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I meRODUCTION '

; " The trajectory of 8 charged particle in an electromagnetic field. is in
genera,l very complicated and must be obtained by a numerical i.nteg‘ration of. th,.. 5
equation of motioncl). dpfat = —2— dz’ Jat X B (T, t) + eF (T, t) + mg (T, t), "“:",4'11;{' |
where r ia the position of the particle, 5’ is the relativistic momer'xttnvn:f’-
: i’_'m 7 r, _ B aud ﬁ are h.e :magnetic a.nd electric fields, m, . is the
:,;‘.:i:rest mass, 7 is m/mo, and g is the total non-electromagnetic force per
unit mass.. In special cases, a.na.ly'tic solutions can be obtained, such es in
the trivial case of the uniform static magnetic field, where ’che particle

gyrates in a helix -about B. Usual_ly such solutions are possible only beca,use
of a symmetry. . :
Ina general field, a Taylor expansion of r(‘t) . about the initia.l comiitions
g '-'would be practica.l only for short times. Suppose the particle is in an . ’ _
‘approximately uniform magnetic field (bne which varies slowly in space and time o=
slowly compared %0 the gyration radius anG. period); the particle motdon 18
approxima’cely he.‘!..’r.ca.le ‘A Taylor expansion would be practicaﬂ. only over & frac’cion ‘

'of a gyra’cion pariod, a different approxima,tion is needed if one wishes -t;o 1ollow

Sy
0

the particlo over: ma.ny gyrauion periods. The gyration and motion parallel to

* the fleld. line shOuld be introduced explicitly into the expansion a.nd, devia.tions ':

; from stric’c helica.l mo‘c.ion treated as the perturbation, This 13 the so called i
c 8 g\miing center" or “ad.iabatic " approximation. The tcminology guiding center" '

jfﬁa.rises becauso in a slowly vary:mg field the particle moves approxims.tely in as

‘I‘fcixcl@ whose center drifts 91ow1y acroaa the li.nes of fcrce and mows zeapidly along -E;he

"".‘




-2 -
. The apprOXimation would be of no use where the fields vary at a frequepcy
comparable with the gyration frequency. In spite of the limitation to

| fslowly varying fields, there are many applications of the guiding-cehter-“ :

approximation, especially to plasma physics and to particle motion in.the't;jf
:“a;terrestrial (Van Allen) radiation belts.' L
Not only the equations governing the guiding center motion, but alao
:'.a‘any approximate constants ( adiabatic invariants”) of the particle motion.;
'rwill be useful in applications. The guiding center motion and the adiabatic -

- invariants will be treated fully in this review.

It should be pointed out that the approximate (actually asymptotic)

">solution and adiabatic invariants of the charged particle motion in an

Velectromagnetic field is a special case of g8 more general theory of

Bl LS e TR LS

vasymptotic solutions and adiabatic invariants of differential equations of

& certain type 9 The more general theory will be reviewed to some extent
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II THE 'GUIDING' CENTER _MOTION

ijﬂ;“;f‘f;-ff ’ . In this section we will first give an’ 1nformal derivation of the '”\f
S guiding center motion. Although it is informal, it makes good physical sense
and of course gives the correct results° There are, howéqer, points where,

: ;Lobjections‘can bevraigedf These objections cannot be met without the more'ﬁ .
IR formal mathematical proofs, which will be outlined in Section L. The Ll
“'*{' author believes that the deriyationvpresented here is a good one for clagaroonﬁﬁkgiuizi
:a: uso. It-mayvleoﬁe'the exaoting‘reader wondering if something has been . |
Mq‘overlooked. . ' . o ;rgf‘ |

~ 3 'v

The derivation does not proceed by considering separately special :

field. arrangements in which one guiding center drift or another appears
... aloney, and then superposing the variocus drifts. This latter method has been e

~ frequently used(&) 4”)‘ but is lengthj. Instead, all the drlfts Hlll be ,;'ﬁ’5;—vffe’;ﬁ
‘ Aeductrvely . L ¢
obtained at once by starting w1th a field of general geometiry and d01ng a

Tht mottsod 1's srmlav to Hc.llmgf‘ wt 13 ozt Carored oawﬁrwwzmléﬁa*ﬁr
_small amount of vector algebra° It will be assumed thab the particle has aJMore:jhmwu{

. non-relativistic energy and the nonmrelatlviatio equation of motion used

Y a8 a starting peint., After understanding the geometric reason for- oach ni

ff drift, it is easy to write tha modified eouations for a particle with

'~r@lativistic energyb at least for the-case wher e E is small.

N
}.A.:‘The Equ&tion'of Motion in,Dimensionleso'Eorm

S

As a preliminary, it is worthwhile writing in dimenaionlesa formiﬁ

thf tho nonnrelativistic equation of motion
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 §?WﬁWwﬂ§?¥L€mw.6*m=L & m&p;

Yo% g
G _51_.__ B T AP

. where ¥," is the initial velocity, By(t) is the nagnetic field st PO
typic&l point at time ¢, and L 18 a charact,eriatic dimension or diatance

~over. which the fields ch&nge, Then the equation of motion_ becomea _ _‘

e v -. - 0{ | T
'_;;BOL [d-?"z “-&(& T] (@ ) +€(a :7’), A

with the initial conditions that at I =0, & = rO/L and 9 where ..\

%5“

éruK\‘n“

m’o is the initial position of the particle and vo equ&la vovo, Equa‘tion g&;}
. i ie formally idenuical with ( E ) by the subst.;.tutions . '

. ‘ v Ty o
eBLO——b 03-——7:', 3"——»?,,5,'_»,«*7?,@—»3, and € - cB,

Thus any olution of (‘B.,) gives a solution of (1 ) by these .xubstltut.ionse
o omev
Now . '—é-% is 'the rat.io of the radius of gyratiorx to the characteristteﬂ
0
distance over which flelds change and therefore isthe quantity vhich one

expects mus‘t be made smaller in order that the adiaba.tic apprcz@nation

o becoma more valid, But bemse equa.tion ( é B is formally identlcel with .

(9;)9 we can work with (] ) and just use the dimensiona.l quan"ci‘ty nfe & 6‘

. as the sm.&l_]neas para.meter. It obvioualy is impossible ‘to ma.ke the. m/e .

~of aay an electron sma.ller in a seriea of experiments in order to make ita 5 . :;?_:
.. mev ’ ]
behavior more adiaba.tico But 1t really ia only 0 t.hat C st be znade AR
" 0 ¢‘,.¢,»- [
. sma.).}.er, ‘and t.his is possible by changing vog BO or L. The a.dvmtage
. V‘CV ‘.,.':5'
0 :

ef uamg m/@ :msat@ad’ of is tha.t cne doea not ha.va t,o work with L _;‘




.dLnensionless equat.ions, vand results are obtained directly in dimenaion&l

fom,- -A_..‘ore complete discussxon of t-he scaling of t.he equat.ion of motion :

haa been given :in reference (5)

B, Derivation of the Culding Ceuhtéfi Equeit.igsn o._f Motion

’ 11

"To derive the- equation of motion of the gulding center, _1et

of the guiding center, and @ is a vector from the gulding center tothe :

s.'

e 'pa.r’t,icle (‘Fig‘e l) The vector e can be given a prec:Lse definition by

—by

tha equation @" ‘(mc/eBz) Bx (v cExB/B )y where 7 and B a.re evalua.ted
"_?.at ? Th:ls combined with Fel+ a gives a preciae deﬁ.ni’cion oi‘ R._
To 1owest order in é the fiélds ‘can of course be evaluated at either T
ox‘ R, the diﬁ‘erence being of order 62 in t,_he 'equatio_n':fpr; .e, .

