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ABSTRACT 

The pattern or ''profile" of concentration change in each of the 

two countercurrent streams, within a packed extraction column in

volving a three-component system, is generally assumed to follow 

either branch of the mutual-solubility curve for the system. In the 
f 

work,reported here, such concentration profiles have been computed 

for an idealized extraction process, and the profiles have been found 

to depart from the equilibrium curve. 

The idealized extraction has the following characteristics: It 

involves a system with thermodynamically defined equilibrium behavior, 

rather than with known experimental behavior. Mass-transfer-coeffi

cient ratios are held constant at any one steady-state condition of 

operation (called a "run") but are varied in different runs. A modified 

activity-gradient, derived both for molecular diffusion and for pene

tration-theory conditions, is postulated to gove~.n mass -transfer and 

is used in place of the usual concentration driving potential. 

The present calculations show that the concentration profile 

for the raffinate will usually be carried into a metastable condition, 

represented by a locus inside the equilbrium C\lrve. The ext-t-act com

positions always remain appreciably outside the equilibrium curve. 

Solute depletion, mainly, is found to explain the result for the raffinate 

phase, in much the same way that temperature lowering leads~to.:;s~pe·:r-

saturation in binary solutions. Solute enrichment is the cause of the 

extract-phase behavior. The distance between the calculated concen

tration paths and the equilibrium curve depends on the values of the 

mass-transfer coefficients. Values of the number of transfer units 



obtained from the exact. concentration profiles can differ as much as 

10% from the values given by the usual equilibrium-curve approxi

mation. 
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INTRODUCTION 

For ternary liquid systems undergoing countercurrent extraction 

in packed columns or other nonstaged equipment, calculation of the 

separation desired or obtained is often bas~d upon the assumption that 

the composition of each coexisting phase lies on the mutual-solubility 

curve (Sl, Tl). By contrast, certain studies of mass-transfer rates 

between immiscible phases in binary systems have dealt entirely with 

the observable incompleteness of saturation in such systems, compared 

with the condition of equilibrium (C2, Ll ). It is also well known that 

in binary and multicomponent systems, a metastable range of compo

sitions exists.~ inside and adjacent to the mutual-soli\bility values, where 

nucleation will not occur spontaneously (Gl, Hl, Kl, K2, Pl). In this 

metastable region, diffusion to a second phase is believed to provide 

the sole mechanism by which the system can tend toward equilibrium. 

Thus it is possible, in principle, to encounter nonequilibrium com~ 

positions that may lie either inside or outside the equilibrium solubility 

curve. 

In this paper we examine the pattern of deviations from the 

mutual-solubility curve, to assess the validity of the usual calculations 

and to see how the deviations can be related to the mass-transfer 

coefficients for the individual components. We will assume that the 

concentrations vary continuously from point to point, as in a packed 

column; also, that no longitudinal dispersion occurs, although this 

effect would not upset the qualitative conclusions that are found to 

apply in its absence. 

The results obtained, which depend upon standard approaches 

to thermodynamics and to mass transfer, indicate in some cases that 

the concentration profile can penetrate into the metastable range. This 

conclusion, although plausible, has not been confirmed experimentally; 

to do so would require extremely accurate measurements. In case 

eventual experim•ents were to lead to a contrary conclusion, this would 

probably call for some modification of existing views on phase 

equilibrium and mass transfer. 

( 
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MOLE-FRACTION OF COMPONENT A 

MU-21936 

Fig. 1. Representative lines ·of constant-activity coefficients 
(yA) and constant activity (aA' aB, ac>· 
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THERMODYNAMIC BACKGROUND 

In a nonelectrolyte system the thermodynamic activity of each 

component, in either phase of a two-phase system, is customarily 

expressed as a fraction of the activity of the corresponding pure com

ponent in the liquid state. Equilibrium is the condition in which the 

activity of each component is the same in both phases~ corresponding 

to tie-line composition values whose locus forms the mutual-solubility 

curve. Figure 1 for a ternary system shows a set of activity contours, 

for the three components which participate in two three-way inter

sections and thus define the ends of an equilibrium tie-line. A study 

of such contours leads to the conclusion that points representing only 

partial equilibrium (i.e., equal activities of one, or two, components) 

must lie off the solubility curve; and that a single -phase ternary mix

ture has no thermodynamic "preference" for a solubility-curve com

position. 

Equations 

Conclusions of a general type are sought in this investigation 

that will be independent of the particular calculation methods used.:· In 

order to obtain the greatest self-consistency~ the ternary system to be 

treated is defined mathematically rather than by expe:dment. Activity

coefficient equations of simple form are used; for a binary pair AB, 

the form is: 

and 

( 1) 

For component A in a ternary mixture ABC. the relation be~omes 

ln yA = fA (xA' xB. xC) 

2 2 
= AABxB + AACxC + (AAB+AAC -ABC)xBxC . 

(2) 

In these equations, x is mole -fraction, y is activity coefficient, A 

is a numerical c.onstant, and f indicates a function. 
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The binodal (mutual-solubility) curve is then obtained by iterative 

simultaneous solution of three activity equations -of the following type, 

one for each component: 

(ln aA =); ln XAl +fA(xA' XB' xC)l = ln XA2+fA(xA' XB' xC)2' (3) 

where a is the activity, and subscripts l and 2 refer respectively to 

the two coexisting phases. 

The spinodal curve, which separates the metastable from the 

unstable region {Kl, Pl), is given by 

1 
AABxAxB + AACxAxC + ABCxBxC + z:(MxAxBxC- l) = 0, (4} 

with M = (AAB- AAC- ABC)
2 

- 4AACABC' This curve becomes tangent 

to the mutual-solubility curve at one point only, the critical or plait 

point. 

Application to a Typical Case 

The idealized ternary system to be used is modeled after the 

system n-decane (A)/butadiene (B)/furfural (C), for which experimental 

data have been reported by Smith and Braun (S2). The binary constants 

selected are AAC = 0 .. 7369, ABC= 1.5376, and AAB = 4.4100. Because 

the square roots of these constants are additive (that is, · 

A. l I 2 A l I 2 A l I 2 ) M . l t d ll . . f . t .. AB = AC + AB , 1s equa o zero, an a cur:ve·s _o cons an .. 

activity coefficient are linear and parallel, as indicated in Fig. l and 

Table I. This type of additivity conforms to the Hildebrand solubility

parameter treatment of nonideal solutions (H4), 

A two-phase ternary system is characterized by six concen

trations. Of these, one (for instance, xCl) can be taken as the in

dependent variable. Two others (xAl and xB2 ) are eliminated by 

material balance. The remainingthree are determined by solving 

three simultaneous equations, each having the form of Eq. (3). This 

set is most easily solved by repeated iteration, which lends itself to 

use on a digital computer. First, a trial set of concentration values is 

• 

assumed and is used to evaluate the activity-coefficient terms (f' s). The "'' 

equation for aC is then solved for xC 2 ' and the remaining equations are 

solved simultaneously for xBl and xA
2

. The results are used as a new 

trial set, and iteration is repeated until the results converge. 
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Table I. Activity coefficients for constant-coefficj.etit)_ lines 

xBl at xC = 0 Yc YA YB 

,_. 
0 2.09 1.00 82.27 

0.1 1.54 1.04 35.51 
\1' 0.2 1.21 1.19 16,77 

0.3 1.05 1.49 8.67 

0.41 1.00 2.10 4.65 

0.50 1.04 3.01 3.01 

0.6 1.17 4.90 2.05 

0,7 1.45 8.67 1.49 

0.8 1. 95 16.77 1.19 

0.9 2.88 35.51 1.04 

1.0 4.66 82.27 1. 00 

._. 
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MOLE-FRACTION OF COMPONENT A 

MU-2!937 

Fig. 2. Equilibrium diagram for idealized ternary system. 
Calculated concentration profiles shown for 
~c;z/~c; 1 = 1, kB 1/kc 1 = 1, kAz/kc 1 = 1 with points 

related by the operating conjugate line (0. C. L. ). 
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The equilibrium curve constructed in this manne'r is shown in 

Fig. 2; tie-line behavior is indicated by the usual type of conjugate 

line. For reference; the spinodal curve obtained from Eq. (4) is also 

shown. , ((rhe remaining curves of this figure will be described later.) 

