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ABSTRACT 

Starting from the Mandelstam representation, it is argued on 

physical grounds that "strips" along the boundaries of the double spectral 

regions are likely to control the physical elastic scattering amplitude 

for arbitrarily high energies at small momentum transfers. Pion-pion 

scattering is used as an illustration to show how the double spectral 

functions in the nearest strip regions may be calculated, and an attempt 

is made to formulate an approximate but "completen set of dynamical 

equations. The asymptotic behavior of the solutions of these equations 

is discussed, and it is shown that if the total cross section is to 

approach a constant at large energies then at low energy the S-dominant 

1!1! solution is inadmissible. A principle of umaximum strengthn for strong 

interactions is proposed, and it is argued that such a principle will 

allow large low energy phase shifts only for t ~ £ , where 
max 

t ~ 1. max 
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I o INTRODUCTION 

The power of the Mandelstam representation as a basis for a dynamical 

theory of strong interactions is now widely recognized.1 Chew and Mandelstam 

showed how the representation leads to a one-parameter theory of the pion-pion 

2 interaction if at low energies only the S phase shifts are large. The basic 

approximation used by these authors, as well as by Cini and Fubini, 3 was to 

represent absorptive parts by the leading terms in a polynomial expansion or, 

equivalently, to replace double dispersion integrals by single integrals. 

This procedure 'can be justified when the only strongly scattered J values 

are 0 or 1/2, but when states of higher J interact strongly at low 

energies, it is not possible to ignore the two-dimensional nature of the 

dispersion integrals in a consistent dynamical approach. If one does, the 

asymptotic behavior of the amplitude becomes distorted in a manner conflicting 

with unitarityo 4 The same difficulty appears in the ~N problem5 and 

presumably in all other strongly interacting combinations. It is a difficulty 

that cannot be ignored, since nature has chosen to give us a J = 3/2 ~-N 

resonance, a J = 1 N-N bound state, and very possibly a J = 1 ~-~ 

6 resonance. In this paper we describe the beginning of an attemp~ to 

understand the dynamical role of the double spectral functions with respect 

* Research supported in part by the UoSo Atomic Energy Commission and in 

part by the National Science Foundation. 
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to low-energy resonances and bound states. In so doing we find ourselves 

immediately involved in a consideration of total cross sections and diffraction 

scattering at very high energies. Indeed, it will be seen that if one can 

make a consistent theory of low-energy phenomena, such a theory automatically 

covers low momentum transfer effects at arbitrarily high energies. 

We employ the ~-~ interaction as the basic illustration for our 

approach, but the essential aspects may be generalized. For a preliminary 

orientation, consider the Mandelstam diagram7 in Fig. 1 for one of the three 

8 
independent ~-~ 

i 
amplitudes as a function of s, t, and u • The physical 

regions for the three different channels are labeled by that variable which 
;;~r/ 

is the square of the energy for the channel in question, while the shaded 

areas are the unphysical regions in which the double spectral functions fail 

to vanish.~ The six heavily shaded strip regions are of central importance in 

our approach. We shall argue (a) that these double~spectral strips dominate 

those parts of the physical regions which lie in strips of comparable width 

along the boundaries, and (b) that the "strip" double spectral functions 

can be calculated through relatively tractable elastic unitarity conditions. 

Thus we are proposing a theory not only for low energies but also for 

arbitarily high energies at low momentum transfer. The quantitative · 

reliability of the approximation formulated here is uncertain; it may turn 

out that one needs to calculate the second strip (be~ween 16 m 2 ,and 36 m 
2

) 
1( 1( 

more carefully than proposed here in order to achieve an accurate theory. 

We feel confident, however, that the general approach is sound and that much 

will be learned by studying the first strip in detail. 

The physical motivation for the strip approach lies in two well= 

established general features of strong interactions: (a) the existence of 
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large phase shifts at low energy in states with J > 1/2; (b) the occurrence 

at high energies of forward diffraction peaks, showing a strong concentration 

Even of the imaginary part of the amplitude for momentum transfers ~ 4 m~ 

though no direct observations of ~~~ scattering have been made, we shall 

assume that these two general features are shared with ~-N and N=N scatteringo 

Dealing first with the lowaenergy question, we recall that the 

imaginary part of the amplitude in the s physical region of Figo 1 is 

A = s 
1 
~ 

J du' 
u~ - u 

+ ! J dtV 
~ ' 

