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This article reports a determination o£ fz , the pion-nucleon coupUng 

constant, from the neutron-proton di!ferential charge-exchange cross section, 
' • • ' • ~ ' . • r • • 

using a method propoaed by Chew 1. · For this purpose, the neutron-proton 

differential cross section at 710-Mev. has been m.easured in hydrogen at nine 

angles within the range 180 to 160 deg (center-of-mass system) and in deuterium 

at tw.o angles within .the same .range. 

The ~··of the experiment was to focus the 740-Mev proton beam 

of the Berkeley aynchroc:yclotron upon a liquid deuterium target. The neutrons 

·ejected ~rom the deuterium at an angle. of 7-deg 8-min relative to the incident 

proton beam passed through a sweeping magnet, were collimated, passed through 

another sweeping magnet, and impinged upon a liquid hydrogen tar~et. A 

counter telescope consisting of four sCintillator a and a velocity-selecting 
z . -

Cherenkov counter detected the elastic protons ejected from the hydrogen with 

an efficiency of about 60% • rejected all 11'-mesons and in conjunction with a 

y-ray converter• rejected a large -v-ray component in the neuiral beam with an 

efficiency of greater than 9.9"/o •. The efficiency of the counter telescope was 

measured as a function of angle and velocity by performing a proton-proton 

scattering experiment in which both the scattered and recoil protons were 

·detected. The prpton beam incident on the deuterium target was monitored by 

3" 
• secondary emission chamber which was calibrated, in a low intensity beam, 

against an argon-filled ionization chamber. 

This work was done under the auspices of the U.S. Atomic Energy Commission. 

~· ' . 
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The method used to acquire information about the energy spectrum 

o£ the neutron beam wa.ett_~~.tnd~'X.I)e~putntaU:l'y :the velocity epectrum o£ the 

protons emerging from the deuterium at the same angle as the neutron beam. 

Tbe efiec:tive energy spectrum of the neutron beam was deduced from theee 
. ~}~~~...-.-

· mea.euremenu and could b·e represented by a Gaussian dietrlbution with a 

standard deviation ot 8 Mev and a moat probable energy of 710 .:!: 8 Mev. 4 

The use of deuterium as the neutron source provided a direct method 

·of meaa~ing the absolute neutron intensity. Both targets were filled with 

;deuterium and the counter telescope set at an angle of 7 deg 8 min. By charge 

. _.symmetry the .scattering amplitudes are identical for the two succe•sive scatter .. · 
\ 

~ings (proton-neutron at the first target and neutron-proton at the second target). 

:. Therefore the ratio of the number of protons from the second target to the 

'·number of protons incident on the first target ie proportional to the square of the 

/!-.. .:. · · .· · 'ne.utr·on-proton cross section in deuterium at 1 deg 8 min (laboratory angle). 
' ... 4'.· . ... . 
'-: -'}~ . . :- · Pnce this cross section was known it was possible to predict the absolute neutron· 

i>_~-~-·.: _.flux in terms o£ the incident proton flux . 

'~··.,.,.. 
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:! .• -~ ... The results o£ the ~eaeurements are. listed in Table I. The angular dis .. · . . ···t; 
. -~,.

. •. :~( 
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'tribution was meaaured to ali accuracy ol S'?o. The errore of the listed data 

include those dtte to the normalization and the uncertainty in the ·neutron tran.e

miaeion of the y-ray converter .which waa used for angles less .than 5 deg. 

The cross section in deuterium at 180 deg is 0.48 • 0.08 :of the cross. secti~n 

. in hydrogen. This decrease is a manifestation of the Pauli principle. Neutron- . 

. pro~on scattl!ring at 180-deg in deuterium leaves behind two protons in the final 
. 5 

state and some of these states are forbidden by the exclusion principle . 

~ .. ' ~·.~ 

.. 
: .... -~ 

' '; .. 

