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*t THE USE OF PERTURBATION METHODS IN DISPERSION THEORY 

Richard J o Eden § 
Lawrence Radiation Laboratory 

University of California 
Berkeley, California 

August 11, 1960 

lo Introduction 

In this talk I will outline some proofs of 4ispersion relations for 

every order in perturbation theoryo After this I will indicate some fUrther 

topics that can be studied by perturbati.on methods o 

The followingdispersion relations (DR) have now been proved in 

perturbation theory~ 

Single-variable ~R (a) Vertex parts 

(b) Foz~rd scattering 

(c) Non-forward scattering (in a limited 

range) 

Partial-wave D:B 

(d) External-ma:ss DR 

(e) Internal-mass DR 

(a) Equal masses 

(b) General masses without anomalous thresholds 

Mandelstam representation (a) Equal masses 

(b) General masses without anomalous thresholds. 

* This work was done under the auspices of the Uo S. ·Atomic Energy Commission. 

t Invited paper for the Tenth International Conference on High Energy Physics, 

Rochester, New York,August 196oo 

§ 
Normal address, Clare College, Cambridge, England from 1 ~eptember 1960o 
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The further topics in this talk will include some remarks about integral 

representations with anomalous thresholds, and representations of production 

amplitudeso I wili also mention some points connected with experiments on 

final-state interactions in which production amplitudes are involvedo 

Before outlining the proofs I will indicate some of the mathematical 

methods on which they are basedo 

2o Methods 

{a) Conditions for Singularities 

An integral transform; 

B 
f(x) = J g(x, y)dy 

A 

along a given contour C from A to B, will be singular at x = x0 if
1 

either a singularity y1(x) of g tends to an end point of the contour 

as x tends to 

or two singularities y1(x), y2(x) tend to coincidence from opposite 

sides of the contour as x tends to x0 o The first condition is 

described as an "end point11 singularity, and the second as a "coincident" 

singularity .. 

(b) Rules for Singularities of an Amplitude 

These conditions lead to simple rules for the singularities of a 

function defined from a Feynman diagram.. It is sufficiently general to 

consider only scalar particleso A scattering amplitude from a Feynman 

diagram will depend on two of the invariant energies squared, s, t, and 

u, where 

s + t + u = 
4 
.E M 2 
1 i 

0 

" . 
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Denote the four-momentum in any line by ~ , and the internal momentum 

Then 

where 

v(o:, q) = 

1 

n 2 2 Tf ( ~ - mi + iE ) 
1 

a( 1 - I: o:. Hc(o:) ]n-2£-1 
1.' 

(2.2) 

' 
( 2.4) 

The discriminant of t as a quadratic form in the internal momenta kj is 

written D (o:, s, t). Its form when e is zero is D(o:, s, t). The quantity 
tE·· 

C(cx) is the discriminant of the quadratic part of 'ijr. 

The rules for locating singularities of 

F(s, t) = lim 
e-+0 

FE(s, t) 

can be stated in two equivalent forms. 
2 X 4 

The first is './' 

either on 
~ = 0' 
cui 

or D = 0 at o:i = 0 for all i. 

This includes the condition D = o, since D is homogeneous in the o: 

variables. 

(2.6) 
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The second form is
2

' 5 

(1) Either oj 
2 2 for all i l, ••• ,n, a = or % = mi = i 

and 

( 2) ov 
~ 

= 0 j for all j = 1, 0 0 0' l " 

An alternative form of (2) is 

('2a) I: aj qj = o, summed around any closed circuit in the diagram. 

The second form of these rules provides the basis for electric circuit 

analogies5'~ and for the method of dual diagrams .. 2,7,B,9 In this talk most 

of my proofs will be based on the discriminant D and the first form of the 

conditions. 

(c) Reduced Diagrams 

If we. have an end-point singularity, D = 0 for a1 = 0 sayj there 

is no further condition on the momentum in the corresponding line. We can 

therefore consider, instead of the initial Feynman diagram, a reduced diagram 

in which the line a 1 is reduced to a point. It is sometimes convenient to 

10 classify singularities in terms of the set of all possible reduced diagrams. 

For these we need consider only coincident singularities in the a variables. 

