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-ABSTRACT

. The nume rica.l solution of a linear differential problem is £ormulated as
% . S
an overdetermined linear model with the objective of minimizing approxima.- Coes

AN

tion errors. The dua}. of thia model. is a. linear program. ‘
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I. INTRODUCTION

In recent yearé linear programming has become a usg_eful. approach to ':
- many decision problems in various fields of business, indxéstry,‘ A'aAnd Bcieitce.
Riley and Gass in [1] bresent some thousand such appiicatioﬁs. - With -‘
respect to problems phrased in mathematical language per se, Goldstein [2 ]
has applied the technique to overdetermined linear systems and -
Mangasarian [3 ] has used it for error evaluation in conne¢tion with the *
numerical solutic';n of the biharmonic p;oblem. o , o :

The approxixﬂatioon of linear differential problems by linear systems

has been extensively treated, For example, Fox [4] uses this method for

the linear erdinary secondeorder differential equatiotn with boundar'y condi«~

tions. Likewise, Foraythe and Wasow [5 ] employ it for second-order partial '

~ differential equations. In all cases the ayateme are determinate. the

unknowns are approximate solution values on mesh points, and no estimate of =

-

" the error is explicit in the process,

The linear model by which we'represent the differential pr-oblem is more

extenswe. firat, the unknowns include derivative as well as aolution values at

~ mesh points; second,’ auiﬁcient mesh points and approximatxon formulas are

used so that the system is overdetermined; third. th.e max1mum absolute valuevﬁ-.

- of approximation remainders is introduced as an unknown to be mimmized° »

“and £ourth, the model is the dua.l of a linear prOgram. . A
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- _ II, LINEAR DIFFERENTIAL PROBLEM ' ;,
A linear differential problem consists of linear differential equatxons _ _ fl |

and prescribed conditions involving an unknown function u. and some of ita
derivatives with respect to an independent va.riable 8, Either u or s or. ‘ i

both may be vectors, as in the cases, respectwely. of an ordinary system. a _

- partial differential equation, or a partial system.
The differential equations are assumed to hold on a aimply connected

The prescribed conditions apply to a set, T of

domain, D; of péints. 8,
~ points, 8, We consider only the case where D is closed and '1‘ is a- subset -
of D. The method can be extended to D open and T in the closure of D (for
exa.mple. when T is the boundary of D). - N “

The differential equs.txon(s) can be written as V‘ = l\(" ‘

Lusc for " s D B ._':('1)‘?,

and the prescribed conditions by = ‘ b S ;  |

: ._Lpusvcp ' £or'l 8¢ T<‘D. ; o | (Z)

The problem is said to be well-posed if there exists a umque solution. u. on _

D, which has continuous derivatives of ordera appearing in L, The '

"coefficients" involved in L and LP, togethex' with € P’ are assumed to be )

contmuous functions of 8 “on D, and we require tha.t the highest-ordered

terms of L do not vanish on D. o
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I, DISCRETIZATION AND THE LINEAR MODEL

We constr'uctva suitable mesh over D and concern ourselves with

- numerical values at the mesh points for the solution u a.m; its derivatives up R T

' to the orders which appear in L and L _, p These values appea.r as the unknown 3
o variables in a linear system obtained by applying (1) to all the mesh pointa by o
applying (2) to mesh points in T. and by using truncated Taylor expansions as
_approximations to relate -aolution and derivative values ot adjacent points,
The last involve a.pproximation errors, If we considered each of theoe error'o
as a distinct unknown variable, our linea.r system would ha.ve more unknowna
than equations, Hence, we introduce a single error variable which is the '
| maximum absolute value for all the error terms. Each approximation

equatxon of the form

et+tava=0, °

where e is an dpprox}mtion error, v isa veotor-'oi vsolhtio"x‘x and doriv.itive

-values,and’.a is a vector of coefficients,is vrep'lace_d b'yv‘t’wo' lpequali'tie_a‘of the . |

R

" form

1 ugravao, e

uo;na.vaol.
where ug = max Iel -

The other equations (obtained from (1) and (2)) have the form',v L ', S

thore ¢ isa numerical valueo S e

: ?".They are replaced by the equivalent limiting inequalitxes of the form

avac. )
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Thereby, all our restraints will all be inequalities of the direction », The

A BN .
xR O . - . -

.reaulting complete linear model has the fo;:gn_ N o v -. ;
Av a.c-_ :

(where v now includes “0 "and c isa vector of a.u the constant terma) aad

we wish to minimim the linear f\mction.

bv = uo'w‘, |

Lt V' L Lo !‘-‘.-'",_ . . R

where b is a coefficient vector whose componenta are al.l zero except the one B
/ .