Chew 1 proposes that the neutron-proton differential eros• aecttoir.qe.imilltiplied 
2 . ~2 2 ... 

by x = (l+coscp + ll'F") and extrapolated to x = 0; which is the position of the 
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one-pion-exchange pole. The residue of the pole iS given by 

2 F · · 
T <m + 1) 
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(1) 

wru!re T il!l the laboratory-system kinetic energy, 4t is the center-of-mass 

scattering angie, ~ is the charged pion rest mass and M is the nucleon mass. 

lf the neutron-proton erose se~tion f• is multiplied by xl the result is 

2. dO 
X 

dw 
(Z) 

where E is the total energy of a nucleon and A and B represent the contrl~u

:1tions of interm_ediate states other than the one-pion-exchange .. 

Figure 1 ie a plot of x
2 it: versus x. for tk~· data obtained.~·.· 

710 Mev. A least-squa1"e fit in polynomials in x wa·s made to the dat' on the 

IBM 704 compu~er. Polynomials up to, and including fifth order were sought. 

The criteria for the sel~et'lon of the best fit are contained in a pap~r by 
a . 

Cziffra. The values of q/M, where ,q· is the sum of the squares of the 
.. ; ~ 

.residues divided by the errors, and M ie the number of degrees of freedom, 

:are listed in Table U. The minimum of q/M ie a criterion for. determining the 

/

'best fit. The val':"o ~ q/M. are c. onsistent with the expeet~d values. 

· Another ~t~fit that can be applied to the polynomials in an effort to 
·. . .~· . . 

'j 
d~termine the best fit is the Fisher F test. The rea.ults of this test ~e 

listed in Table 11 where tp (ti) is to be interpreted as the probability of being· 

correct if the polyno!Jlial of order n is selected to represent the data. The 

P (n) reveal an unsatia!actory aituatlon. 1f the data represent a low-order 

polynomial, then P (n) should peak at a particular n. The indication is that the 

data do not represent a polynomial of order n ~ S. 

\ 

'· 
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The contribution of multiple-meson exchange to the amplitude can be 
. . 

represented analytically by 

GO 

A(x) « [ . z 
(x' +x +.3 L ·) 

MT 

G(x') cb:'. 
(3) 

We assume that this .branch .cut· can be approximated by a simple pole (aa 

would be the ca·se if- there were a st~ona W•11' resonance)· located at an unknown 

value Q'·.~. · ·'W..e then define the function u(x) by 

u(x) = (x + ~ )2 
y (x) · .. ~-- (4) 

.·where a is the value of x at which the pole occurs. ·At X. = 0 the residue 

. ' 

:· ' ' r 

. · ... 
., 

.. ~.... . 
·. ·.-: 

~ ... . .. ·. 

: . .:-:-;:·:. .. ::-.. : ·of· u(x) is.· a2· times the residue of y(x). We choose a value for t;;aa,ailtch-:m~.k~a ... ; •r.:~f 
.·. . . . 2 2 dO' .. 

::·;··:· ·,;.;, ... Jeast·lliquare fit to (x +a) x ~ • The values of a used corresponded to ·.~:;:~f.~:· 
~ . .. . . . ~ . ·:~-· '',.-; 

.,~{·:_:.:· :- .. · :«tli~ value• of the .total energy of the multiple~meeon intermediate state ... · .\i/;l;[ 
; ./:'_.·:, . ·.,··:between 1 and 5 meson masses. The values of a corresponding to energies lees">:··.~:.:~:t~: 

:. }J,·:: . . ·.·than two meson masses have no ·physical justification. For each case, the ... : : .;·<r;:_· 
·;~/·' 

~.~.'·.~f. . .·.:minimum o£ ·q/M was noted and the behavior of P(n) studied. Figure l sbow.s 
_ ..... -~ ..... 
• . ' -t~- . . , 

.. -··'· 
• J_ ~ 

·' 1:. 

, ··.- .. ~ : j 

i 
I 

t 
·I 

-~ ~ 
t, 

the results of this analy•is. The second and third order polynomials in .the 

neighborhood of mi = z. definitely exhibited the behavior .o.n:e expects if the .data 

. represent a second order polynomial. The residue (and all other coefficients) 
.i 

} showed a di~tinct plateau as a function of n. · (This is to~ compared with the 

i results .in Table I where no such plateau is pr.eaent}. The values of £2 obtained. 
z. . . 