(d) Surfaces of Singularities 

The· solution of the equations 

= 0 ' 

leads to a relation between s and t, 

o( s, t) = 0 
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When s and t are taken to be complex variables, this defines a two-dimensional 

surface in the four-dimensional space. If it has solutions with s and t 

real these will give curves or straight lines in the real s, t plane. It 

seems probable that some branch of F(s, t) will be s*ngular at any given point 
J • 

of the surface, but I do not think anyone has proved thfs. For this talk we 

will need to consider only singularities of the physical branch and its analytic 

continuation on the physical sheet. 

(e) The Physical Branc~and the Physical Sheet 

The physical branch of the amplitude is defined in physical scattering 

regions by writing 2 (m - i \S) for the internal masses in F (s, t) 
€ 

letting E tend to zero. The discriminant is 

and 

In the physical scattering regi~~s the a contours of integration are the 

real range [0, 1]. Then C(a) is positive, and hence De is never zero 

on the contour, so the integTal is well defined. 

~ will show later that near the physical scattering region where s 

is the energy, the discriminant 

D(a, s + iE, t) = (s + iE)f + tg = K (2 .. 10) 

has its zeros located relative to the contours of integration in the same 
11 .. 

way as those of DE • This enables us to prove a dispersion relation in s, 

which defines the physical sheet for complex s. 

In physical scattering regions the singularities of the physical 

branch of F(s, t) can be identified by requiring the Feynman parameters 

a to be positive. This positive a condition cannot in general be assumed 

to be true elsewhere in the physical sheet. In fact, with anomalous 
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12 thresholds of the second kind, the condition is not valid, owing to 

distortions of the a contour that include both complex and negative values 

of these parameterso 

3~ Single-Variable Dispersion Relations 

(a) ' 13 Vertex Parts 

The discriminant for any diagram has the form 

D (a, z) 
E 

z P1(a) + M2
2 

P2(a) + M
3

2 
P

3
(a) - .E ai mi

2 
C(a) + i€ .E ai C(a) 

( 3ol) 

= D(a, z) + i e .E a. c(a) • 
~ 

( 3.2) 

The coefficient of z is positive for a realo Hence D(a, z) is never 

zero for z in the upper half planeo It is real for z large and negative, 

and it has the same form as D£ as z tends to the positive axis from the 

upper half planeo The vertex function defined from D(a, z) instead of DE 

is therefore real on the real axis and analytic in the upper half planeo 

It also is an analytic continuatiqn of the vertex function defined for 

real 

(b) 

(c) 

from 

z from DE , and it satisfies a dispersion relationo 

Forward Scattering 

Non-Forward Scattering14' 15 

I will assume equal masses for simplicityo The amplitude is defined 

DE(a, s, t) = sf + tg - K + i ~ .E ai c(a) 

Consider 

D(a, s, t) -= 2 . 2 (s - 4m )f + (4m f + tg - K) o 

For s 2 in a physical region s > 4m , the first term in D is negative 

when f is negative. The second term is also negative or zero for 
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i 

2 2 (-4m < t < 4m ). When f is positive, D cannot be zero if s has a 

positive imaginary parto Hence D(a, s + i£, t) has its zeros located in 

the same way as those of De relative to the a contours of integration. 

in the upper half plane and for Further, D(a, s, t) is nonzero for s 

(-4m2 < t <4m2), and it is real when s is real in the range 2 (-t < s < 4m ) • 

This proves t~t the amplitude F(s, t) defined from D{a, s, t) satisfies 

a dispersion relation. It also tends to the physical branch of the amplitude, 

defined from DE , as s tends to the real axis from the upper half plane 

2 in the physical region s > 4m • This dispersion relation defines the 

physical sheet in the complex variable s. 

(d) External-Mass Dispersion Relation 

(e) Internal-Mass Dispersion Relation 

The coefficient of any external mass M2 
j 

in D(a, s, t) is positive 

when a is real. 

without changing F(s, t) in a physical scattering region, provided zj has 

a small positive imaginary part. Now we have 

= 
2 

(zj - Mj ) P(a) +sf+ tg- K o 

This fUnction is nonzero for real a and zj in the upper half plane (s and 

t being real)., It is real and nonzero for real and sufficiently negative. 

Hence it satisfies a dispersion relation in the external mass variable zj • 
. 2 

The coefficient in D of any internal mass mi is negative .for 

real a. This leads to anlaytic continuation into the lower half plane and 

gives a dispersion relation in the internal mass variable. 



