger picture, 

which we denote by ( k [ U [ k ') , the corresponding operator in the field 

theory is easily formed: 

u = !: (k fu lk 1
) Cku tck op kk I S S I S .... S 

We can then write, for the interaction term between electrons and ions, 

D [p b t- H. AJ w w w - --w 

where H. A. is the Hermitian adjoint, 

and 

p =!:C tc 
w lr k-w .. s ks 

"'WWIIIfl ~ ....... --.7 ... 

( 11} 

(12) 
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Fig. l. Electron-phonon interactions. 
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D 2 = 
w 

4C
2-flw 

w ! I , 
\. ~· -· ' 

This interaction term may be treated by the usual methods of pertur­

bation theory. The first-order perturbation leads to the normal resistivity 

of a metal, caused by scattering of electrons by real phonons. The second­

order terms, much smaller, lead to two different kinds of effects: self­

energy effects, and electron .. electron scattering via an intermediate virtual 

phonon. This is an interesting {but incomplete) analogy to quantum electro­

dynamics, in which the electron-photon interaction leads not only to Coulomb 

effects between electrons, but also to charge and mass renormalization of 

the electron. In Feynman graphs, the two types of interaction are as shown 

in Fig. 1, respectively (a) and (b). 

The self-energy te;rm is much the larger of the two second-order 

effects, but is also the less interesting. 

The second-order 'perturbation energy shift is given by the usual 

Rayleigh-Schrodinger formula from (12): 

.6E = 1; 
kqs 

ck t ck c c t I n 1 
21 (Ek - E + 11 w > • s s qs qs w q w 

for w = k - q • This can be further separated into the self-energy term 

.6E
1 

and the electron-electron interaction .6E 2 : 

.6El = - !: cks t cks I nwl2 /(Ek - Eq +11 ww) 
kqa 

.6E2 = 2:: cks t cks c t c 1Dw(2/{Ek- Eq +-fi ww) 
kqs qs qs 

{13) 

( 14) 

Frohlich examined the values of .6E 2 for various hypothetical ground states, 

and found the interesting result that there existed configurations of lower 

energy than the configuration in which all electron states are filled up to the 

Fermi level, and all others states are empty.· In particular,· there is a 

ground state with an energy gap at the Fermi level with lower energy than the 

above configuration. Excited states can occur for a number of electrons 

whose momentum vectors are strongly correlated-i.e., nearly the same in 

direction and magnitude. Both results are suggestive in view of the experis 

mental results discussed in Sec. II. Notice that .6E
2 

is large only when the 
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energy denominator is small; since there is a maximum phonofi·,freque:p:cy 

w
0 

= Sw
0

, the major contributions to E 2 occur when IEk ~ EJ~'fi" w0=~w0 ; 
in fact, this is the criterion for an attractive potential (.6..E 2 < 0). We.may 

therefore approximate the sum in (14) by 

where we have used the fact that w
0 

-vkf {c£. pp. 7 , 9 ). Since 

.6..E 2 "" 1/M"' H
0 

2
, and experimentally Hc(T = 0)"' Tc' one finds that 

( 15) 

T .tV !£1M ~ the isotope effect. Unfortunately, thec:magnitude of the inter­
c 

action is much larger than desired, since 1l'kfS---l0
4

kT c for most materials. 

A strong-coupling model (kT c > > 11 kfS) has been worked out. The 

condensation energy turns out to be much smaller, but the isotope shift has 

vanished (since lattice recoil energy is ignored). By using Hartree-Fock 

techniques, Frohlich showed that the condensation energy W 
0

.-v EFe -
3
/F, 

where F :,c a coupling constant of the order of unity, is 

F= ( 16) 

The exponential factor reduces the condensation energy to the right order of 

. d N . h . ~ 3/F h . l . 1 . F 0 magn1tu e. otlce t at, s1nce e as an es sentla . s1ngu ar1ty at = , 

the above result for W 
0 

cannot be achieved in any finite-order perturbation 

theory. Similar exponential terms appear in the BCS theory. These will 

be discus sed below. 

In conclusion, we give the operator form of the Coulomb interaction 

term in Eq. (6). We use the formula for two-particle operators, 

u = op 
1 

2 
1:: 

k.fki.J!I 
( 1 7) 

where U is a perturbation given in the Schrodinger picture. For the Coulomb 
ik· r 

matrix element, the free-electron states are takenas plane waves, e- -· 



-15- UCRL-9318 

If one transforms to the center,..of-mass coordinates of the two interacting 

electrons, the matrix element is easily evaluated, and it turns out that 

2ne
2 t H =l::--p p. 

Coul k k2 k k 

The Coulomb term will be discussed more fully later on. 

IV. EFFECTIVE ELECTRON-ELECTRON INTERACTION · 

( 18} 

In the section above, the influence of the valence electrons on the 

lattice was not taken into account. In order to treat the entire Hamiltonian 

consistently, one introduces a canonical transform of the type 

-iSH iS 
H 1 = e e , ( l 9) 

where S is Hermitian, and therefore iS 
e is unitary. The purpose of the 

transformation is to decouple the electrons from the lattice as completely 

as possible. To this end, S is chosen with parameters adjustable so as to 

remove terms linear in the lattice variables b, bt, Following Nakajima ( 1953 ). 

and Bardeen and Pines, {1955), let 

S = I: S , S = l.; gk ( Ck t Gk S b + H. A. ) 
w 2i ~ ks -~ s -w, w 

where the gkw are the adjustable parameters. 

