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-Historicéliy; pion»nﬁeleoﬁ ééattering waé“the firéf ﬁréblem on which

~ the modern methods for making calculations vie analyticity and unitarity
achieved significant succgss,‘ Chew and Lowl were able to find from the
cutoff model a simple.éffective-range formula which accounted for the shape.
of the (3,3) résonance in terms of a singlé parametér, ﬁhe pion-nucleon
coupling constant. Dilspersion relations at fixed momentﬁm\transfer gave

some understanding of the success of the cutoff model. In view of this
relative simplicity which the pi@nmnucleon problem shgwed it is rather ironic
‘o findvthat it is quite a complicated problem within the new framework of
calculation developed by Chew and Mandelstaﬁlf2 The main results of Chew and

3,k but I have no new

Low have been given a more systematic justification,
information of comparable significance‘to present. This talk will therefore
be limited to a presentation of methods and prospgcts for wringing some
theoretical'predictidns out of the Mandelstam representétion for pion-nucleon

scattering.

\

This work was performed under the suspices of the U.S. Atomic Energy Commission.
T-vInvited paper for the Tenth Annual International Conference 6n High-Energy
Physics. | | | |

Permanent address: Department of Physics, University of California,

La Jolla, California.
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I shall describe two complementary méihddé of attack on the problem:

first, the partial-wave dispersion relations; and second, a modification of
5

the method of Chew, Goldberger, Low, and Nambi.” The former is the more basic

approach, but also the more complicated. .Let us try to get some feeling for

the capabilities of this method.

5

In the standard notation,” the matriX'elemen£ is proportional to

- O N DRI ¢
u(pe) { 5506 [-A + i 7o(ql + qg)B ]
1 (=) 1., (=)
+ gl -+ 5 1ye(ay + )BT ulpy) ,
(1)
where P, and P, are the four-momenta of the incident and outgoing
nucleons, g, end q, sare those of the bions, and B and @ are the
isotopic-spin indices of the pions. The invariant amplitudes A(") and
B("), which are functions of the variables
2
s = (pp + q)° ,.
- o) .
5 = (P2 = ql) ] o (2)
: 2

are gssuméd to satisfy the Mgndelstam representa’tion;2

‘Conéider now the partial-wave amplitude féi(#); that is?.the
amplitude with parity =(=1)£ and the total angular momentum j = £ % % .
In the physical region, unitarity tells us

' 16, | |

e sin Szi

fﬂi = - q‘ : s ‘ (3)
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where . ¢ 1is the magnitude of the mo%entum-in the barycentric system. The

relation between f,, , ‘A, and B is

fﬁ(;w)"; g ((E + m) [a,+ (w - m)B,] + (E - m)[.Azil + (W + #1)1.33';1].]»",

)

. 2 2.
v 2 2 We e m™ - 1 : .
E = q. + m = 2‘? J (5)
and -
1 1 -
Az(s) = 3 J:d cos @ Pz(cos e) A(s, s, ) » . -~ (6)

The pion mass has been set.eqpal to"unity,' The singul&rifies of Az(s). can
be found in the standard manner2 from the Mandelstam representation. |

In order tolexplqit the simple unitérity condition, Ego (5), we wiéh
to write a dispérsipn relat;on for fzi(W);”or perhaps for a simblé miltiple
thereef¢ “We shall not discuss the time=cqnsuming question of just exactly what
amplitude is most c:om_ren:ienfts{°3”1lL ‘We can avoid extra singularities from the
kinematiéalvfactors in Eq. (4) if we work in the W plane. One can, of course,
use such variables as s or q2 if he is willing to work on a Riemann
surface of two sheets. In the W plane the physical cut for s > {(m + l)2
becomes two cuts, the physical cut W2 m+ 1 plus a cut along_the negative
real gxis,. W =m - 13 This cut causes no trouble, bgcause_we can use the

symmetry noticed by MacDowell,

£,() - “?(zflie(w).i; '_r ii" 'i'  ' " - o (7)

to write an expression of the form of Eq. (3) on this cut. Notice that Eq. (7)

relates the two states with the same j. -~ -
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'~ The rest of the cuts are somewhat'frighténing.. The‘po1e terms, which
are identical to the Born approximétion,*give rise to a pole. at W = -m l(id‘
the amplitude f0+ only), plus a cﬁtlaleng'the imaginery axis and short

branch cuts in the régions

1
»(m2+2)/? < W -m+ Vha,

m-1/m < W < (m2+'2_)l/é.'