P

oo -_'owg'mﬂ'

; Figo l 'L‘he charged pa.rticle and its guiding centero

Now substitute ? R + C’ into Eq. (l)

""-lproportional to é 5 terms containing e

v _”}'those in" e o "3:



-w* @x@{ﬂm.f-ejé’-ﬁ':’.ef;cﬁ>+<v“e.>éé»@%4,8-4f*’§"‘"‘ﬂ}* oo

here 0’ (6) means terms of order 6 . The term (@/G)X @ Vg(ﬁ')

>_v'mu,st. be retained in Eq (3), as will become apparent shortly, this term

o is not of order e ? but is of order €. Now define three orthogonal o

.‘;j’;';'unib vector5° - let el' equal B/B let, 62 : be a -unit vector dir_ected'

bel ‘. S

towards t.he center of cmrahzre of the line of force, d let

4
",'el ;( @2, a unit vector along the bmormal. In order to correspond to the

picture of the particle moving about a 011‘016 of radius @, let

? = E(ez sin e + e3 cos @) where 6 jw dt, “w being the gyro frequency
:AeB(ﬁ)/mc,- Than e o’ we(e2 cos, 9 - 63 ain 8) + (e e2) sin 6 + (593) cos @o

)"L‘he first term contams we and is of zero order 1n 6,' since w«l/e. and

E o €~ 6 K The second and third terms contain @ or 59 and are of order. & .o:
; The reason for rete.’ming ? % (P e )B in Eq (3) is now formally appar ent,
% aince it is of order 6 whereas a te*m such as (@ 09)2 E- in th@ Taylor
l " "_vexPanSion is of ordex' é A second dlfferentlation gives : - |

23 @ «[w e (@ sin 8 + e3 cos G) *w C[zcos € = 3355.3‘1 9:]
. e Zw[ee2)°“cos 9 - (863)' sin 6.3] [(e@ )” ‘-sin e + (563)” cos @J

~the four t.erms being of order 1/ e ) l l, a.nd é . respectively. 'ﬁwse

W oxpressions for 2, 89 “and. e Iare now substituted in‘to Eq. (3) and the .
< T resulting equation timeaaveraged over a. gyration period, by taking oo LTS
e and. considoring coefficients, auch as ( Qe2)° 5 't.o be oonstanta.,,_ mon L

\.}/
LI




o a.nd in numeroua o‘cher places, The ad:.abatic invar:n.ants will be treated

- ;,'center equations of motion and therefore does not have to be asaumed nowov -

o Now .

: result of time«a.veraging Eq. (3) is e

' a E(R) +—~[E(R) 4-'%;:%(&)] * -»--—-—-[2 x (e -p) B -J 3 x {@ - m)’é +,@(6-) -
(Bx (@0 B> (e%w/a) [8,x 4 0B -8 x G 0B8] ()
The coefficient .ezw‘/a is an approximat;e Anvariant of the motion and is

}'c/ep where M ia the wall—known magnetic moment. That ‘M is an adia.b&‘cic "f o

invaria.nt of the pd.rticle motion has been demonstrated in reference (6 )

"'_ in Section I&f ‘The invariance of M ia not used in deriving the guiding

‘I'he right hand side of Eq ({% can be simplified as followss

@2 x(/éB,V)g'“ _\(?33 zs; 81)7:(83 uv)_ﬁ'mé‘LEB ...'_g(:é‘3 .V )ﬁaj - %3[_ . (e 917)3‘]

N ]

CY ?{;,,"(33";‘?‘)-1;%@1 * (o5 v_')( )a(a/zxe--av)a 33‘;@5333.%75,

,f. .'s'inc'@' 512" l.::mlere:oie_zqé-.( 6) vb‘e‘.‘cpm@a T —

" raeh

-

' ,snLlarly , o : . : O
‘ ;{ (@ @V)B @ e e [é é, (@2 s, V)-gj & 82 (9 °V)B S '*l:

o 'rm f&ct th&*l Vw '§_le 0" must m b_@}_ilgsledg e



: - 8 i |
_ | as e;_('é‘l ° V) + Qz(‘gz ’\7) + ,63(@3 ";';“V), s:o: that |

e ve"a; fal' ‘ ~<%‘1 . 75 ...gazj . _(_32}'-.75) B & ;.(83_.;17)'3& 0 ff?}if.

But @ o (e . V)B = elv' .33/95 = aB/aa’ vhere 8 is distance &1021@

I -
TN the line of force. Therefore by subtracting (?) from (g ) a,nd using.':-ii‘-
- g ?’ 0 one obtains |

%iz'.i_(.?s m’é‘f}_ 33.';. 3, ..v'ﬁ’ =~ el'.( 28/6) - 803, ¢ V) - ‘%(‘e v )g . ,,,m |

The time average of Eq. (3) then is

E = 3 + (o/) [ﬁcﬁ’) + /o) x 5] » (o) 9B + (o)) )

‘ - with an initlal velooity R(O) equal to[ le ;7 4+ (cE % 3/8 )] - @ ( &)‘_,

L Equation ) is the basic differential equatlon for the guidlng center
: )

: motiom , It is. the same - as the equation of. motion oi‘ a particle in a
gne‘tic ﬁ.eld B a.nd an equivalent, electric field .ﬁ - (M/e)V B, ard

therefore. for numerical integration is more complicat.ed than was the

origm&l €quation of rnotion ). It a numerica.l solution oi‘ (Iél.) were

R perforned, it would be found that the guiding éem@f ® pravels in r‘mghly

. a h_selix tabout't})e field line, Just as the’ pg.r;ticleg does, Howaver! it can - -

" be shbmﬁthat the radius of this helix' is ohevér.def ‘of € smaller thari-the o

E _radius of @’ration of the particle, as would be expected for the guiding

» : cen‘t@r. This small &mplitude oscillation oi‘ the guiding center is t.o be
..:_:;' | %gnored,, since i’c. ia of order é 2 a,nd of no significance in a, ﬁrsta-order
¥ L

: theoryo Mhermor@ in the pmceding ana.lysia ot.her tems of this ordar s
» have been neglected. ,Equation (aa,) will neist’ be a@lved by iteration t@ . “  S,




.obtain the “ equat.iona for the guiding center motion parallel and Lo
perpendicular to ? |

‘ C. The Drift Velocity and the Longitudinal EQuatioh of Motion

' T’he differential equation for the guiding center ‘motion can be . -
separated into components parallel a.nd perpendicular to B.. Crossing Eq. (ltl)

' - on the right with G (ﬁ) gives the perpendicular component of the vector

equat.ion as

s s - cBxe.. . €,x VB | (E-R)xe | - ;, SR
«B, o R=R,im= < 1 Mg "1 7 1 2 gy
Ragy o Refys —— + Bl sl lieed @)

where 'ﬁ is the component. of R perpendicular to ’él(ﬁ) It .ia‘ called

- the drift velocity. The flrst. term is the usual "'.ﬁ x BY driﬁ,. The seconc!“‘k:_-.:}f’"

term is the "gradient B" drii‘t, and the third is the "accelera.tion drii‘t" )
‘ By do%ing Eq. (IQ,) with el(R) one obtains the scalar parallel component.
. .'4“..“ "-as ' o

R «8 =0¢g.8 +F:2 «%;%-f&( &2) N

L =)

In Eq. (/3) the guiding center accelem’c.ion ? is needed to calculaté the

drift \relocity, bu*c because the term in which it occurs &lreaay contains =3

as. a coefficient, R is needed only to zero order in 6. It is a,ssumed that.