The Hamiltonian to be transformed is (6), which, with the help of 

Eqs. (5), (7), (8), (12), and (18} may be written 

(20) 

H = k~s Ek Cks t Cks + l,; 11. w {b tb + _!_) + i 1:: D {p b t - H. A. ) 
w www 2 ·wwww 

(21) 

The unitary transformation is expanded: 

H 1 = H + i [ H, S J - [ [ H, S J , S J /2 1 + · • · . (22) 
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The commutators can be evaluated by use of the identity 

[AB,~DJ_ = A[B,c]-+ D- c[A,D]+ B 

- [A, C] + BD + CA [ D, B] + 

The following commutators. are required: 

(23) 

+ nondiagonal terms. (24) 

[nwpwbwt- H.A.,s] = I: ·Dw{'- .(bw[Pwt,s]+[bwt,s]pwt- H.A.), 
w 

c t c ) g (b t + b ) 
k-w, s k-w, s kw w w 

Then (22} gives: 

It= H-H. t + i l; {rD + gk (F. -E,, __ I) -1lw } t,. ck ,t ck~ - H. A} ln .k w w -k "~ .w w w s w' s 
ws ~ 

+ k-:s { Dwgkw + { gk} (Ek - E I k-wl-ll.ww)} 

X {(cks t Cks - Ck-w, s t Ck-w, s) (bw t bw + bwbw t) -

- (pw ck-w, B t cks + H. A.)} + •••. 

(25) 

The coefficients g~w are chosen to eliminate terms linear in b, bt: 

D 
w 

gkw = E 1 ]- E ..1iw • 
k-w k . w 

(26) 
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The series expansion Eq. (22) is valid only if the g' s remain finite. In order 

to assure this, we consider all sums to be replaced by principal-part inte­

grations. With this understanding, (Eq. 25} can be rewrjitten as 

H' = 1; 
ks 

Ek Cks t Cks + Ia:t.ww (bw tbw + l ) 
1 

- 2 l::' 
kws 

D 2 
w 

E - Ek +-fiww k-w 
(pw Ck-w, s t Cks + H. A. ) + HCoul

1 + · · · , 
(27) 

where the terms neglected are .at least quadratic and nondiagonal in the b, b t 
and can be neglected, to within the validity of the harmonic approximation 

for the lattice waves {i.e. , the validity of Eq. (5) as unperturbed lattice 

Hamiltonian). We have used in Eq. (27) the expression: 

'W = w I;• D g (Ck t Ck - c tc > w w 
kws · w kw s s , k-w, s k-w, s 

. e:::. - 2 I;• D 
2 

(cks t cks> I (El k-w 1- Ek) . w 
w kws w 

Thus we have arrived at a renormalized lattic~ec:;frequen~¥· To within the 

present approximation, we replace w by w everywhere, and neglect 
w w 

..fl'w entirely in the denominator of {28). We may also use the expectation 
w 

values of cks t cks in (28). 

(28) 

The Coulomb term in the transformed Hamiltonian also seems to 

present some difficulties, since it blows up at k = 0. However, as in mo.st 

treatments of the electron gas, it is sufficient to cut off the sum at some 

critical value of k, roughly equal to the inverse of the interparticle spacing. 

The long-range effects (k very small) can be treated as plasma:, or collective, 

oscillations (Bohm and Pines, 1953). For the present, the transformed 

Coulomb term will be dropped. 

Finally, we rewrite the interaction term (renormalized) as 

H. t' 
ln 

= 1;' 
kws 

= F 

N(O} 

F (ti.w ) 
2 

ck t ck p w s -w, s w 

N(O) { (El k-w ~- Ek) 2 - (liww) 1 
I; G(Ek - El k _j) Ck t Ck p , 

kws - WJ s -w, s w 

(29) 
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b (X) 

In< w > x 
I w 
I 
I 

-I 1-----::....·--- .J 
-Exact b(x) 

-- BCS approximation 

MU-22276 

Fig. 2. Effective electron-electr·on potential b(x). 

l; 
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where 

F/F = w I 
w 

(K w)
2 

= 
2 i37- 2 

X - fH W} 

G(x) (30) 

The BCS approach is to replace G(x) by 

(31} 

G = 0, for x >-h. (ww)• 

where ( ~w) is an average wave number of the order of 11 kfS (see Fig. 2). 

Before discus sing the BCS theory in detail, we will introduce the concept 

of Coo;per pairs. 
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V. MODERN THEORY OF THE GROUND STATE 

A great advance in the understanding of mechanisms responsible for 

superconductivity was made by Cooper in 1956. Consider elections at a 

temperature nearly zero, so that the electron gas is almost completely 

degenerate. The electrons are' to be thought of as nearly free, but with an 

interaction potential whos.e .effect we are to interpret. Only two-electron 

interactions will be considered-a rough approximation to the true state of 

affairs, in which all electrons interact. On the other hand, the effect of 

the exclusion principle is all-important, and this we shall be able to take 

into account. Electrons can interact with one another only abo-&e the Fermi 

leVel, because of this principle. According to Frohlich, an attractive inter­

action occurs only when the difference in energy between two states is about 

.-fi kfS (p. 14} or less. • 

By taking the Fourier transform of the Schrodinger equation for two 

electrons, this equation is transformed into momentum space. Assume an 

attractive perturbing potential U, depending only on the interelectronic dis­

tance ~)) whns,e. matr:ix1e>lemantsl in -m:0mentum1JSpace ar~e1; ;torcs;impHicH:y, -­

assumed constant: 

