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~ This arﬁcle reporfq a determination of £2 » the pion-nucleon céuéling '.

constai\nt. from fhe neutron-proton differential charge -exchange croes s‘eif:giqcrm',
using a énethod propohe‘d by Chewl. - For this purpose, tﬁe neutron-proton
diﬂ'erenﬂal cross seétibn at 710-Mev has been measured in hyd_roge.n at nine
angles wiihin the .ra'nge 180 to 160 deg (center-of-mass system) and in deqterium
at two angles witlﬁn ,fhe same range. ‘ | |

| The mﬁﬁuﬁlof the experiment was to focus the 740-Mev p_roton»bevam
of the Berkeley synchrocycl’ot;;on- upon & liquid deuterium target. The neutrons
ejected from the deuterium at an angle of 7-deg 8-min relati?e to the incident.
pfoton beam paséegl through a aweeping magnet, | were collimated, passed thro_ugh
another sweeping magnet, and impinged ubon a liquid hydrogen target. A
counter telescope cohsisting of four scintillétors and a_veloéity-selecting
- Cherenkov countex-‘Z detected the elastic prbtoﬁs ejeéted’ from the hydregén with
an efficiency of about 60% , rejectéd all w-mesons and in conjunction with a
y-ray converter, rejected a .large y-ray compohént in the ngutral beam witl;n an
efficiency of greater than 9_9%. . The efficiency of the counter telescope was
measure;dvas a function of angle and velocity by performing av’p’roton-pr_oton
scattering experiment in'which‘ both the 9c§tt’ered and recoil protohs were
. ‘detected. The prpton beam incident on the deuterium target was monitored by
'a secondary emission chamber3 which was calibrated, in a low intensity beém,

against an argon-filled ionization chamber.

" This work was done under the auspices of the U. S. Atomic Energy Commission.
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The method used to acquire information about thd eneréy spectrum
of the nautronvbeam waﬁ&é@t@dmx@eiﬁmmta@w the velocity spectrum of the
' protons emerging from the deuterium at the same angle as the neutron beam.
The effective energy spectrum of the neutron beam was deduced from these
‘ ‘teasurements and could be represented by a Gaussian distribution with a
atandard deviation of 8 Mev and 2 most probable energy of 710 = 8 Mev. 4

o The use of deuterium as the neutron source provided a direct metlmd

of me'asuﬁng} the absolute neutron intensity. Both targets were filled with
;deuterium and the counter telescdpe set at an angle of 7 deg 8 d‘:in. By dharge
v__:'ayn;metry the scattering amp-litudeé are identical for the fwo successive acatter-'_' '
t:inge (protén-neutrcn at the first target and neutron-proton at the second target)...

: -Thereiorev the fat_ip of 'th‘e number of protons from the sec_onddarget to the

“‘number of protons incident on the first target is proportional to the square of the

c ‘neutron-proton cross section in deuterium at 7 deg 8 min (laboratory angle). _

:'-'“"'AQOnce this cross section was known it was poa‘sible to predict the abaolutﬂe‘ neutron .
~ '_;ﬂgx in terma of the incident proton flux. | e n

The results of the measurements are. listed in Table 1. The angular dis-" .’

"ti-ibutibn was measured to a.n accuracy of 5%. The errors of the listed data

.i‘nclude those due to the normalization and the uncertainty in the neutron trans-

' .,._miaeion of the y-ray converter which was used for angles less than 5 deg; '

The cross section in deuterium at 180 dég is 0.4820.08 ‘of the croas_sectidn )

.4 .in hydrogen. This decrease is a manifestation of the Pauli principle. Neutron-

- protor scattering at léo-deg in deuterium leaves behind two protons in the final

‘s‘tate and some of these states are forbidden by the exclusion principle. > S
Ghewl proposes that the neutron-proton differential cross bectiof: beami:lnplied

2 2
by x £ {l4cosd + %T—) and extrapolated to x = 0, which is the position of the
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' one—pion-exchange pole. The residue of tlie pole is given by

el | » m
= — . )
s Tok +1) (

where T is the laboratory-system kinetic energy, ¢ is the cent‘er-of-mas.s

scattering angle, 4 is the charged pion rest mass and M is the nucleon mass.

i

If the neutron-proton cross section” is multiplied by x% the resuilt is

‘ 4 2 2 ' L
ey s Ay B ) sxamed B @ e

dw 4E

where E ia the total energy of a nucleon and A and B represent the contribu- |
tions of intermediate states other than the one-pion-exchange |
2 PR
Figure 1 is a plot of x 3—5—- versus x for thé data obt—ained ﬁt

710 Mev. A least-aquare fit in polynomials in x was made to the date on the

' IBMv’?Oé computer. Polynomials up to, and including fifth order were }adug.ht.

The criteria for the ’selé’ét"ion of the best fit are contained in a paper by
Gzifira 8 Thc values oi q/M. where a is the sum of the squares of the o . ,
reuiduea divided by the errors, and M is the number of degrees of freedom, o 2
-are listed in Table II. The minimum of g/M is a criterion for determining the .

i

'J;.be‘st fit. The values of q/M are consistent with the expected values.

