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ABSTRACT 

A method of calculating, for the K-nucleon interaction, the 

long-range force arising from the exchange of a pion pair and of a possible 

three-pion resonant state is formulated. It is shown that the long-range 

force can be related with the electromagnetic structure parameters of the 

nucleon and K meson. Finally, relations between K~nucleon and K-nucleon 

elastic amplitudes are discussedo 
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I. INTRODUCTION 

In order to understand the dynamic nature of the K=nucleon interaction, 

it is important to establish whether or not a long-range force exists. In a 

previous note we argued that the low energy (S=wave) behavior of the K~proton 

1 
and K-proton scattering may indicate such a force. The criterion for 

establishing its existence--in the absence of detailed experimental 

information about any single channel=-is that it shall correlate the energy 

dependence of the various related processes. Relevant are K-nucleon and 

K-nucleon elastic and charge-exchange scattering, as well as hyperon 

production processes. In this paper we formulate a method of calculating 

the long-range interaction arising from the exchange of a pion=pair or a 

2 possible three-pion bound state for these processes. 
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The calculation is made on the basis of partial~wave dispersion 

relationso 3 The preliminary step of this approach, ioe., the determination 

of the analytic structure of the various transition amplitudes, has already 

4 been performedo In general, the partial-wave amplitudes are analytic in the 

cut W-plan~ (W is the total barycentric energy of the K-nucleon system~ with 

physical branch cuts beginning at the thresholds of the lowest energy 

intermediate states and extending to infinityo In addition, there are 

unphysical singularities associated with the two 11 crossedf' reactionso The 

spectral functions of the partial-wave amplitudes, ioeo, the discontinuities 

across the unphysical cuts and the residues of poles, represent--or are 

defined to be--the ''interaction." 

The long-range interaction is described by the spectral fUnctions 

for the singularities that lie close to the physical region. 5 These occur 

only in the elastic K-nucleon and K-nucleon amplitudes and depend on the 

matrioc elements for the reactions ~ + ~ ~ K + K and ~ + ~ ~ N + No 

A good deal is known about the latter matrix element, but the former is as 

yet totally unmeasuredo In order to estimate the P-wave part, we introduce 
·6 

a charge structure hypothesis for the K-mesono This allows a rough guess 

as to the force that would arise from the exchange of a resonant two-pion 

state. 

It is important to emphasize that pion exchange contributions to 

the K-nucleon force have a substantially longer range than the Yukawa 

interactions (NEK) and NAK). The latter may control hyperon production 

and presumably play an important role for the short~range interaction. Even 

if the coupling constants and are relatively small, the effectthese 

have may be enhanced by the presence of the long-range forceo 
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II., AMPLITUDES FOR THE K-NUCLEON SCATTERING 

The elastic K-nucleon and K-nueleon interactions are both represented 

by a general diagram with four external lines--two K-mesons (mass ~) and 

two nucleons (mass M)o 

Let the four-momenta of the initial and final K-mesons be q1 and 

~' respectively, those of the incident and outgoing nucleons being p1 and 

p2o If different pairs of the momenta are regarded as the variables of the 

incoming particles, the diagram describes three distinct processes: 

K+N-+K+N ( ql + pl ... ~ + p2) ' ( I!ola) 

K+N-+K+N ( -~ + p -+ -q + p ) ' 1 1 2 (ILlb) 

and 

K+K-+N+N ( -~ + q ... p - p ) • 1 1 2 ( II..lc) 

The most striking feature of the problem is that even at threshold the 

K-nucleon system initiates hyperon production, 

K+N-+1C+Y (IL2) 

where Y denotes either A or E " It is therefore necessary to use a 

many-channelS-matrix formalism" The unitarity of S establishes a host 

of conditions among the amplitudes for the above reactions and also relates 

them to the amplitudes for pion-hyperon processes, 

1C + y -+ 1C + Y' • (IIo3) 

All the preceding reactions, as well as those obtained by applying the 

substitution rule to Eqso \IIo2) and (II.3), enter into the determination 

of the amplitude for any one of them. 
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The primary concern of this paper is the amplitude for processes 

(II.la-c), but for emphasis and fUture applications it is convenient to 

proceed with the many-channel formalism. The S-matrix is defined in the 

same way as that for pion-nucleon scattering, 7 

(II..4) 

where Mi(Mf) is the mass of the initial (final) baryon, E is the total 

energy of the baryon, and m that of the meson. For the case of even (E - A) 

8 
parity and pseudoscalar K-meson, the decomposition into spin-independent 

amplitudes is 

( II.5) 

where A and B are matrices in channel space, the i~dices having been 

suppressed. 