(I.l) 

apart fro~ subtractions (or in other words, single=spectral functions)o It 

appears necessary and permissible9 to subtract from (I~1) the s~wave imaginary 
I , 

part; however, one may not treat P or higher wave parts as in4;Pendent of the 
r ., 

double spectral functions without developing asymptotic trouble, as shown by 

Chew and Mandelstamo 4 Thus, if large phase shifts occur for 0 < t ~ t at 
m 

low energy we require that the partial wave projections of (I-1) be large 

for £~ t over an interval of lows, while the projections for t > t m m 

are smalL 

Now, what behavior of the double spectral functions at low s could 

give a sudden decrease in the order of magnitude of the partial~wave 

projection in going from t to 
m 

t + 1~ A simple guess is that for 
m 

large compared with the lower limit of the integrals we have 

o:(s) 
t 

with a similar behavior for 

' 
where [Re o:] 

. max 

Then, since 

t ' ·m 

t 

(I-2) 
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2£ 
q 

t•'-+1 

F 
I 

' 

the order of magnitude of the low-energy phase shifts for £ > [Re a] will 
max 

be determined by the lower limits of the dt' and du~ integrals, i.e., by 

the "range 11 of the interaction. For £ < [ Re a} , however, the lower limit 
max 

is of secondary importance and the contributions from very high values of t' 

and u' determine the magnitude of the phase shifts. (On the basis of 

analogy with nonrelativistic potential scattering, one expects, as explained 

below in Sec. V, that oscillations arising from Im a permit the integral 

to have a meaning.) Thus we arrive at the tentative and qualitative 

conclusion that the existence in the s channel of low-energy resonances 

(or near tJsonances) for J ~ 1 requires the strip regions Nos. 1 and 4 in .. 
Fig. 1 to be important out to large values of t and u , respectively. 

If strips lfo. 1 and No. 4 are important, it follows from the 

substitution law that strips Nos. 2, 3, 5, and 6 are also important. 

How can we argue, however, that the interior regions of the double spectral 

functions are less important? These regions have no direct connection with 

low-energy resonances, but one would like definite evidence that the double 

spectral functions become systematically less important as one moves in 

directions perpendicular to the boundaries. Such evidence is furnished by 

the forward diffraction peaks at high energies. Referring again to (I~l), 

we see that the concentration of the imaginary part of the amplitude in 

the region -20 --\S t < 0 when s is large implies that the most 

important part of the dt' integral is for t' ~ 20, which is just strip 

No. 2 of Fig. 1. If the interior regions of p
6
t were of major importance, 

•' 
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it would be difficult to understand the sparsity of large~angle elastic 

scattering at high energies. 

This line of argument leads one to expect in general a backward 

elastic peak at high energies due to strip Noo 3, although later we shall 

mention some reasons why backward peaks may be less prominent than those in 

the forward direction. We are not arguing here, of course, that a knowledge 

of the strip double spectral fUnctions is sufficient to describe what happens 

in the interior of the physical region at high energies (e.g., at angles~. 

90 deg in the barycentric system)o This domain lies outside the present 

scheme of approximation; it also happens to be a region about which almost 

nothing is known experimentally. 

In the following two sections, formulas originally derived by 

1 10 Mandelstam and obtained through an independent method by Cutkosky are 

adapted to the calculation of ~-~ double spectral functions in the strips, 

and we write down suffidient additional formulas so as to achieve a 11 completen 

set of dynamical equationso Section IV then deals with the iterative solution 

of these equations in the S=dominant case, which is shown to be physically 

uninteresting because of the total cross section behavior at high energies. 

In Section V the interesting case of a constant high=energy limit for the 

cross section is discussed in a tentative way. 

Before we proceed to detailed matters, it is appropriate here to 

11 relate our approach to ideas recently expressed by Freda and George Salzman 

and by Dre1112 as well as by Berestetsky and Pomeranchuk.13 If we continue 

to focus attention on the s physical region of Fig. 1, the double spectral 

function in strip No. 1 corresponds to diagrams in which only two particles 

are present in intermediate states but any number may be exchang~d. In other 

words, this piece of 10 p
8
t is calculated from the Cutkosky diagram shown 
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in Fig. 2(a) and >rEpresents purely elastic effects in the s channel. On 

the other hand, the piece of pst in strip No. 2 is calculated from diagram 

2(b), in which any number of particles are allowed in intermediate states but 

only two are exchanged (it is elastic in the t channel).. Obviously, then, 

we are calculating here the diffraction scattering associated with inelastic 

transitions in which a single pion is exchanged. This is just the mechanism 

of Salzman, Drell, and Berestetsky and Pomeranchuk. We believe that the 

Mandelstam-Cutkosky approach is more systematic, since it raises no questions 

it cannot answer about cross sections in unphysical regions. 
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Fig. 2. The two Cutkosky diagrams needed to calculate the 
double spectral functions in the strip regions. 
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II. EQUATIONS FOR THE DOUBLE SPECTRAL FUNCTIONS 