( k 1 I U I k) = - I G I = cb'?'stant, for kF ( k, k 1 
(. km 

or = 0 otherwise. 
m 

'k 2 - k 2 \ ~ ~./,k s 'F 8 MlJF. m 

This is merely an expression of Eq. {31) again. 

where 

The Schrodinger equation is 

( ~ K + e K - E) ak + l:; ak I (k I U I k I ) = 0 ' 
k' 

K2 

t:K .::::112 for R= 
l 

+..;2> -~ = ~1 + ~2 dm 2 (~1 

1i2k2 
k = 

1 
(!2 - ~l) Ek = m ~ = ~2 -..;1 2 

(32) 

(33) 

(34) 

(Notice that the Fourier transform automatically leads to conservation 

of total momentum -11. K. ) The wave function is given by 
"""" 
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1 
v 

iK· R ik· r 
e -- ~ ak e-

k 
{35) 

V is the volume of quantization. By rearr.anging Eq. (33) and summing over 

k, we find 

~ a = ~ 
k k k 

G (36} 

Cancel the terms in I: ak on both sides, and introduce the density N(K, ek) 
2 2 

of states of total momentum K, energy ek = {11. /m)k Since -11. kfS is 

about 0.1 ev, compared with a Fermi energy of 10 ev, it is sufficient to 

replace N(K, Ek) by N(K, EF). Replacing the sum in Eq. (36) by an integral 

over N, we get 

N(K, EF)de 

e - EF' + .6. 

Here the binding energy per electron is .6. = EF + f:, K - E • The actual 

condensation energy per electron is about 10-8 ev, much less than 11kfS. 

As will be shown below, the important terms are those for which fE K = 0 

Then we may solve for .6. as 

.6. ~ 2llkFS e -l/ GN . 

(37) 

(38) 

This is to be compared with Frohlich 1 s strong-coupling model, which has the 

same exponential form {p. 14 ) but is multiplied by Ef' rather than n· kfS. 

There is a difference of a factor of about 100 between the two models. The 

exponential factor serves to reduce the condensation energy to the order of 

magnitude observed experimentally. As mentioned above, this result cannot 

be achieved in any finite order of perturbation theory. 

Of crucial interest is the variation of N(K, EF) with K. As a first 

approximation, assume that the ground state is a Fermi distribution. Then 

both k
1

, k 2 ~ kf & Solving Eq. (34) for !l, ! 2 in terms of K, k, one can 

write the limitations of k
1

, k
2 

as 

._: J± cos {k 2 -
F 

(39) 

.l _ .. 
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cos () is the angle K-k. The total energy (fl
2 
/m) {1/4 K

2 + k 2
) is roughly 

twice the Fermi energy, 

±Cos e ~-
8k 

2 
F 

Kk 

so we may write 

(40) 

The probability that two electrons have a given value of k
2 

involves an 

integral over the solid angle of k, or over cos e. Thus the wider the allowed 

range of values of cos(), the more probable a given value of k
2

. But this 

range, by Eq. (40), depends inversely on K. Another way of seeing this 

result is to observe that the sphere drawn with !_1 - ~2 = !_ as a diameter 

has its greatest intersection with the Fermi s·phere when ~l = - ~2 ; this 

sphere then coincides with the Fermi sphere. We therefore expect most 

electron pairs in the superconducting state to have ~ = 0, or, in other 

words 1 the electrons have equal and opposite .momenta, When exchange 

eHects are taken into account, antiparallel spin orientations are favored 

over p~rallel spins. 

The ground-state wave function represents a true bound state which 
2 

for large values of r decreases ~bout as 1/r . The average extension of 

the.pair is 10- 4 em for ~ ::::::kT ' c 
Of course, this model leads to an energy gap ~. The energy per 

unit volume is just the product of ~ with the number of electrons above 

the Fermi s'ea per unit volume; this is proportional to ~/Ef' It is eisily seen 

that the total condensation energy is proportionaL to s2
, but this is inversely 

' ' 

proportional to the mass of the lattice "ions. Since the condensation energy is 

proportional to H
0 

2 
(and thus T c 

2
, by experiment), we find that the Cooper 

model. yields ar1 isotope effect. 

The essentiai feature of the. Cooper model is the formation of electron 

pa~rs with opposite momenta and spin. If each pair is considered as a quasi­

molecule, the pairs have integral·f:!.pin and hence obey Bose-E~nstein 

statistics. A condensation into a.gro~nd state would be allowed, m~ch as 

occurs in s·uperfl.uidity. However, the quasirn:olecules have a very large 

spatial e~tension (of the order 'of lO-~ em) and they overlap, so that we 

cannot treat the syste~ as an ·ideal Bose-Einstein gas. 

A more realistic analysis,· involving interactions between all particles, 

has been worked out by Bogoliubov (1958). Consider the field-theoretic 

Hamiltonian for N
0 

particles: 



-23- UCRL-9318 

Ho I = 1:: e k ck t ck ( e k = e - k > ; N = z: ck t ck . 
k---- - k--

(41) 

""': 

In contrast to the field theories of electromagnetism or elementary particles, 

we must arrange for conservation of the total number N
0 

of particles. 