(8)

~

The singularities in s , arising from crossed pilon-nucleon scattering, lie
along the imaginary axis plus .tﬁg region f -m+ 1 £ W .s me- 1, _,Fina]..ly,
the singularities in +t, corresponding to the process = +x + N + N, 1lle
along the imaginary axis plus a circle of radius W = (m? - l)l/éo

The discontinuities across all these cuts'have:been e;aluated in
terms of absorptive parts of pion—nuclebn séattefihg'and the pfocess
t+nx->N+N. > This précess has been évaluated in'terms of pion-piohv
scattering, and some information about it is available from the electromagnetic

7,8,9

structure of the nucleon. This evaluation involves pion-nucleon
scattering itself.és inpufiinformation, so that on the most basic level the

two proceéses must be determined Simultaheously from a set of eeﬁpled integral

equations.

In order to express the discontinuities in térms of ?hysical
absoﬁptivé parts an analytic continuation inrmbmentum transfer is required.
The qniy method yet devised'is'an expansion'in Legendre polynomiéls, which
immediately leads to difficulties.. .The expansion converges only in a limited
reg;on of the W plane near the physical thresholds. Furthermore, if higher
partial waves than S waves .are important in theuab§orptive parts, the integrals

that occur in the N/D solution2 fail to exist, forecing the introduction of
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additional parameters. .The situation here is completely analogous to the
singularity of the Chew-Mandelstam equations for pionfpibn scattgyinga}o_ It
seems clear that,the‘technigneé available at-presept will not permit a
convineing calculation to.be made withggt the introductign of at least one
parameter in addition to the ”ctzoulpl'iﬁg: constant. The exact mumber of parameters
required is an open question, to which I shall return later.

At this point those 6f you %ho are hearing about this morass for the
first time may beiwondéiing how a theory so simple as that of Chew and iow
gave meaningful r’esultso The answer suggested by the work of Frautschi and *
,Waleckah is that the only significant long=:ange force (i.e., "near-by"
singuiarity) in the (3,3) staté céﬁes from the shoft branch cut in Eq. (S)o
This short branch cuﬁ, which is approximated by a_pole in thg static model,
contrdls the*&idtﬁd éf fhe résohance; butﬁnot.its poéitién. .Althéugh the
resultlis the same as‘the éutoff mbdél, i£ is not insignificant that it -

‘ has at last been given justificétion in‘é more systeméticvﬁheoryoi

I have mentioned ébove the rough inverse correlation whiéh exists
between distance of singularities from the physical thréshold and range of
an equivalent "force." We believe we have reliable informétion about the
long~-range forces, but not about‘the short-range ones. It has already become
clear; however, that some of the most inxereéting aspects of the lewnenérgy
pion-nucleon problem; such as S-wave scattefing lengths and the poesition of
the (3,3) resonance, depend critically on these short-range forces. The‘
important question is: How many parameters will we need to introduce to
describe the short-range forces? -

Crossing symmetry will provide powerful help in reducing the number
of parameters. We shall treat fhefshortérange fo:ces pheneomenoclogically,

perhaps by representing them by poles or by subtraction constents. These
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phenomenological forces will be constrained, however, to obey certain crossing
conditions, which we shall now discuss.- /:

The amplitudes A and B have the following crossing properties:

[}

A, 5, v w(:, 5 %)

(9)

+ - oo ()~ ‘v
B( )(s, s, t) = +B( )(s, g, t) .
If we consider a "symmetry point"-_sO , such that s = s = 5 9 t = to s
we have
- . + : - '
A( )(so, 547 to) = B( )(so, So? to) = 0 . (10)

'Conditioné éan also be written down for derivatives. - A convenient choice of

So is such that to f -;2k02 , so that cos'eO = 0., -Then 8o =~ m2, or
WO A~ m; and we find, neg}ecting D waves and higher,
S Il‘f-” S (1)
f0+(+)8' % (3f1+(f) ) .#O+(%) ) | (lé)
vfl-(+)~" f1+(+) ﬁv:i— f,0+.(+) ) | (13)

fl_,("’)' - fl+("’)' " () SO fl+<°) ) (14)
oe, (D we ) o L1 g O (35)
2fl+<+)' + fl_(+)' = - % (5fl+(+) C+ fl;(+l ) : (16)
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where termsiqf relative Qrder l/m2 have been'neglected. All quantities are
evaluated at W ='Wo, aﬁd the prime means dJ@H. Highérwdérivative cénditions
also exist, but these are less interesting because they should be dominated.
by'the]ongarange forces; The four_P«wave.conditions above agree in the static
limit with the cutoff model.

-The pole terms, plus the t. spectrum, should satisfy crossing symmetry
separately. Therefére, we can subtract them from the amplitude before gpplying
the erossing conditions. We must, at any rate, subtract the pole terms in

order to get rid of the short branch cut on which W, 1lies.