UCRL-9345 

-8-

4. Partial-Wave Dispersion Relations 

(a) Equal Masses 

Writing k for the three momentum and e for the scattering angle 

in the center•of-mass system, we have 

2 
u = - 2k (1 + cos e) 

2 2 
s = 4k + 4m o 

The kinematics of the physical regions are indicated in Fig. 1. 

The partial-wave amplitude is 

= 

Now, we have 

1 2 
J d(cos 9) A(s, -2k (1- cos 9)) Pt(cos 9) 

... 1 

1 

- 2k2 

t=O 
J ( ) ( t ) dt As, t Pt 1 + 2k2 • 

u=O 

A(s, t) = f aa1 ••• n(a) 

' 

{ 4.1) 

( 4.6) 

where · D is linearly dependent on to Hence A/s) cannot contain any 

coincident ~ingularities in the integration over t. It follows that At(s) 

can be singular only when the integrand in Eqo (4.5) gives end-point 

.. 

.. 

J. • 

singularities in t. Hence for At(s) to be singular either A(s, t=O) or ~ 

A(s, u=O) must be singular. From the forward-scattering dispersion relations 

we know that these amplitudes are singular only when s is real. We also 

2 know that At(s) is real when s is real and in the range 0 < s < 4m • 

This proves a dispersion relation for the partial-wave amplitude, 16 
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+ J ds
91 2 4m 

A 1-
1

( s') 

(s' - s) 
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) 
·For illustration I will cons.;t.der pion-nucleo:n scattering. Take 

(pn 
2 

( 4.8a) s = + p~) ' 
2 

t (p + 
v ) (4.8b) = P- ' n n 

2 
u (pn + ' ) {4o8c) = p 3{ 6 

Using the same arguments as in the equal-mass case, we need to consider only 

the end-point singularities in the integration over cos e • Making a change 

o~ variable to u, these end-point singularities occur at17 t = 0 or 

u = 2M2 + 2m2 -
II; 

and at t = • 4k2 or 

u = 0 

s ' 

The first sur~ace t = 0 gives ~orward scattering for which we have a 

( 4.9) 

( 4.10) 

dispersion relation. However, the second end point is on a curved hypersur~ace 

on which s, t, and u can all be complex. Hence in addition to the known 

normal thresholds in u and t we have to consider complex singularities. 

It is possible to show that none exists, but the method is more complicated 

than first proving the Mandelstam represe~tation and then deducing that there 

are no complex singularities on this hypersur~ace. I will therefore adopt 

the latter procedure. 
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For completeness I should mention the well-known fact that the (real) 

normal thresholds in t lead to complex singularities in s through the 

equation 

s 
( 4.11) 

5o The Mande1stam Representation 

The Mandelstam representation18 ~ssumes that the amplitude A(s, t) 

can be continued analytically so that there are no singularities in the 

physical sheets of the variables s, t, and u, where 

s + t + u EM
2 

= i 0 

The singularities are assumed to occur only on the boundaries of the physical 

sheets where the variables are reaL 

In my proof19 of the Mandelstam representation I will assume that 

there are no anomalous thresholds. ~is condition.is satisfied by terms of 

all orders when it is satisfied by the fourth-order termo I will indicate 

later how it may be possible to relax this condition to allow a proof of the 

Mandelstam representation when there is one type of-anomalous threshold. 

In order to simplify the kinematics I will illustrate the proof by reference 

to the equal-mass caseo I will begin by obtaining a few properties of the 

scattering amplitude that will be required for the proofo Then I will use 

the method of analytic completion20 to extend the region of analyticity that 

is given by the single=variable dispersion relations. This will then permit 

a double application of Cauchy's theorem, which establishes the Mandelstam 

representation for every order in perturbation theory. 

.J • 
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The main points in the proof are 

(1) There are no anomalous thesholds. This follows from the result 

that D is negative for 2 s < 4m , 2 
t < 4m, 2 

u < 4m • Hence any line of 

singularities s = constant must intersect a physical region. In these 

regions the only singularities are at normal thresholds. 