In his first paper Mandelstam derived formulas for double spectral 

functions on the basis of the elastic unitarity condition. 1 If for each 

channel we decompose the absorptive parts into elastic and inelastic components 

and make a corresponding decomposition of the contributing double spectral 

functions, then Mandelstam's formulas are exact for the elastic part of the 

double spectral functions. In other words, the Cutkosky diagram, Fig. 2(a), 

e.t( s) 10 
represents the complete pst , and Cutkosky's formula for this diagram 

is exactly that given by Mandelstam. The basic approximation of our method 

occurs in the calculation of the inelastic part: What we call the "strip 

approximation" is the assumption that 

in(s) 
Pst . = 

e.t( t) 
Pst , etc • (II-1) 

This formula is exact in the strip region, 4 < t < 16, 
in(s) 

but for t > 16 

there will be additional contributions to Pst • 

Be·cause of the great syrmnetry of the :n:-11: problem, only three 

independent elastic double-spectral functions are required to describe the 

three amplitudes A, B, C of Reference 2. We shall call these functions 

p1, 2,
3
(x, y), where by convention the first variable is associated with that 

channel for which is the elastic part of the complete double spectral 

function. In Fig. 3 the assignment of p appropriate to the amplitude 1,2,3 
B is shown. A and C may be obtained by the usual substitutions, 2 which 

maintain the relative orientation of 

The Mandelstam formulas for 

p 1,2,3 
p 1,2,3 

but exchange the channel labels. 

involve three linearly 

independent absorptive parts which we shall designate by I 1 2 3
(x, y). 

' ' 
Here the first variable corresponds to the channel for which I is the 
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Fig. 3. The assignment of the three independent elastic 
double-speCtral functions to the amplitude B of Reference 2. 
A is obtained by interchanging s and t and C by inter
changing t and u. 
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actual imaginary part in the physical region, while the second is a particular 

choice of one of the remaining two linearly dependent variables. We make the 

choice so that we have 

A (s, t, u) = I
1

( s, t) 
' s 

B (s 
s ' 

t, u) = I 2(s, t) 
' (II-2) 

c ( s, t, u) = r
3
(s, t) • s 

We may note 

r
1

(x, y) = r
1
(x, 4-x-y) ' 

r2(x, y) = r
3
(x, 4•x-y) 

' (II-3) 

l In terms of these absorptive parts, the Mandelstam equations for p 
1,2,3 

turn out to be as follows, when proper allowance is made for the normalization 

of A, B, C used in Reference 2: 

Pl (x, y) = 1 l J J dy' dy" -
2( 

X 
r2*(y', x) [ ~ r2(y", x) + I 1(y", x) + r

3
(y", x)] + c.c. 

J2-/2(x; y, y', yn) 
( II-4) 

' 
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1 · I r dy' dy'' 
~ -vr-~"""'='2_+_1_ 

X 
* * I1 (y', x) I1 ( y", x) + I:? ( y', 

' (II-5) 

l 1 I I dye dy" 
* Il (y'' x) r,(y''' x) + CoCo 

= -
1(' 

where 

and 

X 
4 - 1 0 

Kl/2(x; y, y', y") 

(II-6) 

yy'y" 
2 ' 

~ 

(II-7) 

The upper limits of the integrations over dt' and dt" are determined by 

the condition K = o. Specifically, one integrates only over that region 

for which 

+ 2l.{i9' ' 
(II-8) 

so that K is positive and vanishes only at the upper limito It is easy 

then to verify that p1, 2, 3(x, y) vanishes for y < 16 x/x - 4 o 

We now need formulas for r 1 2 ~ in terms of 
' './ 

subtraction of the S=wave imaginary parts, we find 

Making a 



\. 
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= ~ [ Im A(o)o(y) - Im A(o) 2(y) ] + 1 I dx' p1(y, x') 
.3 et " 

+ 
1 

- __!_ tn( 1 + ~ ) ] 
2~2 x' ' x' - (11--x•y) 

( II-9) 

- ...!_ tn( 1 + ~ ) ] + ~ I dx' p ( y x' ) 4\2 x' 1C .3 ' . 

