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A, Pais
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October 27, 1960

ABSTRACT

Recent experimeﬁtal results on non~-leptonic hyperon deéays are taken
to suggest.that there exists a doublet approximation for strong and weak
interactions and that this higher symmetry is useful at least for some
reactions in which hyperons do, K-particles do not occur explicitly. The
doﬁblet approximation is characterized by & doublet spin I which =-1/2, 1, 0O
for baryons, %, K and by a K-spin., It is not necessary to assume that the
strong Kminteractioﬁs are weak compared to the strong = interagtions. For
the mentioned reactions it is nécessary to assume that the strong interactions
which viclate I play & minor role compared to those which conserve I,

The following refinement of the non-leptonic AT = 1/2 rule is

proposed. (T = isotopic spino) The weak non-leptonic interactions consist

of two parts H(O), H(l) with AL = 0, 1 respectively. In the deublet
approximation H(o) and H(l) separately conserve parity in the presence
of all strong n- and K-interactions. H(O) and H(l) together violate parity

however. In addition to AL = 1, H(l)

should in general»satisfy a further

constraint, but there are, classes of graphs for which AL = 1 1is sufficient.
Current x current structures for H(O) and H(l) are examined.

Results of a foregoing paper can be vigwed as a special case of the AL =0, 1

rule. The same is true for results obtained by Feldman, Matthews and Salam

and by Wolfenstein. The considerations of these authors can be extended to

wider classes of graphs.
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0dd relative helicity for A —p +x , & —p +x° is a consequence

of the AT = 0, 1 rule only. So is the prediction that Z-decay is strongly .
P-violating.
‘ (0)  4(1) v”
The parity properties of H , H are sufficient conditiomns.

It is a delicate question whether they are necessary. For a subset of graphs
they are not necessary, but this set seems arbitrary. ‘Assuming the parity
conditions to be necegsary; the schizon scheme is ruled out.

It is suggested that the non-leptonic weak interactioﬁé are generated
by the sﬁrong interactions. It is observed that an H(l) is generated by
assuming that the =x(X) fields have small K(wx) components. An 3(9) is
generated by assuming that the doublets Nl(Né)‘ have small Né(Nl) components;
likewise for N3 and Nh . This procedurevalso generates a non-electromagnetic
AT = 5/2 interaction. This last coupling is small in the sense that‘it only

-+

contributes to Kig

to the extent that the doublet approximation is not valid.
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I, INTRODUCTION

Beyond the demonstration of the eiistence of isotopic spin (T) and
strangeness (S) rules, the study of strong reactions have so far taught us
little about more intimate connections between the varieties of strongly
interactihg particles; Attempts to consider some of the new particles as
composites'in terms of others have ti1ll now not produced any insight which
cannot &s well be reached by assuming that any one baryoh, say, is neither
less nor more elementary than any other. In this éaper we continuel to adopt
this last view. From this standpoint one may try to further interconnect
particles aﬁd interactions by asking for stronger symmetries than those which
yield T and S conservétion, It is known that such symmetries cannot
exist rigorouslyo2 Ndr is there thus far sny indication that some of the
strong interactions are relatively weak compared to others so that expansions
in the former might be a useful procedure. Conjectures that one part of the
strong interactions possesses symmetries stronger than ancther therefore
have had as yet to remain in a speculative stage. Unless we find some
qualitative clues, the strong interaction problems appear to be in somewhat

of a deadlock. It is the purpose of this paper to discuss certain weak decay

ra :
This work was performed under the auspices of the U.S. Atomic Energy

Commission.
*% '
John Simon Guggenheim Fellow. Permanent Address: Institute for Advanced

Study, Princeton, New Jersey.
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reactions which, in this author’s #iew, provide us with such & clue about
the strong interactions.
The reactions we have in mind are

+ 4

;f’ - n + x, (A%, aV) , (1.1)
o o o

- p + T , (Aya)': o (1.2)

) A (A7, o) . (1.3)

We shall often refer to these reactions as Z++ s ZGT’ Eaﬁ, respectively.,

Their amplitudes and asymmetry parameters will be denoted by A, ¢, labeled
as indicated. Experim@ntal results5 are compatible with the requirement of

@

the AT = 1/2 rule that A®, A", A°V2 shall form a triangle. If we
neglect final stéte ipteractions this triangle can conveniently be drawn in
the so-called (s, p) planeo§

Concerning the AT = 1/2 rule'(which to this author seems neither
less nor more mysterious than the AT - 0 rule of the strong interactipns)
4ﬁe shall adopt the same view as in alprevieus paper.5 For the purpose of
this study, the rule will be supposed to be rigorous for non-leptonic decays.
At the same time-we do not wish to prejudge the question whether deviations
from AT = 1/2 are electromagnetic only.

Expériment further indicatesh that the Z-triangle is oriented in a

rather special way which can be expressed by
at ~ o0, o =~ 0 . v : (1.4)

AT = 1/2 implies that if Z++ is nearly pure s(p) wave, then % ~ is
nearly pure p(é) wave. It is presently nof known which is which. This can

be decided experimentally,6
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Eguation (1.4) is rather remarkable. It shows that insofar as

Z++ and Z_- are concerned it may be a good approximation to say that Z+

and I  each do hgve a well-defined parity relative to the n-nucleon system;
and that the parity of ', whatever it is, is opposite to that of X .

Now either a system haé &8 well defined parity relative to another or
it hasn't, so what does "a good approximation" mean? To see this, note the

7

following. It is easy to give examples' of a weak interaction H. which leads

to a I-triangle so oriented that ot = o = 0. But this by no means solves
the problem.

Consider Z--gecay as a first example. Let H be such that Zﬁu is
pure p wave, say. However the strong interactions generally allow =" to
be part of the timé a Z+, for example Z+ +2n . During this time H can
. induce's~waﬁe decay Z++. The final nx  state can then be reached by
strong reabsorption.of a n+k° pair. The nét result is an s-wave contribution
to Z--‘ Similarly,,virtual Zo+ décay would give a mixed - (s, p) contribution
| to Z“-, In other words evén if the weak interactions properly orient the
triangle, thelstrong‘interactions in general do not respect this orientation.
That is, to stick with the example, unless we could provide a reason.which
would inhibit virtual I —X' transitions. This is possible, though not
rigoroﬁsly‘ |

As a next example consider the sequence
2 oA+ -(p+ ) + % on+xn s Where the strongly P-violating A-decay
is involved and for the rest only P-conserving strong interactions. Why is
the X~ nearly impervious to this violation?

We would like to pdint out that the so-called doublet approximationg
(pA; also knbwﬁ as restrictedzsymmetry) provides a natural though not rigorous

answver to these questions. Here one assumes even ZA-parity, neglects the
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TA-mass difference and puts
o .0 | o, o
A o= L.XZ .

VE s _\/z o 5, (1.5)

The baryons then regroup in terms_of four doublets, see Eq. (éoe) below,

The reason that X~ —Z' is inhibited is (Section 2(a)) that they belong to
different doublets which in the DA do not intercombine. The reason that "
is not affected by P-viclation in A-decay is that I cannot combine with
le]

¥~ for much the same reason. Thus if the YO, Zom"parts" of A separately

are P-conserving in decay, then £~ will stay P-conserving. While if Yo, z°
have opposite_parity in decay, the physical particle A will be strongly
parity violating. |

Thgse remarks may serve to indicate the general approach planned in
this paper. (On purpose we have not included 2+~decay in these few examples,
as there a more delicate problem arises, see Section 2(b).) We shall endeavor
te arrange things so that ve get exact P-conservation fof 'Z;+ and Zn_ in
the approximation where & stronger symmetry than charge independence is
supposed‘to_holdo As has been shown,g the DA is the weakest symmetry stronger
than charge independence. Thus the DA is the natural starting point. If we
succeed we shall be able to assign to % for example a parity relative to
the m-nucleon system, but only +to thé extent that the DA holds. When we
talk of P-conservation in certain decays we shall always refer to a situation
where a symmetry higher than charge independence is assumed. Thus we do not

gt all anticipate that P=-conservation in 2++ and Zﬂw would be as good as

it is in stomic physics for example.
The following must be strongly emphasized. The quest for stronger

symmetries has so far most of'ten seemed & self-inflicted agony. A symmetry



YCRL-9460

-8-

first set up has subsequently to be broken. The difference in the present_
case is that the assumed symmetry leads to interesting physical conclusions
which at least so far are nét in qualitative disagreement with experiment,
Even so, the question always rémains, what is the influence of those strong
interactions which do not respect the DA? We shall not face this question
in this paper. As long as it is not answéred the work does not represent a

theory but a program. However, this time it would appear 4o be perhaps a

_quite promising program.