In order to interrelate activity and composition on the left-hand 

branch of the equilibrium curve, the numerical results for the latter 

:were fitted to polynomial equations by linear regression. The equations 

used are: 

2 ' 3 4 
xCl = a.(l)aCl + a.(2)aCl + _a.(3)aCl + a.(4)aCl (5) 

and 

In order,, the a. values are 0.4955648, 0.4915600, -0.1345536, and 

1.613432i the !3' s are 0.0135076, 0.0496642, 0.0347659, 0.532461, 

-1.336651, and 2.067078. When a value of aCl is used for solving 

equations and the resulting compositions are then used in Eq. (2) or 

(3 ), the mean deviation between the input and output aC 1 is 3 X 10- 5 

activity unit. 

SCOPE OF THE MASS-TRANSFER CALCULATIONS 

Comparative calculations are reported in this paper for a 

numper of countercurrent extraction runs utilizing the ternary system 

just described. Most of these calculated runs involve identical feed 

and solvent concentrations, identical extents of extraction of the 

distributed component (C) 1 and nearly identical flow rates. The mass

transfer ratios (ka)c 2/ (ka)C 1, (ka)Bl/ (ka)C 1, and (ka) A 2/ (ka)C 1 are 

all held constant in any one run, and are varied separately in different 

runs to investigate their influence on the path of the extraction process. 

, The mass-transfer resistance in each phase is assumed to lie 

between the bulk of the phase and the portion closest to the interface. 

In th,is treatment, no further resist~nce is ascribed to the interface; 

that is, in each calculation, equilibrium is assumed to exist at the 

interface with the activity of each of the three components at that point 

having ~he same value in both phases. 
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The concentration paths followed bV the two. ph~ses during each 

·run have been calculated by a repetitive stepwise pro.cedure, starting 

at either the feed end or the solvent end o{ the column. Assumed 

values of exit composition were varied with respect to cirrier com

ponents A and B until the paths computed from the two directions 

agreed closely. 

The equations used for these numericai calculations will be 

derived below, after a discussion of the mass-transfer relations on 

which the calculations were based. 

DRIVING POTENTIAL FOR MASS TRANSFER 

The "driving potential" for transfer between phases is usually 

defined in terms of the concentration gradient in the vicinity of the 

interface, based upon broad experience with situations wher~ activity 

coefficients within a phase are essentially constant. In these terms 

the rate of mass transfer is 

N. = k. 1 (c. - c .. ), {7) 
J JP JP Jlp 

where N is the number of moles of component j transferring per 

unit area per unit time under a steady-state concentration difference 

between the p-phase side of the interface and the bulk· p phase, and 

k. 
1 

is the appropriate mass -transfer coefficient. In this treatment, 
JP 

concentrations will be replaced by mo.le fractio~s,. ·with k. applying 
JP 

to .these units. 

Whenever the activity coefficient varies, however, a modified 

activity difference should replace the concentratio.n difference, as a 

factor that indicates more accurately the direction and relative mag

nitude of material transfer. Such an activity difference is most nearly 

correct for molecular diffusion. Since material transfer between 

phases often involves the combined effect of molecular diffusion and 

eddy transport, the activity difference may p~ovide only an improved 

approximation for the driving potential. Critical experimental tests 

to demonstrate the true mechanism ar-:e.:la'~kirtg. 

·.J 
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· Diffusionp as a molecular phenomenon, must depend upon the 

conce:r:trations of molecules physically present. The activity difference 

can be expressed in units of concentration if it is divided by an appro~ 

priate meap activity coefficient. It thus reduces to the familiar con

centration~difference form if the activity coefficient is constant along 

the mass =transfer path. Another intuitive argument in support of the 

activity-difference formulation has been given by Handlos and Baron 

(H2). These qualitative considerations can be replaced by the following 

formal derivations. 

Molecular Diffusion 

On the basis of absolute~rate theory, Stearn and Eyring (S3) 

have shown for binary systems that the rate of transfer of a com= 

ponent per unit area (N) ; .. ~uncorrected for bulk flow, is 

no 
N = ~D -0 , 

d ln a 
d ln x 

dx 
db' 

{8) 

where D 0 is the diffusion coefficient at infinite dilution, 11. is the 

actual viscosity, ,.,
0 

is the viscosity at infinite dilution, a is the 

activity of the component, x is its mole fraction, and b is a length 

coordinate. A similar result has been given by Darken (D2), using 

a somewhat different basic method. The effect of the Stearn and 

Eyring derivation is that the activity-coefficient gradient slightly 

reduces the free enel"gy of activation ~or diffusion in the direction of 

decreasing y, and slightly increases it in the opposite direction. For 

our purposes, viscosity changes will be neglected, and the ratio 

n0/ 11 will be taken·as unity. In an alternate form the rate is 

x da dx _ DO da 
N=-(Doa>·dx· db =,-:y· db" (9) 

If the material transfer is ~.i.ine,d. in a single region, the rate N 

will be a constant across the 'f'lilrnJ.1: aL9-ny ,_onie; levelt in .an extra;ction 

tower. Hence, we, can integrate by separation of variables: 

db= -D0Ja 
a. 

1 

da 
y 

(l O) 
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For diffusion within a single phase, '(may be replaced by an 

appropriate average· value, '( , which is constant at any one level. 
m 

{If '( varies linearly with a, "Y becomes the logarithmic mean. ) 
m 

This enables the relation to be written in integral form: 

Do 1 
N = -B (a~ a.). (11) 

"Ym 1 

We obviously wish to select a mass~transfer coefficient that 

will be as nearlDconstant as possible::. If the "film" coefficient is 
0 

taken to be k = -p;- • then we have 

k 
N = - (a- a.). (12) 

"Ym 1 

For our ternary system, this will be generalized to give 

k. 
N. = ___lE_ (a. -a .. ). 

J '( jpm JP J1P 
{ 13) 

Thus the use of Eq. (13) can be supported on theoretical grounds. 

Whether or not it is completely accurate, it appears preferable to 

Eq. (7}. I 

An alternate approach favored by some investigators, among 

them Opfell and Sage (01 ), involves the use of a thermodynamic

potential gradient: 

Since the thermodynamic potential f.L. is given by f.L = RT ln a+ 

constant, Eq. (14) leads to 

N = _ i) R T da _ _ ~ (B"'RxT \ 
a db - 1 J 

da 
db 

(14) 

( 15) 

The coefficient c:B'RT/x thus replaces n
0

• In view of the molecular 

models of diffusion, it is much more likely that D
0 

(rather than .fr) 
is bassically a constant. The essential feature whichthis approach has 

in common with the preceding one is the determining effect of the 

activity-gradient driving potential. 
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Turbulent Diffusion 

One can assume that a coupled process could occur$ such that 

dissipation of mechanical energy would perturb the simple thermo

dynamic result, but it is e~remely unlikely that such perturbation 

would regularly convert Eq. (13) to Eq. (7). Such a coupled process 

would lead to the following equation for the mass transfer: 
k 

NA = Ap (aA - aA. ) + k'A (cA -cA. ), (16) 
y Apm p lp p p lp 

probably with k'A << kA· · . p p 
Hence the factor due to dissipation of 

mechanical energy should play a minor role. 