The relations between A and B and the barycentric differential 

cross section is established as follows: 

I ( f I fl + 
( 2: 0 .9.r )( .2: 0 .9.j_ ) 

l:1i l·l.<!r I 

.2 

i > I ' 
( II.6) 

where ~ indicates the appropriate sum and average over spin states and a 

is the three-vector of 2-by-2 Pauli spin matrices. The channel matrices 

f 1 and f 2 are related to the previous a.n:plitudes by 
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fl 
l 

(E + M)
1
/ 2 [A + (W - M)B](E + M)1/ 2 ' = B:rtW 

and (II. 7) 

f2 
l (E - M)

1
/

2 
[-A + (W + M)B](E - M)

1
/

2 
' = B:rtW 

where M and E are diagonal matrices with components equal to the baryon 

mass and-the c.m. total baryon energy, respectively, and 

Each element of the matrix f 1 2 is a function of the barycentric 
. ' 

total energy W and the appropriate scattering or production angle e . 

A straightforward method for performing the decomposition into partial­

waves is available in the work of Jacob and Wick.9 One easily shows that 

00 

fl = .E ( f .t+ p ' .t+ l - f.t- p'.t-1 ) ' .t=O 
( II.9) 

and 

00 

f2 = .E (f - - f ) p' 
' .t=l .t .t+ .t (II.lO) 

where 

l 
= ~ f d cos e (f Pn + f Pn•J.) o 

2 -1 l k 2 ~· 
(II.ll) 

The latter amplitudes are useful for the application of partial-wave 

dispersion relations because they satisfy a simple unitarity condition. 

For a given isotopic spin, total angular momentum, and parity state, the 

condition is 

= ' 
(II.l2) 
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where kj is the magnitude of the barycentric three-momentum of the 

intermediate state j, and where 

if 

if W < W. , 
J 

Wj finally, is the threshdld energy of the state j. 

Eq. (II.l2) that
10 

It follows from 

fi 
Im = (II.l3) 

Another interesting property of 11 
fJ± , as first pointed out by MacDowell, 

follows from Eqs. (II.?), (II.8) and (II.ll). It is 

f(J+l)- (W) = -f.£+ (-W) .. (II.l4) 

In the sequel, therefore, we need consider only f J+ , and not f .t- '., 

Finally, if each element of A and B satisfies the Mandelstam representation, 

it follows that f .t± has the following n,threshold" dependence: 

( II.l5) 

f if (W) (k k ).£±1 
.t± ~ i f (II.l6) 

where Mi(Mf) and mi(mf) are the respective masses of the initial (fi~al) 

baryon and meson. 
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Let u.s now go on to discuss the analytic properties of f .e± (W) • 

First of all, it is necessary to remove the branch points that arise from 

the "kinematic factors" (E ! M) 1/ 2 in Eqs. (IIo7) and (II.8). At the 

same time, let us take into account the abovementioned threshold behavior. 

1 To this end we define the matrix GJ , where J = .e + 2 , as follows: 

Using Eqs. (IL7), (IIo8) and (II.ll), one easily shows that 

where 

1 
= Ibi" 

+1 
f d cos 9 P.e(cos e) A(W1 cos 9) 

-1 

+1 
f d cos 9 P.e(cos e) B(W1 cos 9) 

-1 

( II.l7) 

(II.l8) 

(II.l9) 

The modified amplitudes Gj(W) were defined by Eq. (II.l8) to be 

analytic in theW-plane except for the singularities of A.e and B.e • 

Their location and nature have been studied on the basis of the Mandelstam 

4 11 representation. ' Let us continue the discussion by treating only the 
l'~.-~· 

amplitudes for elastic K-nucleon scattering. Then, assuming I and ~N ~K 

as the basis for the isotopic spin space, the decomposition into isotopic 

spin independent functions is 

(II.20) 

with a similar relation for B • 
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The amplitudes for states of definite isotopic spin are therefore 

