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ABSTRACT 

Coherent electromagnetic fields arlaing from an azimuthally modulated 

beam are coneiclere<l. The beam is completely enclosed in a toroidal vacuum 

tank of recta.naular cross section and highly conducting walls. Expreaaione 

are aiven for the imaae currents arising from low harmonic• of the beam 

circulation-frequency. These expreeeiona are then used to evaluate reaiative 

loeaes in the walla of the chamber. Expreaeione are aiven for fields arisina 

from harmoiUce of the revolution frequency high enough that the beam may 

be in re1onance with a characteristic mode of the vacuum chamber. The 

reeulta are aeneralized to provide a description of the electric field in the 

neiahborhood of a reeonance. Numerical example• of resiative loaaea are 

given. indicating that theae effect• will not be •erious for circulatiq current• 

of the order of 1 amp. Some propertiea of hiah-order Bee eel functione, 

required for a description of the reaonant chamber mode• and the energy 

loat in their excitation. are developed in an Appendix. 
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I. INTRODUCTION 

In most particle accelerators currently in use, the total number of 

particles ie not suffici~ntly large to produce coherent effects that warrant 

special consideration. Aa the number of particles and thus the circulating 

current in the machine b increased, aome of these accompanying phenomena 

may become troublesome. 

In this paper we investigate the electromagnetic field• arisins from 

the current and charge distributions of a beam of particles in an accelerator 

vacuum tank. 1 In seneral, such a beam of high-velocity particles will have 

an azimuthal variation in density which will give rise to large coherent 

electromagnetic fields. It is DOted that these fields contain "resonant" and 

"nonreaona.ntu parts, the former ariaina from a resonant excitation of the 

cavity modes at a multiple o£ the particle circulation frequency. Z These 

* This work waa done under the auepicee of the U. S. Atomic Eneray 

Commiaaton. 
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resonant fielde are of particular interest becauee of the forces they exert 
. 3 

\! on-coasting beams, which may produce instabilities. This problem will 

'1.. 

be treated. in Part m of the series, where use will be made of the reaulta 

presented here. 

The electromaanetlc fields associated with the particles provide a 

mechaniam for lose of energy from the beam. These losses are of two 

types. The first la the resistive loss ariains from ima.ae current• in the 

walla of the vacuwn chamber and ia lar1ely due to the low harmonica of 

the beam circulation frequency. Thb loas may be calculated to good 

approximation by nealecting the curvature of the vacuum tank. The second 

lose ia due to wall currents specifically associated with resonant modes 

which may be excited by a hiah harmonic of the orbital frequency. Expressions 
~ 

are given for the power clisaipated by each of these effects, and numerical 

examples are alven which indicate that auch losses are nealiaibl:e in many 

practical instances. 

Sectiou U, m, aad IV are devoted to cletermiDina the nonresonant 

fields, reeonant fields, and fields near resonance, respectively. Section V 

containe numerical examples of energy loae, while the Appendix is devoted 

to a diaeu.aaion of the properties of the resonant modea. 
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11. NONRESONANT FIELDS 

For the lower-order harmonics, the wall currents are substantially 

divergence .. free image currents (i.e., uninfluenced appreciably by time ... 

dependent induced charges), distributed in such a manner that the normal 

component of the magnetic field vanishes at the boundaries. Since the field 

configuration will be substantially that found in a straight pipe of rectangular 

crots aections and trantverse dimension• small in comparison to a wave-

length, the distribution of imase currents can be found readily by methods 

analogous to those employed in correapondlnc two-dimentional electrostatic 

problema. 1 Therefore, we employ a coordinate tystem (x, y, z a R.9) in 

which the toroid. it straightened. 

The current distribution 

J=~ 1 cosn(8-w0t), 
n~ n 

centrally located within a metallic chamber enclosing the region 

-w/2 ~ x ~ w/~. -h/2 ~ y (; h/lh 

(2.1) 

gives rite to an ima.ae-current distribution auch that 1\. = 0: this distribution 

is as followa: On the top aa4 bottom we have 

I surf = - ~ :t..xn [ l;t'i aech (Z.m+ 1) y ~ cot(2m+ 1) w;] co an (6- w0t); (2.2.a) 

an4 on the aides, 

I1urf = - i i.1111 [~'\\ aech (Zm+l) }- K coa(Zm+1) 1r t] coa n(9-w0t), (Z.Z.b) 

directed azimuthally. For h << w, the expreaaf.on for the surface current 

in the top ancl bottom boundariel may be simplifiecl by writing it in the 

approximate form 4• 5 

- 1 ' r r• 
laurf = • w :t~In l J

0 
lecb(wh/w)tcol(lw x/w)t cit 

-
1 1· 1 h 1rX (oft t) =- nr n·~~ n lee: T COl n w•Wo • (Z.J) 
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The nonresonant contribution to. the resistive loss is immediately 

obtained from Eqs. (Z.Za and b) in terms of the surface resiatances appropriate 

to the frequencies of the individual harmonica, 6 aa 

P Y.> r R --·L hz(., l) 1T h R .-.\ hz(., l) 1r w l f.) 1/2 l z; = w '1.l , - .:.,. eec .m+ ""' - + ~ .i:!- aec .... m+ ""' ~ ! : .1:- n i, ;w m ~w n m ~A·•n n. L .- t J 