Such a coupled process, considered in terms of Eq. (16), 

provides the following conclusions: 

(a) for da/dx = 0 and dc/dx f 0, material transfer may occur in 

the dire~tion indicated by Llc. 

(b) For dc/dx = 0 and da/dx f 0, it is virtually certain that 

material transfer occurs in the direction indicated by Lla. 

(c) In the intermediate case, for dc/dx > 0 and da/dx < 0, Lla 

would generally govern, because of the above assumption. 

The penetration theory relates turbulent diffusion to molecular 

diffusion in certain cases (H3, D1 ). By a procedure analogous to 

the usual development (in terms of concentration driving potential) of 

Fick' s second law from his first law, Eq. (9) can be shown to yield 

ax Do 
at,- y ( 17) 

In traducing the relation between activity and concentration, we find 

that 

aa 1 
= at 0 a lna 

y (a lnx) 

(18) 

From Eqs. (17) and (18), with a 1na/ a lnx taken to be a constant at 

its mean value, we can derive the approximate result 
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a a 
D 

a
2a 

at = 
ab

2 
(19) 

where 

D= (a lna j Do. a lnx 
m 

(20) 

With the introduction of suitable initial and boundary conditions, the 

solution of Eq. (19) becomes 

= erf 
b (21) 

with ab and ai as the bulk and interface activity values, and erf 

representing the error function as defined by the relation 

erf V = -
2
-. JV e -z

2 
dz. 

. ..[; 0 
(22) 

The amount of material diffusing thro~gh the interface is equal to 

or 

By defining a new diffusion coefficient 

D 
D' - 0 

- (; ~~~ }m 
we can rewrite Eq. (21) as 

N= 

(23) 

(24) 

(25) 

(26) 

This result has the important significance that, in the particular case 

corresponding to the penetration-theory model, the direction of the 

activity gradient is shown to govern the direction of turbulent diffusion 
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as well as that of molecular diffusion. By assuming as before that 

y. = y , we observe in Eq. (26) that the effective mean activity 
1 m 

coefficient is an essential factor in relating the activity driving 

potential to the rate of mass transfer. 

On the assumption that the results derived for a binary system 

also apply to a ternary, the correction factor introduced in Eq. (25) 

has been evaluated for the ternary system under consideration in a 

few representative instances, which are shown in Table III. This is 

derived from a calculated run that is summarized in Table II (to be 

explained below). The correction, which would enter the mass

transfer coefficient as a square root, varies appreciably from a 

constant value, but the extreme variation lies within a factor of two. 

Since this range of variation would not affect the qualitative conclusions 

to be dratvvn from this study, the molecular -diffusion relation of Eq. 

(13) has been used instead of the penetration-theory result of Eq. (26 ), 

as the basis of our calcu~ations. 

As a qualitative conclusion, the rarely encountered case where 

the activity gradient opposes the concentration gradient can be handled 
-

most correctly by using an activity gradient as the driving potential. 

For the usual case, where the two gradients are concurrent, the 

choice of driving potential is less critical from the calculational 

standpoint, but the activity gradient still seems to be much preferred 

on theoretical grounds. 

Multigradient Effects 

For precise calculations on a ternary system, another type of 

coupling that must be considered is the cross -product transport which 

results from diffusion of the other species. The formulations of 

irreversible thermodynamics (D3, G2) suggest complete equations of 

the type 

k AAP k ABp kACp 
= (aA ·-aA. ) + (aB -aB. )+ (ac ~ac. ) 

YApm p lp YBpm p lp Ycpm p lp 

= 
kAp 

YApm 
(aA - aA. ). p lp 

(27) 



. Table II. Activity coefficients during extraction into phase 2 a 

Location XCI XCli XC2i xc2 Yc1 Ycli Yc2i Yc2 aCl aCi aC2 

1 0.09500 . 0.07500 0.03426 0.01377 1. 714 1. 777 3.892 4.300 0.1628 0.1333 0.0592 

2 0.17409 0.15000 0.06821 0.04481 1.529 1.593 3.504 3.821 0.2663 0.2390 0.1712 

3 0.24739 0.22500 0.10223 0.07761 1.400 1.438 3.165 3.444 0.3465 0. 3236 0.2673 

Location XB1 XBli XB2i XB2 YB1 YBli YB2i YB2 aB1 aBi aB2 

1 0.02105 0.01765 0.95060 0.97913 49.263 54.159 1.006 1.001 1.0374 0.9560 0.9800 

2 0.02779 0.02300 0.91486 0.94251 35.825 40.307 1.013 1.007 0.9956 0.9274 0.9489 

3 0.03176 0.03027 0.87884 0.90728 27.505 29.855 1.028 1.016 0.8736 0.9038 o. 9222 I 
N 
0 

XAl X Ali XA2i XA2 YA1 YAH YA2i YA2 aA1 aAi aA2 I 
Location 

1 0.88395 0.90735 0.01514 0.00710 1.016 1.010 60.553 72.028 0.8980 0.9167 0.5114 

2 0.79812 0.82700 0.01693 0.01268 1.044 1.032 50.407 58.659 0.8334 0.8534 o. 7438 

3 0. 72085 o. 74473 0.01893 0.01511 1.081 1.068 42.028 48.855 0. 77939 0.7956 o. 7382 

a(XC1 )initial= 0•30; kczlkc1 = 1; kB/kc1 = 1; kAzlkc1 = 1 (Run 1 ) 

't~ 

" ,, 



~ 

Table IlL 

Location 
c !naG) 

~· 1~ XCI 

1 0.857 

2 0. 790 

3 o. 721 

\_ 

Correction factor: for ':p:enetration-theory equation 

(6lnac ) 
8 InxC

2 
. 

(6lnaB ) 
BlnXBl 

elnaB ) 
~!nXB2 

clnaA ) 
blnXAl 

0.832 0.528 0. 730 0.812 

0.803 0.376 0. 770 0.669 

0.692 o. 706 0.634 0.631 

t 

( 6lnaA j 
oinXA2 

0. 765 

0.467 

0.332 

I 
N .... 
0 
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Theoretically, then, the partial coefficients kAAp' kABp' and kACp 

will be. essentially constant, and the apparent coefficient kA which 
. ' p 

results will vary. In practice, the cross -product coefficients k ABp 

and kACp mayrbe small compared to kAAp: and thus. kAAp ~ kAp' 

Professor Raymond Defay, of the University of Brussels, has 

suggested that the cross-product terms can be viewed physically as 

representing a type of entrainment. 

Mean Activity Coefficient 

The activity difference must be corrected to mole-fraction 

(or concentration) units by being divided by the effective mean activity 

coefficient. In our calculations, the mean values were not known 

initially, and could only be obtained iteratively by beginning the calcu

lation with assumed values. 

In order to simplify the computat~on, this iteration was omitted, 

and the mean activity coefficient in each phase (y~. _) was replaced by 
m 

the value of this coefficient (y) in the bulk phase, The error introduced 

in the rate of mass-transfer of any one component never exceeded 

1 Oo/o in any step, and was usually under 5o/o. Such an error is equivalent 

to this magnitude of variation in the mass-transfer coefficients. 

Representative values of y and y. are shown for comparison in 
1 

Table II. In this. range, the arithmetic m.ean would be used for Ym· 

Since we are concerned with evaluating the effects of gross changes 

in the ratios of k' s (changes by a factor of two, or more), the error 

introduced by using y fcrr~ y are not s'ignificant for the purposes 
m 

of this investigation. 