Remark. For reasons given in 1 we lay the emphasis on the near parity
conservation of E++ and Zﬂ“ and consider the near eQuality of their
rates as more of an accident. No doubt this equality will eventually be a
vital clue as well. However it does not seem to raise such a qualitative
puzzle as the parity aspect does.

‘In this paper we shall apply the DA both to =x and Kecouplings. We:
do this méinly to emphasize that on the whole it is not the essential point
which kinds of fields and interactions follow the DA. It is not relevant

therefore whether K- and m-couplings are of the same order of strength or

not. What is relevant on the other hand}is of course the role of the inter-

action which breaks down the doublet symmetry. In Section 2(a) we treat the
n-couplings in the DA and define £he relevant quantum numbers.

In Section 2(b) a proposed refinement of the AT = 1/2 rule is stated.
It is suggested that the non-leptonic interactions consist of two parts H(O)
and H(l) which separately conserve parity but which c¢lash when taken
together. To separate any parity violating interaction in two separately

P-conserving parts is of course totally trivial. One could do the same for

B-decay. What is not trivial in the present case is that these separate
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parts are simultaneously subject to a condition in terms of a guantum number
other than parity, namely the doublet spin. We therefore suggest that doublet
spin and parity properties are correlated in a definite way.

The main theorems on A decay are given in Section 2(d), on = decay
in Section k.

In certain instances the DA will be insufficient for the purpose of
obtaining the desired parity properties. We shall then consider two (not
mutually exclusive) approaches a) the use of further invariance arguments,
see Section 2(c), b) the investigation of special types of virtual transitions,
see Section 6. In this second approach we follow ideas due to Feldman,
Matthews and Salam9 and to Wolfensteinlo and try to generalize their results.

In the work of FMS9 some emphasis is laid on the differences of the
dispérsiqn approach as compared to the Lagrangian methods used by others.
Rather than to underline such differences, the present work aims to emphasize
above all what such varied technigues actually have in common. As has been
stated in I, the essence of the problem seems to be the establishment of
shared symmetries of weak and strong interactions. In Section 6(c) the
connection between the FMS results and the present argument Will‘in fact be
established through the analysis in terms of symmetry arguments of the weak
vertices used by these authorso‘ | .

In Section 5 we discuss K-particle effects in the DA. In particular
“we show in Section S(d) that such reactions as K —=x, K° - 2, KT o 3
can be describediin the DA in terms of the weak interactions. H(O), H(l)
introduced in Section 2(b) evén though these interactions separately conserve
parity. Here we meet with s very essential point that has been brought out

by the work of Wolfensteiholo . There are in fact specific graphs, see
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Section 6(a), which give pure opposite parity contributions to 2++ and Z_',

These graphs follow the doublet rule AL = 0 or 1. Eut for these Wolfenstein

(o) ' (1)

graphs the condition that H are P—conserviﬁg (see Section 2(b)),

though sufficient is not necessary. On the,othér hand we shall also see in

Section 6(a) that we can retain Wolfenstein's results but extend them to a
larger class of graphs if indeed, as proposed in Section 2(b) (O) énd H(l)
separately conserve parity° ‘

The great importence of this question lies in the following. By an
argument given in I, if H(O) and H( 1) separately do conserve parity then
an incompatibility exists between the rule pféposed in Section 2(b) and the
schizon ééheme;ll see also Section 3(f).

While most of thé arguments summarized before d§ not have reference

10 specific structures of the weak interactions beyond their doublet spin

properties, a certain interest attaches to the question, how can these

interactions be brought in current x current form. This problem is dealt

with in some detail in Section 3 where it is shown that the present work
goes beyond I in two respects a) in I we used global symmetry from the start,
in this paper the weaker DA is sufficient in many instances, b) the (js, jt)
(0) H(l>o Other

coupling used in I represents a special choice for H

possibilities are noted.

The concluding Section T is mainly devoted to a few general remarks
on aj the possible generic connection between weak and strong interactions,
b) possible non-electromagnetic deviations from AT = 1/2, c¢) the question
of the leptonic decays. We shall state which remarks made in I apply to the
particular (js, jt) coupling scheme used there; and which remarks have a

wider validity.
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If the present approach is correct, é new question#arises° Why should
the DA manifest iféelf as a useful symmetry in non<leptonic hyperon decay
but not in the reactiohs studied previously?2 Thosé reactions all involve A
real K's, the deéays virtual K's onlyav We afé therefore led to surmise
that Whére.K-particles appear only as 8 virtual cloud, the DA is more easily
discernable. Results on ﬁéhypéron scatferin‘gl2 may perhaps shed light on

this point.
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2. THE DOUBLET APPROXIMATION

(a) Strong m-Interactions

‘The DA for this coupling ‘has: been discussed elsewhere.2 We briefly
state the main points. It 1s necessary for the existence of this approximation
that the (Z, A)-parity be even. The g~-couplings are considered under the

neglect of the (Z, A)-mass difference and are of the typical form

N, + G(‘Na Ty

Hﬁ = [Gl Nﬁ.£'75 1 5 N2 +<§5 2‘75 NB) + Gh Nu 5'75 Nu]EL
(2.1)
where
P Z+ Z0 =°
N = s N = ) N = 3 N = _ 3
1 0 2 ° 3 5 b =
(2.2)

and where Yo, 7° are given in Eq. (1.5). The space time structure of the
coupliﬁgs is immaterial for the argument, as long as the pseudoscalar nature
of n is guaranteed. In faci we are not even committed to the form (2.1).
What then is the essence of the DA?

First of all Eq. (2.1) impiies that we are free to rotate the T-spin
together with #. T is the isotopic spin for Nl’ Nh but not for X, A.
We call it the doublet spin, to which we refer in general_as I. For T we
have T = I = 1. Secondly we are free to rotate in the “(NQ’ NB)aplane",

We can unite N_ and N, to

2 b

N = (2.3)

and assign to this "doublet" (each component of which is multi component

!



UCRL-~-9460

itself) a spin K = 1/2, with K3 = +1/2 (-1/2) for N2(N3). The relation

between T, I and K is
T =1 +K. ‘ ' - (2.4)

We shall see later (Section 5) that if K-particles participate in the DA we
have for them I =0, T=K= 1./'2° We call K the K-spin. The DA for
strong n-coupling is now defined generally by the statement that (I, K, 13, K5)
are good quantum numbers. One may simultaneously and independently apply to
I and K the usual rules of the vector addition model.

Observe that Hﬁ not only conserves baryons, but also conserves
individual doublétso Thus the DA guarantees that virtual transitions

+ -
DI Z+ + mn-mesons are forbidden. This is just the inhibition we are after.

(v) Amk='1/2 and AT = 0,1

We shall now suppose that the nénmleptohic decay interactions do not
only satisfy AT = L/2 but more specifically that they also have Al
properties. To see what such a stgtement means it is instructive to reason
by snalogy with the AT = 1/2 rule itself.

If we‘say that non-leptonic decay reactions satisfy AT = 1/2, we
may also say that the decay iﬁteractipn satisfies AT = ;/2. This trivial
statement is of course due to the fact that the strong'interactions satisfy
AT = 0, so that they cannot modify the AT properties of the weak interaction.
Electromagnefic corrections are of the AT = 1 type and make the AT = 1/2
rule impure. Likewise, if we say that a weak interaction has a certain AI
this 1is oniy meaningful to the extent that the strong interactions have
AL = 0 --that is the DA, "Corrections” to the DA will make the AI rules

for weak interactions impure. (As we have stated in the Introduction, we

/
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shall not discuss here the ihfluence of such distortions on the decay processes. )
If we assign a AL to a weak interéction, the latter should be
expressable in terms of doublets, inasfar &s baryons are concerned. We are
therefore working in an approximation in which the weak and strong interactions
share the doublet symmetry. _
All nonleptonic, A, I, = -decays have IAK3| = 1/2. It is easily
seen that actually &K = 1/2. As AT = 1/2, it follows that ALl = 0 or 1,

according to the vector relation

A —

AT = AL + X . (2.5)
The most general decay 1ntefaction H therefore is of the form
H = H(O) + H(l) , : : ' (2.6)

where H(O), H(l) are characterized by AL = 0, 1 respectively.