This is done by adding a term to the Hamiltonian involving a Lagrange 

multiplier, chosen so that the expectation value of the number of particles 

is equal to N
0

: 

= H
0 

1 - A. N = 2: 
k 

( e k - A.) (42) 

This really involves only a redefinition ·of the energy scale, and, in fact, 

the parameter A. really represents the Fermi energy. To see this, let us 

define quasi-particle operators in terms of the ordinary Fermi operators 

as follows: 

E >A 
-- k 

a. = C t ek < A. k -k 

The number operators and the Hamiltonian become 

E -k-

(43) 

(44) 

The interpretation of the a., a. t variables is simple: a. t creates quasi particles, 

i.e., a particle for energies > A.; a hole for energies 

vacuum is defined as the state cj> 0 such that a.k cj> 
0 

= 0. 

< A.. The quasiparticle 

This implies that 

there are no holes for energies <A., and no particles for energies >A., and 

that the vacuum represents a fermi sea filled to energy A.. The energy of 

the Fermi sea is a solution ofthe Schrodinger equation H
0

cp = W 0_9: 0 . 
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Using Eq. (44) and the definition of vacuum, we easily find 

W 0 = 1: ( e k - A.) . 
k(ek <A.) 

(45} 

The Bogoliubov transformation operates on the Hamiltonian Eq. (27). 

We now add to Eq. (27) a term - A.N to conserve fermions. The trans­

formation itself involves replacing the fermion operators by the combinations 

or 

(46) 

The spin dependence is explicitly indicated: U'k = U. -k' vk = v -k . Let 

uk' vk be real c numbers; then the a., !3 obey Fermi commutation rules 

if uk 2 + vk 2 = l. The transformation of variables is then canonical. Notice 

that the transformation involves exactly the pairing of electrons which was 

found to be important by Cooper. A particular choice of uk and vk which 

gives familiar results is 

u = 1 e k >A. v = 0 ek > A. k k (4 7) 
0 ek <A. l ek <A. 

With this choice, ~ t represents a creation operator for an electron 

(k +) if ek > A. , and for a hole (-k )if e k <A. . Using Eij. (46), 

the transformation of the Hamiltonian Eq. (27) is straightforward, if~ tedious. 

For the time being, the Coulomb interaction term in Eq. (27) will be neglected. 

Now Eq. (27), minus the lattice Hamiltonian, simply represents a system 

of interacting fermions. For the time being, we simply rewrite the fermion 

terms in Eq. (27) in a very general fashion, 

(27a) 

where it is understood that the interaction term(k1k 2 1Gik1 'k2 ') Ck tck t 
ck ck w.illev.:-e.ntui<:yllyll>e replaced by the BCS ele~tron-electroA l' 

int~~actib~ defined through Eq. {29), (30), and (31). With the 
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definitions 

£ = k 

~ = E - E ( k k' I _, I k) 2. k k k' , G k , vk' , . 
(k, k' 161 k'. k) = (k, -k' I G J ~k', k) + (k, k' (c (k'. k 

~(k,k'l G Jk,k'), 

the Hamiltonian Eq. (27a) becomes 

u= 

(48) 

where H. .. contains terms of fourth order in the a,~ a.nd will be neglected. 
lnn; , ~ 

Since the uk and vk have ,not yet been determined, it is easy to diagonalize 

Eq. (49) by setting H 20 equal to zero: 

Using the normalization condition 

vk

2

" ~ f-~+~2 J 
it is ea<>y to solve Eq. 

[
1 + ;·£k --:::;;r= J . g 2 +~ r~ 

k k 

A determining equation for ~ can be obtained by substituting. Eq. (5 :q 

in the definition for ~: 

~ -k-
1 
2 

. (50) 

(SO): 

(51) 

(52) 
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Now the Hamiltonian can be rewritten as 

H' = ~ Ek (ak t ak+ ~k t13k) + U, 
k 

Ek=sk(uk2-vk2)+2~kukvk= /sk2+~k2 • 

. 

(53) 

This Hamiltonian represents a system of quasiparticles of energy Ek' plus 

a constant energy U. 

We now determine ~k by using the BCS interaction Eq. (31)-re­

placing the sum by an integral in the usual fashion). Let 

Then 

·~ = ~ = 
k 

-1i:w 
F'j 

0 

F 

N(O) 

= 0 otherwise. 

(54) 

(55) 

There are two solutions: uk vk = 0, leading to the representation (4 7) , (with 

'Ek in place of ek) and representing a normal (nonsuperconducting) state. 

· The other solution is found by evaluating the integral Eq. (55), and leads to 

The state represented by Eqi (51) and {56) is taken to be superconducting. 

We observe that the required ground state <l>o such that ~kio = f3k.io .= 0, 

can be represented by 

This is easily verified by substituting the definitions (Eq.( 46) of ak, f3k m 

terms of the c, ct in the above equation. 

(56) 

(57) 

Havi:r:g a ground state, .we are in a position to evaluate energies of the 

normal and superconducting systems. Since the ground state is the quasi­

particle vacuum, the only contribution to the energy comes from the term 

U in Eq. (49). It turns out that the energy difference between the super­

conducting and normal states is 
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E 
s 

/ 2 
- EN = - 2 N{O) ( .n w) e -2/F . (58) 

The superconducting state has a lower energy, and hence represents the 

stable ground state at temperature zero, as long as the net electron-electron 

interaction is attractive. 

The probability that an electronic state is occupied is the expectation 

value of Ckstcks, and is vk
2

. This probability, as a function of energy 

Ek , looks something like a Fermi.;,Dirac distribution at a temperature 

slightly greater than zero. 