Although the m~ss-transfer coefficients (and their ratios) will 

probably not be exactly constant throughout an actual experimental 

run, the extent of increase or decrease in each k value will be a 

specific effect for the particular experimental conditions. The k 

values for the runs calculated in this study have been taken as constants 

because no better general assumption could be made. The curves 

developed herein for constant k should be an aid in estimating the 

direction and extent of changes in k in actual experimental runs. 



CALCULATION OF PROFILES 

Degrees of Freedom for the Calculation 

It is useful at this point to determine the number of parameters 

which will need to be specified in o~der to coiT1plete the calculations of 

any one incremental slice of column. The number of variables and 

parameters (a total of 53) as summarized in Table IV, is nine mass

transfer coefficients (three for each phase and three for the interface); 

six bulk concentrations and six activities at the start of the slice; six 

interfacial concentrations and six interfacial activities; six bulk con

centrations and six activities at the end of the slice; two initial flow

rates, two resultant flowrates; three component transfer rates; and 

the height of the slice. 

These variables are related by several equations. In each 

phase and at the interface, the concentrations of some one component 

is related to the others by a simple material balance. From a knowl-

edge of the conce.ntrations, the activities can be computed by equations 

similar to Eq. (2). By the assumption that the interface is in equili

brium, we can eliminate the three mass-transfer coefficients corres

ponding to the interface, and reduce the number_· of interfacial variables 

from four to one. As other relations we have the usual column ma

terial-balances between concentrations and flowrates. Finally, we 

can write six mass -transfer equations like Eq. (26 ). 

We thus have 11 independent variables to specify in order to 

solve t.he problem. As is usually necessary in solvent-extraction 

column calculations, we have first specified the concentrations and 

flowrates at one end of the column. As the remaining independent 

variables, we have elected to choose :.6-n (which we define indirectly ·.·. c ' 
through an approximate value of &c) and four mass-transfer co-

efficients. Our purpose is not to calculate an absolute column height, 

but rather to determine the' amounts of transfer of components A and 

B accompanying any given transfer of component C; therefore we have 

used three ratios of k' s rather than four individual values. 

By comparing the number of u~known's with the number of 

relations, it is easy to see that we could not specify either fewer or 



Table IV. Variables and parameters for stepwise calculations 

After After After After 
material After equili- material she 
balance activity brium balance mass~ 

within equations specifi~ within transfer 
Variables and parameters Initially phase (Eq. 2) cation(Eq. 3) column equations 

Mass-transfer coefficients (k) 9 9 9 Q 6 4 
\ 

Initial bulk concentrations (x) 6 4 4 4 4 4 

Initial bulk activities (a) 6 6 0 0 0 .0 

Interface concentrations (x.) 6 4 4 1 l 0 
1 

Interface activities (a.) "6 6 0 0 0 0 
1 

Resulting bulk concentrations I 

(x') 6 4 4 4 0 0 N 
~ 
I 

Resulting bulk activities (a') 6 6 0 0 0 0 

Initial flowrate (F) 2 2 2 2 2 2 

Resulting flowrate (F' ) 2 2 2 2 0 0 

Rate of transfer of component 
(..6.n) 3 3 3 3 3 1 

Height of slice (..6.h) 1 l 1 1 1 0 

Total 53 47 29 23 17 11 

,. " 
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more than three ratios without under- or over-specifying the problem. 

In this study, yve considered phase 1 and phase 2 as infinite re-Servoirs 

for the diffusion of A and B, respectively; thus, kA 1/kc 1 and 

kB2/kCl were cho!f!en as the dependent variables~ the. specified ones 

being kC 2/kc 1' kA2/kC I, and kB l /kc 1. 

As was explained in an earlier paragraph, it would be possible 

to include the cross -product transport in the mass -transfer equations 

(Eqs. 13 and 27). Thus we would get 12 mass-transfer coefficients 

(six more being eliminated by the Onsager reciprocal relations) and 

would have to specify ten instead of four, If the variables left un

specified were kAA 1 and kBB 2' the calculations (although substantially 

more complex) would proceed very much as the present case, If 

any cross -product terms were left unspecified, several equations 

would ne,ed to be solved simultaneously, It seems likely that any 

assignment of coefficients that caused the unassigned factors to take 

on negative values would represent a physically unobtainable situation, 

Because correlation of column behavior in terms of the adjustable 

coefficients (or nine ratios) is a much more complex undertaking than 

one based on three ratios, the latter course was selected for this 

investigation, 

Calculation Procedure 

For a differ-ential section of the column with unit cross-

sectional area, the mass -transfer of each component between immis ,oj_. _ ~ 

cible phases in countercurrent flow can be expre~sed by 

dnj = d(F 1 xj 1 ) = d(F 2 xj2 ), (28) 

where F is the flowrate of the phase in moles per unit time, x is 

mole-fraction, and n is number of moles transferred from phase 2 

to phase l, Also, we have 

dn. 
J 

= (ka)j 1 (driving potential in phase l towards phase l),dh 

= (ka)j
2 

(driving potential in phase 2 towards phase 1) dh. 

(29) 
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Here (ka) is the product of the mass-transfer coeffiCient and inter

facial area per unit volume, and· dh is the height of the differential 

section. 

For small finite increments, for component A in phase 1, we 

can write 

Similar equation·s can be derived for components B and C, and 

for phase 2. 

To begin the calculations of any one extraction step, we 

assume 

(30) 

(31) 

with .6.xC 1 . taken as a convenient and uniform small interval (negative 

for calculations starting at the feed end; positive for those starting at 

the solvent end. ) The relative height of column required for this 

transfer is then given by the expression: 

(ka)c 1 .6.h = 
.6.nc 

(32) 

The driving potentials that apply at the start of each increment will 

be assumed to remain constant through the whole increment. 

The value of aCi being unknown, it must be eliminated between 

the rate terms for component C in phases. 1 and 2: 

(ka)c 1 (ac 1 - ac u> 

"c 1 

= 
(ka)C2 (~C2i- aC2) 

"c2 

(33) 

With C in equilibrium at the interface» we have aC li = aC 2i = aCi' 

and Eq, (33) gives 
(ka)c 1 Yc1 

aCl (ka)C2 
+ -- aC2 

'~c2 
aCi = (34) 

'~c1 
+ 

(ka)c 1 

'~c2 (ka)C2 

~· 
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By using Eq. (32), we can then determine the relative height of column 

directly from this Va.lue of aCi' By use of relations of the form of 

Eq. (30), ~nA and ~nB are determined. The respective relations are 

~nA = 
(ka)A2 aAi 

(ka)Cl ~h 
(ka)CI XA2-

.YA2 
(35) 

and 

~n = 
(ka)BI (~- xBI) (ka)Cl ~. B (ka)c I YBI 

(36) 

The ratios (ka) AI/ (ka)C I and (ka)B2/ (ka)C I are specified as constant 

values throughout any one run, and (ka)C I ~h is the relative height 

calculated from Eq. (32). 

Then, over the increment, we have 
! 

((FI) d = (Fl) t t + ~(~n.); ·, en s ar J 

(n.l) d = (n.l) t t + ~n.I' J en J s ar J 
and 

(37) 

(38) 

(39) 

Similar relations apply to phase 2. These last equations complete the 

calculation for any one step. 

We can eliminate the inaccuracies resulting from nonconstant 

driving potentials within each step by repeating the calculation of an 

entire column with a smaller trial value of ~xC 1 ; increments of 

0.005 mole~fraction of C, or in some cases 0.0025, sufficed to give 

a satisfactory convergence. 

Results 

The results of the stepwise calculations are reported in Figs. 