X [ -x '_..;,..--~-4--x--y-) 1 tn:(l + ~) l 
- 4~2 x' J ' 

(II.lO) 

with r;t(y, x) given by (II-.3)o 

In order to calculate the inelastic absorptive parts we need the 

approximation (II-1), which leads us to 

Ilin(y, x) = ~ I dx' P2.(x'.'. y) .[. x' ~ x + 1 ] ' 
x' - .( 4 ... x - y) 

~I ax• 
1( 

pl(x'' y) 

i' -'x 
+ ~ I ax' 

1( 

(II.ll) 

' x' - (4 - ~ ~ y) 

(II.12) 
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with I
3 
in given by (II-3). Whether or not the inelastic S wave must be 

subtracted here is a point that will be considered later. In general, if 

phenomenology is to be introduced, these last two equations seem a logical 

place. The double spectral functions occurring therein: are correct only 
.. 14 . 

outside a boundary calculated by Kolkunov, et alo which asymptotically 

approaches the straight lines x' = 16 and y = 16. ene may therefore wish 

to add phenomenological contributions to the region inside this boundary. 

It should be realized, of course, that although unitarity is not 

completely satisfied in our approximation the inelastic absorptive parts are 

bounded if a solution can be found. That is to say, for an individual partial 

wave in the s physical region it follows from our equations that 

2 

= (..e)I( ) 
ain s ' 

where (£)I( ) 
ain s is the inelastic partial.,;wave cross section. Now, (II-13) 

cannot be satisfied unless we have 

a. (.e)I(s) ~ l/4q 
2 

~n s (II-14) 

and 

(£)I( ) 1 Im A(£)I(s) ~ l} 2 0 tot s = qs ' q~ s s 

(II~l5) 

so if we succeed in finding a solution of our dynamical equations we can be 

sure that our inelastic and total cross sections have the proper upper bounds. 

/ 
/ 



III. THE S-WA VE OR SINGLE-SPECTRAL FUNCTION 

It is apparent that the problem of calculating the S wave is distinct 

from that of all waves for J ~ 1, the latter being obtainable by quadrature 

from the double spectral functions once these are knowno This distinction 

was recognized from the beginning by Mandelstam1 and is the basis for the 

S-dominant theory of Chew and Mandelstam.2 We may, in fact, lean almost 

entirely on the latter work in our handling of the S waveo There is only one 

change to be made in the NJD technique developed in Reference 2: We shall 

no longer make a partial~wave expansion in evaluating the discontinuity 

across the left-hand S-wave cuts, but use instead the complete formulas, 

(0) ( 0) 
ImA 2 (s) 1 

= ~ 
s < 0 2~ 

As shown in Reference 4, it is necessary for consistency that 

0 ~ lim 
s~-oo 

0 

(III-1) 

It seems to us probably not important whether any inelastic effects 

are included on the s-wave right~hand cuto At energies sufficiently high 

that inelastic scattering becomes substantial the S wave is unlikely to 

represent a significant part of the over=all amplitude. It is probably only 

in the low-energy elastic region that the S wave must be treated accurately. 
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With no prejudice at this stage as to whether the constant A defined 

in Reference 2 can be assigned an arbitrary value in the present approach, 

we give here for future reference the relations between A and a0, 2, the 

S-wave amplitudes at the symmetry point, s = i+/3 : 

a0,2 = - (:) ~ - ~ f dt' [ (:) I 2(t', 4/3) + 2I1(t', 4/3) l 
X [ t' 

1 
+ ~ .tn(l -

8 
) ] . 

~ 4/3 3t' 

(III-2) 

It goes without saying that if all the equations set down in this section 

and the last are satisfied we shall have a solution with complete crossing 

symmetry. 
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IV. DISCUSSION OF THE DYNAMICAL EQUATIONS .. S~DOMINANT SOWTIONS 

In Sections II and III we have written down coupled equations for 

the double spectral fUnctions. We now turn to a tentative.discussion, 

making no pretense of rigor, of how one might try to solve these equations 

and what features we expect will arise in the solution. 

A first consideration is how many parameters the theory contains. 

From conventional field theoretical arguments, one would guess that the 

minimal set of parameters includes the particle masses and one real 

dimensionless constant such as A. • Unstable zero-spin "elementary" 

particles of the Castillejo-Dalitz-Dyson type15 could also occur, but we 

shall assume that none exists. It has been previously emphasized that no 

further free parameters are permitted in a consistent S-matrix theory of 

pion-pion scattering, 
4 

but in an incomplete approach' :such as ours it may 

become necessary to introduce additional, less fundamental, parameters to 

represent the effect of regions where Formulas (II-11) and (II-12) are not 

exact. On the other side of the coin, we must keep in mind the possibility 

that physically interesting solutions do not allow a continuous range of 

A. and that the value of this parameter may be uniquely determined by 

requirements of consistency. 