For single quasiparticle excitati'ons, the energy becomes U + Ek' 

where k is the quasiparticle in an excited state. This differs from the 

ground-state energy U by at least D., because of Eq. (S3). Thus there is 

an energy gap for the elementary single quasiparticle excitations. We now 

turn to the BCS approach. 

The · BCS theory uses a variational technique on a Hartree-like 

trial wave function. In fact, the wave function used is exactly Eq. {57), 

the quasiparticle ground state designated in the section as lj.J. Upon expansion 

of the operators, it is seen that this ground state represents a mixture of 

the electron va~uum with all possible combinations of occupied pair states. 

The trial function is chosen in this way to emphasize the importance of 

Cooper pairs. To ensure norm~lization, we choose uk 
2 + vk 

2 = l; 
uk'' vk real; uk = u -k' vk = v -k (we c.ould make the argument more general 

by allowing complex values, but variation of the phase factors leads only 

to the condition that these phases are arbitrary». The Hamiltoni'an again is 

Eq. (27a). We shall minimize the expectation value of this Hamiltonian as 

a function of the uk' vk' subject to the condition that the expectation value 

of the number of particles be fixed. This introduces the Lagrange 

multiplier A. again. 

In order to perform the necessary algebra, it is useful to introduce 

the concept of a reduced g!:ound state, defined as 

I 

lj.Jk = IT 
kV 

{u v + v , c t c t' \ o~"-k k k u + . -k i - u / • (59) 

{term in k omitted) 

This state is not occupied in the pair k. Ground states l)Jkkv · · · reduced by 

more than one pair, are defined in an obvious extension of Eq. (59). Consider 
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the operations Cks t4J, Cks 4J. The operators Cks ~Cks commute with. 

all terms in 4J except the term (uk + vk Ck+ t C -k-·t}. · Therefore consider 

(60a) 

[ "kCk+ + vk (l"Ck/ck+)C -k-t}k. 

In Eq. (60b), the destruction operator, commuted.t?-rough the operators 

defining 4Jk , give the value zero operating on the electron yacuum ~-~. 
Therefore, the only nonzero part arises from the anticommutator, 

Then the value of Cks t Cks on ljJ is easily found: 

Now, 

(all 4Jk are normalized, as is easily seen); the expectation value of the 

number operator is 

The interaction term in Eq. (27a) is handled in a similar fashion: 

(60b) 

(61) 

(62) 

(64) 

(65) 

C -k I -- If lj;k I k ~ • 
1' sl 1 2/ 
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It is obvious that this has zero expectation value unless the four creation 

operators can be combined into pair-state operators such as appear in 

Eq. (57). If this can be done, the resulting state combines with;t}:le cor­

responding part of l)J, which is of the form vkvkr (1 __ C k~ Tck. t C -k t jlJJk k ) . 
-- 1 2f.'~Sll f>_.ltl 2S 2 . 2S 2 · 1 2 

There are six ways of forming pair states in (65). The final result is 

where 

ukk' =(kt .. k'f lc!~t_-kt~)-(ktk'tiiG[k't; l¢t)+(kt\-k•:*\Gik t- k~~) 

-- -(k·Lk'~\GI-k'}kf) 

(66) 

- vkk' =(kf -k~PI k' t-k·~~-(kf-kHcj-k·~•kt). (67) 

Only Vkk' involves matrix elements between Cooper pairs. In order to 

maintain the emphasis on these pairs, we define a new energy 

. 2 
e(k) =. Ekjl- ~ Ukk' Vk 1 , 

k' 
(68) 

and we ignore the dependence of e(k) on vk' 
2

. In what follows, we use the 

term Ek for e(k) - A.. The expression to be minimized is 

(69) 

2 2 
(A.k is a Lagrange multiplier to assure that uk + vk = 1). Taking the 

variation 

(70a) 

(70b) 

multiply (70a) by vk' (70b) by uk' and subtract: 

(71) 

·\} 



With the following definitions: 

(:71) becomes 

since 

Then 

l 
X (k) = 

2 
F(k) I Ek; 

E = j E k
2 

+ F(k) 
2 

. k 

-30-

1:: v kk I X (k I ) '. 

k' 

l 2 2 
= 4 ( 1- E k IEk ) 

l ( 2 2 
X (k) = 2 F(k) I E k + F(k) ' 

(7 2~ 

• (73) 

(74) 

(75) 

and Eq. (75) is the determining equation for F(k), analogous to Eq. (52) for 

.6.. 

At this point, it is interesting to take the Fourier transform of Eq. (7 5). 

This is 

l J l j e lk· r d
3

k x(r) =- 2 . G(r-r') V(r 1 ) x(r')dV'; G(r)= - 3 - @ 
(2'TT) 

1 
J Ek i2+F(k) d .. 

. (76) 

This bears a strong resemblance to the integral form of the·Schrodinger 
... 

'. e'quation. If F(k) = 0' and the I E k I is replaced with E k' it is in fact the 

Schrodinger equation. If the integral were restricted to k > kf' one gets 

the Brueckner theory. The equation can be linearized by replacing F(k) by 

F(kf),· leading to an eigenvalue problem. The simplicity and strong re­

semblance of Eq. (76) to the Schrodinger equation suggest that it may be 

derivable from first principles, although this has not yet been accompllished. 

As previo~sly, replace Vkk1 by FIN(O), jek'' jek'l <1l.w; 
Vkk' is zero otherwise. Then . 

