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Historically, pion~nueleon scattering was the first problem on which 

the modern methods for making calculations via analyticity and unitarity 

achieved significant success. 1 Chew and Low were able to find from the 

cutoff model a simple effective-range formula which accounted for the shape 

of the (3,3) resonance in terms of a singl~ p!3,rameter, the pion-nucleon· 

coupling constant. Dispersion relations at fixed momentum transfer gave 

some understanding o~ the success of the cuto~f model. In view of this 

relative simplicity which the pion=nucleon problem showed it is rather ironic 

to find that it is quite a complicated problem within the new framework of 

2 calculation developed by Chew and Mandelstam. The main results of Chew and 
I 

Low have been given a more systematic justification, 3' 4 but I have no new 

information of comparable significance to present. This talk will therefore 

be limited to a presentation of methods and prospects for wringing some 

theoretical predictions out of the Mandelstam representation for pion~nucleon 

s~ttering. 

* This work was performed under the auspices of the u.s. Atomic Energy Commission. 

t Invited paper for the Tenth Annual International Conference on High~Energy 
Physics .. 

§ 
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I shall describe two complementary methods of attack on the problem: 

first, the partial~wave dispersion relat±ons;and second, a modification of 

the method of Ch~w, Goldberger, Low,. and Nambu.5 The former is the more basi~ 
approach, but also the more complicated. Let us try to get some feeling for 

the capabilities of this method. 

In the standard notation, 5 the matrix element is proportional to 

1 ' ' (+) 
+ 2 i r·(q~ + ~)B ] 

where p1 and p
2 

are the four-momenta of the incident and outgoing 

nucleons, q1 and ~ are those of the pions, and ~ and a are the 

isotopic-spin indices of the pions. The invariant amplitudes 

B(±), which are functions of the variables 

(pl 
2 

s = + ql) ' ' 

and 

( 1) 

-
(p2 

2 .(2) s = - q ) ,_ 
1 

(~ 
2 

t - q) ' 

are assumed to satisfy the Mandelstam representation.2 

Con~ider now the partial~wave amplitude f~(±); that is, the 

amplitude with parity -(-1)£ and the total angular momentum j = £ ± ~ • 

In the physical region, unitarity tells us 

i6£± 
e sin o£± 

f'At = q ' ( 3) 
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where , q is the magnitude of the mo~entum in the barycentric systemo The 
/ 

relation between f .e± , · A, and B · is 
. . 

. '·1·' - . . : . :•. ,-
= 8~W {(E + m) [ A£ + (W - m)B£] + (E - m)[-At±l + (W + m)Bt±1 ]J , 

where w = -y; ' 

and 

2 
+m = 

2 2 
W + m ~ 1 

2W ' 

1 1 
= '2 J d cos 6 Pi cos 6) A( s, s; t) o 

-1 

( 4-) 

(5) 

(6) 

The pion mass has been set equal to unityo The singularities of A£(s) can 

2 . 
be found in the standard manner from the Mandelstam representationo 

In order to exploit the simple unitarity condition, Eqo (3), we wish 

to write a dispersion relation for ft±(W), or perhaps for a simple multiple 

thereofo _We shall not discuss the time~consuming question of just exactly what 

amplitude is most convenient. 3' 4 We can_avoid extra singularities from the 

kinematical factors in Eq. (4-) if we work in theW plane. One can, of course-, 

2 use such variables as s or q if he is willing to work on a Riemann 

surface of two sheets. In the W plane the physical cut for s ~- (m + 1)2 

becomes two cuts, the physical cut W ~ m + 1 plus a cut along the negative 

real axis, W~ =m- lo This cut causes no trouble, because we can use the 
.. 6 

symmetry noticed by MacDowell, 

(7) 

to write an expression of the form of Eq. (3) on this cut. Notice that Eq .. (7) 

relates the two states with the same Jo 
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The rest of the cuts are somewhat frightening. . The pole terms, which 

are identical to the Born approximation, give rise to a pole at W = -m {in 

the amplitude fO+ only), plus a cut along the imaginary axis and short 

branch cuts in the regions 

2 1/:2 ~/ -(m + 2) . ~ W ~ -m + ~m , 
(8) 

1m ( 2 . )lh m-1 <W~ m+2 .. 