Another ﬁst that can be applied to the polynomials in an effort to B ”
determine the best fit is the Fssher F test. The results of this test are - ) ' )
listed in Table II wherg P (n) is to be interpreted as the probability of bein’g.ﬁ o t
correct if the polynogniél of order n is seiected to represent the data. The S
P (n) reveal an uneat’iéfactory situation. If the data repredent a low-order
polynorﬁial. then P (n) should peak af a partic'ﬁlar n. The indication {8 that the

data do not represent a polynomial of order n £ 5.
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The contribution of mulcip“la-meaon exchange to the amplitude can be

represented analytically by .
S Lo

(x'+x+3...._..) '
ST MT

We aesume that this branch .c-ut'can be approximated by a simple pole (as
would be the cage if there were a stmorxg W resonaace) located at an unknown

valug_g(z.;: We then define the function u(x) hy
u(x) = (x+&) y (x) o : 4)

IR whe‘re a is the value of x at which the pole occurs. At x = 0 the residue

Z"timea the residue of y(x). We choose a value for‘%;;ama&dz:m*aké}:a Lo

least- square fit to (x +a)z x? %— . The values of a used corresponded to -

-of u(x) is a

téiw values of the ‘;otal energy of the multiple-meson intermediate state
e ":"":Between' 1 and 5 meson masses. The values of a corresponding to energies less:j“ ,
‘_~than two meson masees have no physical justzﬁcation For each case, thée .

e j_'mlnimum of -q/M was noted and the behavior of P(n) studied. Figure 2 aho'gés

the results of this analysia 'f‘h'e second and thir:;'l order poly"némialm in .th'e

: neighborhood of m, = 2 definitely exhibited the behavior one expects if the data

" raprgsent e second order polynomial. The reeidua (a.nd.all other coefficienga)
s'how;ed a distinct plateau as a function of n. '('I’his 'is to be éempared with the | ‘

} results in Table I where no such plateau is present), The value's of i?‘ 'obt'a.ined _ |

. 'for each w, are shown in Table III. The errérs on £ includes the errofs of.

the 4input data and a factor represéntiug the goodness-of-fit,
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The inclusion of the multiple-pion éxchémge by the preceding method 5’:1
definitely remo&éé;“tﬁﬁi} ‘ambiguity in the choice of the best fit. ‘The value of .
in which one can have the”most_conﬁ‘z_“%}e.nce.- based on this analysis, is

i* = 0.08540.011. Caiffra’ has used Chew's proposal to analyze data at

90 Mev and 400 Mev and finds f° approk 0.06 with about 10% error.

* ." WK o

e 0 L A bR S T e s,
N TN .
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Tabie I, Neﬁtron‘-proton differential crosg aection
' in hydrogen and deuterium at 710 Mev C

Cross section

('10‘27 crriz/ar) " Center-of-mass
center-of -mass ' sys:gt: )angle
_system: : ‘ 8
Hydrogen
6.15+ .54 - l180.00
5.04%.51 . 175.89
4.394.39 | 172,94
3.974.38 - 17060
 38es31 16825
o1 3.12£.25 D 165.90
3.354.28 © 1efas
2.71% .24 . 16137
2.6514.23 " 158.90
Deuterium .
2.97+.42 = " 180.00

2.85%.14 ‘ , 163.25
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Table Ii. Results of least-squareaﬁits to §2' g—g- ' at 710 Mev

Order of o D Coupling'
polynomial q/M ' P(n) ' consztant '

A Y 2 © 001 imaginary
2 0.652° 030 0.032%.012 .

w

0.658 . . 0.60  0.059£ip22
4 0748 . 0.85 - 0.096%.050
5

0.688 U 0.128£.169
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Table 111, Results"‘bi’f‘l"\east-‘squa:eg;%it to (x +‘a_)2 3:2 %-: A'ia.t 710 Mev
, R Ordef of ; o . o
o Blge .0 bestfit, . @/Mpin P £
{meson masses) - n . T

0.576  0.64

1>~}

1 |
15 0.562 0.55 . 0.154%.014
2 0.522  0.97 - 0.085%.011
2.3 0.527 - 0.76 . 0.070%.010
25 0.556 069 0.0634.011
| 1 0.575  0.64  0.053£.011
35 0571 . . 0.50  0.047+.011
0.600 0.46 0.043%.011

45 0.616 °©  0.43 0.0414.012

e
NN N NN NN

0,626 - - 0.38 0.038+.012
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FIGURE LEGENDS

Fig.- 1. Plot of nz gg— at 710~ Mev versus x = 1 +cos ¢ + ﬁ'f" The
end of the physical region (180 deg) is x = 0.02927. The solid curve
is \tﬂhe cubic fit to the data. The asterisk denotes the residue

_ cdrré‘qpﬁn’ding to £% = 0. 08 i | |

e .Fig. . Statistical pai'ameters of the best fit for a given mj , versus mi'

4 oy is the total energy of the intermedia.te state in units of the charged
meson mass. Circles are values of (q/M)mm ) triﬁpglee are

corresponding values of P(n).
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