For Z-decays the AIl_-assignments are as follows:

3

it
=

°

2 - n + , AI3 |

' (2.7)

- +
2 - n + =

0
- p. o+ X

0)

We note that according to Eq. (2.7) H( allows Z+-deCays but forbids

N

. H(l) allows in general all three decays, because AL = 1 implies ‘

Z,—
AI5 = *1, 0. Thus we can generally write H(l)

as

D - g, g @ (2.8)

1 <1 0

where the subscript refers to the Al, value.

3
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1)

As H( allows all Z-modes the first questlon is whether we could

a) restrict ourselves to the H(l? term in Eq. (2. 6), b) choose the parity

structure of H (1) te differ from H g )- in such a way that Z+ (which
proceeds vie HO( )) has Qpposite parity coﬁpared to Z_h _(whichvproceeds
via H_gl))° This in itself is indeed feasib;e'but ;t would be in vio;ent
contradiction with AT = 1/20 For eleerLy £O+ would now also be parity
conserving. Instead of a Z-triangle we wouldltherefore have two emplitudes
aligned along the s(or p) axis, the third aligned aloné the p(or s) axis
in the (s,p) plane.

Let us digress for a moment from the main program which ig to under-
stand the parity properties of Z-decays if AT =YL/2 is.assumed,to be strictly
valid. It may be worth while to note that the discussion of qu.(208) shows
that one can conceive of (non-electromagnetic) violetions of the AT = 1/2
rule of such a nature that the X-triangle does'not 1enger'ekist rigoreusly,
while yet the parity-conservation in the ﬁﬂ% channels remains intact.

Such violations should be relatively small however, as deviations from
AT = 1/2 do not seem to be large. |

We now return to the main progfem and try a differeht tack., Suppose

that we could find an argument.additioneifte the AL = 1 specification of

H(l), in such a way that H(l)

.(0)

would eontribute to ZO+ but not to Z++o

(1)

Then Z++ would go vie H only; 2-, goes anyway via H only; while

ZO+ would go via both H(O) and H(l)o We shall come back at length to the

construction of this additional argument. Accepting for the moment that
this can be found; we .can clearly achieve the parity properties of Z-decays

by the following hypothesis.

AL = 0, 1 rule, The weak npnnleptohic interactions consist of two

+(0)

parts H(O) s H(l) with AT = O, 1, respectively. and
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H(l) separately conserve parity, but clash when teken together. That is to

say, H(O) + H(l) violates.parityo For H(l), Z++ is to be inhibited by

an argument additionai'to AL = 1.

This rule intefldcks doublet spin and parity. As we shall see in
Section 3, the Jjs, jt couplings of I are special exgmples of H(O), (l)o
The parity condition on HFO), H(l) is a sufficient condition. There may

perhaps be accidents where this condition would not be necessary, for examples

see Section 6.

(1)

The nekt task is to find the additional argument concerning H o

This is avﬁore sﬁﬁtlejpr@blem and there are gt least'two.avenues of approach
whieh argvby'no meéns.mutuglly gxclusiveq;}l? While Al = 1 specifies H(l)
insufficiently, nevertheless AL = 1 is,adequate by itself if in the

calculation of 2+§déca& pfobabilities there are spécific virtual transitions

which are strongly predominént. ‘This is conceivable,*s?eléection 6. 2) For

H(l) we need a sﬁrongér<symme£r&‘tﬁéﬁ the~DA.to_yéééihgﬁr.goalo On the one
hand it is distinctly‘unsatiéfacfory tojempiqy{g%rqng’é?mmetries, On the
other hand the particular symmetry.we ghall ;ﬁvqunan tﬁg-next subsection
will allow us at'oﬁee to tie parity conéervatibn'in Z+f;.§gd E_ﬂ to parity
violation in A-décaya . o - |

.

L 4

(é)  Further discussion-of_fﬁ(l).' '

It does not affect H(O) if we subject VH(l) to an edditional
symmetry argument. Indeed it is typical fof'the wealk processes which concern
us here that without loss of rigor we may subject H(l) and. H(O) to
different invariance requirements as long as H(l) (or H(O)) shares that
invariance with the strbng interactions. This is true as H(l) and H(O)

can never interfere because weak interactions are considered to first order on.fLy°
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We can even go further., By the same token H+§l) and Ho(l) do
not interfere. We seek for an argument which inhibits 2++ , & reaction which

O(l)° We shall state the argument in terms of a symmetry

can proceed via H

shared by H (1) and the ‘strong interactions. By our reasoning it is

0
entirely immaterial whefher H+§l) shares this additional symmetry or not.

(1)

1 only. Therefore

(As it happens, it does not.) Now Z_- proceeds via H_
it remains true that this reaction is P-conserving in the DA without any
additional argument.

In general we may say that the shared invariance of strong interactions
and a partial weak interaction is a legitimate tool because we deal with
problems linear only in the weak interactions°

The additional argument on Ho(l) is now that it shares with the

strong interactions invariance for
N, - ie, 1, N Tt S = €xN ,

1 2 "2 "2’
(2.9)

. . O
N2 - 1e T, Nl » T - =-€en ,

vhere the ¢'s are phase factors equal to *1. Equation (2.9) leaves

Eq. (2.1) invariant provided we neglect the Nl - N2 mass difference while

€ = *1 for G, = *G. (2.10)

, +
This alternative for € corresponds in essence to G -symmetry defined13 and

discussed in I, In addition we must rotate N, and Nﬁ appropriately and,

3

for € = -1 but not for € = +1 we must apply N e—»Nh - For what follows

3

in this section we need not say more about the doublets 3 and 4.

Py
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If Ho(l) shares the invariance under Eq. (2.9) then
(" | ax" )(1) = € €, &n | =* n')(l) - (2.11)

where the superscript (1) indicates that we_refer to the transition brought

about by HO<1) (in the presence of - Hn)o We require

€, €, € = =1 (2.12)

and now apply an argument (already used in I) which was first employed by
Treimanlu in a similar context. Namely, under the neglect of final state

interactions
(|5t oot aHD (2.13)

Hence it follows from Egs. (2.11~13) that (Z+ [ n n+)(l) vanishes under
the stated conditions. The argument thus amounts to the following. The
amplitude in question is a function of mp, My and the momentum transfer
A= (qz»-'qp)z . Under the conditions stated (mp = mz) this function is
equal to minus itself for all values of A, |

It is by no means obvious that H(l) can be constructed so as to
satisfy Egs. (2.9) and (2.12). In fact we shall seein Section 3 that
several expressions for H(l), specified by AL = 1 only, will have to be
discarded if Egs. (2.9) énd (2.12) hold true. Thus the aigument restricts
the dynamical form of the weak interactionso There are however several

possibilities for H(l) which do satisfy the requirements. From now on I

call these the allowed forms of H(l)o
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(d) Two theorems on P-violation in A-decay

(A) It follows from the AI = 0, 1 rule that parity is violated in .

A-decay in the same approximation that parity conserved in Z++ and Z_n,

provided H(l? is of the allowed form. Proof. Egquation (2,9) also implies
® [px) - e e, P HP L (2.14)

Hence the argument which led to (2 | n ﬂ+)(l) = 0 also gives (Y° | p nQ)(l) = 0,
Thus YO -Dp + st~ proceeds only via H(O)° On the other hand 2° —p + " |

is a AIB = »1 transition and éan thgrefore proceed only via H(l)o But

H(O) and H(l) clash in parity. Therefore from Eq. (1.5) it follows that P

is violated in A-decay.

Actually this result can be sharpened considerably.