Similar equations apply for the other amplitudes: B(±) , ft±(±) and 

The amplitudes A(±) and B(±) are scalar functions of the 

invariants 

2 w2 s = (ql + pl) = ' 
2 u = (pl - ~) 

2 t = (ql = ~) 

which in turn are related to the K-nucleon barycentric variables by 

2 
t = .. 2k (1 - cos e) 

4sk
2 2 2 

= [s .. (~ + M) ][s - (~ ~ M) ] 

and 

E = (W2 + M2 .. ml/)/'d!IJ 

(IIo2la) 

(IL2lb) 

G 
(±) 

J 0 

(IL22a) 

(II.22b) 

(IL23) 

(IL24) 

(II.25) 

I 

The location of the singularities of GJ is discussed in Ref. (4). The 

singularities of the dynamically coupled Gaj3 
J 

elements also influence the 

behavior of GJ. It is clear that the dynamic singularities arising from the 

exchange of two- and three-pions (the cut due to the two .. pion exchange extends 

to W = ,/ Mf = m 2 + vf~ 2 -m 2 ) are closer to the physical region ~~ V ~ K ~ 

than all others and may be expected to produce the strongest energy dependence 

in the physical amplitudes and, in fact, to doDdnate those of sufficiently 

high J • The discontinuity across this part of the cut Im GJ(W) is defined 
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to be the 11 long range interaction". A general expression f'or the discontinuity 

f'ollows f'rom Eqs. (II.l8) and (II.l9). Changing the. variable of' integration 

from cos e to t one f'inds: 

Im G (±) (W) 
,J 

=4k
2 

= 1 I dt P.e (1 + t
2 

) 
3~ k2.e+2 . 0 2k 

X [rmA(±) (W, 1+~) + (W.,..M) ImB(±) (W, 1+~) l 
2k2 2k2 . J 

2 -4k
2 

+ (E - M), I ( ~ ) 
2~ 4 0 dt pn+l 1 + 2 

32~ k ~+ » 2k 

X [-Im A(±) (W, 1 + _!_) + (W tM) Im B(±) (W, 1 + t
2 

)]. 
2k

2 
2k 

(II.26) 

Im A and Im B contribute to the spectral function Im GJ(W), f'or real 

W, in the interval 

-v 2 2 
- ~ ~ m~ < I w I < V r! - m1( 2 

(IL27) 
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III. THE TWO- and THREE-PION INTERACTIONS 

The strength of the long range interaction depends upon the 

imaginary part of the invariant amplitudes A(±) and B(±) when they are 
2' 

evaluated in the region of variables ow( V ~ - 4m 
2 

1{ 
+ 

2 
and 0 < t < -4k • This region of the invariants has a simple interpretation 

in terms of the barycentric variables of the reaction K + K ~ N + N . Let 

q and p be the magnitudes of the three momenta of the K meson and the 

nucleons, respectively, and let e
3 

be the production angle: 

' 

all in the KK barycentric system. These variables are related to the 

invariants by: 

2 2 
+ 2pq cos e3 s = -p - q 

2 2 
- 2pq cos e3 u = -p - q 

and 

Now, for 4m1f
2 < t < 4~2 , Eqo (II.27) may be rewritten as 

or 

2 < -(p + q) 

-1 < cos 8 < 1 

(IILla) 

(IILlc) 

(III.2) 

showing that the amplitudes A(±) and B(±) are to be evaluated for physical 

values of the production angleo On the other hand, the total energy -{t has 

unphysical values corresponding to the two-pion intermediate state. The 
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imaginary parts of A(±) and B(±) thus obtained are the so~called 

"absorptive parts" for the process K + K -+ N + N and are denoted by 

~III±(t, s) 
± 

and BIII (t, s)o 
·., 

The amplitude for the production process is obtained by applying 

the substitution rule to the S-matrix element of K-nucleon scattering 

Eq. (IIo4). Frazer and Fulco have shown that the helicity amplitudes fA,~ 

11 12 of Wick and Jacob provide a simple way of expressing the result. From 

their work one easily finds that, for each value of the isotopic spin index (±), 

where 

,. ++ = 

and 

,. + ... = 

,. 