(a.4) 

in which R clt~notea the raciiu of the accelerator. If h << w, the first of 

the two aume over m dietinc:tly dominates, ancl one may write 

P;,. "ll, ~ [fo• aec:hz(wh/w)t cltj . ;~ .. liz lnz = l'i., ~ :~ .. liz x .. z. 

(Z. 5) 

Equation (Z.S) could have been obtained directly from the approximate 

expression, Eq. (2. 3), which in thie limit waa siven for the eurface-current 

deneity in the upper and lower sur~~~& .. 

If desired the expressions juet derived for the reeiative lose may 

alternatively be expressed ln terms of the Fourier coefficients Qf the linear 

char1e density or of the number of particlea per radian at the orbit ra.cliua, 

R.a· Thus we may write 

~ :s r~ ~n cos n (8· wot) charge per unit length (l.6a) 

and 

N = ::·J. N cos n( 9- w0t) particles per radian, . n n (l.6b) 

by use of the relation• 

(Z. 7a) 

(Z. 7b) 

The emf per turn associated with the reeletive loee, furthermore, ie aiven by 

V= !! J:-, 
ewo '"'t 

(2..8) 

where Nt denote• the total number of particles in the beam. 
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Thua the nonreaonant reeiative loae alternatively may be expreeeed 

conveniently ln the form1 

r ~ lr Nz.-i 
V ., z. /J lR '"' hz(,_ l) 1r h R . . L hz.(2 1) • w i "\ 1/l. n 1 : ,_.,.. ew0 ITt 1 w .. ';~ aec ~n+ "Z w + 1i /'>/m eec m+ 'I 11 J L'fn n. ~ _j , 

(2..9) 

or for h << w, 

(Z.lO) 
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Ill. FIELDS ASSOCIATED WITH A RESONANT MODE 

It is well lr..nown that in a straight wave guide, all electromagnetic mociea 

have phase velocities greater than the velocity of light, c. As shown in 

Appendix I, at any radius within a toroidal cavity it is possible to find modes 

that have, at that radius, azimuthal phase velocities leas than c. Such modea 

have eigenfrequencies that are very high harmonics of the beam-circulation 

frequency. It is therefore pQSaible for an azimuthally modulated beam of 

relativistic particles to exc::i.te one or more electromagnetic modes of the 

chamber. l The fields of such high-order modes may be large. The con

comitant reliative losse1 then warraftt separate evaluation, despite the 

relatively low magnitudes of the Fourier components responaible for the 

excitation of these modes. The curvature of the chamber i1 essential for the 

excitation of the resonant modes, and the•e high-order solution• may well 

show a radial dependence that differs materially from that of a simple circular 

function. It le expedient, therefore, to uae cylindrical polar coordinates 

(r, 9, z) and to consider the fields expressed in terms of solutions (Z) o£ 

Bessel's equation, with the impoeition of boundary coAditlon• at r = a, b 

appropriate to the type of mode under consideration. 

R.ather than commencina with a aeneral 1olution for the electromagnetic 

fields excited by the beam and then extracting a particular resonant term, 

it is convenient to employ from the start only the field components that are 

aaaociated with the reaonant mode of interest: Power will be 81lpplied to such 

a mode by the work that the beam current performs again•t the loqitudinal electric n~~l· 

field E8• Excitation will be atrongeat if E 9 i• preciaely out-of-phaae with the 

beam current. In the steady state, this power may be equated to the reaiative 

lolae• in the chamber wall•. Both the level of the electromagnetic excitation 

and the power loaa are therebydlltermined in terma of the appropriate Fourier 

component of the beam current. In what followa, we employ thia procedure 

to obtain expre•slona for the power loss as8ociated with a resonant TE mode 
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and, independently, for the loaa ariein.J from a resonant TM mode. In 

each caae the reaulta are exprea aed in term• of the loa a factor (Q) of 

the chamber for the particular mode under eonet.deration. 