For reasons of simplicity isotopic spin and exchange terms are 

ignored in the discussion of this section, since these cOmplications are 

inessential to the arguments we shall make. The elastic double spectral 

function is then given by 

p(x, y) 1 I I dy' dy" 
* I (y' z x) I(y'', x) 

I2-72(x; y, Y', y") • 

(IV-1) 
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The absorptive part I is ret + ~n, where 

Iin(y, x) 1 J d.x' p(x'' y) 
== -

1( x' - x ' 
(IV-2) 

and 

Iet(y, x) == Iet(o)(y) + ~ J dx' p(y, x') 

4 2 J - --1-- tn(l + ~ ) 
x 4q 2 x' 

y 
( IV-3) 

e£ In I the S wave has been subtracted out of the double spectral function, 

e£(0) and appears as a separate term I , which is to be determined by the 

procedure discussed in Section III above. The absence of an S-wave subtraction 

in in I will be explained shortly. 

e£ We now wish to argue that I plays the role of a "potential". 

. 16 
If we consider scattering by a superposition of Yukawa potentials, 

V(r) == - f dy p0(y) r 

the nonrelativistic equations turn out to be identical with (IV~l) and (IV-2) 
2 -1/2 e£ 

if we omit the factor (~ + 1) from (IV-1) and replace I (y, x) by 

the real function p0(y). Our problem differs, then, in that it has 

relativistic kinematics and contains a complex energy-dependent "potential,n 

allowing inelastic scatteringo Furthermore, our potential is not given at 

the beginning but must be calculated in a self-consistent way from the 

scattering amplitude. 

16 
It is known that if the potential is considered as given one may 

solve Eq. (IV-1) and (IV-2) in terms of a series of functions, each of which 
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has its threshold displaced from the preceding thre~d and each of which can 

be calculated by quadrature from fUnctions with lower thresholds. The 

possibility of this decomposition follows from the property (II-8) of the 

integration region in (IV-1). Precisely, if we write 

00 

I(y, x) = r: I ( y, x) 
n=l n 

(IV-4) 

where 

' 
(IV-5) 

::: ! J dx' 
1( ' 

(IV-6) 
x' - x 

then for 

n-1 * 
E I , ( y', x) I , ( y", x) 

n'=l n n-n 
(IV-7) X ---------------------------- ' lj:2 K (x; y, y', y") 

it is easy to verify that we have satisfied (IV-1) and (IV-2) with 

00 2 p(x, ·-y) = E pn(x, y) ' pn(x, y) = 0 for y < 4n 
n=2 

(IV-8) 

and 

Iin(y, 
00 2 x) == r: In(y, x) ' 

I (y, x) == 0 for y < 4n 
n=2 n 

(IV-9) 
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Thus the solution builds itself up, step by step, by a "bootst·rap" mechanism 

starting with the "potential," Ie.t = I 1 

One may in fact attach a direct physical significance to the individual 

terms I 
n 

These are the contributions to the absorptive part from intermediate 

states containing 
- 17 1 2 =l/2 

2n pions0 so 41C q - ( q + 1) :t ( s, 0) is the cross 
\ s . s n 

\ 

section for a process leading to 2n pions. It is perhaps surprising that 

in our theory only pions are produced, since the basic approximation seems 

to allow any inelastic process that can be achieved through single pion exchange. 

Because of the bootstrap 

production of, say, NN 
nature of our ~quations, however, if we are to achieve 

1 ., 
pairs, we must start with the matrix element for 

1C + 1C --~> N + N. This latter process, however, cannot be achieved through 

single pion exchange, so NN production never gets started. The same 

statement may obviously be made for other baryon pairs as well as for KK 

thus if single pion exchange actually plays the dominant role we have 

assigned it, then production of particles other than pions should be small 

no matter how high the energy. 

It is possible to augment our double spectral function with terms 

corresponding to single-baryon or single-kaon exchange so as to generate 

production of baryons and kaons, and undoubtedly such a modification will 

eventually be tried. Such terms occur only in the interior region of the 

double-spectral function, however, so it is not immediately apparent that at 

the same time consideration need not be given to multipion exchange. 