(2.) The slope of a curve of singularities is given by 

dt 
ds = ~ f(g_)_ ' 

grcij 

where the a variables satisfy 

oD 
~ = 0' 

I will call these the critical values of the Feynman parameterso 

(3) A curve of singularities on the boundary of the physical sheet 

can touch a normal threshold only at infinity. We have 

D(a, s, t) = sf 2 + tg - m K , 

where g contains as a factor a product of at least two_Feynman parameters 

that are zero at the normal threshold singularity. Let these be a1 and a 2 o 

As the curve of singularities tends to the normal threshold, a1 and a 2 

both give coincident singularities that tend to end-point singularities at 

the point of tangency. For example, on the curve, at the critical values 

of the a variables, we have 

o D(o:, s, t) 
a o:l = of 2oK og 

s ~ = m ~ + t ~ = 0 
1 1 1 

On the normal threshold, o:1 = 0 is ane~d-point singularity, and 
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~ 0 0 

If this term were zero, in the simplest case we could construct an anomalous 

threshold with a 1 F 0 and a
2 

= 0. More generally we might be able to 

construct a curve of singularities with a 1 f 0 and the line a 2 reduced 

to a pointo Such a curve would be tangent to the threshold at the same pointo 

By choosing the most fUlly reduced of these curves we can apply the preceding 

argumento Now, og/0a1 contains a factor a 2 , which tends to zero at the 

point of tangencyo But t ~ is finite at the point of tangency. Hence t 
l 

tends to.infinity as the curve tends to the normal thresholdo 

(4) A singularity at a normal threshold in s can be avoided by 

continuation of F(s, t), giving a small positive or negative imaginary part 

to so This is independent of whether t has an imaginary part. Similarly 

a threshold in t can be avoided by t ± ie o 

(5) The curve of singularities that touches a normal threshold in 

t, say t = 4m2, connects to a surface of singularitieso This surface is 

not encountered when we continue F(s, t) on the physical sheet near 

(s1 + ie, t 1 ± ie') where s1 and t 1 are real in the neighborhood of 

the curve of singularities. We have 

D(a, s1 + iE, t 1 ± iE 1 ) = (s + iE)f + (t ± iE 1 )g- K (5.7) 

On the curve, g is positiveo To be definite we take also s positive, 

so that f is positive but tends to zero near t = 4m2 (the curve lies above 

this threshold)o Then it is clear that the fUnction F is analytic at 

(s1 + ie, t 1 + ie') o Given any ; e > e' > o, we can always choose a point 

s' on the curve such that 

·• 
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< 7' 
e' for s > s' • (5.8) 

dt Then using the relation dS = f --g ' 
we obtain, for the critical values of a, 

i e f - i e' g f o , for s > . I s • 

Hence F 2 is analytic up to some point t
1 

> 4m , also at {s
1 

+ ie, 

This argument can be applied to any curve touching a higher normal threshold, 

by working with the suitably reduced diagram. 

(6) The dispersion relation in s shows that for real values of t 

in the range 2 2· 
-4m < t < 4m , the amplitude F(s, t) has no singularities 

either in the upper or lower half planes of the variables s • 

(7) A curve of singularities in the real s, t plane has real 

dt slope ds ., If the slope is positive then at points on the neighboring 

complex surface Z , s and t will have imagi~ry parts of the same sign. 

Thus 

~= > 0 leads to (s + ie, t + ie'), and (s- ie, t-ie') on L. 

Similarly 

dt < 0 
ds leads to (s + ie, t • ie'), and (s- ie, t + ie') on Z • 

However, it is important to note that these neighboring p9ints are not 

necessarily on the physical sheet when the curve of singularities is on its 

boundary. 

The next part of the proof19 makes use of the method of analytic 

20 
completion for a function of two complex variableso We begin with the 

information given by the single-variable dispersion relations in s , and 
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use this to provide a contour that can be moved past the threshold in t. 

(8) For 2 2 ... 4m < t < 4m 
' 

F(s, t) is analytic in the upper half 

s plane. Hence we can write 

F(s' t) 1 f F(z, t)dz 
= 2ti' z-s ' c 

( 5.10) 

where the contour C is an arbitrarily large semicircle in the upper half 

s plane. 

The method of analytic completion now allows us to extend the region 

of analyticity of F(s, t) by displacing the contour C parallel to itself 

(in the complex space of s and t), provided the contour moves entirely 

in an analytic region of F(s, t). 

(9) First we displace the contour to give the function 

F(s, t
1 

+ ie') , 

which is analytic in the upper half s plane, by step (4) in this proof. 

(10) Next we displace the contour C to a point where t 1 is 

2 greater than 4m. This is possible by step (5). 

(11) We now disp~ace C by continuously increasing t 1; this is 

illustrated in Fig. 2o It will not meet any complex singularities, since 

these would correspond to horns projecting into the contour. Analytic 

completion shows that we can continue into horns. We therefore need 

consider only singularities that might distort the contour. Since these 

lie initially within iE of real s, and iE' of real t, they must come 

from surfaces associated with curves of singularities, if they exist at 

all. From step (7) only curves of positive slope can give trouble. 