We aaaume that the 'beam hal nesli&ible croaa-aeetional area and ia 

located at r = R.B' ~ = 0. For a reaonant mode of ugular frequency wr• 

the power ia given. by 

P = f . J(-E9)d8 = Zv R.B (·Eel \ ,,,.tf 
circumference 1av 

(3.1) 

The loae factor ia defined by 

Q • wr [ atore1s energy] (3.Z) 

eo that the power may be written aa 

P= 

2 < ,z (ZvR.B) .. Egl /~y,-
Q. (3.3) 

wr[ atorecl ener1y] 

For a resonant TE mode within a chamber of imler and outer radii 

a and b, one may employ a field confiauratlon of the form (M.KS unite): 

z B8 = -Ank 'i ainkz cos n (9· w0t) 

dZ 
Br = -Ak crr ainu ainn (8 -w0~) 

Bz = Aq2z coe ks ainn (9 -w0t) 

d.Z 
Es = -Awr err COB kz cos n( 9-wot) 

Er = -An wr ~- coa kz a inn. ( 8 -w0t) 

E = 0 • • 
Here Z represent• a aolution of Bel eel' • equation, 

(3.4a) 

(3.4b) 

(3.4c) 

(3.-ici) 

(3.-h) 

(3.4f) 

d dZ Z l 
eli (r Tr) + (q r - : ) Z = 0, aubjeet to the Neumann bouncla.ry conditione 

[dZ/dr]a = [ciZ/c.ir]b = 0; q2 + k2 = w/'/cz; k ie an odd multiple of w/h; 

wr = nwo; and the pha:ae intentionally baa been choaen ao that -E8 18 in phaae 

with the current 111 eoa n(9- wot). 
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With thele fielu, then, we have 

' 1n :- dzJ 
(·.Eel) av = T A wr ~ ar1 B ' (3. 5) 

the eubscript B denoting that the derivative is to be evaluated at r = R8 • 

The stored energy is 

EO {f{ z 1 {{( z wA~ 
T J)) E dv + liLo jjj B dV = ""IiiQ 

z rb 
Z. : wr ) ' 2 

q \ c )a r Z dr. 

Accordingly, we have 

It z 
B [ dZ/4r)~ 

J..' r z1 
clr 

[dZ/dr]~ 

where ~denotes (JLofc0)l/Z = l£oC = lZO 11' a 377 ohme. 

(3.6) 

(3. 7) 

In caaes for which the annular width of the chamber ia amall in compartaon 
I 

to the diameter (w << ZR.J, thi• laat result may be written conveniently in the 

approximate form 

[dZ/cluJi 

where the dimensionleea variable u ia au.eh that 

with 

b+a w ra-z + Tu, 

w s b -a. 

(3.8) 

. (3.9) 

The loaa factor, QTE' may also be evaluated8 in the conventional way 

from theae fielda and expressed in terms of the relevant properties of the 

characteriatic: solution Z: 
-;.· - ·---. 
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(3.10) 

A&a.in aome aimplification reeulte for w << Z R, for which we have 
I 

Q = _L_ r 1 t { .n + _g_i! 1 + · , 
_ (w /c)

3
h { h / Z 4\/ fZ(-l)]Z [Z(I)J

2 1··1 

TE ~ kz Zqzw \;:r lT) \ [ Z(l)] z .1 J_\ Z ldu 
! (3.11) 

where the argument• of Z are now underetood to represent value• of the 

dimenaionleae variable u.. 

Under potentially-reeonant conditions. the re9ired properties of the 

characteriatic function Z can depend in a fairly eeneitive way on the 

parameters of the etructure and are beat determiud by computation. 

Typical values (cf. R.ef. 8, Table IX) in a reeonant eituation are -
[z(-1)] 2 

[Z(l)]2 
-= o.sz, 

and. lor a beam centrally located within the aperture (at u = 0). 

; 0.42. 

For a reaonant TM mode, similarly. one may employ a field 

configuration of the form (MKS units): 



• 
nwr Z 

B = ·A-z-
r c -r 

.8 Ill 0 a 

-lZ-

z E8 = -Ank r cos kz coan(B-w0t) 

UCRL-9327 

(3.12a) 

(l.ll.b) 

(3.12c) 

(3.12d) 

(3.12e) 

(3.1U) 

in which the aolution Z of Beaael' a equation now muiJt conform to the 

Dirichlet boundary conditions 

Z(a) = Z(b) = 0. (3.13) 

With theae field• we have 

(·Es I) av = ~ Ank [j] B' (3.14) 

and the stored energy ia 

~o j"(( z . 1 rrr z wAzhJz (_cwr\Z ;b z 
"T UJE~~+ r.A"o)JJB ~v= z.,.oc \ ) ja.. r z dr. (3.1 S) 

Accordingly, we may write 

I Z nzkz 
PTM = z, n (w/c)]qzh 

(3.16) 

anci for w << ZR., 

P - 4 J I z n~z zi Q 
TM = , J n (w/c)3q2 Rwh J!l z.Z du TM" 