Even though our vvpotential" is only determined a posteriori 

by formula (IV-3) we expect that for small values of ~ an iteration 

procedure will converge rapi~ly because Ie.t(O) ~ ~2 while p ~ ~4 • Thus 

the "potential" will be dominated by the S wave part of Ie.t with the 
' 



UCRL-9510 

-25-

higher waves constituting only a perturbation. In fact the S-wave dominates 

Ie£(t, s) at all t, and this will be taken as the defining property of an 

S-dominant solution in our treatment of arbitrary energies, since it leads to 

the characteristic features of the low energy S-dominant solutions studied by 

2 Chew, Mandelstam, and Noyes. In the numerical calculation of Chew, Mandelstam, 

and Noyes the £ = 1 contribution alone was kept from the higher waves and 

with an adiabatic increase of A turned out to be negligible in comparison 

to the S-wave throughout the range of A that was physically interesting. 

This situation may change for large A when all higher waves are included 

in our present treatment, or it may change even for small A if the iteration 

is begun with a "potential" that includes contributions beyond the elastic 

S-wave; these possibilities are discussed in the following section. Here we 

wish to make a negative argument that, from the point of view which considers 

high energy diffraction scattering at the same time as low energy elastic 

scattering, S-dominant solutions are physically inadmissable. 

Our argument is based on the asymptotic behavior of I(t, s) for 

s = 0 as t tends to infinity. If total and elastic cross sections 

asymptotically tend to constants, then since in the t channel 

it follows that both Iin(t, 0) and Ie£(t, 0) should increase linearly for 

large t • If the first diffraction peak approaches a constant width, this 

2 
statement may be extended to -20 m~ ~ s < 0 , a circumstance noticed 

'8 
independently by Gribov~ and the present authors. Gribov goes on to argue 
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that a strict linear behavior is difficult to reconcile with the unitarity 

condition in the s channel and that the cross section probably decreases 

asymptotically faster than oC (.tn t)·l • We are inclined to doubt such a 

circumstance (see below), but logarithmic factors do not in any case affect 

our argument concerning S-dominant solutions. 

The argument is simply that if the S-wave dominates 

all t cannot increase at infinity because 

The S dominant case corresponds, then,_to 

Ie..e(t, s) for 

Im A (q( t) is 
e£ 

,.,e..e(t) ., falling bounded by unity. 

off as t-1 • Now, it might be argued that there could be s~dominance at 

low energies but not at high. However, if Iin(t, s) is to go linearly 

with t 2 for -20 m ~ s < 0 , then according to (IV-2) and our assumption 
. 1( 

of strip dominance there must be at least some values of x in the range 

2 2 4 m < x·:f. 20m for which the average behavior (there may be oscillations) 
1( .., 1( 

of p(x, y) is at least linear in y • Then in (IV.3), according to the 

argument in the introduction, the Pbwave would be expected to be important 

already at low energies. 

We cannot be sure, of course, that there must be .a P-resonance. 

Howeve~~ the low energy situation with a double~spectral function that -

gives the required high energy limit in the crossed channel is certainly 

2 nothing like that in the solutions found by Chew, Mandelstam and Noyes. To 

be more specific, when A is small and there are no other parameters, our 

e£ ( 0) ... 2 
starting terirl in I is Im Ae£ · ( t), which behaves· oG (.en t) as t -+ oo 

when calculated by the Njb method in the purely elastic approximation.2' 19 

It has been shown by Gribov18 that the successive iterations p2' 

calculated from this starting term will also behave cC (.en t) - 2 • According 

to (IV-6) and (IV-9) Iin(t, s) will have a similar behavior, provided the 
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sum over n does not go more. strongly than an individual term, so the 

inelastic S•wave which is present in our new framework cannot be so large 

as to change the asymptotic situation. Furthermore, it is easy to show from 

(IV ... 7) that in any finite order, P (x, y) 
n 

I 

-1 
X • There are two 

X-+ 00 

immediate consequences: the S•wave term dominates Iet(t, s) (Eq. (IV-3), 

and Iin converges without subtraction (Eq. (IV-2)). 

In the following section we investigate the extremely important 

possibility that the infinite sum over n may in some cases behave 

asymptotically with a higher power.than· any individual term. If iterations 

are made starting with small ~, this behavior is conceivable as ~ becomes 

large, but unlikely in view of the.results found by Chew, Mandelstam and 

2 Noyes. Thus we expect that the family of solutions generated by a convergent 

iteration, starting with small ~ , will: (a) not differ significantly from 

the results found by the earlier calculation, which treated the double 

2 spectral function only crudely, and (b) be physically of no interest. We 

now turn to a possible mechanism for generating solutions of a truly strong-

interaction type. 
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V. THE STRONG INTERACTION LIMIT 

One may adopt at least two different points of view about the strong 

interaction requirement that I(t, s) should increase linearly (or almost 

linearly) for large t if s is fixed in the region 2 
-20 m -6 

1{ 
s < o. 