9 • 
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(12) A curve of singularities cannot have a minimum except possibly 

at a spurious turning point, since there are no anomalous thresholds. A 

spurious turning point has dt/ds = o, with f = 0·, but all its a singularities 

are coincident (and are not also end-point singularities as at an anomalous 

turning point). Thus a minimum in the curve as a fUnction of t would lead 

to a horn projecting down into Co It therefore cannot existo There cannot 

be a maximum of a curve of singularities, since by continuity it would also 

be associated with a minimum which would be encountered first by C. We can 

use continuity, since a curve of singularities can leave. the boundary of the 

physical sheet only by touching another curve of the same slope, or asymptotically 

through a normal threshold. This proves that there are no spurious turning 

points. 

(13) From step (7) the only curves that would not lead to horns 

extending into c, for s = s1 + iE (and with t = t 1 + ie') on the straight 

edge of c, have negative slope and go asymptotically to the normal thresholdo 

Thus there may be curves of singularities of F(s1 + ie, t 1 + ie') in the 
' 2 2 

limit of e , e~ tending to zero, only in the region s > 4m , t > 4m , 

and not in the region u > 4m2, 2 t > 4m • Any continuous curve in the 

latter region would lead to complex singularities that are disallowed by our 

analytic completion. 

(14) Similarly there are no complex singularities of F(s, t 1 - iea) 

in the upper half s plane, and no curves of singularities in the region 

s1 > 4m2, t 1 > 4m2 that can be reached by allowing e and e' to tend to 

zero in F(s1 + ie, t 1 - ie'). However, this function may have curv'ef? of 

singularities in u > 4m2, t > 4m2 in this limit. We must keep e > ew 

during analytic completion to avoid normal thresholds in u. 
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(15) We can now deduce the Mandelstam representation by making a 
\ 

double application of Cauchy's theorem.ll,l9 We have established a single 

dispersion relation, 

1 { -s 
. 00 

dt} { F(s, t• + iE) - F( s, t' -iE)} F(s, t) = - f dt' + f 21fi t' ... t 
-<JD 4m2 

( 5oll) 

We have shown that in the limit, as E tend to zero, F(s, t ± ie) has 

no singularities in the upper half s plane. Also in this limit 

~ { F{s, t• + ie) 

is real for 2 0 < s < 4m , at least. This permits a second application of 

Cauchy's theorem from the upper contour t' in the range 2 4m · to infinity. 

The integrand on the lower half contour can be ~xpressed by a dispersion 

relation with the variable u kept constant. The contours used in this 

double application of Cauchy's theorem are shown in Fig. ). Finally the 

oblique axes of integration11 can be combined to give the Mandelstam 

representation. 

The arguments on which this proof is based require only that there 

exist a single dispersion relation, and that the consequent analyticity 

can be continued by analytic completion throughout the physical sheet. 

This analytic completion depends on the properties of the amplitude near 

normal thresholds. The basic requirement is that there be no anomalous 

thresholds. Provided this condition is satisfied the proof applies also 

to the general mass case. 

I will discuss next the properties of amplitudes with anomalous 

thresholds. 
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6. Anomalous Thresholds 

(a) Anomalous Ty;pe I 

I will consider first anomalous thresholds whose surfaces of 

singularities do not enter the physical sheeto The conditions on the 

masses under which this holds for fourth-order terms have been investigated 

by Tarski. 3 The same conditions will probably suffice to keep singularities 

from higher-order terms off the physical sheetl but this has not yet been 

proved. 

One can prove, however, that the existence of anomalous thresholds 

can be determined from the fourth-order termo The proof is obtained by noting 

that removal of an internal line from a Feynman diagram will not raise· the 

lowest threshold val~e.21 We have10 

( 
-1 = D a, a. s, t) 

~ 

-1 where a. denotes that the line 
~ 

is negative for all real a, so is 

D = 1 r:a 
n i 

2 - m. C(a) 
~ 

i is removed. 

on(~ s, t) • 
i . 

aD 
E':" , 

i 

( -1 ) Thus, if D a, ai , s, t 

Since we have 

it follows that if every fourthftorder diagram has D(a, s, t) < 0 , 

(for s, t, u below the first threshold), then the same is true for every 

higher-order diagram. Hence the region of real A(s, t) in the s, t 

plane is de~ermined by the fourtheorder term. 