LS
’ . .

g R 18 not of neg,a‘bive order, such as | l/é 0 If lt were of negatwe order, .

e

the ﬁelds would change by a large amount in a @ratlon period’ when é is o

AR S

snall, and the gaiding center pict.ure would not. be valid.

‘e

The acceleration . -ﬁ = dR/cl‘b = (d/dt)(R * el R‘ ° el), and dR /dt,

can be obtained t0 zero .order in & from Eq. (33) as dR /dt = (d/dt)(c?m" /B) v@(@)

_ valeaty (13) S .
I Only the i‘irs’c term in the drift, is needed, aince the third i.,erm w ~é a.nd I

t.he se@cmd t,erm conmins M/@ = m( ew)z/ZeBNe% o If the perpendiculag» w




& T ret.ention o@ czxel/B uE would be unnecesaary in the calculation oi’

'ﬁo 'l'he acceleration i:m is

»“'{A'_where. v ”’m;éans R. gl@)q , Otﬁer,.“paf.allel", velocities _can be deﬁned
f‘:-i"su(:h as 33 ) (?) or ’t?o 2 (ﬁ), but here v
'I.'he first term 13 the tangential accelerat,ion, the third ia the centripetal
acceleration, the'second occurs in nonstotlc flelds, -‘where.the direct:t.on of
;_'.the line of force changes mth time, ,wm.le the last four terms occur in the

R presence of a zero-order elect,ric field.. ) It should be stated that, the
. with constant VO’ x-o and in which m/e is success.wely reduced, the electric
" field is held cons‘bant. 'I.'he electrlc fleld is of order & if it is reduced

in proportion to m/e._ Whether the a@l/ 3t term need be retained or not

- of experiments.' If the time scale s held constant s them 3/ 2t is of zero

is Aincreased in propor*tion to l/& vl then 3/ > LK is of orderé arxd ‘ 2

electric field haypens to be of order 6 instead of zero order, the -

-E%“""@’(G)B-% +Vl¢§§; + ;;ui
; N
! ::“ TV [aa 0o Gy ) 08 *‘_[a;% *+ (&, *Q’ZB)WE’E‘:]

| :,

O R SRR PR S

) ) - -

i

u‘, always stands for R 0 el(fi?)

A

presence of a “zero=-order electric fleld" means that in a ser.i_es of experimenta K
Yol

dapends on how the time in which fields vary is to b@ scaled in the semea

., order and @%/ ot. contribu‘cea a. firsteox'der drift. If the time ec&le o

L -‘{'

Of _coura@ '

é’% /Qt is not neededq(?) : b@c&uae m/e is fixedp it ia o .

Lo S B S U
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_really B 0? VO’ or L that must be varied. in the series oi‘ experiments.
‘ Appropriate modificatlons of the actual fields and- time scale must be made -

j: ' . to keep the dimensionless ﬁelds (3 3 and,& uncha.nged at a given a e.nd et

N v

Wit_;h expression ({éx)- for L‘q (13) for the drift. becomes

2 a% i' - M | d@ du,E

'._..where “E = cExel/B '

The longitudinal Eq (/‘I’) shows E, = Eo ‘3’1 must be-'oij order éif

R is 't:o_ beof pon-negatlve order, Thus_ in contryast:tb,o. -Ii“.:_ ?: ;ﬁhich ma,y ‘b'e
of zero order,vEl must be of order é. : If‘t..his were fiob so,.“c‘he_parallelf,-":fw
. acceleration would be ~1/& . | . “
. Equation (¢4) can ve put in a form more usei‘ul for obtaini.ng a.n

energ in egr&l by rewriting 'ﬁ .. el.

n'
-l
R e o

1"

o

- et ) T4 <dv fae) oG

" and noting that .-

o

= (% Yii * uIs: "’9(@ )) . el o {3\-&&(6)

L
2 0, 8

. -l i

4_.--!" .




A 72 xvc

. In Eq's. (18) and (I19) we consider only the 'contribution of the zerd ordef

..-mofion to d/dt. | 'I’his is all that is required .since ,_ﬁ"' e

3 haeefor a
coefficient in qu (/4/) The longitudinal Eq. ( /4) then becomeg -_ . ‘,:
T +E K98 ,ng ;fﬁ*e('ez) R
8 dt__‘ , e gjl U “'e 28 e uE dt | S g
& = Lg +p.. X Byny 931"+V23+ U”é )+@(e&)
egM' It~ e 28 B“E Qt Y38 U-E ,_

Ro)

Equa.tions (I?) and Qd are equlvalent to the orlgmal differential Eq. ( )&3
- Let us now- introduce a true curva.lmear coordinate system (0‘ ﬁ s 8)
:lf"vsuch that oL(?, t) and (s(r, t) are two parameters specifying a line of o
.';.;‘..mrce end therefore constant én it; s is distance along the line as . &
previ'mg.sly. Fo_r' a diverg'encee-fre.e‘ fi'eld su.ch.as. "mﬁ,’ ;gL and @ can be chosca»rxv«':_‘"'i{
so that {:he. v‘ectox: potential ?.'ié. o;?P ‘and gln Pt x ve. To prove tﬁ&t, g
'2' '.' this ié pOs.siblé, E!.e{. cl(?, t): and 02(5&; t), be two parameters whicﬁ i :“-'
are constant, on a line of force, but‘auch that A 18 not BURZAT The

lines of for ce are at time t the intersections of the two femilies of surf&cea
glven by cl(r, t) equals constant a.nd ¢ (r, t) equals constanto Ncw

Y IVQ E: chl » and smce Vo B .Vanmhes and . equalg 7 (el B)p

| 7y R
_wghav,e}.vvo(gxzc chlB) (pclxt?cz) Vjvclivcgj

'==0,

o This aaya"th&t.

: B is const.ant along a, line of. forge, since ,
y lvclx. ch! : o B SRR S
v cl x 7ep = lvcl X'V%l ”‘5_ &nd el'e‘t?m é%.g Thus & igener;a;l’ '91?.9,?; L

: . @aordinat@ syatem has the proparty tha.t Vcl po ’VCZ I is cogstant along

T a givcm lim, but variea from line to line.,‘

':.Starting with a. cl, cg aystem




L -+ since B/[Vcl x chl ‘1s independent of 8,. let it equal § (c ’ c2)

DR Ty : > R o .'
e <L Eovpan X e, &b
el where  f(r, ¢). '. is the sca'l&rv potenti@l.for"i?s and vié '% -g—g '

. . Furthermore

' Equation (22) ean then 'bej'wzfit?.enl Py

- for naming the lines of force, an - el. p sys‘oem can be obta::.ned as followa"f.-'

-‘I'hen B equala . 5 Vcl-x vcz Let p = c2 and ok = elv(cl,, 2), where
(. the i‘unctional form is to be determined, Because B is tour equal Vd x V§

B ’finally that oL e 5 g (cl, ¢y )dc ' It is therefore possible to go frox;

.v field is not unique; an arbitrary functlon of ¢

. but everywhere, belng equal to unity. This. fact often simplifies the algebra,

especially in “connection with the adiabatlc invariants.