- '»"r‘*'-‘ L S y

corresponding to vy which is 1. R o R A
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" 1V. ' THE LINEAR PROGRAM

, According to tefarence (6] a linear model of the form a.bove has aa L

* Maximize =z =®ex L

subjectto ' A'x=b -
with x>0,
* which {8 a linear program in érima.l form, The Simplex algorithm [7 ]

.. applied to it yielda‘an optimal solution for both the linear program and the

, .origina.l linear model. Thus v)a are»provided with numerical values £6r the A‘

eolution and de rivatives at the meah points together with a value tor t.he
maximum magnitude of approximation errors. Linear programming codea

(8 ] exist which perform the necessary computation. .

V.. SIMPLE SPEGIFIC EXAMPLE o

u"+u=a

on D° 063602. |
e w0 +ur(0) = 2. 0.
o u(0.2) = 4, 18007
_ Full details of the, construction of the lin;eaf ‘model for the meah o
31 = Oy . | . ‘m. o A

. -

' .are givve_‘n‘. (9], tn'b:iéf. ,.“?e hé.\rfe‘:“_"', |




Y

from (4),

~ from Taylo_r. approximations,

B
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fom (30, R et
““ ' “’k" >acs ks 1"(4) 3.
- -uk uk" > .8k N

from (5), -

u, > 1.18007, o

-u, > +1.18007;

B AT LSRR T R
g ! el nat )o0

SN

“0('—0: (uk. hk“k|-+ 0.5 hkzuk" . uk.i) 3' 0 o | ‘ | |
. ' . , ' k =A243_ 3. 0 LR
sp + Byt < BiwS o )20 f AT

* - Thus the linear model consists of 26 inequalities in 10 unknowns. Ugs “k' “k" .

" uk" s, and we wiah to minimize Uge The dual of thia model is a linear program

 with 10 equationa in 26 unknowns, a linear functzon Of _which is to. be

\.;

minimized

' Computation of the program gave u(O 08) = 4. 07682, thh the ma.ximum

_error “0 =0, 00004. 'I'he problem has an a.nalytxc aolution, u=s+coa a, for" : :

which n(o. 08) =4, 07680. eThe ﬁnite -difference method described by Fox [ 4 1 -

. ‘) A

gives u(O oa)nx.onea.,; £
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. This latter method requires a unif.orm mesh and provides only solution . R

B values. whereas approximations for the derxvatwe values are obtained in the -

' linear program approaciu _

dxfferential problems has these advantagee' _' N

()

U

v ()

Many other examples are given in full detail in [9]

VL. CONCLUSION |

~The line-r program approach to the numerical aolution of linear ST

It is global, that is. all mesh pomte are considered simultaneously.
{B) It applies to problems with initial boundary or mixed conditions. N o
{C) An overlay of approximation formulas can be used. T .
(D) It applies to single equations or systems. . - | ) \\‘,\
(E) It applies to Ordinary or partial 'prob-lelm._; R o
(F) The mesh need not be uniform. ' ‘ " :
(é) It provides values for derivatives as well as £or the sol\:tionat mesh | ”‘. :
 points. e e B
(H) 1t provides an estimate of the error. | ‘; ) i

Disadvantages of the approach are:

(A)
(B)

p L

(B)

o)

It applies only to linear differential problems.
Construction of the linear model is tedious.,

Y

[Extensive computation is involved.

The linear program approach appears most likely to be useful as follows'

SR (4)

For problems where derivative values are desired

‘When a uniform mesh is not suitable to the problem.

For problems with unusual conditions. S
As a starting proceas £or initial condition problems. i L ‘

T
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‘-‘8“' w =
' We should note that Stiefel [10] presents an a.lgorithm t’or error
minimization in overdeterminate linear systems which may be applied to
some linear models approximating differential problems. With his algorithm

it is not posaible to attain the versatxlity and generality a.fforded by dualizing :

to a linear program. S
The author wishes to thank Dr, L. A. Zadeh for his a.dvice a,nd n

asaistance in preparing this article for publicatwn. ‘
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