( 27() ( A, ~(N, N) I T I (K, K) ) = 
q 

= ..,:QA 
M 

+ q cos e
3 

B 

~ 
"""' = -+ M 

i)/3 
sin e3 Be .. 

(IIL3) 

(III.4) 

(IIL5) 

The absorptive parts AIII and BIII are then expressed, for physical 

values of t > 4Nt, in terms of the 1'-amplitudes 

M 1 + Jl- cot e
3 1 + 

AIII = - ~ 2i ['f - 1' + pE 2i [1'+- .. 1' 
++ ++ +-, 

(III.,6) 

and 

M 1 + 
BIII = qE [1' - T 0 (III.7) sin e

3 
21 + .. +.-.. 

The central physical condition upon which the calculation is based7 

is the unitarity of the S-matrix for the production channel. It is expressed 

in terms of the amplitudes of Jacob and Wick by 

.. 
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2i 

( 'A, ~(N, N) I T - Tt I (K, K) ) 
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= ~ ; ~ 2
J4; 1 d

011
J (e) ('A, ~(N, N)l rtJ In)( n I TtJ I (KK)) 

(IIIo8) 

where the first summation extends over all the energetically accessible 

intermediate states that connect a KK pair to a NN pair. J The d
011 

are 

the wave functions for a symmetrical top and 11 = 'A ~ 'A • Finally, the 

matrix elements appearing under the double sum are the amplitudes for the 

production of a state (n) by NN or KK systems of definite total angular 

momentum J.. Both sides of Eq. (III.8) may be expressed in terms of analytic 

functions and the equation may be continued to unphysical values of t 7 

where only the two-pion state contributes. The interesting feature of the 

present application is that Eq. (III.8) relates the absorptive parts to 

other amplitudes which (in principle) may be calculated independently. Let 

us now discuss the two-pion intermediate state. The absorptive parts then 

-depend only upon the matrix elements for the reactions ~ + ~ ~ K + K and 
C# 

~ + ~ ~ N + N • The Jacob-Wick amplitudes for the latter are expressed in 

. J 
terms of the Frazer-Fulco amplitudes f± as follows: 

(III.9) 

where ~ is the magnitude of the pion three-momentum in the barycentric 

system, 

and 

J 
~ ++ (t) = 

4~ J J 
r' (p~) f+ (t) ' 

p 1t 
(III.lO) 
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(III.ll) 

The amplitudes f±J were defined so that they are real analytic functions 

2 in the cut t-plane, with a physical branch extending from 4m~ to t = TOQ, 

and a left-hand cut whose discontinuity is purely dynamical. The corresponding 

expression for the process ~ + ~ ~ K + K is 

( I!Ll2) 

where the fJ have the same analytic structure as the Their relation 

to the invariant amplitudes of ~-K scattering will be given in the following 

section. Expressions for the absorptive parts are finally obtained by 

substituting Eqs., (III.3) and (III .. 8) into Eqs .. (IIL6) and (III .. 7) .. Using 

Eqs .. (III .. 9) through (IIIol2), we have: 

( ±) 
AIII (t,s) = 

and 

I 

( ) 2J+l ( )J 
I:J 2J + 1 <l,r pq 

J(±) M cos e
3 

PvJ(cos e
3

) 
- f ~ ' ( t) --;===-==;;...._-~ 

VJ<J + 1) 

(2J + 1) 

VJ<J + 1) 

f *(±)( t)} J 

(IIIol3) 

(III .. l4) 

where cos e
3 

is related to s and t by Eqs. (III .. la) and (III.lc). The 
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symmetry of the two-pion state implies that terms with even J contribute 

only to B ( +) and A ( +) , while those of odd J contribute only to 
III III 

( ~) . (-) ( ) ( 1.) BIII and AIII • Taking into account Eqs. III.l3 and III.l~ we have 

the following symmetry properties for the two-pion approximation to the 

absorptive parts: 

ieft: 
(±) 

AIII. ( t,s) = + (±) ( ) 
-~II t, u ' 

(IIIol5) 

and 

( +) - (±) 
1(1(: BIII - (t,s) = + BIII. (t, u) 0 (IILl6) 