(3.17) 
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Finally, the loss factor QTM may be evabaated8 for this mode, with the 

._ result 

(3.18) 

which, for w << 2.R., may be written 

wr { 2.h l (dZ/du)~ 1 l (clZ/du)~ }-l. 
0 TM 1f ,... h J; + ............. 11 + II( I .... 1_, __ 

.u- q~w~ L (dZ/du)i J £1 Z"'du 
(l.l9) 

The required propertiee of the characterietic function Z are aaain beat 

determined by computation. muetratlve values (Ret. 8, Table VUI) are 

(dZ/du)~ 1 
(dZ/du)~ 

:! 0.04, 
(dZ/ciu)~ 

1!1 z
2

du 

and. for a centrally located beam, 

:! o. 79. 

Becauae q is of the order of n/b (or n/R. for w << 2.R), and 

n2(w/2.R)3 is normally of the order of unity under reaonant circwnatancea, 

it may be seen that the second term in the denominator of QTM will be very 

much smaller than unity. In contrast, the aeconcl term in the denominator 

of QTE could play a atrona or even dominatina role. This aituation may be 

regarded aa ariat.na in the followini wayo In the TE case, the Bz field 

component ia (for n sufficiently large to attain resonance) by far the largest 

oi the three components of 1B. The associated current, which ia in the 
. -

aide walla only, consequently dominates. J'or a TM mode, on the other 

hand, component Bz vardshea and there ia no such dominAnce as occura in 

1 z. the TE caee. J'or the TM reaonanceg the factor £1 Z du enters in e•timating 

energy 8toreci and the reai.tive loss in the upper and. lower surfaces. 
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It thu.e effectively cancele, in the evaluation of QTM• With the TE fields, 

the eneray involves thi• integral and the lo•• is determined by the quantitiel 

[ Z ( -1)] Z and [ Z ( 1)] Z which serve to specify the current deneity 19 

aeeociated. with Bz at r = a, b. 

It ie appropriate, therefore, to aimplify Eqa. (3.11) and (3.19), 

which were applicable only for w << Z R, aa 
3 4 1 z 

Q _ 3- (wrjc) w 1_ 1 Z du 

TE :: ~ R rtJ nz [ Z(-1)] %+[ Z(l)] Z • 

and 

(3.ZO) 

(3.Zl) 

Here ., denote• n and the product 1J3nz ie a convenient quntity to 

employ in estimating the location of the resonances that may be excited in 

a chamber of emall traneverae dimeneione. Finally, if Eqs. (J.ZO) and 

(l.Zl) are reepectively combined. with Eqe. (3.8) and (3.11), the followin& 

reshtive loases result: 

1!_ (w0R/c)z 

PTE = 11 V(- x; rr3 nz 

Z:w}3 
PTM = (Zm+ 1) \z 

~z z. 
L- 1 
(}(_ n 

w [dZ/duJi 

1i [z(-1)] 2-t[zcl)Jz' 
(3.ZZ) 

(3.Z3) 
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IV. FIELDS NEAR .RESONANCE 

The stability of an irrtenae beam will be influenced. by the aelf-generated 

electric fields which are enhanced by proximity to resonance. l'or the 

purpose& of Pan m of thia aeries, we extend the result& of Section U 

to obtain required expressions for the longitud.inal electric field. Under 

resonant conditions, the longitudinal electric field of a TE mode is of the 

form of Eq. (3.4cl) in which coefficient A is expreaaible through uae of 

Eqs. (3.1) and (3.5) as 

A= 
p 

(4.1) 

By use of Eqs. (3.7) and (4.1), the longitudinal electric field at reeonance 

ia found to be 

E 9 = .. z :1 I 
1,-_,j n 

[ dZ/dr]; 

/,.br zZ dr 
(4.Z) 

Equation (4.Z) may be generalized. for frequencies near the reaona~ frequency 

by replacing 

by 

2 w 

wherein we have not distinguished between w and w , except in the arguments 
r 

of the circular functions and in the resonant term (w/' - w
2). With this 

substitution, Eq. (4.Z) may be written 
RB [ dZ/dr] ~ 

E c:) I 
8 d n (w/c)qzh ( r z2 dr 

i 
Z -i(n 9-wt) 

we 

( z z:> · < 2;o >.,I wr - w + 1 wr TE .., 
(4. 3) 
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and gives the field generated by a current In cos (n9 • wt), or by 

i-t:n [ e i(nB-<.t) + e -i(n B-wt)]. For the perturbation analyeis of Part ill, 

it i8 convenient to employ specifically the complex field associated with a 

perturbation of the number of particles per radian, expressed in the form 

of a complex number. A perturbation 

6N = N e i (n8 .. wt) ' 
n 

or an associated perturbed current 

61 
_ N i(n 8 ~ <4) 
- ewo n e ' 

should thus, from Eq. (4.3), have aasociated with it the longitudinal field 

cRB [dZ/drJi 2 i(n8-wt) 
E x; Z i :ZeN __,....;.. w X z e • (4.4) 