One may start with this requirement as a boundary condition and attempt to 

18 study its implications; this is the approach of Gribov. Alternatively one 

may seek a way of making a starting guess for r 1 that relieves the asymptotic 

inhibitions discussed in section IV and allows an increasing behavior for our 

amplitudes at infinity; this is the approach to be discussed here. We shall 

give reasons for believing that the asymptotic power will continuously increase 

with the 11 strength" of interaction up to a maximum power determined by unitarity. 

Our basic motivation arises in the work of Regge on nonrelativistic 

t t . 1 tt · 20 R h f .d 1 f t ti 1 th t po en 1a sea er1ng. egge s ows or a w1 e c ass o po en a s a 

I(t, s) (V-1) 

where a(s) is real for 2 s < 4 m and for attractive potentials increases 
3( 

with the strength of attraction; We believe that we have found within the 

iteration scheme a mechanism for such asymptotic behavior that applies as well 

to the relativistic case. The mechanism is illustrated by the following 

example: Suppose that the asymptotic behavior of the "potential" is given 

to be 

I 1(t, s) --~ 
t .... 00 

(V-2) 

where a
0 

is real and greater than -1/2 o As discussed below, this is not 

a realistic case, but it is easy to analyzeo Carrying out the kind of 

asymptotic calculations with (IV-1) performed by Gribov18 for the case where 
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logarithmic decrease is absent, we then f'ind 

p (t, s)--~ n 

where 

P (s) 
n 

with 

== G(s) 
n-1 

L: 
n'==l 

(,en t)n-1 
- P ( s) 

( n - 1)! n 

* I ,(s) I ,(s) , 
n n-n 

ao 
I (t, s) ... t 

(.en t)n-1 
I ( s) 

n ( n - 1)! n 

In the relativistic case, 

G(s) == 
' 

where 

1 °b 
I dz z 
0 (1 - z) 1

/ 2 ' 

while in the nonrelativistic problem one omits the factor 

G(s)o It of' course f'ollows f'rom (IV-2) that f'or n? 2 , 

= l I ds' 
1t' 
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(V-3) 

(V-4) 

(V-5) 

(V-6) 

(V-7) 

2 -1/2 
( q + 1) in s . . 

(V-8) 

We have not been able to deduce the limiting behavior of' I ( s) 
n 

f'or 

large n , but note that the sequence of' numbers def'ined by 

0 = n 

n-1 
c L: 

n'=l 

has the property 

(V-9) 



lim 
n-+ co 

0' n+l 
a 
n 
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(V-10) 

Thus it is not implausible to conjecture on the basis of (V-4) and (V-8) that 

at least in some average sense 

lim 
n-+ oo 

= A(s) 
' 

independent of n • If such were the case, then 

lim 
t-+ 00 

I(t, s) = 
00 

E 
n=l 

may lead to an asymptotic t dependence 

0 o t:.{s)£n t a(s) 
- t e = t ' 

where a( s) = a
0 

+ A( s) • 

(£n t)n-1 

(n - 1)! 
I ( s) 

n 

Observe also that if the "potential" in our example 

(V-11) 

(V-12) 

(V-13) 

I = Ie£ is 
1 

changed by a scale factor, then A(s) changes by the same factor. Thus the 

asymptotic power varies with the strength of interaction, as implied by Regge's 

20 analysis which associates Re a(s) with the maximum angular momentum for 

which there is a resonance in the s channel. If, therefore, we can find 

solutions of our equations which have the above qualitative behavior, and 

arbitrary parameters occur, we expect by varying these parameters to change 

the asymptotic power a(s). The condition to be satisfied, for strong 

interactions is 

a( s) = 1 for 
2 

-20 m :f s < 0 • 
1{ 

(V-14) 
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We anticipate that unitarity in the t channel will prevent a higher value 

than unity for a in this region and th.at in some sense, therefore, we 

shall be choosing our parameters to give the maximum possible strength of 

interaction. 