From my choice of definition of this type of anomalous threshold, 

the Mandelstam representation applies. The singular curves of a fourth-order 
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diagram have the form shown in Figo 4. The amplitude A(s + i£, t + i€ 1 ) 

is singular as € and e' tend to zero, on the singular cur\res where their 

slope is negativeo The amplitude A(s + i£, t- ie') is singular in the 

same limit, where the curves have positive slopeo 

(b) Anomalous Type II 

The anomalous thresholds of the second type have singularity surfaces 

entering the physical sheeto 3 The intersection with the real s, t plane 

is shown in Fig. 5o The curves AB and CD are connected by complex 

singular curves in the upper half s and t planes, and in the lower half 

planes. Below CD the amp~itude is real and the a integration is real 

in the range o, 1 • On following the singularity from a point on CD where 

the contour is real to a point on AB, we find that the contour of integration 

becomes distorted so that on AB the singularities are due to a pinching 

12 of the contour at negative value of a. Thus in this case both negative 

and complex values of a are relevant to singularities in the physical sheet. 

I would like also to remark .on an integral representation with 

anomalous thresholds of this type which is plausible but not yet proved in 

perturbation theory. The addition of internal lines quite clearly moves 

the normal thresholds to higher valueso It almost obviously moves anomalous 

thresholds to higher values. It is plausible that this will result in the 

disappearance of anomalous thresholds of Type II for terms of sufficiently 

high order~ It will not remove anomalous thresholds of Type I; this can be 

easily seen from ladder diagrams. This suggests that the amplitude can be 

expressed by a finite number of terms in perturbation theory with physical 

masses ·and coupling constants togethe~_with a remainder that satisfies the 

Mandelstam representation. 
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One further point about anomalous thresholds is that an anomalous-type 

diagram internal to a diagram not otherwise anomalous does not cause an 

anomalous threshold. This follows from the fact that the removal of an 

internal line cannot lower the leading thresholdo By suitably reducing lines, 

we see that the lowest threshold is given by the appropriate fourth-order term. 

(~J Partial .. Wave Dispersion Relation with Anomalous Thresholds 

22 These can be studied by perturbation methodso The most useful 

approach appears to be analytic continuation in the external, or internal, 

masses from a situation in which no anomalous thresholds occuro I have no 

special results on this, but mention it only for completeness. 

7. Production Amplitudes 

(a) Complex Singularities 

When we reduce lines in any closed-loop diagram as indicated in ~ig. 6, 

it is at once obvious that the five-point function will in general have 

singularities in the complex parts of the physical sheet. It does not follow 

that they will be complex, say for the five-point function, if four of the 

independent variables are held at their physical values, but each individual 

ease requires investigation on this pointo 23 

(b) Closed-Loop Poles and Resonances 

24 It has been shown that the closed-loop diagram of the five-point 

function gives rise to a pole in each variable when the other four independent 

variables are held fixedo I wish to note here that an internal resonance 

may be approximated by a single line with complex mass. This will lead to a 

complex pole in the five-point closed-loop diagram. In particular cases this 

may lead to a resonance in a physical regiono This may cause considerable 

complications in the interpretation of resonances in final-state interactionso 
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(c) Experiments on ~inal-S~ate Interactions 

I will mention two experiments in which the complication of closed-

loop resonances may cause difficulties. One is the pion•production 

experiment25 illustrated in Fig. 7. The simple pion resonance is shown 

in diagram (~). The closed-loop pole is shown in diagram (b) and the lowest 

closed-loop resonance is indicated in diagram (c). The problem of locating 

these poles is complicated, but should be completed for some cases in the 

26 near fUture. 

The second experiment is on the reaction27 

p + d ~ He3 + neutral system. 

The diagram that may be related to a simple pion-pion resonance is shown 

in Figo 8(a). The corresponding closed-loop resonance is shown in Fig. 8(b). 