(B) It follows from the AI = 0,1 rule and for allowed H(l) that
a = - - (2.15)

where the left (right) side of this equation refers to the helicity of the

proton in = - p #°, (A -pxn"). Here the experimental information

R t s R~ has been usedo5

+ =
To prove this statement we note that by (A) the transition Y° 5px”
proceeds via H(Q) only. But H(O) has AL = O and therefore satisfies

doublet charge symmetry, as a result of which
x° |px”) = (= |nx") (2.16)

This result is a consequence of the DA only. Equation (2.16) was also
15

obtained in I but under much more restrictive conditions.
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The second part of the proof consists in showing that
o - - -
(z° [px") = (£ |ax") (2.17)

provided H(l) is of the allowed form. Equation (2015) follows from Eqs.
(2.16) and (2.17) by an argument given in I.

The verification of Eq. (2.17) has to wait till Section 3(d). We
have now in fact pushed the argument as far as 1s feasible independently
of the structure of H(O) and H(l). The next task is to conslder these
dynamical structures more closely,,16 Concerning the symmetries used we
shall arrive at the following conclusions. (a) For Z_ﬁ to be P~coﬁserving.
the DA is sufficient. (b) The same is true for Eq. (2.16) which makes up |
half of the relation (2.15). (e) For Z++ to be P-conserving, the
additional argument (see Egs. (2011-13))goes beyond the DA but the Z-nucleon
mass difference may retain its actual value. (d) The same is true for
Eq. (2.17). Not until Section 6 shall we see that the conditions mentioned
under (c), (d) may also be weakened to the DA symmetry if certain virtual

transitions predominate.
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3. DOUBLET SPIN STRUCTURES FOR WEAK INTERACTIONS

(a) Baryon currents. Examples

To begin with we consider AT = 1/2, [ASI = 1 interactions of the
form (baryon current, A4S = 0) x (baryon current, IASI = 1). The results so
obtained are immediately applicable to moré general situations. In this
section we shall have no need to specify thé space time structure of currents.

Congider first S =0, T =1 currents without any DA assumption.
These are bilinear in (Nl’ Nl); (Z? £); (=, A) or (Nh’ Nh) and are easy

to write down.. We shall now use the following device. Even in the presence

of the X, A mass difference we shall express the currents in terms of

l,“o,l\IlL of Eq. (2.2).. We consider YO, z° as mathematical constructs

defined by Eq. (1.5) in terms of the real particles A, 0.

N

Of .course we shall use expressions in terms of doublets with the
ulterior motive to go to the DA. It is however qpité essential to realize
the following. If we assume the AT = l/é rule to be rigorous (barring
_electromagnetism) then any weak interaction should satisfy AT = l/? noct only
in the DA but also in the actual split (%, A) situation. The device just
mentioned guarantees from the outset that this requirement is met. The need
to bear this ppint in mind was first emphasized by ‘I‘reime,nollL

With the exclusion of a remark t0 be made in Section 7 we shall ignore
in this paper the guestion whether the procedure just mentioned is strictly
necessary. This question is tied to whether or not deviations from AT = L/2

are indeed purely electromagnetic.

The most general form for &S ='O, T = 1 baryon currents is

.T = 1: al Nl I,Nl

E N o t st
+a(N2£N2+N31N3)+ahNutNh+a PR

(3.1)
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where T is again the doublet spin. We shall use the noﬁatioh-

+ 1 & 1

T = V_Q(rliirz); J =W/—§(jli ije).. (3.2)

j' 1s given by

-+1 — -l — g . . t — -
7= Wy N, Ve ; = NN Va2 ; Iz = -(N, N, - Ny NB).
(3.3)
Consider next the |[AS| =1, T = 1/2 current. Write it first in

terms of the physical baryons, then transcribe to the doublet language. The

most general result is

lss| =1, T=1/2: By s +8, Sy * By 85 + By 5y (3.4)
with
Wy N, N, N,
F1 T - ’ 2 T -
- N, N, -, N,
(3.5)
N, v Ny + W, 17 N V2 -, o, N, + T, oW,V
55 = ' ) ; S).(. = .
= -+ = . = _+
=N2 13 Nl + N5 T Nl V2 'Nh 13 N5 - Nh T N2 2

For any s we shall often use the notation

S S

. - ; s - : (3.6)
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The method of first writing down currents in terms of the usual baryons
and then transcribing to doublets is too roundabout. A simpler procedure is

the following.

(b) Baryon currents, General method

Just as T acts on the doublet spin components we introduce I3 which

acts on the K-spin components of N, see Eq. (2.3):

0 1 0 =i 1 0

pl = b4 p2 = 3 95 = - 5
1 0 i 0 o =1
(3.7)
+ 1 v
= = (o % 15p,) .
2 .

Note the minus sign in the definition of p We can now write Eq. (3.3) in

3
the compact form 'gl = E,BJN .

Thus we can look upon the T = 1 current of Eq..(3°l) as follows.
The first three terms correspond to I = 1, K = 0; we can in fact write the
a term of Eq. (3.1) as a N TN . The j'-termhas I =0, K= 1. This
is an example of the general rule that we will get all currepts by a vector
addition procedure of all possible I and X to the desired T. This formal
.procedure is independent of the (2, A) mass difference. (Of course only then
can I and K serve as good quantum numbers if this difference is neglected.)
The following lemmas will be obvious. |

1) Any bilinear baryon current; whether AS = 0 or 1 can only have I = O

or l.

2) S-conserving currents have K =0 or 1.

1/2 .

it

3) | &8 | = 1 currents have K
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Thus one can write down the following. complete list of currents.

& = Oo
T=073 . I - K=0:p = NN + NN + n N N (3.8)
I=K=1:p"'= Np PN (3.9)
T=1,; -I=1, K=20: 2, = l E,N +a XN TN +-ah h T Nh
(3.10)
I=0,K=1:3'= NpN (3.11)
T=2; I=K=1., Current is v - where-
v = § oo T N
. Np~ 1, + T )N
Vo2 3 p)
0 2 1, - + + -
v.oo=\/5 N[9515—5(91 + p T) N (3.12)
vt - A ¥ (" 1, + p, )N
Vo 3 p)
V-'2 = N p+-t+ N .
& = 1o
P=1/; I=0, K=1/2 : s = Bys; + By, (3.13)
- . . — . | -
I=1 K=11/2 : s'= By sz + By sy, (3.14)

(See Eq. (3.5).)
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T T r.n5
T=3/; I=1, K=1/2. Current is u 3 Eouy 7o+ b w7
3/2 7 32w -
uy = - N3 T Nl 5 ) - N4 T N2
(3.15)
1/2 2 = 1 -
w, = 3 [N3 Ts N -_;7; N, 7 Nl] s
1/2
), WV/—- [N4 3 2 -\f~ Nu T N ]
1/2 1 +
uy = 3 [N2 13N1+ﬁ N5T~Nl]’
L =l/2
v, - "‘\/‘-[&Nh T. N + —— k T
=32 = o+ | =3/2 = _+
ul = N2 T Nl s uh = '.Nh T N5 .

A1l currents have the indicated T-properties for the actuai values of the

Y, A masses. We next discuss the possible structures of H(O) and H(l)

g(1)

in terms of these currents. As H(O),' have definite I-properties we

shall now have to use the currents in their true doublet form.

(¢) Structure of H(O)

Let (IO, Kb) denote the (I, K) values of AS = O current;

likewise (Il’ Kl) refers to AS = 1., To construct an H(O) we need

IO = Il =0 or 1l. In either case Kb can be equal to zero or one.

Thus there are four possibilities.
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Io=1,=K,=0:" L <_p(;sO +_.‘E°), (3.16)
(see Eas. (3.6), (3.8), (3.13).)
'IO = Il =0 ; Kb =,l ‘ ‘ﬁ p+ N sf - ;%Z: ﬁ p3 N s0 + h.c,
(See Egs. (3.7), (3.11), (3.13).) | (3.17)
I,=I,=1; K =0 P 3t , : : (3.18)
Bm Gk, r ) (L, ¢ tys) - ()
By= W oo .

Here we meet a typical recoupling problem. Couple the currents of Egs. (3.10)

and (3.15) together to AT = 1/2 , The answer is

V2 1 .0 _,0

- — (j+ S'- - e ] 5 + hoC°)

3 Vo

where the term in brackets itself has AT = L/E; see Eq. (3.14). Equation

5

J

(%.18) is the Jjt coupling discussed in I.