2 through 6, which record the concentratio~ path followed by each 

phase inside the column, with reference to the equilibrium curve for 

that phase. 

In Fig. 2, the calculated pair of concentration profiles for 

kc 2/kCI = 1; kBI/kCl =I; kA2/kci = 1 alreadymentioned (a "1-1-l"run) 
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Fig. 3. Calculated concentration profiles showing the 
effect of the kB 1/kCl ratio. · 
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Fig. 4. Calculated concentration profiles showing the effect 
of the kB/koC and kA2/kOC ratios. 
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Fig. 5. Calculated concentration profile for a feed with 
higher concentration of C. 
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Fig. 6.- Concentration profile for reverse extraction. 
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is plotted on the triangular graph. Lines are projected through co

existing points of the concentration path to form an operating conju

gate line (0. C. L. }, as well as the usual operating point (off the plot, 

to the right). The scale of the triangular plot conceals the difference 

between the actual profile and the equilibrium curve. 

Rectangular coordinates allow greater flexibility in choice of 

scales, and thus provide a clearer view of the concentration-profile 

behavior. Most calculations are made for the case where the dis

tribution component C is extracted from phase 1 into phase 2. 

Figure 3 shows, as Run 1, the "1-1-1 11 run from Fig. 2. Two 

other runs are shown, for which kB 1/kCl and kA2/kCl vary in 

opposite directions. To give an idea of the coexisting points in each 

run, the height in the column corresponding to the "knee" of the phase-

1 curve is identified by a point on each of the two curves for the run. 

Figure 4 shows a series of runs, for which kB 1/kCl and 

kA2/kCl are always on the same side of unity; again the "knee" 

points are identified. In both figures it is seen that the concentration 

path followed by the three components falls partly inside the equilibrium 

curve for phase 1 but stays outside for phase 2. This crossing-over 

is quite general and occurs whatever k ratios were chosen. The 

rapidity with which each concentration profile approaches the respective 

equilibrium curve depends largely on the k ratios, and will be dis

cussed in a later paragraph. 

The concentration profiles for the two phases behave some

what independently. In Fig. 3 the run that lies farthest inside the two

phase region for phase 1 (Run 3) is nearest the equilibrium curve for 

phase 2, but in Fig. 4 the run that is farthest on one side is also the 

farthest on the other (Run 7). 

Another interesting feature observed in this study is that the 

calculations for curves that approach the equilibrium line very rapidly 

on the phase-1 side (Run 2, for Fig. 3; Run 4 for Fig. 4) have an un

stable behavior. That is, for such runs, the terminal mole-fractions 

used as input to the stepwise calculations were fixed to the nearest 

integer in the last place of eight significant figures, and still only 
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bracketed the results of the oppositely-directed calculation rather 

than converging exactly upon a S.ingle curve. 

In addition to the runs shown in Figs. 3 and 4, four calculations 

were made (Runs 8 through 11) with still other sets of mass -transfer 

coefficients. Since the results are similar to and consistent with 

those shown in Figs. 3 and 4, they are not plotted separately. How

ever, all these calculations are summarized in Table V, The near

ness with which equilibrium is approached as a stream leaves the 

column is indicated by the outlet (x A) 2 and (xB) 1 values; at equilibrium 

these would be respectively 0.01878 (precisely) and 0.0165 (approxi

mately, due to small variations in the outlet value of (xC) 1 ). 

Two other extraction runs calculated with unit ratios of the 

mass-transfer coefficients(hence, "l-l-1 11 runs) are also listed in 

Table V. Figure 5 shows the concentration path for a feed richer in 

C(xC 1 = 0. 50), calculated with a correspondingly higher relative flow

rate for phase 2. Again the crossing-over occurs for phase 1 but not 

for phase 2. Figure 6 shows a "reverse" extraction at essentially 

the same feed-rate ratio used in most of the "forward" calculations. 

For interpreting the result of the calculations, it is significant that 

the concentration path for this reverse run crosses the equilibrium 

curve for phase 2 but not for phase 1. 



Table V. Summary of calculated extraction runs, showing mass -transfer coefficients 
and terminal concentrations 

KAllKcl l<B2/:KC1 

kC2 kBl kA2 koc kBl kA2 upper knee lower upper extreme lower (xC)l (xB)l (xC)2 (xA)2 Run 
~ kCl kCl kCl KQC 1<QC No. XC XC XC XC out out out out 

9a 0.5 4.0 2.0 0.187 21.39 10.69 -0.035 -0.074 -2.418 t3.888 -0.064 -0.031 0.05655 0.01698 0.1000 0.01722185 

2 0.5 2.0 0.25 0.187 10.69 1.34 -0.025 -0.09? -0.302 tl.841 -0.053 -0.023 0.05592 0.01699 0.1000 0.014200 

4 0.5 2.0 4.0 0.187 10.69 21.39 -0.054 -0.071 -4.700 tl.940 -0.063 -0.035 0.05652 0.01723 0.1000 0.0171146 

11 2.0 4.0 2.0 0.479 8.35 4.17 -0.215 -0.076 -0.938 t6.083 -0.234 -0.091 0.05648 0.01738 0.1000 0.016990 

5 2.0 2.0 4.0 0.479 4.17 8.35 -0.179 -0.074 -1.833 t 3. 07 5 -0. 2 21 -0.101 0.05650 0.018174 0.1000 0.017292 

1 1.0 1.0 1.0 0.315 3.17 3.17 t0.075 -0.075 -0.680 tl.132 -0.093 -0.051 0.056233 0.018339 0.1000 0.016222 

8 0.5 0.5 0.25 0.187 2.67 1.34 t0.029 -0.097 -0.270 t0.457 -0.041 -0.026 0.05576 0.018427 0.1000 0.01380 
' 

6 0.5 0.25 0.50 0.187 1.34 2.67 t0.026 -0.087 -0.680 t0.235 -0.034 -0.028 0.055984 0.02072 0.1000 0.015492 

10 2.0 0.5 0.25 0.479 1.04 0.52 -1.926 -0.088 -0.107 t0.583 -0.091 -0.091 0.05458 0.02167 0.1000 0.008855· 
I 

3 2.0 0.5 4.0 0.479 1.04 8.35 -0.392 -0.062 -1.657 tO. 762 -0.146 -0.100 0.05620 0.02240 0.1000 0.017035 Vol 
~ 

7 2.0 0.25 0.5 0.479 0.52 1.04 -1.990 -0.161 -0.208 tO. 322 ---- -0.053 0.05518 0.02260 0.1000 0.01215 I 

12b 1.0 1.0 1.0 0.315 3.17 3.17 t0.485 -0.091 -0.305 t0.600 -0.132 -0.090 0.13092 0.027418 0.1000 0.011630 

d d 
13c 1.0 1.0 1.0 0.315 3.17 3.17 tl.887 -0.057 -0.024 -0.067 tl.560 . tO 778 0.21000 0.027725 0.02105 o:o1577o -0.315 t0.074 • 

a 
(xC) 1 . = 0.30; (xA) 1 . = 0.70; (xB) 2 . = 1.00. 

,1n ,1nt , 10 

b 
(xcJ 1 . = 0.50; (xA)l . = 0.50; (xB) 2 . = 1.00. ,m ,m ,m 

c(xA) 1 . = 1.00; (xc) 2 . = 0.10; (xB) 2 . = 0.90. ,m ,m ,m 

dTwo sides of a discontinuity. 
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DISCUSSION 

Crossing of the Equilibrium Curve 

In order to explain this crossing of the equilibrium curve several 

factors must be considered. The crossing is not due solely to flow con

ditions, because at constant relative flow-rate the crossing depends on 

the direction of extraction. It is more correct to say that the effect is 

due to a nonequilibrium which is produced by the flow. Two principal 

factors must be considered: the effect of depletion (or enrichment) of 

component C, and the activity behavior of the minor component in each 

phase. 