8 If n nq"'h fa.br zZ dr (wr - wz) - i(w//OTE) 

When w ""'<; Z R, q := n/R and Eq. (4.4) may be written in the somewhat 

simpler approximate form 

_ cR2 [ dZ/du] ~ 
E 6= 16 i} eNn 3 3 1 z 

n w h J .. 1 Z du 

z ei(n$- wt) 

w X ( Z Z) . ( Z /0 ) w r - w . - 1 wr TE 
(4.5) 

To proceed in a similar way to evaluate the longitudill&l electric field 

of a TM mode near resonance, we have 

A= 
p 

(4.6) 

from Eqs. (4.1) and (3.14). By use of Eqs. (3.16) and (4.6), the resonance 

(3.1Zd) is 
zz 

B (4. 7) 

For frequencies near the resonant frequency, Eq. (4. 7) ie generalized in 

the same manner as employed in connection with the TE resonance to read 



For a perturbation 

X 
i(n6;..wt) 

e 

for w << 2 R, with q ~ n/R and k::: (2m + 1) 1t/h, we have 

X 

z2 
B 
2 Z du 

2 
w 

UCRL-9327 

(4.8) 

(4.9) 

(4.10) 
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V. NUMERICAL EXAMPLES 

We have calculated the nonresonant power loss Wling the parameters 

of the Berkeley Bevatron, a typical strong-focusing machine such ae the 

CERN proton synchrotron, and the Stanford electron ... storage rings. Results 

are given in Table I. For a proton machine in which the radio frequency 

operates on a harmonic m, (m = 1 for the Bevatron, m = 10 for AOS) we 

take the azimuthal distribution of particles to be 

N(B) = ~ [ 1 .. (9/a.) 2] l/l. • 
111110. 

in which N ia the total number of particles. This distribution leads to 

Fourier coefficients o£ the current given by 

Zew0N 4Ic 
1n == 11114 J 1 (no.) :: ~ J 1 (no.), 

for n an integral multiple of m. Other Fourier coefficients are zero. 

The total circulating current ia lc· The azimuthal distribution of particles 

in the Stanford storage rings will be taken as Gaussian. We thus have 

N(O) == (Zw (eZ)av)-1/Z e -1/ZBZ/ 82. av 

from which it follows that 
.... z ('ez\ 

.. ·· : · -. n /tl.v/Z 
I. I·=lce • 
. ~ n '·' 

The resistivity p of the conducting walls is taken somewhat arbitrarily 

.. 4 
to be 10 ohm .. cm for all nwnerical example•. If the true resistivity Pt 

of the walls is known, the results in Table 1 should be altered by a factor 

102 Pt l/ Z, with Pt in ohm ·em. 

We have calculated the resonant power loss for the Bevatron only, 

using Eq. (3.2.2). Inserting values RB = 50 :ft, b = 52 ft, h = 1 ft, and 

y ;;; 6 into Eq. (A- Ul), we find that resonance can occur for n = 650. The 

ratio w/h is 4 for this machine, and the resonant energy loss 6E is of 

the order of 0.1 ev. For the strong-focusing machine, we insert 
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Table I. Parameters of three accelerators and the nonresonant energy 

loss per particle per turn. The circulating current assumed in the 

calculation is Ic, and f£0 = wofZn; is the particle circulation frequency. 

I 2, The parameters o. and \8 )av characterize the extent of particles in the 

rf phase. 

6Zl Ic to (eZ). ~E 
Machine (ohms) R/h (am~) (Cf8) G av (ev) 

Bevatron 3.14xio· 3 50 4 z.sx 10
6 

1 3.56 

CERN I.37xto· 3 103 1 4.8x 105 0.1 Z4.6 

Stanford 10 X 10·3 36 1 z.sx 107 0.014 2.1.8 
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R.B :: 100m, b :: 100.15 m, b :: 0.1 m, and "{ = 25 into Eq. (Al8), and find 

that resonance is possible at values of n- 8 X 105• This is sufficiently high 

that the resonant energy loss ie negligible. 