Ip=T, =1, k=1

=l

3

. _ _ - o, o
oo N, Ny TN, +B, N TN,) "I N_paim(al N, 7 N -8, N, 1N;) +h.c.

(3.20)

There is an obvious structural connection between Egs. (3.17) and (3.20).
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(d) Allowed structure of H(l)

As was stated in Section 2(#) we mean by this an interaction with
AT = 1 and which shares with the strong ihferactioné the invariance under
Eq. (2.9) with the condition (2.12).

The transformation (2.9) is ﬁhe product of an I-spin'rotation and
a 1 ¢>2 substitution. The currents of Egs. (3.9), (3.11), (3.12) al1

contain ﬁé N3 and ﬁ5 N2 ° Sugh terms cannot possibly respect 1 «— 2 .
Hence p', J' and v cannot appear in the allowed structures of H(l).

There remain three possibilities, all of which with Kb - O.

1
Va (3.21)

This is the interaction called (j s) in I.

I,=1, I,=1 j+ s' - ,-;— Jo-s’o + h.c.
\ Ve |
(3.22)
We shall call this interaction (J s').
I. =0, I =1 o(s'® + F9) . _ , (3.23)

We denote this coupling by (p s'). It is easily shown that the interactions
(3.21-23) do share the invariance for the transformation (2.9) and do obey

" the condition (2.12) provided that

(3 s) Poay = la
(3 8) - : a = Fa ). ‘for €. = =1 . (3.24)
(ps') : ny = =n
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'nThus, see Eq. (2.10), allowed structures for H(l)’ exisf for both G'- and
G -invariance. v

We are now ready to derive Eq,‘(2,l7) and fhus compleﬁé the proof
of Theorem (B), Section 2(d). One shows in fact that, under the conditions

(3.24), H_l(l) shares with H_ the invariance under

+ -
' = ¥
N5 - i € T Nl s T - =€ 5
(3.25)
' o] o
Nl - i e3 T N5 s T o =€ B
provided the phases satisfy
t ] 6
€& € € = -1, | | , '(302 )

Equation (2.17) follows from Egs. (3.25-26) by the same argument used in
connection with Egs. (2.11-13). Hence Eq. (2.17) has been derived both for
G'- and G“-invariance,l6 |

It may be useful to state the conditions under which the helicity
relation (2.15) holds. For Eq. (2.16) the DA is sufficient. For Eq. (2.17)
it is insufficient. Following the various transformations one concludes
that Eq. (2.17) nevertheless holds in the presence of the true Z-nucleon

mass difference for G+-symmetry° "G necessitates full global symmetry.

‘ +
(e) m-currents. Space parity and G - symmetry

The baryon currents of the foregoing sections may be completed with
meson currents. Here‘we consider the n-field only. (Currents involving K's
occur in Seec. 5.) For n we have I = 1, K = 0. The only baryon current

to which s=terms may be added is j of Eq. (3.10). Representatives are
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(3 . denotes a spatial derivative)
Ya)p = OX Iy = EHXOX . (3.27)

The AL = 0, 1 rule and all that follows hold true for
3p +‘g(“)A s dy 24y +—§(n)V as long as the DA only is invoked. But

+
for the stronger G -symmetries used in Eq. (3.24) something new happens.

) o ) . +

According to Eq. (3.24) the J current which enters in the G case isl7
F - W oeN, % FeN + § 4N - (3.28)
d = Nl T 1 i3 + L % y o ° 3,

Under the transformations . (1\1l —N N e—aNh_) ; (Nl (-—->N5; N, e——»Nu)

27 73
£ F + .
we have j~ = %j° while for G J(x)a ™ ij(ﬁ)A; ,é(ﬁ)V —)4§ﬂ(V) .

A

Hence for G~ we may add j(n)A to jA— and still all arguments of

Section 3(d) hold ‘true. But while we can add j(ﬁ)V to jv+ (for G+), we
cannot add j(ﬁ)V to jvu (for Gé); This indicates that we can further
(1)

restrict the allowed structure of H by arguments concerning conserved
currents.
The phenomenon just described is due to the fact that with respect

to the group G (not G+) a non-trivial parity is introduced in isotopic

space. For s-currents this isotopic parity is ‘linked to the space paLrityo

| (£) Stfucture of tﬁe non—leptbnié dééay interaction
This‘completés the survey of the doublet spin structure of H(O)
" and H(l)o The next question is how one guarantees that these two interactions
separately are P-conserving but clash when taken together. In I this gquestion
has been discussed for the particular choice H(O) = Jt, H(l) = J s

. : ) 0 1
(see I Eq. (48)) but all arguments apply equally well to any allowed H( ),H( )o
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The same is true fof the possibility ﬁeﬁtiéhédnin I that all S=violating
currents are either all ﬁuré v :br all pure A. Furthérmoré a general
argument was given in I that showed the parity.clash idéa and the univérsal '
Fermi interaction (total current) x (total current) to be incompatible. In
| particular the AL = O, 1 rule and the schizon scheme are_mutually execlusive.
See however the remarks on this question in Section 6(a).

The particular coupling scheme discussed in I is clearly not unique.
It is not the purpose of the present paper to express preferences‘for one or
another form of H(O), H(l)° It is remarkable however to note the following.
The AI = 0, 1 rule and a coupling of (&S =0, T=1) x (|ss] = i, T = 1/2)
currents are actually comﬁatible provided the Seconsefving_current does not
only contain I =1, K=0 butalso I=0, K= 1. In fact from Eq. (3.17)
and (3.21) we derive the following. If we couple the‘ T = 1 current

ﬁl 7 TN, £ N 7X(I,* cgnsto_é,75)N :+ ﬁﬁ 7, TN, (3,29)
to the [85| =1, T =1/2 current s given by Eq. (3.13) then all
requirements of the AL = 0, 1 rule can be fulfilled, In Eq. (3.29) we have
exemplified a space time strucfure to which éorrespcnds a pﬁrev(V or A)
S-violating current. It is interesting to note that in such a coupling schemé
(unlike the one discussed in I) the S~violating current is purely of the
T = 1/2 kind.

Finally we note that the relation I Eq. (4) between the rates of
s*. and A-decay is a consequence of the AT =”O; 1 rule rather than of the

more specifiec form of coupling used in that paper.
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4, THEOREM ON P-VIOIATION IN =-DECAY
In accordance with the DA we consider the amplitude for = — A + m

as the sum of the amplitudes for

oY v, Ay = -1, A =1 (4.1)

—_ © - '

_-..->Z+:t,AI5=O._ (4.2)
The AIB’ Al as far as specified are also obvious. But the AL for

reaction (ho2)-cannot be fixed by an argument similar to the one given for
Y% 5p +x” in Section 2(d).

Howevef,‘let us ask if it is possible to relate =-decay to the X«decays.
For this we should relate (I~ | ¥° ), (= ] z° 27) +to (z* | n ﬁ+), (=7 | nx").
Such relations are possible if and oniy if we consider situations more
degenerate than the DA, ‘The general method for judging what the possibilities
are is the following. The DA implies that the I-group may be used.
' Additional degeneracy implies additional invariance for substitutions
between such doublets as are taken degenerate. We ask for the possible and
minimal degeneracies which relates ,E to Z decay. These are the following.

(1)

a) Let the strong interactions share with H the invariance for

Nh—)%NB, N, = § N, o ex. (4.3)
It follows that *
= [°a7) = e & 55(2‘ | nx™) . (h.k) | L

b) Let the strong interactions share with H(O) the invariance for

1 t
N =18 1, N Ny = 16 7, N
ot - ()'""5)
- + (] [e]
T - -en |, K- - -en ;
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then

(== | 2° ") = e'gl' ga'(z* [ nxt) . | (4.6)

As (=F | n xt) obeys AT = 0, it follows from Eq. (4.6) that the reaction
(4.2) proceeds via AL = 0 under the stated conditions. Thus according to
Eq. (1.6) the minimal conditions which relate = +to I decay imply that
parity is violated in == - Axn in the same approximation that parity is
conserved in Z++ and Z-- o

This is the counterpart of theorem (A) for A-decay, see Section 2(d).
Theorém (B) has no analog. That is, unlike the phases in Egs. (2.16), (2.17),
those in Egs. (4.4), (4.6) are not uniquely fixed.