A convenient parametrization of the three-pion state is not yet 

available. However, if there is a J = l, I = 0 three-pion bound state 

(mass~), it gives rise to poles in the invariant amplitudes A(+) and B(+) 

which, in principle, can be handled. If there is no ~una state but a sharp 

resonance the pole approximation is still reasonable. Note that this three-pion 

state has to give a substantial contribution to the scalar charge structure 

of the nucleon, whereas the magnitude of the scalar part of the anomalous 

magnetic moment is experimentally small. Now the pole in the A(+) amplitude 

is proportional to the nucleon three-pion matrix element present in the 

scalar anomalous magnetic moment; thus it is plausible to neglect the three­

pion contribution to A ( +) and. to regard only the pole in the B(+) amplitude 

as important for the I = 0, J = l three-pion contribution to the long range 

K-nucleon force. The consequent absorptive part is: 

(+ )( ) BIII . t,s = 
2 

- ~ 1( 8(t .. ~ ) (IIIol7) 



IV. ( 2(1( I I<K ) MATRIX ELEMENT 

In this section, we shall estimate the strength of the matrix element 

for the process 2f + 2f ~ K + K • Let mq1 and ~ be the momenta of the 

outgoing K- and K-mesons, respectively, (cfo Eq. (II.lc), while the four 

momenta and isotopic spin indicies of the pions are (-~1, a) and (~2, ~). 

The decomposition of the S-matrix into scalar amplitudes A(±) is then 

{

A ( + )8 + _! [-c -r ]A ( = ~ 
~ 2 ~' a J 

(IV .. 1) 

where ro2fl and ro2f2 are the pion energies. The A(±) are assumed to 

satisfy the Mandelstam representation as functions of the two independent 

invariants t = -(q1 - ~)2 
and v = -(q1 + ~1)2 • The latter is related 

to the barycentric production angle 6' and magnitudes of the pion and 

2 2 
Kc.meson three-momenta by v = -q - ~ + 2q~ cos 9' • The previously 

introduced analytical partial wave amplitudes 

of the invariant amplitudes by 

f (±)(t) 
t = 

are defined in terms 

(IV.2) 

The symmetry of the two-pion state implies that f£(+) = 0 for odd £, and 

(-) 
f£ = 0 for event • 

Dispersion theory in its present form does not attempt to establish 

the magnitude of A(±) , but only provides a way of relating them to 2f-K 

scattering., Even in the absence of experimental information, such an analysis 

does lead to some restrictions on the parameters, providing there are no 1t=K 
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bound state and that "ghosts11 are avoided in the c.alculable part of the 

unphysical region.13 A similar treatment of the ~-nucleon interaction, of 

course, provides a determination of the ~ + ~ ~ N + N amplitudes f±J(±)(t). 

In order to estimate the probable physical values of :r
1
(-)(t) we 

assume that a K-meson emits pion~pairs with essentially the same strength 

as does a nucleon. This approach is based on the hypothesis that it is 

characteristic of strong interactions always to be nabout as strong as is 

14 consistent with the requirements of unitarityon The most easily treated 

two-pion state is that which contributes to the electromagnetic structure 

(ioe., J = 1, I= 1). The S-matrix element for the production of a K=K 

pair by a virtual photon (four-momentum ~) is 

= 
e( ql + ~)IJ. 

Vffilro;;; {FKS +T~KV} , 
(IV.:;) 

~~ s v where ~ is the photon energy and FK and FK are the form :factors :for 

the isotopic scalar and vector parts of the K=meson charge structureo 

. ~ v 
Following a suggestion made by Chew, we assume that FK satisfies an 

unsubtracted dispersion relation: 

= 
1 (() 

J 
2 4m 

~ 

where the spectral fUnction 

normalized so that 

1 
2 • 

dt g(t) 
2 

t + ~ 

g(t) v = Im FK ( -t) • 

( IV .• 4) 

The :form factors are 
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The expression corresponding to Eq. (IV.3) for the production of a pion-pair 

is 

< - ~1, a; ~2, 13 I s I \ ) = a( -~1 + ~2 - \> · : 