Depletion (or enrichment) of C. When the composition ir1eaches 

the equilibrium line for phase 1 in the forward runs, the driving poten

tial for ~ is close to zero and the rate of transfer of A is around one

tenth that of C. As already indicated, each phase of the system is char

acterized by its respective activities which in themselves do not provide 

any abrupt indication that the composition has reached or crossed the 

equilibrium curve. Thus the behavior of the phase depends mainly upon 

the relatively large rate of depletion of C (in the forward case). The 

equilibrium curve has a shallower slope than the line of constant A/B 

ratio. Since the A/B ratio varies quite slowly, this depletion {in the 

forward case) tends to pull the composition inside the curve({see Fig. 7a). 

For phase 2 in the forward case, enrichment of C provides the 

major effect. In this phase, this enrichment carries the concentration 

path away from the equilibrium line and thus keeps it from crossing 

(Fig. 7b). 

For the reverse case, the opposite situation is encountered; the 

depletion effect of C in phase 2 carries the concentration path across 

the'-"equilibrium curve, and the enrichment effect of C in phase l pulls 

it away from it. 

Activity effects. From the slope of the constant-a-ctivity lines, 

it appears quite certain that no transfer of B from phase l (or of A 

from phase 2 in the reverse case) will occur until the composition is 

appreciably inside the equilibrium line. In the forward case, the activity 

gradient for B in phase 1 changes in sign soon after phase l crosses 
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MU-21938 

Fig. 7. Depletion and enrichment effects for compound C. 
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MU-21939 

Fig. 8. Activity effect of the minor component on thermo
dynamic driving potential (phase 1 ). 
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the equilibrium curve. Physically this means that for a time after 

phase 1 enters the column, it is enriched in B; then after it is well 

inside the equilibrium curve, it rejects B again. This behavior is 

most easily explained by Fig. 8, which shows the situation that prevails 

for phase 1 1n the forward case. 

Point I, in this figure, represents in a general way the equilibrium 

composition of the interface corresponding to some particular bulk-phase 

composition of phase 1. The line of constant activity for component B, 

through point I, lies inside the equilibrium curve in the region where 

xC exceeds xCI (that is, where component C is being removed from 

phase 1 ). As the bulk composition moves diagonally to the right,. the 
I 

interface and its aB.;. line move downward. The intersection E of the 
·1 

composition line with the aBi line shows the instantaneous situation 

where aB 
1 

has overtaken aBi and the activity gradient is in process 

of changing sign. In this situation, the system may be said to "register" 

the attainment of a partial equilibrium; however, the point where it is 

reached is seen not to lie exactly on the static-equilibrium curve. 

A similar explanation applies in the reverse case to component 

A in phase 2. Here also the ccrnentration change due to the diffusion of 

A first acts in the same direction as that due to C; then after the compo1-' · 

sition is appreciably inside the two-phase region, the diffusion of A 

begins to have an opposite effect. 

Figure 1 shows that the slope of the constant-activity lines for 

B in phase 1 (and A in phase 2) is quite steep, and this means that the 

partial-equilibrium point actually will lie quite close to the equilibrium 

line. However, the composition must be inside the partial equilibrium 

before ba\=k diffusion of B can begin to compensate for forward diffusion 

of C. 

A minor diffusional effect of component A appears to reinforce 

the depletion of C {for forward extraction, in phase 1 ). Under the 

conditions assumed for the calculation, interfacial resistance is neg

lected, and phase 1 is regarded as a source and sink of component A, 

with the diffusion of A to or from the interface being insensitive to the 

apparent driving potentiaL Thus, under this particular assumption, the 

rate of diffusion of A is determined entirely by its driving potential 



-39-

between the equilibrium interface and the bulk of phase 2. As the activity 

of A in phase 2 is always less than the interface value, the diffusion 

of A is into phase 2. Its direction is such as not only to enhance the 

crossing-over in phase 1, but also to increase the likelihood of a cross"

ing-over in phase 2. Since the composition of phase 2 always remains 

at some distance from the equilibrium curve, this effect can be viewed 

as a secondary one. 

As a primary conclusion, it is fair to say that the solute depletion 

{or solute enrichment) effect is the most important one and is the main 

cause of crossing-over into the metastable region. The behavior of this 

ternary system may be compared to that of a binary system undergoing 

crystallization. The temperature coordinate in binary behavior fs anal

ogous to the C-component coordinate in the ternary system. Abstraction 

of C, liketlowering of temperature, carries the system from an under

saturated to a supersaturated condition, after which diffusion toward 

the equilibrium is couri.te"rbalan:ced by fufther C abstraction or temper

ature lowering. The equilibrium (for that particular phase) thereafter 

is always approached from the supersaturated side. 

Since the approximations in our calculation of driving potentials 

appear to be comparable in their effect to a change in the numerical 

value of one or another of the mass-transfer coefficients, these approx

imations are believed to be without effect on the over-all conclusions 

reached: first,· a crossing-over will generally occur in a phase for 

which the solute-depletion slope is steeper than the constant-mole-

ratio slope {for the carrier and the minor component in the phase). 

Second, decrease in the mass-transfer coefficient for the minor com

ponent in the phase involved will cause the concentration profile to de

viate more widely from the equilibrium line. 

Influence of the Mass-Transfer Coefficients 

As explained in an earlier paragraph, the present calculations 

are based on the assumption that the interface is in equilibrium. This 

leaves three independent mass -transfer -coefficient ratios kC 
2
/kCl, 

kB 1/kCl' and kA 2/kCl to be specified, and these were each varied so 

as to investigate their influence on the position of the concentration path. 



The two remaining ratios, kA/kcl and kB2/kc 1 were taken 

as dependent variables; their values, computed frotn the known values 

,of .6.nA and .6.nB by mass~transfer relations similar to Eqs. (35) and 

(36 ), are reported in Table V. Besides the starting and end values of 

these ratios, Table V also gives extreme values for kB 2/kCl and 

k Al/kc 
1

. For the latter, the extreme value occurs essentially at the 

"knee" of the curve for phase 1; that is, at the point where x A in that 

phase goes through a minimum. 

From the shape of the graph,: we note first that kC 1 and kC 2 
work together to produce a transfer of component C. With 

kC 2/kCl < 1, the restoring potentials f~r components A and B be"~ 

come relatively larger, and static equilibrium is more nearly ap~ 

proached. Because the effects of kCl and kC 2 do combine, the in

fluence of the coefficients kA2 and kBl is better explained by referring 

them to an over~all mass-transfer coefficient koc· (Effectively, kA2 
and kBl are also over-all coefficients). The over-all coefficient for 

component C is given by 

1 
= 

koc 

1 
+ 

kCl 

1 

mkC2 
(40) 

In this relation, m is the distribution coefficient (xc 2/xc 1 )eq., 

whose mean value calculated from the equilibrium curve is 0.460. 

With kCl = l, and kC 2 takes the values 2.0, 1.0, or 0.5, the over-~all 

:mass-transfer coefficient kOC equals 0.479, 0.315, or 0.187, respec

tively. 