Multiplica’tion of Eq 920) by v
' 'gives (the 'E field- will be omitted fmm here on, ‘but could be. retained

ir desired)

- 13 -

it must bs true that ;’ Vclac Vc = VoLx Vp’ ,v or’ that

2%

a general 2€15. S5 system to an oL,p systema. Because ot 18 the integra.s. )

"'.of % with respect to oF it is clear that the ot , @ system for a given '. e

" can be added to d-(cl, Oz)e

. 2
In an' o, g Syetem L%—J-CB-!EJ is. constant. not .only on a line of force '

“In equation (0) the pa.ra.uel electric ﬁeld is given by

»

and eubsx’:i ution: of (72 D for E

I "

3 -
T - .
» .

S T g BE e Tee S B
‘d.o¢/m 2y m ‘-___1_.6 L@ 2 -
Eg ( .,ég..v,“ ) m g ” QE 9. Vh 38 ( s TP ‘ﬂ' ¢) + &(é ) o ,(‘3@

4 MB\ 3 ,MBy .. .2 N S MB. BT RERT
& (= w5 (z;“jun ‘c >+e<e> Looed
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. -:. . The rate of cha.nge of kmetic energy of the particle, averaged over

_. a gyration period, can riow be calcula’oed, The average kj.netic energy is
E . B mv “ é m 2 ‘ ) . - S
bl "-=-é-== + MB + -=-2=- s..8ince ;’B is the energy of rota’cion about. the guidi.ng
S my 3- i - m ’

I My

' center, and ) + > is the kinetic energy of the guiding center

R motion, since” R equals 31‘?“" "’TIE + {6 ).. Or to give a more fqrmel
- prooi'.,”" start with .ﬁ; = K -? ém Qﬁ'.'* @Q(@‘gcos oty - 'e"}sin ewt) + e(e)e .: . ;
= I -3‘ ne”os el w24y 2) 4+ MB 22),

..-:?he‘,‘_ = 26 ._ﬁ T T2 T2 { AT ole ) :

e

;L /m 2 &_ - ( ,
& .t ( "H + MB ¥ u”E )

w,

- “'fu'?% W:fm,'f% 3

Ay
3

!

+-{Z’3 o,

c*
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o
>
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' Finally, therefora

-~

PR

oI

—% - 64 &2) é??’) ,___

s 3 ). TN 28 2
(el 3 #‘ﬁ;) .Ef@ 5t + &(e%) :

Coor : o A B R

o g~

& (kinetdc energy) = R ~ 5 (F, 83 + & M so(ed .| @y

This is not a surprising result and probably could be written down directly. o

__The_ term aﬁ ° 5]2 is the rate ofincreése "of energy due o work. done by the o ;
electric field on the guiding cen'te.r-, while ,l M%% "is the induction effect
. of éy f.imq_ dependent field and is due to the curl of B ‘acting ebout the

circ_le.'l of ‘gyra.t:‘lqn, _ One might qudé.r“{wmy the secOﬁd' term does not have

l-"“-?:.‘ o o the total time dérivativq' %%‘ i’»‘ f?’? Vi 32 “E '»°,' ¥ B. The reason istthat . -

e magnetic ﬁeld gradient, (a.a represented by v %@’ + ?E oVB‘) 'ddes not
change the ‘ho‘cal kinetic energy, but merely interch&ngea en@rgy betwesn .

' the /perpendicular a,nd pasmllel componentao ,‘.

i . B RN . . PRI S . .
" . . . . o . -~ Y




ST

' for the guiding center motion and rate of dw.nge of energy.

Eq, @?‘?) can be integrated. In that -case

T R

" and Eq. %?7) can be wntt.en as

of the Z6r'o order motion along a line of forco, Ina static field,. Y = 0’,A

and @?) is just conservation of energy. - : o

°vlhen ? is 0’(1), there is one geometry, with 3— = 0, for which it can be

" done. This is the case of a static magnetic fleld with rotational symmetry

R ‘(such as a mirror machine), and a static‘-E,‘wh;ere .EJ‘ has no azimuthal
. component and E !
. a line of e-forceo Such é. mirror machine has been named Ixionp' and is
| discussed by Longﬁure, Nagle and. Ribe.(g) The zero-»order drift ‘ZE

‘ is :m the azimuthal directiom the component parallel. to . B .of the

mak:mg it more difficult ;for the particle to escape at tho mdso N o

= 16 =

. We now have the t.hree fundamental equations (ﬂ ), (aQﬁ, and G&.@

........

1 Z%: and. -I? (dee, Wy, 'g&l, and ¢) are a(@ ) inste&d. of@’(l),

& o 5= M piBaote? oo

2'

R ST ¥B 2,
ot ¢ 2_63,+ e+¢+V’)"’O+6’(6)9-
Sinee 7"4., E 0(5}) > — ,m‘? 2

L—a-—uz—x—aﬂq—é—? 'I‘hus ‘“2' ‘ + MB +e(w+~¢) is a constant

Although it does not appear generally possible to integrate Eq (@2‘7)

, =0 (Fig & ). The potential @. is thus a_‘constant._on "

reaulting radia.l centrimgal forco mu,E /r has the demir&ble pmper‘by olf,.g.:



3 following 'analysiso
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F’Z—- Mfa’lb* P/cm,

_'"I‘a emooth wire bent in the shape of the line oi‘ i‘orce, and the wire thm

x‘otated .about the z ast°, This analogy will become apparent in the -

Under the spec:.fied restrlctn.on on the . F and B fields, all

o
-

" terms on the right side of Eq.. R7) venish e-.cept Ry e E, - which reduces Sl

L
mif )
BE . (T.?E 7)) ’31 in this special case, and equals

(cE/B)zA . ( e 7 )% . Because 2, ° = 0, the factor
. \3 1 3 l

oy ° (e °V)el equals ~ l°g‘(é\3 RO But‘— (e 07)@ -aé‘/rg

Al

where en is a’unit vector in the ra.dialldirection. 'I'herefore - e ° (e V)e

. :)A. A ;A.' . - - . ~
el e Gr/r. » ] X S °

In order to integrate ,(cE/B)z (6\1 R @r/r) over the zero-order .

" motien en a flux surfaca (defined aa the surfuce formed by revolving a
~line of force about z), the va.riatlon of cE/B and - el e % /r wz.th
' longit.udina.l position must be known. 'Ihe follow:mg is a proof that

j ‘cL/x‘B is indepondent of poaition on a flux @mrface. Let P(r, 3) by

"_:"“'the p?opert.y that ’Y = constant is the equaﬁion of a 1i.ne of i‘orce and e

R . . . R

Fig.cd, Mirror machine with large electric field perpendicular to B, ";"}v.ff_;

o  The effect is. just that which would be observed if a bead vere placed’on N ; ’

. the stream func‘tion (9‘) for e’ magnetic field the stream function has'__'.‘f‘ o s



that B @ (l/r) 3"2/31' and B = - (l/r)mZ/ az. . Bince E is
perpendicular to B flux surfaces are also equxpotentials and ¢ is

‘t‘.'hex'efore a mnction of ’;Z' The components of elec’oric field are

-

- .x" “ - a¢/9r = - '(d¢/d@)' M/ar‘ éhd' E = -(a¢/d 32)823/ 93. Ths
B [(BW 25)? +. (07 50)7] M2 af/ap = ra(ep/aR) and cE/rB = wﬁ/d??
:  ~ hhich is constant on, a flux surface,l The quantity CE/I‘B 13 the a.ngular

’ velocity of the u,E drift about 2z  and will be denot.ed by.ﬂ.. Therefore :