(IV .6) 

where F~ is the pion form factor. The S-matrix elements Eqs. (IV.l), 

(IV .2) and (IV .6) are related by the unitarity condition.. Keeping only the 

two-pion intermediate state (the so-called "two pion approximation11
) 

expression for the spectral function g follows: 

v The question .arises as to what value is obtained for FK (o) if the integral 

in Eq. (IV.4) is evaluated in the two-pion approximation. To avoid ambiguity 

arising from the unknown behavior of g(t) for large value of t, we define 

fKV to be the value of 2FKV(o), obtained when the integral is cut-off at 
' 

the arbitrary value t = 30m~2 • For this limited-energy interval we use the 

following approximation for. f 1(-)(t).: 

According to the unitarity condition f 1(-)(t) has the same phase 
·. 2 2 ( ) 

as F (t) for 4m < t < 16m • Thus the function r 1 ~ (t)~ (t) is ~ ~ ~ ~~~ 

analytic in the cut t-plane with the right hand cut extending form 16m1t' 2 

to t = +oo. We will approximate this functio~ by its average value over the 
2 2 ' . . 

interval 4m < t < 30m • Then, using the Frazer and Fulco expression for 
~ ~ 

F~ in order to evaluate the integral one obtains for f 1(-) 

(IV.8) 
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V. REIATION OF THE LONG RANGE INTERACTION TO ELECTROMAGNETIC STRUCTURE 

Two possible sources of the long range interaction are treated in 

detail. Each arises from the exchange of a system of pions which are in a 

definite symmetry state. They are (A) the I = 1, J = 1 two pion state, 

denoted by ~~(-), and (B) a possible I= o, J = 1 three pion bound state. 

(A) The ~~(-) Exchange 

Let the spectral functions for the nucleon charge and anomalous 

magnetic moment form factors be denoted by g1 and g2• The two=pion 

approximation for these are 

(V.l) 

and 

(V.2) 

where f±J(-) are the J = 1 nucleon amplitudes introduced in Eq. (III.l3) 

of Frazer and Fulco.12 

Simple expressions for the absorptive parts Aiir) and Brii) are 

.. 1( =) ( =) obtained by reexpressing the partial wave amplitudes f± and f 1 in 

terms of the electromagnetic structure quantities g1, 2 and fK. Substituting 

Eqs. (IV.7), (IV.8) and (V.l) into Eqs. (III.13) and (III.l4) one easily 

obtains 

(- )( 
AIII t, s) = (V .. 3) 

and 

B. (-)(t s) = 4 M f v( + ;:~~6) III ' ~ K g2 gl a·~ 0 
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The interaction due to the ~~(-) exchange contribution to the several 

K-nucleon amplitudes, is obtained by substituting Eqs. (V.3) and (Vo4) into 

Eq. (IIo26). According to Eqso (II.21a) and (II.2lb), the ~~(-) contributions 

to the I = 0 and I = 1 states are in the ratio -3 • 

B. The Bound-State Exchange 

According to the arguments of Seco IV., the bound- or resonant~state 

exchange contributes only to the absorptive part BI~~)~ An explicit 

expression for the consequent spectral function Im dJ{+) is obtained by 

substituting Eq. (III.l7) into Eq. (II.26). The result is 

where 
z = 0 

+ (E- M)~(W + M)~ (z )] . r , ' .. .e+l o 

(V.5) 

The parameter 13 s is given in term of the scalar charge fractions fK for 

the K-meson and fNS for the nucleon, due to the three pion bound state, by 

the equation: 

where 

( r I s I B ) 

fKS( 0) fNS( 0) 

I "A(~ 2) 12 
(V .6) 

"A(t) 

II 4k ~ 

~ and ~ are the polarization vectors for the photon and for the B particle; 

furthermore 



r s 
K 
. 2 

t- ~ 

r s 
N 

2 
t- ~ 
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where FKS is defined by Eqso (IV.;) and (IV.5); FNS by Eqs. (IIo7) and 

(IV.;) of Ref. (11). 

2 
We emphasize here that the constant A(~ ) enters in photoproduction 

processes17 and in ~0 decay18 and, therefor~ may be calculated independently. 
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VI. RElATION BE'IWEEN THE K-NUCLEON AND K-NUCIEON LONG RANGE INTERACTIONS 

In Sec. III, dependence of the long-range interactions on the matrix 

element for the production process K + K ~ N + N has been discussed. It is 

then easy to see that the K-nucleon and K-nucleon interactions, as far as the 

long range potentials are concerned, are relate.d by charge conjugation on the 

KK state (crossing relation). 