It seems probable that the closed-loop resonance will be below the two-pion 

threshold, but it will occur in both the s and p states of the outgoing 

pions. The simple pion-pion resonance may be above the threshold but is 

28 likely to be in the p wave onlyo 



" 

UCRL-9345 

-21-

. REFERENCES 

lo .:J. Hadamard, Acta Math. 22, 55 (1898) 0 

2o L. D. Landau, Nuclear Phys. 13, 181 ( 1959) 0 

3o J. Tarski, J., Math .. Phys. ,!, 154 (196o)" 

4 .. J. c .. Polkinghorne and G .. R .. Screaton, Nuovo cimento. Series X, 15, 

289 ( 196o) 0 

5.. J., D. Bjorken, "Spectral Representation of' Green's Functions in 

Perturbation Theory, 11 Stanford University, California, preprint, 1959· 

6. J. Mathews, Phys .. Rev .. 113, 381 (1959) .. 

7.. Karplus, Sommerfield, and Wichmann, Phys .. Rev. 114, 376 (1959). 
f 

8. J. C .. Taylor, Phys .. Rev .. 117, 261 (1960) .. 

9. P.. Landshof'f', "A Discussion of Dual Diagrams in Perturbation Theory," 

St .. John's College, Cambridge, preprint, 1960. 

10 .. R .. J. Eden, Phys .. Rev., (Sept .. 1, 1960) .. 

llo R. J .. Eden, "The Problem of' Proving the Mandelstam Representation," 

UCRL-9254, June 196o {submitted to Phys .. Rev.). 

12.. M .. Barmawi (Physics Department, University of Chicago), private communication .. 

13.. Y .. Nambu, Nuovo cimento £, 1064 (1957) .. 

14o ~Symanzik, Progro Theoret .. Phys., (Kyoto) g£, 690 (1957) .. 

15. N .. Nakanas~ Progr .. Theoret. Phys .. (Kyoto) 17, 4ol (1957) .. 
·, -

16. Partial-wave dispersion relations for equal masses have also been proved 

in perturbation theory by J .. D. Bjorken (Stanford University) using a 

different method (private communication) .. 

17. w. R .. Frazer and J .. R .. Fulco, Phys .. Rev .. , to be published (1960) .. 

18. s. Mandelstam, Phys .. Rev. 112, 1344 (1958); Ibid. 115, 1741 (1959); 

Ibid .. 115, 1752 (1959) .. 



UCRL-9345 

-22-

19. A more detailed account of this proof is to be published elsewhere. 
. . 

20. G. Kallen and A .. Wightman, Kgl. Danske Videnskab. Selskab Ma.t-fys. 

Skrifter l 1 No. 6 (1958), and S. Bochner and W. T. Martin, Several 

Complex Variables (Princeton University Press; Princeton, New Jersey, 

1948). 

2lo Jo C. Taylor (Ref. (8)) first proved this result by a different method. 

22.. R .. Blankenbecier and Y., Nambu, Fermi Institute, University of Chicago, 

preprint, June 1960. 

23. Fowler, Landshoff, and Lardner, Department of Applied Mathematics and 

Theoretical Physics, C~bridge University, preprint, June 1960. 

24. R. Cutkosky, Phys .. Rev. Letters ~' 62~ (1960), and Journal of 

Mathematical Physics (to be published)o 
\ . 

E. Segre et aL (experiment in progress at Lawrence Radiation Laboratory, 

Berkeley); L. W. Alvarez et al. (experiment in progress at Lawrence 

Radiation Laboratory, Berkeley); V. Perez-Mendez et al. (experiment in 

progress at Lawrence Radiation Laboratory, Berkeley). 

26. L. Cook and J. Tarski (Lawrence Radiation Laboratory, Berkeley), private 

communication. 

27. Abashian, Booth, Crowe (experiment in progress at Lawrence Radiation 

Laboratory, Berkeley). 

28. G., F. Chew and s. Mandelstam, Lawrence Radiation Laboratory Report 

. UCRL-8728, April 15, 1959 .. 



UCRL-9345 

FIGURE LEGENDS 

Figo 1.. Kinematics for equal masseso 

Fig .. 

Fig., 

Figo 

Figo 

Fig .. 

Fig .. 

2 .. 

3o 

4 .. 

5o 

6o 

7o 

Displacement of the contour used for analytic completion., 

Contours used in the double application of Cauchy's theoremo 

CUrve of singularities for anomalous t:l:m:ldlol.d.s of Type I" 

CUrve of singularities for anomalous thresholds of Type II. 

Reduced diagrams giving complex singularities. 

Closed-loop poles and resonances in the pion-production experiment. 

Figo 8o A final-state resonance and a closed-loop resonance in the reaction 

p + d ~ He3 + ~+- ~- " 
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This report was prepared as an account of Government 
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mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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