S.omvs ' _

fg‘?ﬂ (u.E 7)e e, m/e) v“ .0.2 .ré:
(m/e)(d/dt)(ﬁrz/z) because

R dt ("“‘ r

1 ° Ar’ ‘Wh,i‘:h Qquals’

2 -n..:- g‘-}-.—a o= 2 g—I:- 2 iy . oy @ g » > 3
SO ‘j. ‘ .0.2 v“ r ‘3‘3 ‘"’.Sl.z Vo T ;({"}1_‘e %x-)-,"'. (e R
3 ,‘Ifkié mﬁegral‘ of-_'Eq.' ) ({l?) is 'then

mv“ /2 + MB - m.n.zrzfz equals a constant oi' the zero-order motion
' ., ~on the flux surface, - - . / @g ‘:
If the subscript ¢  denotes quantities at the’ median plane of =
Fig.& and e at the mirror (i.e., 4t the locatimmama.}d.mum magnetic

field on the ﬂm& surface),, Eq. (5/) becomes

e @*z. - | 3 onZ? (e e ®), 3y

R RT c‘+ (2MBc/m)(1 = B-e/Bc) “ff’ir ) @ Yo /rc-).-"v.’i.?-;i..} (3@

':v-"';.'ﬁl_erei‘ore.' ;w’z L O - 1,e°, the particle is contained., if
S et [ ’%.’: ::11]. g ..<;. RN S e

, Ii‘ M .is set equa.l to zero in Eq. GR}, the change m parallel o
lcime»ic energy between the median plane and the mirror is (m/z)m_(r - r 2) )

which is gust the work done against t.he gentriﬁugal force. Thu.s when




v ‘ M = 0, the problem is that of the bead sliding on the wire described

v .

previcualy S S "} R

T Terms containing \‘% 1n the drift Eq ([7) give a small (orderé)

" notion in or normal to a flux surface, the zero-order velocity being

i R -“% A + uF in the surface. When crossed with- l/B’ the tnird '

']

.term in the square brackets is in the azimuthal direction. If; E. is

. outwa.rd as in Fig. &_ the fourth term is

v _C_E_Ao } .a]_- 2. (A A AL AN oA
" BT %3 'V"_-‘é\l V38 = "u"" 56, (8.8, * ey hege; e

v wher‘e ® is the azimﬁtinal angle in cylindrical cooi'dinate‘s and @z is a

unit vector in the 2 direction. When crossed with el, this fou'rth‘

& .term gives a drift normal to the flux surface, The sixth term in brackets
I a“E/?ﬁ) = - V” (3/93)(0.1’ ) = -v.a.e3( 01‘/33) = -y ..n.e3(e . el)

hence is the same in ‘this geometry as the fourth term, The last tern in
2 2/n
(e

is vl

e3'c v )33-_=_='-_n;2 rcra :

When 'crosised' with’ @I this last term gives another order € drift in the

~ the _s_qua.re brachts is. ;.,n_]r-e3 .oV(.g.zjeB) a2

| surface, m addition to the 7B and line curvature drifts.

Because of the two’ order € drift terms perpendicular to the flux - |
.'eurface, there is an order e change in ¢ (and Wr@fore of kinetic energy)
‘ vas the particle traversea the suri‘a.ce.,h This change in ¢ can be calculatcd
directly from the product of the drift velocipy normal to the surfac@ and

e the electric field



| ; Onintegrating |
A .,, - meAG2) = = matey)

The cha.ngc in ef caused by *‘(.he ﬁrat-order drift off the surface equals
- © twics the cha.nge in (m/ 2)UE as the partlcle moves in zero order on the’

su.rfs_w.'::c-o 'l"hia res'ult. can also be obtained, by energy conservation. Thc .

' total average energy assoclated with the perpendicular motion is ‘
:j-i‘;}{B + mu.E /2e .Therefore (mv " /2) + MB +. (muEz/Z) +a¢ is a constant of

. ;:,: '_.“the zero plus i‘lrst-order motion, But from Eq. (3]) (m/z)v“ “ 4 MB - (m/g)uE e
is'a constant of. the zero-order motion. "By subtraction Alef) = = ZA(muE‘Q/Z),
e ' Thls drii‘b normal to the flux surface is not cumulatlve, sinc@ S

ij' :"the‘sign o'f ¥, reverseg when the particle reflects near the mirror.

'Da The Geometric Interpretation of the Drift Equation and the Longi"cudina&.f.i

Equation of Motion

To get some physic&l insight 1hto equat:.ons (i?) and (20), it is

- mstructive to look a‘c the gcomet.ric reason for the cecurrence oi‘ some of

)
-
\»‘

" the terms, AL the drift terms’ in Eq, (/7) arise because of & variation

ab the mation frequency of the curva’cure of uhev-partlcle trajectoryo_ o

This varlation resul'cs ina cycloid. like motion at right. angles to A?o

I .'~..The reason_for the variation at the gyrofrequency is diffcrent for each -
drift. Th@ familial‘ drifts cﬁ W @1/3 , ?x e, a.nd I'g% 3. VB,
have often been . illustrated in the lltex'a.ture(&)- and. ’*"ill nd be

| »diagrme d here. For example, the VB drift occurs because B varics ;

» during a gyr&tion pcriod and thercfore the rad.lua oi‘ cmrvaturc does -

. &J.eo. The remaining drift terma in Eq. (j?) come from. the 'f{ % el tem

o 'in Eqa (53), and are uaua.uy described as the rccult of a d'Alcmbcrti&n :

i‘ox'cc due to thc g\zd.ding center a.ccelera‘bione'f chever, such & d@acripbi.on N
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IR

R does not help one's geometric understandinge»
Consider, for example, a phys:Lcal srbuation in which the :

N ?-1’ drift appears, AI.eta magnet with large parallel pole faces as shown L

S
-

“ 4n Flg 3 be rotated about the Z—axis to g:.ve a % /at ﬂny, where J
is a unit. vector along the Y axls and .2 is the magnet'a angular velocity

.'( .{L 4.4 w) Because there is a 93/9'0 there will i:) general be an E,

Y)mﬁc'Lo dr«ﬁw”‘ "’E s dLhe..

i
.
el

! V(C‘for In {1‘

_
= Z o
: / 1“7% '}/ darta‘f:@m
/ P N R
// %E, ZT.;}..E // ) X mH: 'LLl howga’f&{ 1K
e | T
@ v -Fog

Fig."j", Rot-ating magnet I.gives a 331/ ot drift,  in the 7 a.irectio'n
: ": and therei‘ore there will also occur the d.rift uL = =c el X ﬁ/B. —EBhé ‘two
terms in. Eq. (/7) that ar’e proportional to 1 x,au /Qt and to,
| 'é X, uE v “E "are not obv:s.ously zero, although this will turn out to e

be the case.’ From ¢ VXE = -3'}5’/31; one finds 3E /3% =aB/c at ;
' '_zero.time, ﬁ‘ w& {:a.’ke E, ~ and E, zero. Then E_ m.n,Bx/c + E,(x=0), Now_'%
E (wa) also equals E everywhere for.& = 0., Let us assume there is
- no ? in the absenc@ of rotation, 80 that E (me) .is zero. The -EE

.