(77) 
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1 
7 

and (78) is precisely the same as in the Bo~oliubov theory. Also, (75} 

is exactly the same as (52), and leads to the solution 

/- 1-1 ;- .,,..- -1/F e
0 

='nwcosec."'l F)<¥ anw e. . 

Equation (71) ?llso admit~ the normal solution uk vk. = 0. The eriergy dif .. 

ference between the normal and superconducting states is .agaih given by 

"Eq. (58). 

(7 8) 

(79) 

So far Y'e have only discus sed the ground state at zero temperature. 

There is, of course, a complete set of excited states, orthogonal to ground 

state ljJ. One such state involves the breaking up of Cooper pairs 1 and can 

be written 

(exc) _ t . t 
ljlk I k I I - c _: k I - ck It+ ljlk I k II • 

(80) 

This is obviously orthogonal to ljl 1 if k 11 # k'. The energy difference be-

tween the excited state and the ground state is easy to find; we simply sub­

tract the energy of the missing pairs k 8 , k 11 and add the energies of the 

single electrons Ek 1 1 Ek" . This results in 

This iUustrates the energy gap for single-particle excitations. This gap 

comes about only in the super conducting state (e 
0 

> 0). The existence of 

the gaP. is precisely the behavior we would expect in order for metastable 

current states to exist, since single -particle excitations extremely close to 

the ground state would provide a mechanism for dissipation of the currents. 

There are other types of excited states, notabiy excited pair states 1 

1 (82) 



' 
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This is orthogonal to the ground state, 

(83) 

The energy difference between this state and the ground state is 2Ek 1 , again 

exhibiting the energy gap (this time for an excited pair)o 

We end this section with a brief word on Coulomb effects. At first 

sight, the Coulomb terms in the full Hamiltonian Eq. (21) appear to give 

troublesome divergences as k ~ Oo The removal of these divergences 

is extremely difficult, but has been accomplished in a rather satisfactory 

way (Bardeen and Pines; Sawada; Gell-Mann and Brueckner)o The Coulomb 

interaction is assumed to be cut off below a certain wave number k (which 
c 

is ofthe order of kf). ~he long-range modes (k < kc) correspond to 

collective plasma motion. The existence of superconductivity requires a 

net attractive interaction, and, since the Coulomb energy is repulsive, it 

tends to overcome the attractive interaction F/N(O)o A simple criterion can 

be obtained, however, by averaging the Coulomb interaction, and using it as 

a constant term in the Hamiltonian. This averaging is accomplished 

sufficiently well by using kf in the Coulomb term. Then the criterion for 

superconductivity (a net attractive interaction) can be written 
~ 2 

F/N(O) - Zne > 0 . 
k 2 

f 

(84) 
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·VI. THERMODYNAMICS 
·,. 

So far, all our considerations have applied only to zero temperature. 

At temperatures different from zero, the entire problem must be solved 

anew, whether one uses the BCS or Bogoliubov method. This is because 

either the wave function, or the Hamiltonian, or both, are undeter-mined;i; 

they depend on a set of parameters uk' vk. In statistical mechanics, these 

parameters cannot be determined independently of the temperature and the 

chemical potential, both of which appear as Lagrange multipliers. We have 

already used the chemical potential as a Lagrange parameter in the zero­

temperature problem. The temperature is now introduced, and we attempt 

to minimize the free energy F = W - TS - A.N. The steps involved are most 

easily conceived in the Bogoliubov theory, which is a theory of non interacting 

quasi particles. However, we use the real-particle Hamiltonian Eq. (27a); 

the ground state is the electron vacuum; and excited states are generated 

by operating on the electron vacuum with a.k t, a.k' (3k t, (3k. These excited 

states form a complete orthonormal set. Notice, by the way, that the 

Hamiltonian Eq. (53) already contains the chemical potential A.. 

Since we are dealing with noninteracting q~U!a:sifermions, the usual 

Fermi-Dirac distribution functions can be introduced at one. Let fk be 

the average number of quasiparticles in state k {using the grand canonical 

ensemble); then the entropy is 

g; = - 2k I: 
k' 

If there is no quasiparticle in a state k, s, then the electron expectation 

k . t. · h 2 (n!:~ 2 · 'h £ t. 

(85) 

1ne 1c energy conta1ns t e term vk 2!rl , s1nce t e wave unc 10n 

"""T ak 1 o) or rr (3k 1 o) contains the factor ±vk c ±k± t -see (46)- which 

means that the probability of a real electron in k, s is vk 
2

. Likewise, if 

a quasiparticle state is occupied, the wave function contains the factor 

uk C±k±t and the probability for a real electron is uk
2

. These 

two configurations occur respectively with statistical weights (1 - fk), fk' 

and the total expectation kinetic energy is 

-1lk'
2 

2 2 J 
22:: (2m) . [uk fk + vk (l - fkl.J . (86} 
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The interaction terms Eq. (67) are handled similarly. If there is no 

quasiparticle in a state k, s, the probability that there is a Cooper pair 

in the states k, s;- k, -s is ukvk. If there is a quasiparticle, the 

probability is -ukvk; and again the statistical weights are respectively 

( 1 - fk)' fk. The interaction V kk 1 in Eq. (6 7) which connects Cooper 

pairs thus yields a contribution 

Similarly, the interaction Ukk' leads to a contribution 

•-1' '·' 

l: 
kk 1 

The total free energy takes the form 

. r J Xlfkl + (1 - 2 fkl) hk' + ~ 
kk 1 

+ 2: ukk' 
kk 1 

. [ lk+ (1-
2 fk )l'"k] . 