The singularities in s , ·arising from crossed pion-nucleon scattering, lie 
i 

along the imaginary axis plus th~ region} -m + 1 ~ W ~ m - 1. Finally, 

the singularities in t, corresponding to the process ~ + ~ ~ N + N, lie 

along the imaginary axis plus a circle of radius W = (m2 - 1)1/ 2 ., 

The discontinuities across all these cuts ha~e been evaluated in 

terms of absorptive parts of pion .. nucleon scattering and the process 
3,4 

~ + ~ ~ N + N. This process has been evaluated in terms of pion-pion 

scattering, and some i~ormation about it is available from the electromagnetic 

structure of the nucleon.7' 8'9 This evaluation involves pion-nucleon 

scattering itself.a.s input information, so that on the most basic level the 

two processes must be determined simultaneously from a set of coupled integral 

equations., 

In order to express the discontinuities in terms of physical 

absorptive parts an analytic continuation in momentum transfer is required .. 

The only method yet devised is an expansion in Legendre polynomials, which 

immediately leads to difficulties. The expansion converges only in a limited 

region of the W plane near the physical thresholds. Furthermore, if higher 

partial waves than S waves .are important. in the ab~orptive pa,rts, the integrals 

that occur in the N/D solution2 fail to exist, fc:>i'cing the introduction of 

\. 
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additional paramete:r;-s.. . . The. si ~uation _here is completely analogous to the 

10 singularity of the Chew-Mandelstam equations for pion-pion scatt~~ing .. _ It 

seems clear that.the techniques available at prese~t will not.permita 

convincing calculation to be made without the introduction of at least one 

parameter in addition to tbe coupling constanto The exact number of parameters 

required is an open question, to which I shall return later .. 

At this point those of you who are hearing about this morass for the 

first time may be :wondering how a theory so simple as that of Chew and Low 

gave meaningful results.. The answer suggested by the work of Frautschi and · 

4 Walecka is tha·t the only significant long~range force (ioeo; "near~by" 

singularity) in the (3,3) state comes from the short branch cut in Eq .. (8)., 

This short branch cut, which is approximated by a pole in the static model, 

controls the ·:w1iitn1 of the resonance, but not its }?Osition., Although the 

result is the same as the cutoff model, it is not insignificant that it 

has at last been given justification in a more systematic theory., 

I have mentioned above the rough inverse correlation which e.:J{ists 

between distance of singularities from the physical threshold and range of 

an equivalent "forceo'' We believe we have reliable information about the 

long ... range forces, but not about the short~range ones.. It has already become 

clear, however, that some of the most interesting aspects of the low-energy 

pion~nucleon problem, such as Sowave scattering lengths and the position of 

the (3,3) resonance, depend critically on tbe~e short-range forces.. The 

important question is: How many parameters will we need to introduce to 

describe the short=range forces? 

Crossing symmetry will provide powerful help in reducing the number 

of parameters.. We shall treat the short;.,range forces phenomenologically, 

perhaps by representing them by poles or by subtraction constants.. These 
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phenomenological forces will be· constrained, however, to obey certain crossing· 

conditions, which we 'shs.ll now discuss.· 

The amplitudes A and B have the following crossing properties: 

A (±)(s, 8, t) = ±A{±)(s, s, t) , 

(9) 
(±)( - ) -B{±)(- ) B s, s, t = + s, s, t • 

If' we consider a "symmetry point" . s0 , such that s = s = s0 , t = t
0 

, 

we have 

(10) 

Conditions can also be written down for derivativeso A convenient choice of' 
. 2 2 

s0 is such that t 0 = -2k0 , so that cos e0 = o.. Then s0 ~ m , or 

w
0 
~ m; and we find, neglecting D waves and higher, 

- ....L ( f (-) 
4m2 . 1-

{.-) ) 
- f'l+. ' 

= l(3f' {+) 
m 1+, 

- f (+) ) 
0+ . ' 

. f' {+) - f (+) = 1 f (+) 
1- · 1+ 4m2 0+ 

2f' (-) + f (-) 
1+ 1-

1 ( (-) 
= - m rl-

= 

' 

2f (+)' + f' (+)' 
1+' 1- = - l (5f (+) 

m 1+ 

' 

+ f' (+), ) 
1-

' 

' 

(11) 

(12) 

(13) 

(14) 

( 15) 

(16) 



-I 2 where terms of relative order JJm have been neglected. All quantities are 

evaluated at W = w0, and the prime means d/dWo Higher=derivative conditions 

also exist, but these are less interesting because they should be dominated·. 

by the l:>ngerange forces.. The four p. wave conditions above agree in the static 

limit with the cutoff model. 

The pole terms, plus the t. spectrum, should satisfy crossing symmetry 

separatelyo Therefore, we can subtract them from the amplitude before applying 

the crossing conditions. We must, at any.rate, subtract the pole terms in 

order to get rid of the short branch cut on which w0 lieso. 