“E = cE X el/B = x..n..? at zero timeo -
i Si.nce uE :!.s independent of y, “‘E‘° Vﬁ = Oo» Alao 3%3/ at 13 parallcal

- to %19 s that, %) xauE/at 0. Thua both of these arify tems vaxuah‘:'?
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_ leavmg

, - ?J’ - QE K (a /B) + V (mc/eB) e X %l/at =3 y_n,x < ZV@&/W ® @3?) )
'.:""l'he 3@1/ 2% driﬁ: is perpendlcular to the page and of magnitude v ‘n‘/ &)

i
The parallel equation of motion (‘RO) becomes - '

L. o,
dv, /8t =g » 0% /5t = o7 x,
This _13 Just the centrii_\xgal _acceleration at a distance x '_frdm the axis = .
i of rotation. |
. The geometric Jeason tha‘c. the curvature of the trajectory varies

in the presence of a%l/ at is that the perpendlcular veloc:.ty )'\? X ell

- varles as %1 changes direction, The drift veloc:Lt.y can be derived .

".(except poasibly for a: numerlcal factor), by hold:mg el fixed for half .
;.a. gyration per,iod and then changing its direction .f'or the- nexb h&lf pmr:i.o:»:i.p

:"etco A view along t,he X exis of Fig.3 will appe&ﬁ aﬂatfm sc“r_ e m S

:::;Uv' vFigo %o

Fig. él Geometric explanation of the o8 / Q t drift., .

L@’cg be. the angle between '*? a.nd el, 80 that- v‘L_ is v sing
| 'anci" vyds v coss.. At the md of the first half period (y>0) Let. RO

L Al chanse by &@1} in the Y direc"'i"m . For th@ sec‘md h@‘lf peri@d

(y 49‘)”@:@, will be crmnged by

Av i@' v coag_és = v éS 'L‘he dri.ﬁ;
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3

: Lo . K

}-';__:»-»,'  _ velocity equals the dii‘ference :m the dlameters of the two semicircles
d1v1ded by the gyration perio@, or: w(pz el)/-;r S:mce @ equala
E v_,,, /w, A@is mu, Ju ror. v”&o' /w.; And 45 ﬂ'.n.rr/w .A Tnus th@ | .
‘ ".»'drift velocity equals v“-n/w which .’m t.his case. happens, to be correct :
| even to numer:.cal factorsa

; Similar geometr:.c derlvatlons can ba given of the, other drii‘ts
containing v and :tE in Eq. (17)

i, . . ,
In Eq. (aa) t.he parallel acceleration of the gulding center comesf
fr’om'seVeral sour'ce's.' It is obvious that ‘the parallel components of ? :
‘: .and E will accelerat,e the particle ‘along the line of force. - The thj.rd
‘:‘ tcx'-n; - %g—g is the well_g-known nirror effect, It can be understood by
:iico'nsideririg the~spec..:ial"ca.se bf a pai-ticle gyraﬁing about the. axis of

symuetry of 2. mirror-type field, (F‘ig. &. The force on_ the particle ‘ RN

is -ﬂvx%(?)m—(elv +v )y(B +B)c=°-= x(B +_§) The-

%.\Z_ 'x-g term 1s a rad.ia_l force and gives the cen‘cripetal accelera.tion._:_ 'I.‘he




, + et - e e e N T T R Y oy I B A I T

S : v, % -g ter'm 1s directed to the left and equals "M QB > aince
Coio 7 the -Br at a gyration radius from the z-axis is related to v

el 5“55- by V- :3. Ou ol i ~~;- P AR
L - The 1nst term 1n Eq (-20) %ﬁ' si' 'an'd 05ViOUS1¥"

S arises because the parallel velocity | vl is altered not only

“ RO AN l . f
' - by an acceleration .ﬁ of the guidiné, center, bu’c also by a

L change in direction .of ‘the . B f’ield without a change 1n ?e e

LA specific examole of this was seen in the illustration o the

SRREE 331 A o
o, drift due to 3% "

E,W The Relativistic Caso - ‘ . .

The drifts and longitudinal equation of motion for a

_"_‘particle of relativistic energy can now be deduced, at 1east _

for. the case where ﬁ anc_l. %:- _:é._r.e of el(e). To begin with,

16t us consider the case where, E =05 the relativistic equatipn.;jj

-p . PR _ o
since € 2 is constant 1n the absence of § 'I‘hus the trajectory .
 is correctly given in detail by the nonareletivistic equation
h for a particle of mass moy. . Therefore the guiding center

“ drif’cs are given by Eq., ()7) with E Bee equal to zero and m

= replaced

by m0¥° <L “,';\3‘_&




x |-I_pB+c. N 1/, N7 B

re e m . I
L7 whepe M "is p—«—-—g—"“ the fel tivistivcﬂm 'n'e‘t;.ﬂ.e‘momerit. ( o} Tov.“‘v-";
I _v.'v r ‘ ano » a ag o 3 "“, B
»understand physically the rela‘civistic effect, consider the )

- ¥B drift term in Eq. (‘540). It 13 y times as large as the =

:-Inon-relativistic expression for the same v-‘, N Relativistically
. the parti.cle has «Y times the mass, hence Y times the radius
of gyration, and therefore samples, Y times as much of the B
L field ;lnhomogeneity as. non-;felativ.istically,, Since the VB
dr’i,ft'. comes;frem, ';he small diff;ei'_enee‘ in.r'_adii" ’of‘ curvature on L o
obposi_te sides of the 7'-ci,r.e1é" of gyi'ation,' the lerger the rediue;,.":f-;;'_;i:-'jl-v
-'.-'_'the_ Ja rger the 'vdiffer'ence_, ’1and‘, thererore "che laréer .t_he drift..
j:‘"'velo'eity, . The fect_ thé.’t the:-period_. of gyration is incre_aaed .
b‘? | Y is,"'just.compenseted by .the fact ‘that the differencé 4@
in. radiue .of Cm-'*‘vatx.xx'evon the '_two 'sides of the _oifbit for a
given AB ’bet&een'the two 'sides' is also k;times 1ai-gere These , o
fj't. statements will be clarified by an ordel‘%of magni tude °&l°u1&“°n'f‘v‘f‘f{?

2 :
“'similar o thq‘c tn Fis. (:—5/ ) for the _5%. drift, The radius

Cof gyration is .- . .

ea™YSL e gy
T eB e T

"' The d}ifh-i"erence in ra’ldihi '-:on: f‘thef two sigles;'ié::."--‘-:z"_j
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‘Drift veloclty: dus to VB = JAel "g w/Ac’ M YCY, 0. VB
s fﬁ=-wjij?fy””';qﬂ'é:,j Period .J,N3!Jn;’£LE;?fm-'""@' o

o eBT ..

and - ABa . p VB iq ¥ times larger relativis'cically than
mnorelativisticallye .

| A similar argument holds. for the term in Eq. (?’@)
- ' 1 2 361 aé :
-containing 55 Non«relativistically,. T -—55 is v, '-—l.dt
-and the explanation of the drift is similar +to that given in
: o8
.»Sect ﬂ’@ for the ;—5%- : drift..v Relativistically, the fmcrease
‘in mass, ziuﬂhipmasa the gyration period by Y The difference

*‘ia radii of curvature betWeen one half period and the next is

| "’(«4@" o




-

?,'.-,Fx'om Eq. (47), the parallel force is Y times 19rger than

3 ~"'f:_.non«relativistically. This can be understood. from Fig. 5

,Ailand the non-relativistic emlanation of the mirror ei‘fecto

. . :

e }',,Relativistically, the radius of gyration is larger by ¥, and
?-vj.therefore B is larger by ¥ at. the position of the parti;.cl'e

.:_'because of the convergence of the field lines.