vkk, [~(!-~)~,(I~~' >JI/2 

( 1 - 2fk) ( 1 - 2fk I ) - T s' 

h h 1 d 
2 

b h 2 by (1 - hk) l/
2 

. D f" w ere we ave rep ace vk y k' uk e 1ne 

x(k)= [hk(l-~)] 1 /2 (1-2£k); F(k)=. :. vkk,x(k'); 

<(k) = ~~2 - '+ :. ukk' [ lk• + (1-Zfk' > hkJ , 

Ek =i e (k)
2 + F(k)

2 
·, 

Then upon varying with respect to hk, fk we find 

AE -1 
~ = (e~"' k + 1) , 

(87) 

(88) 

(· 
\'·· / ·, 

(89) 

(90) 

(91) 
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X (k) = -
1 
2 .I: 

k' 
V kk' X (k') . ' (9 2.) 

This differs from Eq. (75) by the temperature-dependent multiplier, and the 

definitions Eq. (90), which differ from Eq. (7 2.} somewhat. As usual, replace 

V kk 1 by a constant F/N(O) for I e {k) j. I e {k 1 ) I ~11 w .' Calling F(k) = e 
0 

(T}, 

we .replace the sum by an integral to get 

e 
0 

(T) is half the energy gap. There is a temperature T c at which e 
0 

{T c) 

vanishes; this is identified with the transition temperature. Above this 

temperature, Eq. (93) has no real positive solution for e 
0 

. Setting 

e
0 

= 0, we get 

tanh 

which is solved by 

kT 
c 

..--- -1 'F = l.l4'Il.w e I.e 

(¥-) 

kT 
c 

< <-11 w . 

This can be related to the energy gap at zero temperature: 

This value of 3.5 is in reasonably good agreement with experimental data. 

Note that Eq. (95) yields the isotope effect, since -i(w :::: M-l/2. . 

(94) 

(95) 

(96) 

The critical field H. (.T) may also be found from the above therma-
e 

dynamics. One need only evaluate the free energy for the normal stat'e. The 

details of the .calculation will not be gone through here. We quote the BCS 

results: . . . . _ 

Hc(T)
2
/Bn =N(O) (~W) 2 { [1 + (i{w)-

2 
'Q 

2
(T)J l/

2 
- 1} · (97) 

-(n
2/3) N(O) (kTJ

2 {I- ~ 2 r d• I!·:+ ·2<) f(~/. 2Ho2} 
0 l<e +e 0 ) :J 



-36- UCRL-9318 

It is also possible to find the specific heats. The electronic specific heat 

is given by the formula 

c T 
dS 

- 13 
dS 

= = -
e 

dT dl3 

Using Eqs. (85) and (91) ' we get 

4kl3 :I; 13 (E k 
2 2 )1/2 

dfk 
c - - + EO (T) es 

k>kF dl3 

2 
de 0 (T)} . 

dl3 

) 

(98) 

(99) 

The normal specific heat C en is just Eq. (99) with E 
0 

(T) set equal to zero. 

At T , where E 
0 

(T ) is zero, we may subtract the two specific heats to get 
c c 

c c 
es en T c T 

c 

= kN(O) 13c: 
2 

Numerical evaluation leads to 

= 10.2 13 - 3 
c 

(C -C . ) I c = 1.52. 
es en en 

(100} 

( 101) 

For T < < T , the specific heat has an exponential form, as observed experi­
c 

mentally, which indicates the single-particle energy gap, 

(102} 
c 

en 

The first experimental knowledge about superconductors was that they 

could sustain currents for indefinite periods of time. According to the Bloch 

theorem, the ground state of a quantum-mechanical system cannot carry 
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current; if a state carries current, there is another state with lower energy. 

For current is a macroscopic phenomenon, involving the correlation ~f many 

electrons. Since this current must be carried by an excited state,' we shall 

assume that excited states of non-zero total momentum carry the current, 

and to exhibit the macroscopic correlation, we assume that all excited states 

carry the same net momentum. The excited states are of the type Eq. (80), 

ljJ(exc) = (ri C t C t) ljJ ,r,f;,oc kJ , 
i=l q-ki- ki+ klk2 

where q is the riet momentum of the excited states. 

(103) 

This can be interpreted in another way. Suppose we observe the 

superconductor from a frame o£ reference moving at velocity v. Then 

Cooper pair states, of zero momentum in the rest frame, all assume the 

same non-zero momentum in the moving frame. The situation in the rest 

frame would correspond to pair excitations of the type of Eq. (82). These 

excitations have an energy gap from the ground state. In the moving frame, 

for sufficiently slow velocities, this gap will remain essentially unchanged. 

However, the Bloch energies determined by the lattice interaction will change, 

since the lattice now appears (in the moving frame) to be moving. Under 

the transformation X I = ! - ::_t, the time Operator ih () /8t becomeS 

8 
ih ( - V \l I) C1t -0 

or ih This last term appears as an 

additional energy in the Schrodinger equation for the interaction. If the 

lattice-electron interaction en¢rgy is Ek in the rest frame, it is E f1i:k· v 
k -­

in the moving frame. The lower this energy is, the more probable it is 

that an electron will interact with the lattice, giving up energy. The extreme 

case is when ! is opposite to ~· If the total interaction energy Ek-fl kv is 

less than zero, interactions will surely take place. These interactions, just 

as in the theory of metals at normal temperatures, constitute the resistance 

of the metal to electric current. A superconductor, therefore, should not 

partake in such interactions, which means that E~>1l kv. In the super­

conducting state, the minimum pair excitation energy is 2 e 
0

, so that 

Ek/k is never zero, and in fact is never extremely small. It is therefore 

possible to sustain excited states of net momentum 0'q {corresponding to 
I 

moving the entire system at velocity v) if q is les ~ than some critical 
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wave riumber. This corresponds, in a way, to the criterion for eererikov 

radiation. An electron can radiate t"erenkov radiation only if its velocity. 

exceeds the phase velocity of light in the medium (not the group velocity). 