For the electron-storage ringa, we use RB = 142 em, b : ISO em, 

3 h = 5 em, and y = 10 • Resonance is found to be possible with the 275th 

harmonic, but the Z75th Fourier component of the Gaussian distribution is 

so small that resonant power losses do not warrant· considerationo 
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APPENDICES 

Appendix I. Azimuthal Phase Velocities and Possible Resonance 

The eigenfrequencies w I. of the cavity modes which can be excited by 

I z z I z the beam are given by (w1 c) = q + (p 'II' h)J with q the characteristic 

value of Bessel' a equation and p an odd integer. The angular phase velocity .. 

is simply w 1/n. and the azimuthal phase velocity, v 8, is w 1 r/n. We thus 

have 

(v ef c)2 = (qr/n)z + (pwr/nh)z. 

Obviously the second term may be made negligibly small by choosing p = 1 

and n >> 1)wr/h. For p > 1, this term may still be made small, but only for 

much larger values of n. With this term negligibly small, we may have 

v8 < c at any radius r within the vacuum tank for which qr/n < 1. It is 

then possible for a relativistic beam of particles to be circulating with a 

velocity coinciding with the phase velocity of the mode. This is the resonant 

condition referred to in this worko We now show that for sufficiently large 

n it is possible to satisfy qr/n < 1 at any radius within~ toroidal cavity. 

For TE modes the appropriate solution of Bessel' a equation is 

Z (r) = Y' (qa) J (qr) - J' (qa)Y (qr), n n n n n 

with the values of q determined by the boundary condition Z ~(b) = 0. In 

Fig. 1 we have plotted qualitatively the function J' (x)/Y' (x) vs x for n n 

large values of n. The maximum of the curve occurs at x = n. and the half-

width is of the order of n 1/ 3• The lowest characteristic value q0 may be 

found approximately by selecting q 0a < n and n < q 0b < j 'nl such that 

J' (q0a)/Y' (q0a) = J' (q0b)/Y' (q0b). n n n . n 

The first zero of J~ is designated by j~l, and occurs approximately at 

x = n + 0.81 n 1/ 3 for large n. The ratio b/a is fixed and determines how 

far down the curve we must place our values. Thus in Fig. 1, the portion 

of the vacuum tank for which q 0r/n < 1 holds is represented by the region 

of the abscissa between q 0a and n. 
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For fixed b/a, the portion of the vacuum tank for which q
0
r/n < 1 

does not hold diminishes to zero as n approaches infinity. Thh can be 

seen by noting that q0 is of the order of n/b and thus q0b - q0a - n(l-a/b). 

For any b/a. it is pos8ible to choose a value of n such that this quantity 

ia very much greater than the half-width of the curve, which ia of order 

1/l n • We must then place q0b very close to its maximum value J'nt• 
while q

0
a i• located far to the left of n. The portion of the vacuum vesael 

represented by the region of the abscissa between n and j~ therefore 

becomes negligibly small, as n increases without limit, compared to the 

portion between q0a and n. In the latter portion, q0r/n < 1 holds. More 

accurate values of ~ will be found in Appendix U. 

For TM modes, t.he appropriate solution of Bessel's equation is 

Z.n(r) = Yn(qa) Jn(qr) - Jn(qa) Yn(qr), 

with the values of q determined by the boundary condition Zn (b) = 0. The 

lowest characteristic value may be found approximately by a graphical 

technique analogous to that used above. ln Fig. Z we have plotted qualitatively 

the function Jn(x)/Yn(x)!!. x. For large n, the first zero jnt of Jn' 

1/3 occurs approximately at n + 1.86 n , while yn2' the second zero of Yn' 
. 1/3 

occurs approximately at n + 2. 54 n • Hence for large n the first 

characteristic value for TM modes always has the limits 

n + 1.86 n 1/ 3 <qb <n+ 2.54n113• Again, more quantitative evaluation will 

be found in Appendix U. We merely wish to point out here that, for thie firet, 

TM solution. the condition qr/n < 1 holds for some portion of the vacuum-

tank aperture. 
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Ap~ndix U. High-Order Solutiona 
of Besae' 1 E3u.atlon for a Narrow Annulus 

A. Introduction 

The loweet characteristic values, q and the associated characteri8tic 

functiona Z(r), of intereat here are those which arise from Bessel's equation 

when n ia large and when (b- a)/(b+ a) << 1. As shown in Appendix. I, the 

loweet characteri8tic values will be in the neighborhood of n/b. To find 

whether a resonant electromagnetic mode will be excited by a modulated 

beam moving within the vacuum chamber, however, the characteristic values 

must be determined with aome accuracy, because of the strong cancellation 

involved in computing the quantity k = [ (nwo/c)2 - q 2] l/2.. The quantity 

assumes values which are odd multiples of w/h in resonant modes. It is 

accordingly appropriate to exa.mine d.irectly8 the characteristic solutions of 

Beaael' s eq_uation, subject to o~r particular boundary conclitions, without 

reference to the customary .Seeael and Neumann functi~na J
11 

and Y
11

• 

8. Analysis 

It ia convenient to introduce the q_uantity b-a w 
n a 1i+"& = -nro and, 

because of the at rona cancellation mentioned above, to define 

2 2 2 6 a n [ (q R0) - n ] (A-la) 

and 

(A-lb) 