We show this by one counter example. Iet H(O)

be of the type J t.
Then one easily shows: ¢ §l‘ g2' = *1 for §l = ¢ (see the
definitions in Eq. (3.19). Iet H(l) be of the type J s. One proves:

€ §l 53 = %1 for Bl = & 62 . Apparently one needs not only an argument
about the structure of the interaction, but an even more detailed argument

about the structure of the S-violating current. At any rate we have

I a [ = a, for full global symmetry.



UCRL-9460

=35

5. INFIUENCE OF K~PARTICLE EFFECTS

(a) Strong K-couplings .-

It is the purpose of this section to study the extent to which the
AT = 0, 1 rule and all subsequent statements can be upheld in the presence
of strong K-interactions, but only inasfar as the latter respect the DA. Thus
we need in ﬁarticular thpse strong K~couplings which satisfy AL = O, just
like Hﬁ of Eq. (2.1). For the present we do not speculate on whether these
specific K-couplings do or do not form a major part of all K-interactions.
‘Rather - do we ask, if they exist what is their influence.

To start with we follow a procedure similar to the one of Séction 3(a).
Letl_HKi be the most geheral K-coupling bilinear in baryons,l8 linear in K.
Transcribe this general coupling in terms of doublets, without implying any

mass degeneracy. Write K as a spilnor,

x'
K = o
°
Then -t
H'K‘ _ HK(:O) + H_K(l) , (5.1)
2% - 5k + sE , (a=0) (5.2)
H'K(l) - 'gn K + st E 5 (AI = l) ® (5"3)

Here s and s’ are the same structures as already introduced in Egs.
(3.13-14). (Of course the constants B in those equations have a different
magnitude here,) The products in Egs. (5.2-3) are in the usual sense of

spinor maltiplication, s K= sk + K% , etec.
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If we now go to the DA then these two couplings have distinct AT
properties, as indicated. To verify this, remember the assignments of Egs.
(3.13-14) for s, s' anduse I =0; T=K-=1/2 for the K-pérticles.

Thus HK(O) respects the DA and is an interaction discussed

previouslyo19 (The S S of previous W'ork2 are equal to % S + K3 H

Y T2

% S - K5 respectively.) HK(l) breaks the DA through interference with
itself and with HK(O)° These are consequences of the AI assignment, not

of the particular trilinear structure which has only been mentioned to'exemplify

the argument. : 7‘ ' \

We now ask if the previous results hold true if we include HK(O) in
the strong interactions and to what extent the answefs depend on the
characteristic relative parities of K-particle physics. ’These are.l) the
parity P(K+) of charged K's relative to A-nucleon, 2) the parity P(E) of
cascade relative to nﬁcleén, 3) the parity p(K) of charged relative to neutral
K-particles." ' |

It is therefore necessary'fo writé out the‘interactién (5.2) in some

more detail. We have

\ (0) _ T .
He = [Fy ¥ 0, N, +F, T, 0, NIK

, o _ : .
+ [Fl Nl o15 N5 - 32 5 024 Nu]K‘ + hag.

(5.4)

where all O-operators in essence represent either 1 or 1 75 . The parity

possibilities are completely specified as follows
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0,5 = 17 (1) for P(K") édd (even)_
P(E)even : 05 = 0z,  0y5=0y
" P(Z)odd 0y, # Oz, 0y # O, (5.5)
p(K)even P 0, = 013,, 0, = O5h
p(K)odd : 0y, f 613 5. Oeh'% O,

Note that in principle one can dispose independently over P(Z) and p(K).

0)

We now observe that the assignment AT = 0 +to HK( is independent

of P(K+) , _P(E) , p(K). This is true because each of the four terms of
Eq. (5.4) satisfy AI = O individually. Hence, as explained in Section 2(b),
it remains a meaningful procedure to assign a AT to a weak interaction,
whatever the parities are which enter in HK(O).

It follows therefore that the AI = 0, 1 rule of Section 2(b) can be
(1)

maintained as long as the additional argﬁment for H can be upheld in

the presence gf HK(O). We shall see presehtly thét ﬁhis argument can be

fully maintained if P(Z) is even, but that some P-violation may occur if

P(Z) is odd. All argumeﬁts.ﬁill turn out to be independent of p(K), however.
A remark on this latter parity is in order here. If p(K) is odd

then I is still a good quantum nuﬁber, but K is not. As has been noted

' élsewhere,8 odd p(K) implies deviations from AT = O in strong interactions,

hence from AT = 1/2 in weak interactions. Thus odd p(K) could only then be

-a possibility if the virtual K-interactions would play only a minor role in

non-leptonic hyperon decays.
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(b) Non-leptonic hyperon decays

In this section we discuss the édditional argument for ‘H(l)‘_in the
presence of HK( 0) and also the extension of the argument‘for A~ and =-decays
in the presence of this I-conserving strong K-interaction. In all these
instances the reasoning follows the same pattern. Wherever we have used
éymmetries stronger than the DA we ask if these symmetries can be extended
to include shared invariance for HK(O)°
a) Eg. (2.11). Complete Eg. (2.9) as follows: N3 -1, N;, N, »1i7, NE,
K° »%°, K" 5-k' . Equation (2.11) remains true in the presence of
HK(d) if F, =F, and P(Z) is even. For odd P(Z) charged K-couplings cause
a deviation. The &ame applies to Eq. (2.14). |
b) Eq. (2.16) remains valid.

c) Eg. (2.17). Complete Eq. (3.25) with N, =17, N, N -i7, N,

K° 5k°, K' oK, Withi F P(Z) even, Eq. (2.17) remains valid.

1= Fa
K°-couplings cause a deviation for odd P(Z).
a) Eq. (k.#). Complete Eq. (k.3) with Ny >N, N -N, kKt o -kt

KP - K, Eq. (4.3) remains valld for F, = F,, even P(Z). For odd P(Z) the

K+»couplings cause & deviation.
‘e) Eq. (4.6). Complete Eq. (1; 5) with N, »i7, N, N -1i1 N5 5

kK° 5k%, K" K. Eq. (4.6) remains valid for F

1 = Fys even P(Z). For

0dd P(Z) the K°-couplings cause a deviation.

All results stated in this section are independent of. p(K).

(¢) Kr-currents

Direct Km-transitions can be brought about through Kr~terms in the
-currents which enter the weak interactions. This mechanism is additional

to the one already met in the foregoing. Their inclusion does not change
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the essence of the previous argument.
We have specified I =1, K=0 for =, I=0, K=1/2 for K.
Hence the only baryon currents to which Kn-terms can be added are t and s',

see Egs. (3.14) and (3.19):

t - t + t 3

s ~K
(5.6)
s' - s' + SK' 5
where (up to a constant)
= x(K° + _EP)
(5.7)
k' x° + kK%« Vo2
SK‘ = '

K V2 - KOO :

Note that EK involves neutral K-particles only. The discussion of Ke-currents

follows similar lines.

(d) Weak non-leptonic K-transitions

Now that strong K and n-Iinteractions as well as decay couplings
have been defined with respeét to the DA, nohﬁleptonic K-decays can be
discussed in this approximation. Once again, we do not insist that such a
description of the reactions represents the complete picture. Rather do
we pose the following conditional problem. What can be said about. H(O)
and H(l) if it were true that deviations from the DA modify only slightly
the description of non-leptonic K-decay.

Note that a transition K# - system with S = 0 is necessarily of
the type AL = 1. For if it ﬁére a AT = O transition, then the final state

would have Q = O, In particular
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k' - 2« + 20 or x + ox® have A = 1 ("5.8)
K - ox, B - «° have AT =1 . - (5.9)
On the other hénd
Kl° S I S 2¢° have AT = O , (5.10)
Thus the 6° and Ti modes proceed vis H(O) and H(l) respectively.

(x (0) goes via H(l),) Representative graphs are shown in Fig,., 1. For
2

each of the two reactions one graph goes via nucleons, the other via cascades.

(o)

Let us now continue to assume that H and H(l) conserve parity.

Then in general the AL properties of these couplings are no sufficient
guarantee for actually allowing the reactions (5.8) and (5.10) to occur.