The phase velocity for electrons in superconductors is Ek/11 k; the 
v 

criterion that this is greater than v implies that there are no "Cerenkov" 

processes in the superconductor. 

VII. ELECTRODYNAMICS 

In this section, we establish the existence of the Meissner effect. 

The considerations below are not entirely rigorous, since they are not 

gauge-invariant. On the other hand, a completely gauge-invariant theory 

(involying the full Coulomb interaction, including plasma:: modes) leads 

to the same conclusion. 

Phenomenologically, the Meissner effect follows from the London 

equation, 

J;,(n) = 
\~:·.~.-

2 
.:n. e 
me .A(r) , m = --

n. 
v 

(104) 

Therefore, we need only establish Eq. (104) to establish the Meissner effect. 

We use the Fourier transform of Eq. (104), and prove that, in the limit 

lql~o, 

j(q) ~ --- const. _'!.(g_) ~\Ill = 
1 -iq• r 

e --
(2;r) 3/2 

The gauge \1 ·A= 0 will be used. In the field-theoretic formulation, the 

current operat~ .:r_<.::_t) ~s given by 

"J(r) = 2 . ·.· .lfl W \llflW -
-- 1m 

where 

~ 

ks 
ck u s s 

ik• r 
e--

(105) 

(106) 

(107) 
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Here u is a basis spinor and V is the volume of quantization. If A = 0, 
s 

both J and Jd are zero. In proposing their phenomenological theory, the 
-P -

Londons mentioned that if the wave function ljJ were rigid, that is, unaffected 

by the perturbation A, the J WO\,l.ld still be zero, and _Jd would be pro-
- -P 

portional to !:• thus establishing the London equat'ions. 

The perturbing interaction, in a gauge in which 'il' A = 0, is 

H' I 

11 = ! f d3! _:!:(!_) 

= ~rd3r 
mcV -

A(r) --
1; 

kqs 
C tc e-i~·!: k· A(r) 

k+q, s ks - -

= (2n)
3
eil 

mcV 1; ck+ t ck a(q)· k. 
kqs q, s s- - -

To first order of perturbation theory, the perturbed wave function (j)' is 

given by 

(108) 

·(lJJ.,H t lljJ ) 
'4)1 = 1; 1 I 0 ljJ. + ljJ = (j) + ljJ , (109) 

ifO EO- Ei 1 0 - I 0 

where lJJ
0 

is the. BCS ground state; ljJi is an excited state •. To first order 

in A, the diamagnetic current expectation value is. 

2 
e !!_.(~ ( lJJo I 1; 
mcV kqs 

t -i~· rl ) ck+ ck e lJJo . ' q, s 's 
(110) 

The operator in Eq. (110) has no diagonal terms unless q = 0 , in which 

case the operator becomes the number op~r~tor N = i: Cks t cks . Then the 

diamagnetic curre,nt is 

2 
e -me· 

which is just the London equation. It still remains to be shown that 

(111) 

lim . ( ) 0 q-)0 lp s. = • We must now use the perturbed wave function (109). Using 

. the first part of the current operator Eq. (106) we get 
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x (<~'o lck • +q •, s • t ck, s • I<~'P<<~'; I ck+q, s t cks I<P1!Eo-E;l-l-!G c. 

(112) 
. 

Take the Fourier transform: 

2-h2 
jp(q) = e 2 2 2 

- - 2m c V 
I: 
ks 

I: 
k 1 q 1 S I 

At this point, notice that the vanishing of this quantity in the limit q----} 0 

depends crucially on the behavior of the energy denominators. None of 

these denominators vanishes in the superconducting state, because of the ex­

cited single-particle energy gap. 

For the excited states 4J., we obviously must use the single-particle 
1 

excited states Eq. (80}. It is, however, somewhat simpler to use 

Bogoliubov excited states. At a temperature other than zero, the population 

of these excited states fk is known from the previous thermodynamic con­

siderations. Then the sum in (113) can be replaced by an integral. It turns 

out that 

( 114) 

where 

( 115) 
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Then 

where 

and 

lim 
q ---)0 

A= m/m e
2 

2 
..n. e 
me. 

AT= A (1 + <t :~o ) 
(y t p E 0 ) r. (y t p E 0 

2 2 2 
1

/
2 

2 2 2] -
2 

e L.= + e dy . 

lim . 
At T = 0, , 

0 
J (q) = 0. For T < T , j (q) does not approach zero, 

q ~ -P- c -P-

(116) 

( 11 7) 

( 118) 

but it is still proportional to !_(q), so that the London equations are still valid 

(with a slightly different penetration depth). For finite .!!• it can be shown 

that the total superconducting current is 

similar to the Pippard equation, if J(R, T) = e .,.Rfso · In ( 119), 

! =!. - !: 1 ; v 
0 

is the velocity of an electron at the top of the Fermi sphere. 
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