In terms of these quantitiea, we have r = R.0(1 + f'IU), with -1 ~ u ~ 1, and 

Bessel' s equation aaaumes the form 

a~ [ (1+11'11 ~= ] + [ 6(1 +""I+ \f! $ 1
1 11

3nz ... ] z = o. (A·Z) 

For '1 << 1, the characteristic values, 6, and the characteristic 

functions for this equation may be obtained8 by a perturbation method provided 

n is not too larse. In this way we fincl for the first Neumann aolution 

(TE mode): 
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6 ~ 1 4 z. a 6 4 
-'Jnn ·nfln (A-la) 

3 l u3 
Z ex 1 + 17 n (u - 'J ) ; (A-lb) 

For the firat Dirichlet solution (TM mode): 
l '. : 

... ('II' \2. !L__ f 6 \1 2. 1 }' 4 
&= l', - r+ \1--;:zJ~n -4 1'J (A-4a) 

1'1 1 2. 1 3! 2. 11' z 'II' I r . . J 
Z ex: coa y u + ;; (n .. 4 ) 7) l (1 -u )ainyu • ;; u cos 'I u 

-1/2 
(1 + 7)U) ; 

CA·4b) 

and for the second Neumallll solution (TE mode): 

(A-Sa) 

1 3 z 
-- l'J n 'IF 

~· 4 z) w z "' l 
\. ( 1 + 7 - u cos I' u + ;; u a in y u.; 

(A-Sb) 

The region of applicability of the foregoing expreaaiona is that for which 

3 z 
fJ n << 1. Of greater significance for our present purposes, however, 

are the results for the case 173n 2 > 1, which we discuss below. 

Since our interest here is confined to the case fJ << 1, it is convenient 

to approximate the differential equation for Z by 

d2z 3 z -:-%' + [ 6 + 27') n u] Z = 0. 
du 

(A-6) 

Solutions of this approximate equation may then be written explicitly in ... 

terms of Bessel functions of order 1/3. Specifically, we take 

I I f ~3/Z \ 
z ex e 1 z i J I i 2 .'l' + J-1/ 3 

1131\33 
L fJ n I 

I ., 

\ Ji i . ' 
I 

(A-7) 

where e denotes 6 + z,3 n 2 u. The particular ratio of the coefficients of 

J 1; 3 and J _1/ 3 is selected to insure a decreasing exponential aolution to 

the left of the "claa aical turning point, " uc = • \ z • When 
Z11 n 
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n3n 2 is fairly large in comparison to unity, such a solution will drop 

sufficiently rapidly in that region to satisfy the boundary condition required 

at u. = -1 (i. e. , at r ::: a). 

Asymptotic forma for the characteristic values of 6 may then be 

found immediately by application of the desired boundary conditions at 

u = 1, with the aid of published tables. 9 The following estimates of 6, 

3 l. applicable in cases in which rr n is at least somewhat larger than unity, 

are obtained. 

For the first Neumann solution (TE mode): 

6 ; - Zt73 n2 + 1.617Z4 rr2 
n 

4/ 3 , 

for the first Dirichlet solution (TM mode): 

- 3 z z 4/3 6 = - Zn n + 3. 71151 TJ n , 

for the second Neumann solution (TE mode): 

- 3 l. 2 4/3 6 = -Zn n + 5.15619 rr n • 

(A-8) 

(A-9) 

(A·lO) 

The nature of the characteristic functions can be seen conveniently from a 

graph (Fig. 3) of 

Z "' vl/2 [ Jl/3 (v3/Z) + J-l/3 (v3/2)] 

with v defined by the relation 

6+Zt7lnZu 

3Z/3 2 4/3 11 n 
va 

V8 v, (A·ll) 

(A-lZ) 

The various characteristic solutions of interest are then depicted by this 

curve, with the u = 1 boundary appropriately located at the maximum, zero, 

3 2 
or minimum of the function plotted. When 'l n is large, the solutions are 

1 
highly localized near u = 1. Their values exceed - Z only in an interval e max 

. -1 - Z/ 3 -1 - 2./ 3 - 1 -2./3 Au of w1dth 1.35 11 n , Z.39 T1 n , or 3.12. 11 n , respectively, 

for the three characteristic aolutiona discussed here. This property, and 

others useful in the application of the characteristic solutions, depend only 
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upon the value of 113 n2 and may be estimated from the graph or evaluated 

computationally. 8 
.. 