Comparing Run 2 of Fig. 3 with Run 4 in Fig. 4~-~both having a 

high ratio of kB 1/k0C-~we find the profile close to equilibrium in phase 

1. For phase 2, the ratio kA2/kOC governs, since the values are 

different in Runs 2 and 4, and the curves are different. Similarly, 

comparing Run 3 of Fig. 3 with Run 5 of Fig. 4, we conclude that a 

high ratio of kA2/k0
C carries the profile close to equilibrium in phase 

2. For phase 1, the ratio of kB 1/kOC governs, since with different 

values, the curves are different. 
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The effect of k A 2/kOC can be explained as follows: For phase 

2, diffusion of A frorn phase 1 to phase 2 has the effect of pulling the 

concentration profile toward the equilib:dum curve· (whereas diffusion 

of C in the same direction pulls the profile away from the equilibrium 

curve). While the effect of A is not large enough to balance completely 

the effect of C, it does serve to determine how closely the profile for 

phase 2 will approach the equilibrium curve. For phase 1, the effect 

of kB 1/koc on the concentration path is consistent with having the 

diffusion of B oppose the diffusion of C and pull the concentration 

path back toward the equilibrium curve, when the composition is appre

ciably inside the two-phase region (as was discussed in the preceeding 

section). 

There is a slfght indication from Tables V and VI that a higher 

value of the second ratio (kA2/kOC for phase 1, kB 1/k
0

Cfor phase 2) 

carries the curve slightly farther from equilibrium. However, not all 

runs give results corresponding to this indication. In any event, any 

such effect is secondary and very small. 

Numerical Values of the Unspecified Coefficients 

Table VII shows that the mass -transfer ratios k Al/kC 
1 

and 

kB
2
/kC 1 may be either negative or positive during the extraction run. 

Negative values can be explained by considering cross-product transport 

which results from the diffusion of other species. For a typical run, 

Table'VII shows the concentration values that correspond to kB 2/kc 
1 

=0. 

In calculating the contribution of cross-product terms to kBZ, it:is 

reasonable to assume'that the cross-product transport due to diffusion 

of A is negligible, because the driving potential for A is small and 

theoretically the cross-product coefficient (k ABZ) is also small. Thus, 

from relations similar to Eq. (24) we can compute the relative magnitude 

of kCBZ. As NB is equi:d to zero at this point, we have 

s aBz/'~B2 

S acz/Ycz 

= 1.10 

This shows that the k AZ/k;oc and kB 1/koc ratios, which apply here 

( 
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Table VL Effect of mass -:-transfer-coefficient ratios 

on exit concentration of component A in phase 2. 

Run No. k-A2/koc k-Bl /koc (X: A} 2 out .. 

4 21.39 10.69 0.0171146 
• 

9 10.69 21.39 0.01722185 

5 8.35 4.17 0.017292 

3 8.35 1.04 0.017035 

11 4.17 8.35 0.016990 

1 3.17 3.17 0.016222 

6 2.67 1.34 0.015492 

8 1.34 10.69 0,01420 

2 1.34 3.67 0.01380 

7 1.04 0.52 0.01215 

10 0.52 1.04 0.008855 
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Table VII. Concentration values and driving potentials which correspond to 

kB 2/kCl = 0 for Run 1 (a "1-1-1" run) 

Coexisting 
compositions 

Component Phase 
1 

c 0.2392 

J.j.; 0.7285 

B 0.0323 

Phase 
2 

0.0738 

0.0143 

0.9111;; 

Net a 
movement 

Driving potentials and 
activity coefficients 

Phase 1 Phase 2 

+ 

+ 

+ 

a
1 

""' a. 
. 1 

+0.019U 

-·0.01729 

0 

yl 

1.410 

1. 077 s 

28.10 

ai - a2 ,y2 

+0.058 3.483 

+0.0606 49.80 

-0.0185 1. 015 

aTransfer from phase 1 to phase 2 is denoted by +. 

Mass-transfer 
coefficients 

kA 1/kc 1 = o. 0761 

kB2/kc 1 =.o 

0 

~ 
w 
9 
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and have been assumed to be constant, can lead to a ~ross-product . 

diffusion coefficient that is not small compared to the principal term, 

but is at least of a reasonable order magnitude. (It is not likely that 
'· 

the A-B cross-product term for phase 2 could contriqute enough dif-

fusion of B to reduce the apparent magnitude of kCB
2

; the ~riving 

potential for A in this phase, although in the same direction as for C, 

is only about 0.07 times the potential for C.) 

The same arguments can be applied to kCA 1/k AAiJ. ~ This ratio 

changes in sign at xCl = 0.290 and xC 2 = 0.096. The relative magnitude 

of kCAl/k AAl is then equal to 0.028, which agrees more closely with 

our qualitative expectations. 

As a general conclusion we can say that in the range where the 

two ratios are negative, the cross-product diffusion of A induced by 

C is large enough to override the direct coefficient and lead to the ef

fective negative value. 

Calculations of the Number of Transfer Units 

Extraction-tower performance is usually characterized by 

quantities first introduce by Chilton and Colburn and named by them 

"number of transfer units" (NTU) and. ilheight of a transfer unit" (HTU). 

These quantities can be defined for either phase 1 or phase 2, and on 

the basis of either a single-phase resistance or an effective over-all 

resistance. They are related to column height in the following way: 

Height of column = (function of mass -transfer coefficients) 

X (function of separation performance) 

= (HTU) (NTU). (41) 

Here HTU has dimensions of length, while NTU is dimensionless; with

in this restriction, the definitions of the two must be compatible but are 

somewhat arbitrary. The usual practice is to define the NTU value for 

a particular phase as 

(NTU) .. 
lJ 

d(moles component i extracted from phase j) 

driving potential for component i in phase j 

(42) 
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with the driving potential known as a function of the extent to which 

extraction has proceeded. Here, where the flowrate is not constant, 

the number of transfer units for component C in phase 1 can be de

fined as 

(NTU)OCl = 
J(xcl>out 

(xc 1 )in 

Yc1 dxCl 

aCl- aC2 

(43) 

The results of this investigation enable us to determine the effect of 

concentration profile upon NTU value. For the usual equilibrium

curve approximation to the profile, F 1 /[xc 1 -{x~ 1 y~ 1 /yc 1 >] was 

plotted against xCl and was integrated numerically or graphically be

tween the effective value of (xC 
1 

). (equilibrium-curve value, in this 
1n · 

case 0.2911) and (xCl)out (here 0.056). 

The correspon,ding NTU values for the computed concentration 

profiles were evaluated as part of the computer calculation. The re

lation used was 

(44) 

where the y, a, and F values were all evaluated at the start of each 

slice, and the increments were added cumulatively. This calculation 

is identical in its result to using aC
2 

- aCl as the driving potential and 

omitting the mass-transfer-coefficient ratio. The following values of 

over-all NTU for component C relative to phase 1, were obtained: 

Equilibrium-curve approximation ......... 0........... 3.85 

Run 1 (intermediate approach to equilibrium curve)..... 3.66 

Run 7 (furthest departure from equilibrium curve 

in bo.th phases) ........................... 0.... 3.75 

Run 5 (near approach to equilibrium curve in 

both phases) ................................... 3.82 

Run 2 (near equilibrium curve in phase 1, far from 
' 

equilibrium curve in phase 2) .................... 4.29 

Run 3 (near equilibrium curve in phase 2, far from 

equilibrium curve in phase 1) .................... 3.53. 
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Comparing Run 5 with the equilibrium-curve approximation, we see 

that the NTU values. are almost the same, because the concentration 
' 

path for· Run 5. is close to the equilibrium curve .. For the other values, 

when the concentration path for phase 1 is far from equilibrium, the 

NTU value may either drop or rise, depending. on whether the concentra

tion path is mainly inside or mainly outside the equilibrium curve. On 

the other hand, when the concentration path f9r phase 2 is far from 

equilibrium, the value for the NTU rises. Thus we often deal with two 

opposite effects, and for intermediate cases we may get a partial com

pensation. 