0
At thi; point we can make a very crude and rather pessimistic guess

at the nuﬁber of arbitrary parametérs that will remain in the theory after

the crossing conditions are used. Suppose we introduce as parameters the

values of the P waves at W, ( for the (3%,3) state this parsmeter is "f:ssentially

the pesition of the resonance), and the valﬁes and derivatives of the S waves.

We expect that at low energieé,the higher partial waves will be iess sensitive

to the unknown longerange forces. That adds up to eight parameters, whereas

we have six conditions. Unfortunately two of‘these condiﬁions,_Eqso.(lh) and

(16), involve the P waves only as 1/m corrections, and cannot'reliably be

used to determine them. By this method we guess that four parameters will

be necessary in addition to the'eouplingvconstant and knowledge of the pion-

Ipion phase shifts if our theory is to agrée with experiment within the usﬁal

accuracy expected of dispersion-relation calculations. There is, of course,

a eonsidefablelbddyrof experimental inf@rmati;n for the theory to fit, It is

easy to overlook, in the shadow of the dominant (3,3) resonance, how little

theoretical knowledge is presently available about pion=nucleon scattering.

Let us now turn fo a simpler, more phenomenclogical appfoach, in

- which we shall derive correcticn terms to the CGLN equations. These authors
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begin with the fixed momentum-transfer dispersion relations; such as

+ S @ ’ + ’ . - - ;
B()(s,s,t)=;]f fds‘ImB()(s',Zos'wt,t)[ I 3 l_ 5
2 . s' « s s' -8
m
| (17)
- where % = 21112 + 2, and where the pole terms are to be understood as a

delta»funcfion contribution to Im B. .In CGLN a polynomial expansion of the
_contimwum part of Im B was made, and only the (3,3) term in the expansion
was\kepj_ho A puzzling aséect of the method was that the pilon-pion interaction -
never appeared explicitlyo.-The-two most obvious places where it was hidden
are in possible subtraction terms in Eq. (17) and in corrections to the
polynomial approximation. We shall exhibit é method, based on a suggestiop
by‘M;andelstam,2 for the approximate evaluation of these pion~pion corrections.
Suppose we make a subtraction in Eq. (17) to improve the convergence,
Notice that the leading term as s' — o 1is & function of +t only; 'i.e., it
is related to the coefficient of Po(cos 95) in anvexpansion of B(s, s, t)

in ILegendre polynomials in the scattering angle of the process st + x - N + ¥,

In detail, one finds, considering-«for exampleaeB(") 5
e
B(”)(s, s, t) = 2t . 1('b) + % [ ds' Im B(“’)(s', s’ -t t)X
.\/; e 2 ,
m
1 1 1
+ - [ 4 cos @,[1 « P (cos 0,)]1
| I 1] - 5 2 3
s - 8 S - g s
1 1
s' - s(cos 63) 8% = 5(cos 65) L7

(18)
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vwhich can easily be seen to be more convergent. The notation fiJ(t)‘, which
is taken from Réf’° T, refers to the partial-wave amplitude for the pfocess
% +x->N+1N with given J and helicity. One could effect still better
eonvérgence by.subtracting the d = 3 ampiitude, but we shall assume that
" only J‘= 0,1 states are important.  The aﬁplitude A‘é) has a similar form,
invelving both f+l and - félo The A(+) amplitude involves f+o , which is
related te the pion-pion S-wave phase shift. For B(+), which iﬁvolves only
J = 2 and higher, we assume that the unsubtracted CGLN representation is
adequate. '

We now make the usual lLegendre polynémial expansion of Im B in Eg.
(18), but ﬁith somewhat more confidehce than usual because of the imprbved
eon&ergenee of the integral. If we now assume, following CGLN, thaﬁ the (3,3)
resonancé déminates the integral, we can calculsate vB(a), and,vin a similar
manner, the other th%ee amplitudes. For fil(t) ‘we can use the improved
ealculati@nvef these quantities from the nucléon structure now being carried
ocut by Ball and‘Wongog We must also have some knowledge or make scome
assumption about the S-wave pion-pion phase shift.

The number of:parametgrs (in gddition to the coupling'constanf) in
this approach is roughly four. The three amplitudes fil 2 f+9 cannot in
' general be calculated reliébly without using the normalizatien procedure of
Ball andyWong} They calculate thennormalizati@n censtanfs in terms of
pion-nucleon scattering, éo ve ﬁust reggrd these constanﬁs as parameters.
One parameter is_required for each.P wave, and two for the S wave., . In addition
we have assumed the dominance of the (3,3) resonance.