· for each m 1 are shown in Table III. The errors on f includes the errors of 

the -input data and a factor representing the goodness-of-fit. 
; -

.. ·,·: .. <- ' 
. :. 

.\:: ' 
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The inclusion of the multiple-pion exchange by the preceding method(£.. 

definitely removes_·iiW{:B:'ffibiguity in the choice of the best fit. ·The value of l· 
in which one can have the most conli4ence, based on thia analysis, is z . . •. . \ . . 
l = 0.085:1:0.0.11. Cr;iffra ·has used Chew's proposal to analyze datS: •t 

90 Mev and 400 Mev and finds r approx 0.06 with about 10"/o error. 
'· 
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Table I. Neutron-proton differential cross section 
in hyc1rogen and deuterium at 7l 0 Mev 

Cross section 
(10·-z-r cm2/sr) 

center-of-mass 
system~ 

6.15 :t .54 

5.04±.51 

. 4.39 :1:·.39 

3.97 * .38_ 

3.84:!: .31 

_i?. 3.12:f.2S 
··'··· 

3.3S.:t.Z~ 
;;~ . 

2. 71 it .Z4 

Z.65 :t .23 

2.97~.4Z 

Z.8S:t.l4 

Hydrogen 

Deuterium-

•• Center ~of -mae s 
system angle 

(de g) 

- 180.00 

l75.89 

17l.94 

170.60 

168.25 

165.90 

16~.25 
'"':-~( 

161.37 

158.90 

180.00 

163.Z5 

UCRL-9398 
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da at 710 Mev ' ere; •·: . .. . .. 
' 

Order of 
polynomial q/M P(n) 

n .. 

Coupling 
'd 

constant ' 

{2 

1 1.447 0.01 imaginary 

z. 0.65Z. . 0.30 O.O:)Z. :t: .0 lZ 

3 0.6~8 . 0.60 
. ·''f' ' 0.059 :t:Ja>Zl 

''4 

4 0.748 o.ss 0.096 :t: .050 

'. 5 0.988 0.1~8* .169 
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'. Tabl~ Ill. 
·.· ' '·' .. 2 . 2 

Results of least·square~it to (x +a) X 
. . ·:r:,l . . 

b 

Order of 
''.·,·fit£;;, .. best fit, (q/~)min . ~ •' ' 

·(meson rri~~see) n 

1 3 0.576 

1.5 z 0.562. 

z. z o.szz 
.: '· 2..3 z .. 0.52.7 

.t, ' 

z.·.s z. . 0.556 

3 2 0.575 

3.5 z 0.571 

4 z 0.600 

·4.5 z 0.616 
,. 

5 z . 0.62..6 . 

UCRL-9398 

dtl at 710 Mev eli 

P(n) fz 

0.64 

0.55 0.154:!: .014 

0.97 0.085 ~ .011 

o.i6 0.070~.010 

0.69 
.. 
0.063:1: .011 

0.64 0.053~t= .Oll 

o.·so 0~047 ::1:.011 

0.46 0~043 & .o 11 

0.43' o.o41 !t: .otz 

0~38 0.038 :t .OlZ. 

\ 

\ .. 

\· 

\ 

.: :, 
~. 

. ~-
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FIGURE LEGENDS 
. . . l 

Fig. 1.. Plot of xz. -~ at 710-Mev versus X ~ l + c:os • + irr-. . The 
-~· . . 

end of the physical region (180 deg) is x = O.Ol9Z7. The solid curve 

is the cubic £it to the data. The -asterisk denotes the .residue 

corresp~riding to fl. = o.os:;t: 

.. Fig. l. Statistical parameters of the best fit £or a given mi , versus m1 • 

. > m1 is the _total energy of the intermed~&:te state bi units of the charged 

meson mass. Circles are values of (q/M).~in ·, tri,i"ngles are 
,., ..... 

correspondins values of P(n). 
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