The effect just described can be explained with the help of the 

constant-activity line for component C, shown in Fig. 1. With reference 

to a material-balance line drawn through an exterior "operating point" 

{which will be in nearly the same position for both the equilibrium-curve 

treatment and any concentration-profile calculationr), we find aCl < aClE 

when the concentration profile for phase 1 is inside the two-phase region. 

Thus the driving potential (aCl - aC
2

) is then smaller than the driving 

potential for the equilibrium-curve approximation, and the contribution 

of phase 1 to the NTU will be higher. When the concentration profile 

for phase 1 lies outside the equilibrium curve, the driving potential is 

larger, and the NTU contribution will be less. In the same manner, the 

constant-activity lines for component C show that when the concentration 

path for phase 2 is outside the two-phase region, aC 2E is less than acz· 

This leads to a smaller driving potential for aCl - aC
2

, and a higher i · 

NTU value than that of the equilibrium-curve approximation. 

Run 2 shows the greatest rise in the NTU, resulting from in-

creases due to both phase 1 and phase 2. Run 3 shows the greatest drop; 

here the drop from phase 1 outside the equilibrium curve overshadows 

the later rise due to phase 1 inside (and also the rise due to phase1..2). 

Runs 1 and 7 reflect somewhat similar behavior. 

Start-up History for a Run 

We need now to determine from qualitative considerations whether 

a column could arrive at the concentration profiles computed numerically 

for it. The canposition at several heights in the column for a sequence 

of times after start-up will be shown to approach the ultimate steady
state concentration profile in the manner 'indicated en Figs. 9 and l 0. 
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Our qualitative considerations will be applied to an extraction 

column where the two streams flow countercurrently. the solvent being 

introduced at the bottom and the feed at the top. We consider the two 

cases, where either phase 1 or phase 2 is continuous. to see how the 

concentration varies with time in both cases. 

Phase 1 continuous. This case is illustrated in Fig. 9. Let the 

column be filled with phase 1, flowing at its steady-state flow rate. 

Phase 2 is then introduced dropwise at its respective flow rate. The 

first drops of phase 2 will be completely dissolved by phase 1. · We 

start our time scale at t
0

, at which the discontinuous phase first begins 

to leave the column. Because of a higher affinity for component B, the 

concentration profile for phase 1 (at t
0

) crosses the equilibrium curve 

earlier than the steady-state curve, and phase 1 throughout contains 

more of C than it would in the steady state. The first drops of phase 2 

that do survive effect a maximum extraction of component C, and this 

larger extent of extraction intensifies the crossing-over effect so that 

the t 0 curve for phase 1 is carried further inside the equilibrium 

curve than in the steady-state. As extraction continues, phase 1 (after 

having entered the column) comes in contact with a phase 2 that contains 

gradually more 6f A. arrl.C.Thus the transfer of B into phase 1 and of 

C into phase 2 becomes less rapid, and the concentration profiles ap

proach the steady-state values. On the same graph we have also plotted 

the concentration lines for five different heights in the column. All 

these profiles startm1he concentration curve corresponding to t
0

; for 

simplicity the profiles for times between t = 0 and t = t 0 have been 

omitted. 

Phase 2 continuous. When phase 2 is continuous (Fig. 10), the 

behavior of the column can be described in quite similar terms. Into 

phase 2 flowing at its steady-state flow rate, phase 1 is introduced drop

wide at its respective flow rate. The first drops of A will be dissolved 

by phase 2; then, when the drops survive, they undergo maximum ex

traction of component C, losing C much more rapidly than they can gain 

B. Thus the concentration profile (for phase 1) corresponding to t
0 

crosses the equilibrium curve later than the steady'"state profile. As 

initially phase 2 is enriched rapidly in A, its concentration profile is 

carried closer to the equilibrium curve than in the steady state. 
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Fig. 9. Start-up behavior of an extraction colwnn, with 
phase 1 continuous. 
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Fig. 10. Start-up behavior of an extraction column, with 
phase 2 continuous. 
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However, diffusion of C always keeps phase 2 from crossing the equi

librium line. As extraction continues, the cone entrations at each point 

in the column change steadily toward the steady- state values. 

These qualitative considerations show that as the extraction pro

ceeds, the unsteady concentration profiles in both cases can approach 

the steady- state ones as a limit. It is interesting to notice that the same 

factors that cause the concentration profiles to cross the equilibrium 

line in the steady state also serve to bring about this effect at start-up, 

but at a different point in the column. 

CONCLUSIONS 

From the results of this investigation one can draw the following 

conclusions: 

a. Activity differences as driving potentials give a much more 

realistic picture than the usual concentration driving potential. For 

very accurate calculations, one could replace the bulk activity coeffi

cient in the mass-transfer equation by a suitable mean value and could 

also take into account the individual values of the eros s -product .coeffi

cients for mass transfer. 

b. Based on the theory that is presented here, the concentration 

path does not approach the equilibrium curve instantaneously and then 

follow it, as is usually assumed. Instead it may actually cross the 

equilibrium curve for one phase while staying away from it for the other. 

c. The direction of diffusion of the transferring component (C, 

m our study} is the main factor that determines whether a phase will 

cross the equilibrium line. For the usual case where the equilibrium 

shows an increase of the minor component in each phase as the trans

ferring component is augmented, the phase that loses the transferring 

component is the one whose composition tends to eros s the equilibrium 

curve. 

d. The distance between the calculated concentration paths and 

the equilibrium line depends on the mass -transfer coefficients. The 

larger the over-all coefficient for component A, the nearer the phase-2 

curve is to the equilibrium curve; the larger the over-all coefficient for 

component B, the nearer phase l approaches the equilibrium curve. 
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e. The NTU val\}es depend largely on the separation between the 

calculated concentration path and the equilibrium c;urve, in each phase. 

For extreme cases the nuhrber of transfer units calcul!3-ted from the 

exact concentration path can differ as much as 1 Oo/o from that calculated 

by the usual standard method. 

f. Experimental verification of the calculate_d effects is needed. 

If the predicted effect is real, two-component ,analysis should replace 

single-component analysis of interior or terminal samples from operat

ing extraction equipment involving ternary systems. 
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NOTATION 

Margules constant, for Eq. (1) 

activity 

length coordinate, em 

length coordinate .• em 

concentration, moles/liter 
2 

diffusion coefficient at infinite dilution, em /hr 

modified diffusion coefficient (Eq. 20) 

modified diffusion coefficient (Eq. 25) 

diffusion coefficient multiplying fJ. gradient (Eq. 13a) 

differential operator 

flowrate of a phase, g-moles/hr 

function of 

height of a transfer unit, em 

height of a differential section in the extraction column, em 

mass -·transfer coefficient, (g-moles )/(hr em 
2
)(g-moles/liter) 

product of mass -transfer coefficient and interfacial area 

per unit volume {liter)/(hr cm
3

) 

a function of Mar gules constants for a ternary system (Eq. 4) 

distribution coefficient, (xc;2/xc1) ~quil. 

number of moles transferring per unit area per unit time 

number of transfer units 

number of moles transferred between phases per unit time 

universal gas constant, (crn,}(g)/g-mole 0 R 
0 absolute temperature, R 

time 

a variable 

mole fraction 

a variable 

Greek Letters: 

n numerical constant(Eq. 5) 

numerical constant (Eq 0 6) 

activity coefficient, a .. /x .. 
lJ lJ 
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a partial differential operator 

0 fncrement 

1-L chemical potential , viscosity 

2; summation 

Subscripts: 

A,B,C components of the ternary system 

E equilibrium-line value 

i interphase 

j component 

0 over-all 

p phase 

1 a phase rich in A 

2 a phase rich in B 

Superscript: 

* ·equilibrium 
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