Using the O-operators of Eq. (5.4) we find

Kn; and K - n allowed via

) for mEY)

7s _ )

ucleons if o15 = 1(1

1

l(i 75

(5.11)

f

- (1) _ /s :
| cascades if O, = (i 75) for H'™/ = 1(i 75).

These conditions are evidently general - and do not depend on the particular

graphs shown in Fig. io Likewise for K&eo we have

K °  allowed via-
72

H

1 75(1)

1oy ) +(0)
mueleons if 0, = (i 75) for YH

(5.12)
(o)

1l

cascades  if 054 =.l(i 75)' for H i 75(1) -
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To see when K&; and K&; are both allowed in the DA we must distinguish two
cases.

a) P(Z) even. The conditions are

if 0y, = 0)5=1 then H(O) =175, all) - 1,

(5.13)
if 012 = 013 =1 ‘75 then iH(O) =1, H(l) =1 75 s

(5.14)
£ 0,7 0,5 then u(%) - g(1) | (5.15)

Equation (5.15) implies that if p(K) were odd it would be impossible to assume

o . + + - .
K&z 5 K%3 s Z+ and X_ = are well approximated by

the DA. While Egs. (5.13), (5.14) show that for even p(K) the assumption of
(0) 5(1)

that all four décays:

P-conserving but clashing H is adequate to describe all these

decays in the DA.
b) P(Z) odd. The transitions (5.8-10) are always allowed. Thus even P(Z)

excludes odd p(K); odd P(Z) does not exclude odd p(K).

We conclude the following. It is possible to endow H(O), H(l) with

all the properties stated in the AI = O, 1 rule of Section 2(b) and have

-+
)

course totally unnecessary to assume that these two separate weak interactions
(0), H(l)

both K&Z and K& allowed in the DA. For this last purposé it is of

 do conserve parity. The parity properties of H become only
manifest in the general discussion of Zsdecays given in the foregoing.
But even in this last respect we must make a proviso. It is

conceivable that also for X-decays we could allow H(O) and H(l)

to be parity
violating provided that certain dynamical accidents happen.
It cannot be anybodys purpose to give a complete theory of accidents.

Let us nevertheless consider some specific examples in the next section.
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6. QUESTIONS OF DOMINANT VIRTUAL TRANSITIONS

(a) Dominance of K. and K,

Consider the ccntribution to Z;— and Z+f from the graphs drawn
in Fig. 2. The 5 graph was first considered by FMS. The possibility to
have P-éonservafion if K% and K&E dominate was first noted by Wolfenstein
who also stated the reievance of the DA with regard to the Z+‘—> Y° graph.
We add the following comments.
1) From the present point of view we deal here with special H(O) ’and H(l)
transitions aé indicated in the Figure, seé Egs. (5.9-10).
2) These graphs provide examples of P-conserving contributions even if
H(O) and H(l) do not separately conserve parity, see the discussion of
Section 5(d). Thus if such graphs would entirely dominate Z++ and Z_",
the argument given in I concerning the incompatibility of the schizqn scheme
with the parity structure of the non-leptonic weak interactions would not
apply.
3) We consider next examples of graphs which enter in the same order as

those of Fig. 2 but which give P-violation if H(O), H(l) are P-violating.

, transitions of Egqs. (5.9-10) as brought

Consider the weak K& and K&

about by

K -»n+p(weak) ; n +p -»xn (strong)
(6.1)

K° »n + 1 (veak) ; mn+n —n" +x" (strong) .

This 1s only one of many ways in which Kﬁ and K.“2 vertices can be
generated but Eq. (6.1) will suffice to illustrate the point. The weak
links of Eq. (6.1) are drawn in Fig. 3. These links do not only suffice to

generate the graphs of Fig. 2 but also those of Fig. 4. It is obvious that
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these last graphs give in general (that is, barring still further accidents)
P-violating contributions to the decays‘if H(o),bH(l) . violate parity.

4) However, it follows from ﬁhe argﬁment given in Section 5(d) that it means
no restriction to the Wolfenstein argument to let H(O> and H(l) be
P-conserving. But in turn, if this parity céndition is satisfied we are

also guaranteed that the graphs éf F:'Lg° 4 conserve parity.

5) Consider the graphs of Figs. 2 and 4 from the éoint of view of the

AL = 0, 1 rule. As explained in Section 2(b) we need in general an additional

" argument concerning H(l)o But for the graphs under consideration no argument

beyond the DA is necessary.

6) We conclude the following. To achieve P-conservation in Z++ and Z_-
the Wolfenstein graphs are acceptablé whether or not H(O) and H(l)
separately consefve parity. If they do conserve pariﬁy we can exténd
without further édo the Wolfenstein argumenﬁ so as to include the graphs of
Fig. 4, The DA is not only necessary but also sufficieﬁt fbr this subset
of transitions.

The connection between the Wolferistein modelvand the AT =0, 1
rulevhas thus been established bylfocusing the attentioﬁ on the éroperties

of the weak vertices. A similar argument will meske clear the connection

between this rule and the results of FMS.

(b) Single baryon dominance

The considerations of this section were entirely stimulated by the

results of FMS5. Following these authors we consider the particular chains
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of weak and strong interactions drawm in Fig. 5. The strengths of the strong
vertices are expressed in terms of Gl and G , see Eq. (2.1). In the spirit

of FMS5 one may consider G, and G as renormalized constants however. As

1
is evident from the real and virtual baryon states indicated in Fig. 5 we
study the problem in the DA only. This is no restriction as compared to
FMS.

The vertices have in general a momentum structure. With FMS we
shall ignore this for the strong vertex but not for the weak‘vertices
Xi (i = 1,2,3). The reason for insisting on this dependence is that most
models for non-leptonic decays depend very sensitively on the hyperon nucleon
mass difference. For example an effective interaction A z1(1'+ 75)p Ba T
gives an aA ~ 0.9 but would give aA = 0 1if we neglect m, - m.p . Such

mass difference effects are not fully exhibited for constant Xi , as we

shall see.

The AT = 1/2 rule implies
X, = X, - X (6.2)

and relates the transition matrices ?YZ as follows.

y,z“ - “rrf . ‘rrf\/? . - (6.3)

Put
Xi = a; + bi 75 s
a; = A, + ii7 a Ci . (6.4)
b, = B, + i74qD,

where A-D are functions of the 4-momentum transfer -q?. Apart from common

factors we have then
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o, & A

™Moo= % wIIOC W1 , (6.5)

Ve m o= s ‘NF%SI T M +01 ’ (6.6)
mo= 7 eIV i (6.7)

g; = Al(M?) - e.A2(1)v - M_Cl(Mg) + e o)1), : (6.8)
3t o= Bl(Me) + eBy(1) - M Dl(Mg)» + eD (1), (6.9)
g0 - Al(Mg) - e Alkl) - M cl(y2) + ec (1), | (6.10)
7% = Bl(Me) + eB (1) - M Dl(MQ) + eD(1), (6.11)
€ = G)@l . (6.12)

The nucleon mass has been put = 1, M is the Z-mass.
So far we have only used the DA for the strong vertices., We ask

.what happens if we let the weak ones share this symmetry. This establishes

a relation between Xl and X2 but this relation depends on the Al-structure

of the weak interactions.

(o)

Consider first a general H -interaction. This shares with the

strong interactions the doublet charge symmetry property. Thus

+

(= | p) = (Y° | n), that is

X, = X (AT = 0) . (6.13)
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1)

For H( the situation is more complex as can be seen with reference to

the three kinds of AI = 1 couplings of Egs. (3.21-23). One finds

1) X, = =X,

]

for js, ps' (A
(6.14)

for js' (ar

[

1) no simple relation.

" A further investigation of j s' did not reveal any chance reason why
Xl = % X2 might be valid for this case. We exclude J s!' from the
following, not because there is any argument against this interaction but

because we have nothing to say about it.