Ir -ﬁ 1is different from zero and if ths flelds are

non-static, the drift and parallel equations cannot 1ogically' '
_‘-':_f"be obtained from the non-reln‘civistic ones; ‘since ¥ is no- 1ongar.f':_'
constan . One might surmise that the drift ‘equation ) would;_lf‘
;,:,’:.v.'be modified by the addition of the tem -Ex—l, and. that the o
‘ "'v.;"-;'longi_'cpdinal aquation (‘9{3’) would have the term, eE il asi'.d‘_e.d., B

This surmise 1s correct for the Gase that, -g.l. 1s @ (e), and *

) L ' the relativistic equations become . i B, IR ,
L : ey O M ¢ .. b o 1" ' 2
Eyfyg—y R o L -cE + X VB+ e o T alh o A
T L B [ ye Ye mg sl L 47 i

R B s dp o M L S : . . o / N T~ Y ;
Ei 0)'-—5 ____'_L_' o v”‘ r QB ) ) P ) / ’,.' s &
< (5' 3= = °F, - + & Sl elativistic,)E” o) é
5 . o | 2 4 .2 .
o L P . o . . oy an fr ey v .ﬁ 5
,Egl. (5‘,;.) — _T:n' = @ Mr -constgnt, whene Py = , \_‘___“_ ot (5//)'_ -
 .0‘ ' perpendicular rela{:ivistic_momenturq -‘ ; wis .

ml_These equa‘bions were given (without nroof) in reference (20) + ./

~ The more general case where B, is (1) has been:

'n_studied by - Va.ndeﬁVOort _ " The method is neuessarily covariant.

L and-is not restricted i:o cases where. E, 1is of ol &). The
i analysis will not be reviewed in detail here, but only the.
_L~‘metnod indica’ced and the rasulting guiding cem;er equations oi‘

: motion given (for the case where E " is e-(e e . ‘The. sterting

(J%)

"'is the ralativistic fourudimensional equation of motion



ERVPIN Nt Gy i Y

X, is the four-vector (x TR AN iet). - and.cris the proper time,

| 'I’he first three camponents of equatlon (,5'2) are the relatlvistlc 'vector

g _e &
it ~ ¢ at-

_change of energy. EE(?“T:DE) "vq ° 'ﬁ vhere Vo= (‘\ ’ § s z., ) If

equa’cion. X, B + eﬁ a.nd. the fourth componen’c. is the rate of
,Fik is independent of Xy (1.e., flelds independent ‘of position and time) s
’che solutlon of Eq. (5'&1) exh:.blta a gyra.tion in four-dimensional space at

the frequency

LR PP L

whverel &hois the angular"frequency-in ra.diane per 'xinit proper. time. 'The :
: actual gyration frequency is W= b g: = “ “radians per unit real time..
LY '
When E = 0,  the- ﬁequency ] reduces to the usual relativistic freq_uency

The guiding center equation& of motion are the equaticns of motion :
: . with the gyration au "freguency, waveraged. oub._ There are three eq_ua.tlons,
;_-',correspondlng to the firs’c t.hree components of Eq. @, which give the 4
:-;-,‘a,ctual guiding center mo‘.ion in ‘c:h:ree«-space°  And. comesﬁonding %0 the | _
bk"'fourth component of Eq._ (54‘:2) there is an equation for the average (over a. ‘_
'gyrazion period) rate of increase of the total particle energy.v weictgn,in;Q

"‘the present notation, these equationa are (for E of 6’( 6'))




Reiativﬁ 'ticvzxiﬁ"f,f_‘ ‘
B . o 5(6), ’ ’

. (56) EJ. 'and. o

' %—-"m 5" Ql)é

"""‘“"-n— = Mr = constant . . | : (57')
2% (meen) = .eﬁ{‘-*' o)

M B2 '1/2 o |
f:&.};a‘c [B(l~;él‘"‘ )J o | (58)

Here p 1 is the perpend.icular momentum the particle has when observed l
» from the f‘rame of reference movidg at uE, and B is the magnetic fie.l&
" observed in that frame. It is given by B = B(1 - EJ’/BE)J'/E +&r(e).
Mr is actvally proportionaa. to the flux 'through the circle of gyration.

f‘-:t,as observed in the freme of reference moving at uE When E: L 1s

1

;5{(4—:), pJg./QmOB equals - p_L_/emB %o lowest erder in. e, and M, Ery

V:as defined. previw.sly for that case,

: » In Equa%ions (55) - (58), P Qscillates at tha gyrofrequencye

jHcmrefvaz:’, this oscillati.on can be averaged out to give Povg = 7 ( 1~E 2/32)“1/2
S B’que.tions (55) end (56) are the guming canter eauations, of motien,

:in thr@@«space, while (58) ie bka average ra’s@ ef em@rgy incmas@g |



= 3D -

. Because of the denominator 1 - E 1_2/82, it is apparent that E , must L

"‘be less than B for the equat: ons to be \r.'sn:l.lcl°

Equations (&%’7, $E), and (57) are. respect:wely the generaliza‘tiona
\ of the relativis@ic equations (??) (.{d , and (é /) to ’che case where

E.L is 8‘(1) instead of &(é‘) Ir fs;__ is 6’( e ), \,hen 80 are g
“E and By /B and equatlons (537 and (,SZ) reduce to (97) and’ (5'& upon

dropping terms of order é ‘ ‘
: ' Equatlons (685, (&56), _and (58‘) are respectlvely the relativi&tic
fonns of (/7), Q0), and (RE). A comparison of (&%) and (/7) shows f'fff‘
that relativist ic effects not only modlfy the existing terms in (i?’ )5
but also. introduce two new drift terms in the direction of el x ‘“E .,..
“i.e., in the direction of . '1? . It is possible to prove direotly_tha,t"jf
" these ‘two new drift terms ajre of,lor'de;r' ) vz/ c‘2 sma.ller than the otherr; ’

':“J,_:,and therefore are indeed purely relativistic effects. To.show this, tho'

S o A -

relativmtic equatlon of motion , %—% w % i x. B + ek mst be writt@n _
".:"-fm dimensionless form, The sce.ling is similar to tha‘t for the non-
‘relativn.stic equation. Let @ = B(r‘° t)/B (t), E = p “ﬁ(?, t)

L PAb ' 070 myw
S —Qﬂ-;,-. and a = r/L where 59 is the initisl momentum 2.0
o _,.u..moL ' 0 A 2 l/2

. : | et é’o )

'3‘:'and the ot.her 3ymbols are the same as non»relativxstically In tems Of

‘Poclf a 0 déi’ 2} -1/2( . dEa"'_ ;,' = y
B fé“i%Lp [1 " a7 = g5~ @ +'€» e (5‘?)

0 B . e A -1 2

sith the initia.l condi‘c.ions that at :J‘ = 0, @ O/Lg» %-g @ Y [ )J /

V x rest energy/initial total ener@r. The problem ROV contains the two o ‘ v
- dlm% ionless parameters poc/eB L a.nd po/moc, whereaa the nonmrelativisti@ B
"~ problem cont&ined just the i‘irst one. Tho new paramet.er ﬁo/moc is _'- e

f.-..

mO &’0 'U’O/c & ‘U"’O/c +@'(7)’ 3/¢:3) An,order Noi‘ magnitude comparison Of, say
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| ‘-'AIBut‘. E/cBﬁ' equals (Po/m 6)2 @%,-‘IQ-— (@y‘) end therefore ia cf f
. order v7/c8, Similarly (v By ey 18 vP/c® emeller than ’-f,;
" the praceding arifs tarms in Bq. (55). | -

| It may seem strenge that drifts in the direction of B,
:;"occurp The origin of the drift vhich is proportional to v, ”
is easily undexrstood. Because ‘of the parallel electric field, the
- magnetic field is not in the same dirvection vhen viewsd from the
;frame of reference moving a.t uE as when viewed from the laboratory' L
oy freme. . Conseq_uenuly a velocity which 18 parallel to’ B’ (asterisk ‘ |
‘ ’;._“v-:v._:refers to U‘E ﬁame) will have cormponents both ;parallel and perpendicular
L %o ® vhen' observed from the laboratory fremes Suppose that in the.