C. The PoaaibiUty of Resonance 

The possibility that a.n azimuthally modulated beam may excite a 

resonant electromagnetic mode of a toroidal vacuum chamber may be 

examined by reference to the equation 

(A-13) 

where k:: (Zm + l)w/h., In terms of the averaae radius of the chamber, 

R0 and the radius of the particle orbit Rs• thia relation may be written 

(A-14a) 

or 

zz I 2. 1 I z 6 = '1 n [ (t'RO' RB) - 1] - [ (m + 'Z) 1r w h J • (A·l4b) 

For a relativiatic beam moving close to the center of the aperture, 

~ Ro/R:s will be e~tto unity. The ratio w/h il normally great~ 

than unity. For resonance to occur, therefore, 6 mu1t be ••Plewhat negative 

and hence, ,.3 n 2 -would be roughly of order unity for the lower-order 

resonant modea. Somewhat lower valuea of n could give rise to reaonant 

excitation if RB < R0, while P materially leis than unity will require larger 

values of n. There ia, in fact, a limiting value for the particle energy below 

which resonance will not occur, even with RB = a, as can be aeon from the 

followins argume~. U we have 

(A-15) 

we can write 

zz z1 z 1 I z 6 = 'l n _ [ ~ (l-T)) .. 1-] - [ (m + 'Z) w w h] • (A-16) 

and resonance certainly cannot occur in any mode if we have 

z z z z 3 z 
l1 n [~ /(1-n) - 1] < -Zl1 n, 
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i. e. , for 

or 

~21(1-)'))2 - 1 + 2Y) < 0, 

flz < (1 .. 2n) (l-YJ)2, 

1 1 

4Y) 
(A-17) 

For RB :: R 0, however, significant resonance• may arise for values of n 

3 2 sufficiently great that l1 n is in the range 4 to 30. A convenient general 

expression is obtained from Eq; (A-14b) by neglecting terms proportional 

to (TJ 3n 2)213 which appear in Eqs. (A-8) through (A-10). The first 

resonance then is seen to occur lor harmonic nwnbers such that: 
~ -

l 2 i (~ biRB ) 
2 i . 3 2 I. 'II'W )2. 

'1 n i 1 + - 1 , : -2 '1 n + 1 """""' , . n I \ 'n L .J 

I I 2 2 I z ~12 n = (wRB h)[ 1 • 1 y - (1- Z.'l)(l + Tt) (RB b) ] 
(A-18) 

(A-18a) 

D. Sali~t Properties of the Characteristic Solution 

With , 3n 2 > 1, the characteristic eolutions differ considerably from 

simple circular functions. Thie fact affects the coupling between the beam 

and the electromagnetic fields and modifies the numerical values of the loss 

factor Q. For purposes of this paper it may suffice to state that computational 

reeults8 indicate {dZiduJtl {[Z(-1)] 2 +[:a(l)] 2 } does not appreciably 

3 z exceed 0.40 for the first Neumann solution (for 71 n - 3). For the second 

Neumann solution, this quantity assumes the value w218 for n3
n

2 
small, 

vaniehee lor 11
3n 2 ... 6, attains a maximum value of approximately 4.0 

3 z 1 z1 1 2 
for TtA ,.. ZO, and decreases thereafter. The quantity [ dZ du] 0 J .. 1 Z du 

for the first Neumann solution has a maximum value of approximately 
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0. 71 at T1 3n 2 - 4, drops to 0.41 at T1 3n2 - 10, and becomes leas than 0.13 

for 113n2
?;. 20. For the second Neumann aolution it is w2/4 for 11

3n2 small, 

vaniahea for 113n2 - 6, attains a maximum value of approximately 4. S for 

,.,3n2 - ZO, and decreaaes thereafter. Finally, for the first Dirichlet solution, 

Z/ 1 2 the quantity [ Z(O)] £1 Z du drops steadily from a value unity, for 

113n 2 - 4, 0.37 at n3n 2 - 10, and 0.10: 1 at 113n 2 - ZO. 
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Figure Legende 

Fig. 1. Qualitative graph of J; (x)/Y~ Cx) for larae n. The radial 

aperture of the vacuum tank is repreaentecl by the region of the 

abscissa between q 0a and q0b. The ith zero of J~ ia Jn' i' and the 

!!h zero of Y; is yn' 1. 
Fig. Z. Qualitative graph of Jn(x)/Yn(x) for large n. The radial 

aperture of the vacuum tank ia represented by the region of the 

absciaaa between qa and qb. 

zero of Yn is Yni. 

The ith zero of J is j i and the ith 
- n n -

Fig. 3. Graph of the universal radial function Z(v), as defined by 

Eqa. (A-11) and (A .. l Z). 
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