At this point we can make a very crude and rather pessimistic guess 

at the number o:f arbitrary parameters that will remain in the theory after 

the crossing conditions are used. Suppose we introduce as parameters the 

values of the P waves at W 0 (for the (3,3) state this parameter is essentially 

the position of the resonance), and the values and derivatives of the S waves .. 

We expect that at low energies the higher partial waves will be less sensitive 

to the unknown long<>range :forces.. That adds up to eight parameters, whereas 

we have six conditions.. Unfortunately two of these conditions, Eqso (1~) and 

(16), involve the P waves only as 1/m corrections, and cannot reliably be 

used to determine them. ·By this method we guess that four parameters will 

be necessary in addition to the coupling constant and knowledge of the pion-

pion phase shifts if our theory is to agree with experiment within the usual 

accuracy expected -of dispersion ... rel.ation calculations. There is, of course, 

a considerable body of experimental information for the theory to fit.. It is 

easy to overlook, in the shadow of the dominant (3,3) resonance, how little 

theoretical knowledge is presently available about pion~nucleon scattering. 

Let us now turn to a simpler, mare phenomenological approach, in 

which we shall derive correction terms to the CGLN equations.. These authors 
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begin with the fixed momentummtransfer dispersion relations, such as 

= l 
1( 

+ 
l 

s' - s 

(17) 

2 where ~ = : 2m + 2, and where the pole terms are to be understood as a 

delta-function contribution to Im B., In CGLN a polynomial expansion of the 

continuum part of Im B was made, and only the ( 3, 3) ·term in the expansion 

was kepto A puzzling aspect of the method was that the pion=pion interaction · 

never appeared explicitly" The two most obvious places where it was hidden 

are in possible subtraction terms in Eqo (17) and in corrections to the 

polynomial approximationo We shall exhibit a method, based on a suggestion 

2 by Mandelstam, for the approximate evaluation of these pion-pion corrections .. 

Suppose we make a subtraction in Eqo (17) to improve the convergenceo 

Notice that the leading term as s 0,~ oo is a function of t only; 'ioeo, it 

is related to the coefficient of P0(cos e
3

) in an expansion of B(s, s, t) 

in Legendre polynomials in the scattering angle of the process 1C + 1C ~ N + N., 

In detail, one finds, considering--for example-·B(-) , 

l = 

+ l 
l 

- f d cos e
3
[l ... P2(cos e

3
)])( 

-1 s' - s 

l 

s(cos e3) ' 
(18) 
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which can easily be seen to be more convergent.. The notation f±J ( t) · , which 

is taken from Ref., 1, refers to the partial-wave amplitude for the process 

1C + 1'C -+ N + N with given J and helicity.. One could effect still better 

convergence by subtracting the J = 3 amplitude, but we shall assume that 

only J = 0,1 states are important .. · . The amplitude A ( ... ) has a silililar form, 

1 1 (+) 0 involving both f · and· f . ., The A · amplitude involves f+ , which is 
+ -

related to the pion-pionS-wave phase shifto For B(+), which involves only 

J = 2 and higher, we assume that the unsubtracted CGLN representation is 

adequate .. 

We now make the usual Legendre polynomial expansion of Im B in Eq .. 

(18), but with somewhat more confidence than usual because of the improved 

convergence of the integraL If we now assume, following CGLN, that the (3,3) 

resonance dominates the integral, we can calculate B( ""), and, in a similar 

. 1( manner, the other tbf'ee amplitudes., For f± t) we can use the improved 

calculation o:f' these quantities from the nucleon structure now being carried 

out by Ball and Wong .. 9 We must also have some knowledge or make some 

assumption about the s~wave pion-pion phase shift., 

The number of parameters (in addition to the coupling constant) in 

.&> 1 0 this approach is roughly four.. The tbi"ee a.mpli tudes J.± , f + cannot in 

general be calculated reliably without using the normalization procedure of 

Ball and Wong.. They calculate the normalizatian constants in terms of 

pion-nucleon scattering, so we must regard these constants as parameters .. 
I 

One parameter is required for each P wave, and two for the S wave., . In addition 

we have assumed the dominance of the (3,3) resonance .. 

A modification of this procedure can be obtained by manipulation of 

Eq .. (18). Suppose we write a partial-wave dispersion relation for f_1(t). 