A modificatioh of this procedure can be obtained by manipulation of

Eq. (18).. Suppose we write avpaftialewave dispersion relation for fal(t)o
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We must write a subtracted‘dispersion~relation if the integral over the left -
cuf'is-to:be convergent when we keep é ﬁaVES'in,the polynomial expansion on
this cut. If it were necessary to-keep £ waves, we would need £ subtractions.
Now it can easily be seen that the integral over the left cut.cancels:the_

last term in Eq. (18) (the te;m integrated over cos 63) except for a constant,
provided Im B 'is expanded'in Legendre polynomials up %o aﬁd including P wavesoll

One cbtains

~

| (“)(ge)
B(=)(s,'§, t) = cq;m + cBF”2. + 5- E?dts ~¥$(;?$§—%§ s _(l9)
e, 5, 4) = com , o | (20)
3 (=) (4o

A(“)(s,'g, t) = CCIN + QA(°)(s 5) + (s - s)% iaatﬂ iﬁzz%ﬁzl;) R
o (21)

A(+)(s, 8, t) = CGIN + QA(+) + tcA(+)e + %; ?9dt° —fgiiliﬁll- ;
, | . | S b w5t - t)
(22)

where CGLN refers to the unsubtracted;'fixed momentum-transfer dispersion

relations with absorptive parts expénded in S and P waves, and where b(”)

(=) (+)

and a are linear combinations of 'f+l and a is a multiple of

f+oo These equations are of the one-dimensional form derived as an approx-

imation to the Mandelstam represehtation by Cini and Fubihi,12 aﬁd applied to

13 They differ

the pion-nucleon problem by Bowcock, Cottingham, and Iurie.
slightly in thet these authors do not have the term in QA(”), vhich we seem
to find a necessary.conseqnenee of the importance of P waves in pion-nucleon

scattering, and in that we have explicitly included the pion=pion S wave.
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An apparent difference is the subtracted form of the t‘integrals, but this

is merely a redefinition of the constants ( A,B"
A further modification of these equations can be made by relating the

t integrals in the (-) amplitudes to isotopic-vector nncleAn form factors.

It is clear that some such relation must exist, bécause»wfitten schématically

the absorptive part of the two-pion contribution to the nucleon structure is

~ of the form ( NN | e ) ﬂg‘l 7y ) , vwhereas the absérptive part of the two-pion

contribution to pion-nucleon scattering is of the form ( NN | an J( sx | ax ) ,

with all emplitudes in the J = 1, I = 1 state. In the notation of Chew and

Mandelstam,2 (e |on ) N/D whereas ( mxt | 7 ) cx IJD . 8 The only.

difference is ihe pienapionAnnmerator function. If we approximate this

function by a series of poles (not an essential approximation),

N(t) PR - | » (23)

s
t + ti

we find, by algebraic manipulationms,

. LV LV v v
o) (=) 2ga, | G, (=t,) = G, (0) Gy (t) = G (=t,)
LAy T M CLD I i e Sk (s R it sk
N t (L - t) i e ol ' i
| (24)
, s v P FSCEE 2 LV
% ?oat' a(=)£t91 . s 1ena, Gg .(éti). - G, (p}_ . G, (t.)‘ = Gy (-ty) ’
T ti(tt - t) i e R AT

(25)

where GTv(t) is 2m times the isovector total magnetic moment form factor,

6 () = 0,/(8) + amgy(v) . (26)
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The notation for the form factors is that.of Ref. 8. The numbers ai-‘can‘

also be inferred from the nucleon_structure;8’9"With the ‘one-~pole formula’

used in Ref. 8, t, is large and = .

i
a a .
1 i r 1 , :
e A A e - (27)

i i r
We are now in a position to make a fit to all the low-energy pion-nucleon
scattering data, élus the high angular momenta at higher energies, in terms
of the six parameters fo, cA(i) , c-_B(") , c-A(.*)' and the position of the (3,3)
resonance, plus some‘assumﬁtiqn aboﬁt»the‘pion—pion S wave, Although one'cah
make thg comparison with experiment directly in Eq. (;@), which is clearer from
the point of view of subtractionsvand number of;apameters necessary, equations
such as Egs. (19)=(22) of the one-dimensional Cini-Fubini form which explicitly
exhibit the pionépion-term should be gquite useful.

It is cleer that the approach we have just finished discussing, the
modified CGLN appreach, is much farther from being a dyhamieal ﬁheory than is
the partial-wave method. In the former wé must use our knowledge, which at
present comes only from experiment, of which phase shifts are large enough
that we should put them into the absorptiﬁe part in Eq. (18). It is the task
| of the partial-wave method to supply this knowledge, and to calculate the large
phase shifts. Then Eq. (18), or Egs. (19)«(22), are convenient formulas for

calculating the small phase shifts.
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