Equations (6.8-11) now give

for AT=0 : £ = =a0F) - ea(1)-mc(f)+ec (1), (6.15)
nt=nl-= Bl(M?) +eB (1) - M Dl(Me) + €D (1) ;
| - (6.16)
for AL =1 (not js') :
& Al(Mg) +e Al(l)m~ M cl(M?) - ecy(1), (617
at o= Bl(M?) - eB(1) - Dl(Me) - e (1), |
(6.18)

while &%, 1° are still given by Egs. (6.10-11).
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_(c) Further comments. The FMS Model

1) Consider the special case

A1l C,D = ©
All A, B independent of q2 (6.19)
€ = i l °

This last restriction is just the one to G# symnetry. It follows now from
Egs. (6.5-12) that 770 is pure s(p) wave for € = +1(-1), in either case
in contrgdiction with the large asyﬁmetry observed in ZO+. Equation (6.19)
is one of the assumptions of FMS. Hence these authors need further decay
mechanisms, for which they choose the K grapbs discussed in Section 6(a).
2) In the FMS treatment thelcontributions to the X  graph of Fig. 5 are
zero. It can now easily be traced back how this comes about. FMS assume
that the weak vertex has the form ay + bY 75 v
_ and are taken to be the same for all graphs. In the present language, FMS

where &y b, are constants

>a;svsume that Eq. (6.13) is true, that is, at least for baryon contributions
they make the assumption of a pure AL = O interaction. To this there is
of course no objection. It is impoftant to note, however, that it is
therefore implicitly contained in.the work of FMS that not all weak vertices
can be iterates of a pure (I = 1, 28 =0) x (I = 1/2, |as| = 1) coupling,
in accordance‘with the more general reasoning of previous sections.

3) To obtain a parity pure answer for 77+ , FMS proceed by using the same
AL = O vertex as was mentioned before. We know'from the genersl discussion
that, if H(O) conserves parity then 7q+ does the same., Here FMS follow
a different course which is probably somewhat more restrictive. On the one

(0)

hand they do not assume that K H conserves parity, on the other they
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assume Eq. (6.19) to be true. ThlS indeed leads to & P-conserving 77]
nameLy s(p) wave for €= +l( l), see Eqs. (6. 15 16) and (6. 19)
h) Thus the FMB model is eqplvalent to an effective H(l) of the type K

2

and an effective H( ) of the type N Nl .
5) It is 1nstructive 10 note that there are other solutions to Eqs. (6. 5-12)

which give the desired properties of 77 . These are obtained by dropping
Eq. (6.19).
Exaﬁple: Take an effective H(O) with Al = Bl = Cl =0 and a

nonvanishing constant D denoted by Dl(o)° Take further an effective

1 s

H(l) with Bl = Cl = Dl = 0 and a nonvanishing and constant Al, denoted

by Al(l)° Put € = -1. Then we obtain from Egs. (6.15-18).

mo= P ’ ?q- = -2 Al(l) 75(M -0
| (6.20)

Hence without using K& we have obtained & nonvanishing P-conserving 77"
with the required opposite parities. Note moreover that the rates for 2++

and Z_' are of the desired same order of magnitude if Dl(o) o Al(l). In

(1) _ 4 5Dl(o)°

fact these rates equal each other for Ay ,

Equation (6.20) is given as an example, not as a propesal. ‘It shows
that even if single pole dominance is correct it is not at all obvious what
one should conclude from that. |

Moreover Eq. (6.20) provides a second example of a situation where
the DA is enough fof H(l), Iedeed, under the conditions stated to obtain
Eg. (6.20) the contributions of Hi(l) to Z++ vanish, see Egs. (6.17-18).
Hence there is once more no need for. the additional argument referred to in

Section 2(b).



UCRL~9460

47~

7. CONCLUDING REMARKS
The previous sections have dealt with the structure of weak
non-leptonic interactions in a purely deécriptive way. The question arises,
if the Allz 0, 1 rule is correct could one see why these interactions consist
of two parts, H(O) and H(l)?
We would like.to present a speculatién‘on this question. The strong

interactions (2.1) and (5.2) which make up the DA can be written as

in + (sk + sK) (7.2)

where j denotes the isotopic structure of the n-field source. Assume that

the =n(K) fields have small K(x) components,eo

1—93_‘,'*521—}{—/’ ..I.(./=(K’ K, Kl)
(7.2)
x* Kt xt
- + 822 s
x° ° 2-1/? ©

where @, may be operators proportional to a weak coupling constant,

1’ 2
but are independent of T, I or K . Then

J = generates J Ql K ,
A S A
(7.3)
sk + sK generates s+Q2n+ + S-QQﬁ- = (s° + EO)Q2 7° .

2

These couplings are both of the type Jjs, hence H(l) see Eq. (3.21)., We

might say that the Egqs. (7.2) generate a "schizon scheme™" without schizons".
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We can generate H(O) by
M= v Ty R T T T
(7.4)
Né - N2 + 921 Nl Nh - l\Tbr + ghB NB .
In this way
jx genérates tn , ) (7.5)
P - .
which is a Jjt coupling, hence H(O) see Eg. (3.18). Also
®k° + S°EK° generates p(K° +K°) (7.6)
which is also an H() see Eq. (3.16). Finally
F N k' o+ h.c. (7.7)
| 1N |
s K + st K generates
— + ' :
N, N, K+ hec. (7.8)

These are both H(O), o s] = 1 but of a type not considered before.

Equation (7.7) is a bona fide AT = 1/2 coupling. Equation (7.8) can be
written as N(p' K= + p 'K )N, see Eq. (3.7). Hence it is AL = O but
a mixture of AK = 1/2, 3/2 and therefore a mixture of AT = 1/2, 3/2.

Nevertheless the DA does not allow the reaction
K - % + = (7.9)
to take place via this coupling, as the reaction has Al = 2, the coupling

AL = 0, Put differently, Eq. (7.8) allows

kt ozt + 2°

2
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but these particles cannot recombine in the DA to 2rx as they belong to

different doublets.
If the DA gets broken however, K&; can take place. In this sense
we may perhaps be justified to call this non-electromagnetic AT = 5/2
effect a "small" effect. A dimensionless parameter which characterizes the
DA is B = (Mz - MA)/MA. In the DA, & =0, its actual value is & =~ 0.067.
If we consider © as a measure for the aqplitude ratio K&;/k&; then the
ratio of rates would be ~ 62 = 0,005, a suggestive order of magnitude.
For the présent we shall not pursue such arguﬁents any further and
(0)

in particular leave open the question of the parity structure of H and

H(l).

The common'orderé of magnitudé of all weak prbcesses suggesté.a common
gereric mechanism of leptonic and non-leptonic decay couplings. If the latter
are generated by the strong interactions, one may ask if the same should not
be true of the leptonic decays. I do not think that such a gquestion can be
answered in a theory which does not account for the law of baryon conservation.

Finally we summarize what is general, vhat is special about the
conclusions -obtained in I, where the particular choice H(l) = js, H(O) = jt
was studied.

In I we obtailned parity clash for G+-symmetry; In this paper we
have shown that this is also possible for G -invariance, while at the same
time Eq. (2.15) holds true.l6

In I we explored the consequence of two further assumptions, namely
(a) The S-violating baryon currents are either all pure V (i.e. 7x) or
pure A (i.e. 7, 75)°

(b) The same S~violating currents intervene in both leptonic and non-leptonic

decays with [88] = 1.
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It was shown in I thét>(a).implies odd P(Z). This conclusion is not
specific for the (Jjs, jt) coupling scheine. Tt was also shown in T that
(a) and (b) imply the occurrence ofllepténic NT =‘3/é ffansitions. This
lést éonclusioh is more specifically true oﬁly if H(O) cohtains‘ jt..
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This shows that if Egq. (2.15) were to be in agreement with experiment,
it would not be possible to conclude with definiteness that the weak
interactions are of the form H(O) + H(l). Nevertheless it is gratifying
that this form of H leaves no ambiguity in the value of this relative
helicity.
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20, Similar to the way small non-static electric (magnetic) phenomensa
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FIGURE CAPTIONS

Fig. 1. Examples of graphs which contribute to & and to « decay.
A, J, O denote effective strong K, strong =n, weak vertices, respectively.
() x(1)

Fig. 2. K-contributions which conserve parity if H violate

parity (Wolfenstein).

Fig. 3. Contributions to .K- —~ np (AT = 1) and to K° — nn (AI = 0).
Fig. l, K-contrlbutions which generally violate parity if H(o), H(l)
violate parity.

Fig. 5. FMS graphs for transitions via a single baryon.
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Fig. 3
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