The reader may wonder why we are not convinced by Gribov's argument 

about the necessity of a logarithmic decrease in the total cross section.18 

The answer is that since I (s) 
n 

as given by (v-8) is complex for 2 
s > 4 m 

1{ 

there is every reason to expect ~s) as given by (V-11) to be complex in 

21 20 this region, a point emphasized by Mandelstam. (In Regge's theory of 

nonrelativistic potential scattering the same complexity of the asymptotic 

power occurs.) The imaginary part of a(s) then causes oscillations in the 

complete amplitude which invalidate Gribov's ar~~nts. 

It should be stated here that the condition (V-14) actually applies 

only to one of the three independent absorptive parts in the 1f1f problem, 

that corresponding to non-charge-exchange scattering in the forward direction. 

In the notation of Section II, this is I 2(t, s). It may well develop that 

I 1 and I
3 

do not increase so rapidly at infinity, corresponding to the 

oft-conjectured circumstance that backward and charge-exchange scattering 

become asymptotically negligible in comparison to the forward coherent 

diffraction peak. 

It is also necessary to emphasize that a more detailed study of 

potential scattering, to be published by one of us (S.F.) independently, shows 

that the mechanism for starting the logarithmic buildup to an increment of 

P?Wer is probably not directly related to the asymptotic behavior of the 

"potential". It seems likely instead that the finite momentum components 

of the potential after a few iterations lead to a "starting" power a
0 

= - 1/2 
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and that the mechanism even beyond this point, is a good deal more complicated 

than in the above example. 20 Of course, Regge assures us that for 

nonrelativistic potential scattering the buildup of a power increment is 

actually achieved. 

We have thought of several different possible ways .of starting the 

iteration procedure so as to achieve (V-14). In view of the experience of 

4 Chew and Mandelstam the most immediate idea is to include both P and S 

elastic absorptive parts in the starting guess for the "potential". Some 

kind of smooth cut-off would have to be inserted in order to represent the 

suppressive influence of the oscillations which appear only at a later stage 

when all waves are included. It would be very helpful if some a priori 

knowledge of the detailed nature of the oscillations were available and 

could be put into the "starting potential". In the absence of such knowledge, 

one must hope that the high momentum components of the "potential" are 

relatively unimportant. 

The starting guess for the S and P waves would be characterized 

by a finite number of parameters--probably through effective range formulas--

and these would be varied so as to give the best match with the result of 

the first complete iteration. One would then proceed to second, third, etc. 

iterations to see if convergence could be achieved. The previous experience 

4 of Chew and Mandelstam suggests that there may perhaps be no free parameters 

at all in the final result, if this corresponds to the kind of P-dominant 

solution discussed by these authors. Previously, that is, there were two 

parameters, A and A1 • The latter, however, corresponded to a cut-off 

(which should no longer be needed) and we have a new condition (V-14) to 

add to previously recognized requirements. From past experience with strong 

interaction theory, however, we know not to count chickens before they are hatched. 
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VL GONClpSION 
. 22 

In conclusion, we refer to our Physical Review Letter on the same 

topic as this. paper in order. to revise and amplify certain remarks ma~e there. 

On the question of the maximum angular momentum for which t~e low .energy phase 

shift may be large, we are still confident that this is determined by [Re a]max' 

as explained in our introduction above e When the Letter was written we 

believed that a must be real and equal to 

qualifications: (1) Even if a(s) 1 for 

unity. Now we must add two 

2 
-20 mlt _.$ s < 0 , if there are 

oscillations it need not necessarily be true that Re a(s) = 1 for 2 
s > 4 m • 

:J{ 

It would nevertheless be surprising if there were a substantial deviation of 

Re a from unity at low energies. (2) It is really only for the I = 0 state 

of the low energy 1t1t system that coherent diffraction in the crossed 

channel at high energy haq immediate relevance. In other words, the statement 

we should have made in our Letter is that constant limits for total cross 

sections imply a low energy 1t:Jt force in the I = 0 state of a strength 

that may produce large S and P phase shifts but probably nothing higher. 

Of course Bose statistics happen to exclude the £ = 1, I = 0 state, but 

there is every reason to expect forces of the same order of magnitude in all 

three isotopic spin states. 

In any event we still very much believe in the essential points of the 

Letter, which were: (1) that unitarity at high energies in one channel puts 

on the interaction strength a limit that is carried over by analytic 

continuation to the low energy region of a crossed channel, and (2) that, 

perhaps, nature approaches this limit as closely as possible. It remains to 

be seen whether such a notion of maximal strength for strong interactions 

allows a determination of the low energy coupling constants heretofore 

regarded as arbitrary. 
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