To be more specific, let us consider for the K-nucleon elastic 

scattering the Jacob-Wick matrix element Tfi 

(VI .1) 

where Tfi is defined by Eq. (II.4), M is the nucleon mass and q is the 

center of mass momentum of the K-nucleon system. Tfi is related to the 

phase shifts by: 

(VL2) 

and 
J i8£+ + i8(£+1)-

( + I T (E) I ± ) = e sin 8£+ - e · sin 8(£+l)-

(VI.3) 

Tfi is given in terms of the invariant amplitudes A and B . which, 

in the region t > 4m~2 and s < s0 , s0 being the physical threshold, 

are defined by Eqs. (III.4) and (III.5). 

Let us consider now the K-nucleon elastic scattering. The process is 

described by the same diagram inverting the arrows on the meson line, i.e., 

exchanging K~ K in the matrix element ( NN IT I KK ), Eq. {III.3). 

This implies that the long range part of the K-nucleon and K-nucleon potentials 
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are related by charge conjugation on the KK system. 

These relations lead to interesting consequences if we analyze the 

intermediate states (n) (see Eqo (III.8)) in terms of even or odd numbers 

of pions. We have: 

(a) The K-nucleon and K-nucleon interactions exhibit equal or opposite 

contributions according to the isotopic spin I = 0 or I = 1 of the 

intermediate state (n) with even number of pions; 

(b) The K-nucleon and K~nucleon interactions exhibit equal or 

opposite contributions according to the isotopic spin I = 1 or I = 0 of 

the intermediate state (n) with odd number of pions. 

In particular, the J = 1, I = 1 two pion and the J = 1, I = 0 

three pion systems give opposite contributions to the K-nucleon and K-nucleon 

interactions. 

Finally, it is of interest to point out that these results depend 

mainly on the bosonic character of the K-meson. In fact an intermediate 

state with even (odd) number of pions gives the same (opposite) contribution 

to the nucleon-nucleon and nucleon=antinucleon potential. 
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APPENDICES 

A. Isotopic States for the K-K System 

-.:-JJ We consider the K K system as described by the field operator 

K(x) = 

= 

1 
X where X+ = 

0 
.:-£) 

creation operators for K , 

1 

1 

·II anp' 

0 
= 

[a X + a X 
+ + 

] e-ipx 

+ [b +X + b + X ] eipx 
- + + -

and 

+ + + ip'x 
a X +a X )e . 

+ + 

+ [b X + + b X + 
- + + -

+ a b + 
+ ' 

b + 

-ip'x e 

(A.l) 

are 

0 K respectively. 

The isotopic spin states for the KK system are 

T = 1 

I~ K+) 

1 r I K- K+ ) 
f2' 
- I K- Ko ) 

T = 0 

(A.2) 

From these definitions, and assuming for the NN system those given by 

Cziffra, 19 the projection operators for the KK ~ NN amplitudes are 

p 
0 = 1 I 

2 
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B. Choice of Phases for Elastic and Absorption Amplitudes 

The discontinuity across the left cut for the elastic K-nucleon 

process was obtained by using the unitarity condition for the side reaction of 

.the diagram, K + K ~ N + N, inserting the contributions of the K + K ~ ~ + ~ 

and ~ + ~ ~ N + N processes. Defining the NN states as Cziffra, and 

using his helicity spinors, Eqs. (III.2), (III.3) and (III.4) of Frazer-Fulco12 

may be written as 

p 
9' B 't' = --A .+ q cos 

++ M 
(A.4) 

E qB sin 9' 't' = +- M . (A.5) 

where 

cos e' = 0 

We assumed analogous formulas for the reactions K
1 

+ K
2 
~ N

1 
+ N

2 
• 

Equations (III.4), (III.5), (A.4) and (A.5) establish a correspondence between 

the KK state and the two~pion state. From this convention, we have for the 

electromagnetic vertex fUnctions~ 

and 

v 1 
Here FK (0~ = 2 , 

= i(~)-1/2 

(A.7) 

F (0) = 1 and e is the elementary charge (note the 
~ 

different sign in Eqs. (A.6) and (A.?)). 
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