We must write a subtracted dispersion· ·relation if the integral . over the left 

cut is to be convergent when we keep P waves in.the polynomial expansion on 

this cruto If it were necessary to keep £ waves, we would need £ subtractionso 

Now it can easily be seen that the integral over the left cut cancels the 

last term in Eqo (18) (the term integrated over cos e3) except for a constant, 
' 11 

provided Im B is expanded in Legendre polynomials up to and including P waves o 

One obtains 

B(=)(s, (-) t 
(]) b(-)(tv) 

s, t) = CGLN + c + - J dt 9 , B_ :. 1( 
4 t'(t 0 - t) 

(19) 

B(+)(s, s, t) = CGLN 
' 

(20) 

= CGLN + 

(21) 

( +) (+)' t 2 00 a(.+)(t') 
s, t) = CGLN + C · + tC + - f dt~ - -

A A 11t 4 t g 2( to = t) ' 

(22) 

where CGLN refers to the unsubtracted, fixed momentummtransfer dispersion 

relations with absorptive parts expanded ins and P waves, and wrere b(=) 

and a (-) 
- . 1 ( +) 

are linear combinations of f± and a is a multiple of 

f + 
0 o These equations are of the one-dimensional form derived as an approx= 

. 12 - . 
imation to the Mandelstam representation by Cini and Fubini, and applied to 

. . ~ 
the pion=nucleon problem by Bowcock, Cottingham, and Lurieo They differ 

slightly in that these authors do not have the term in CA(-), which we seem 

to find a necessary consequence of the importance of P waves in pion=nucleon 

scattering, and in that we have exp+icitly included the pionmpion S waveo 
' ·.· 



An apparent difference is the subtracted form of the t.integrals, but this 

is merely a redefinition of the constants CAB". , 
A further modification of these equations can be made by relating the 

t integrals in the (-) amplitudes to isotopicbvector nucleon form factors. 

It is clear that some such relation must exist, because written schematically 

the absorptive part of the two~pion contribution to the nucleon structure is 

of the form ( Ni I lflf )( 1Clf I 7 } , whereas the absorptive part of the two .. pion 

contribution to pion-nucleon scattering is of the form ( Nii I 1Clf )( lflf I lf1f } , 

with all amplitudes in the J = 1, ·· I = 1 state.. In the notation of Chew and 

2 I I 8 Mandelstam, ( lflf I lf1r } <X N D whereas ( lflf I 7 } a: 1 D ., The only 

difference is the pionmpion numerator function. If we approximate this 

function by a series of poles (not an essential approximation), 

N(t) 

we find, by algebraic manipulations, 

(23) 

b( ... )(t 8 ) 241Ca
1 [ v v v v ] t 00 G~ (·t;~ - GT (G) GT (t) "" GT ( .. t 1 ) 

-· I at' = 1: + 
1( 

4 t'(t 1 .~ t) i e t + t. 
l. 

(24) 

a(~)(t') [ v ~ v v J t 00 121Ca G2 (-ti) .. G2 (0) + G2 (t) .,. G2 (-ti) 
I d.t• 1: i - = 

3( t '.( t t - t) e . - t .·. t+t . ' 4 i i . i 

(25) 

where GT V( t) . is 2m times the isovector total magnetic moment form factor, 

(26) 

J 
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The notation for the form factors is that.of Ref. 8. The numbers ai · can 

also be inferred from the nucleon structure•8'9 With the·onec.pole formula· 

used in.Ref. 8, t i is large and 

ai a. r l l. (27) ~ = ·"ii :::::; 4 .. 
t + ti ti r 

We are now in a position to make a fit to all the low-energy pion$nucleon 

scattering data, plus the high angular momenta at higher energies, in terms 

of the six parameters f 2 C (±) C (-) C (+)' and the position of the (3,3) 
' A ' B ' A 

resonance, plus some assumpti~n about .the pion•pion S wave.. Although one can 

make the comparison with experiment directly in Eq. ( t8), which is clearer :from 

the point of view of subtractions and number ofparameters necessary, equations 

such as Eqs. (19)-(22) of the one-dimensional Cini-Fubini form which explicitly 

exhibit the pion-pion term should be quite useful. 

It is clear that the approach we have just finished discussing, the 

modified CGLN approach, is much farther from being a dynamical theory than is 

the partial-wave method. In the former we must use our knowledge, which at 

present comes only from experiment, of which phase shifts are large enough 

that we should put them into the absorptive part in Eq. (18). It is the task 

of the partial-wave method to supply this knowledge, and to calculate the large 

phase shifts. Then Eq. (18), or Eqs .. (19)•(22), are convenient formulas for 

calculating the small phase shifts. 
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