. .‘ uE " frame there is a uniform static field 5 and an alec’cric £iald :
e E parallel to 1%, as shown in Figo 6a. The guiding center velocity
ﬁ%vﬂl consist of ;: '6nlyo When a Lorentz transforma,tionui‘.?mée
{:to the labm'a’cory frame, the fields e.na. guid.ing center velocity appear
fas in Fig. 6b. The B a.nd. E Yeetors lie :m the Yz pla.ne, but {_ b
ié' does notm a.long Z and E 18 not parallal to Yo The a.ngl@""v"?
f'be*‘ween B and tha Z axis is propor’cicnal ‘t;o E

i e
LR - qan. ‘be resolved into two cemponents, one oi‘ which 1s EE a.nd -

. the o’sher is"‘ the drm ( u‘%,)/(Bg(l“Eé /32) i.n m &imction gf e

As shmm, o

ow



.".32-?

’I.’he origin of the last drift term in Eqa (55), which is also

in the direction of “E 10 s less obvious. One cen start with a

” magnetic fiald. having s...raigb:b lines of force and a grad.ient of B
at right angles to B. There is 8 drift velocity due to VB. If

‘ . R
one now ma.kes 8 Lorentz txransformation to a frame (denoted. by )

.

*~ moving at right a,ngles to the drift end to B there will appear an’

E i &and a iB Y The VB drift velocity, when ‘transfomed. to this
-, %

new frame, would equal the sum of severa.l drifts as ca.lculated. for

'the new freme from Eq. (55), :anluding the second drift term in

the direction of . E _4_ . Making the tra.nsfomation does not rea.lly

i

.-tharefou:a 'erill. net be d.one ha‘e.

| Figo 6. The explenation of the drift proportional to - v BE




a comperison of Eq. (56) with (20) end Eq. (58)

modification of existing terms.

i

only a

terms,

s8hows no new
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b IIL, A MOFE FORMAL DmIVATIO\I OF' THE NON-KELATIVISTIC.
S T GUIDING CENTER EQUATION

Tho derivatlon of the guiding center equations of motion for

-;T"nono'relativistic partlcles present.ed in. Sect T requires rigorous | _
.‘f_;ustification.» The work of Kruskal(‘é ), and- of Berkowitzm Gardner(@) .
provides the’ justificatlon of Eq (4‘) Kruskal derives equa.tions i‘or

the R f, apppearing in .a series of the i‘oru
- z ¢ ‘““"(t)acp ja(ao) @) ey

:,;' by equating coefficients of equal powers of é@(—-—jB dt after substi‘c.uting

) the series into Eq.. ( I ) 'I’he i‘ields are. expanded in Teylor, series about ‘ G
. _ - ;
‘ anh R is itself a power series in é , 5o that . Bn(é ) = R o(t) "‘é‘R 1(1;) "’“.-
- that,

must equal the complex conjugate of R dn m&ar 'x? -be real It is

not irrmedia.tely obvious that equatmg the coefflclen‘o .of ,each ein@ (where
0= fw(R ) dt) to.zero is justlfied° the Rn are i‘unctlons of time, so
that the series is not sinply a Fourier series, However, Berkowitz and
: .Cwardner_prove -that' the serles, ob’oameq by this process ’ia actually ane
asymptotic expansa.on of ?‘ for. small 6'. T’holr proof is necessarily.
,a formal mathematica.l ono a.nd will not be repeated heroo But it is |
:' :’-”wox*thwhile to dlSCuSS vhat is usually meant by an asymptotxc ezpansion
‘-_and what itis they provede' The usual definition of an asymptotz.c e.xpansions
to be found :‘m Whittaker a.nd‘ Watson(m | for example, can be stated a.s -
;f»._-_followss 'glven the power. series S(é) - Ao -+ Ale . A2<: 2+ ,” o I‘t.

" is called the asymptotic expa.nsion in 6 of a mnctlon £(e) if
T ey S (e

J.i.mé*bf eB
:f:terms (ioe. , including Ané, ) of the. seriee. ; Or by tho defim.tion oi‘ .a

s’ zero,, where S (6) is the sum of n + l

limit for overy number Q there is a rmmber Q(Q) auch that o




S -3 - ”
A se) -5 (e) | | | P o
— : is 4R for €4 é (Ue take € as positive only) If

f';,A(&l) can be found(/ﬁ such that ,f (6) - s,(e)|24(e,) é P

H 0 L éé. él ‘I"nis isthe precise meam.ng of the statement that. /f(e) - S (G )I
i_s 6 (é‘n 1) Now the series in Eq. ( é/) is not a simple power series
in € . Each term is itself an infinite series in € , multiplied by ; ;
J_-facpr( jB de; and this exponential ia not expansible in a power series :m é

Nevertheless, Berkowrcz and Gardner prove that if Z_" s the sum of terms

/6) 3 - and ‘3
n

be't'f?lben and’ includmg p then there J.S a.n A( él)

"for which [?(,e t) =% | £a(s)) e 1, if 64610 Therefox:e = -af > |= 9(6?“*51)';]"]”
"_and in this sense i is the asymptotic series for F. It is also true - C

€=0 -3 4“3'.0.. _With n equal to 2, it follows that r - Z’ 6(& )o

' ."But % = R +E(ﬁ'i ,eie."v + ﬁ_l 19) + e2 R, 32:19 +-}? 5218), 8o tha‘b

--ﬁ =zG’(e) Bysubtraction, (‘”- 2.‘2) :g-~(7:2-R)= _,.0

.‘Thia means that the diﬁ‘erenco betWeen the actual particle position and :

Ro is of flrst order in the radius of gyratn.on, and therefore -ffo

-'a éuitable deflmtion( 17) 24 the guidmg center p051tion. _ _, I

Following Kmskal we will now derlve eqwtions (some algebra.ic, :

>
come dii’ferential) for the Rn' It will be found that the equatlon for

RO, the guiding centor pos:;:l::mn‘v is equation (9’;/) Substltuting Eq. (é/) .

~into Bq ( l ) and collecting coefficienta of ei‘n@ glves for -




-, - il xFe il x @y v B oo

‘nz2
‘ -«nz.BZ}’i’-; -f:’mB -f%?n xB = (.}:.9
“'-@merei E’n' is a function éf thez R's. o
/z%e veloci‘ty.pf:light‘c | will-be takén = l'.l | It can ‘o‘e re-introduced
':'.by d:.viding 'ﬁ and B by. c.) In all four equatlons the fields are
"evaluated at -ﬁ ‘and t._  In Eq (é&) the lowest order ‘Eh denoted by
Gno" w:Lll always contain only R (where lépen = l) For .exampl,e,'(
from Ba. (), T = 18(Tp,t) Rm x @y 7 B (F, ¢). Tngeneral
-:"_f'v.'énl' will. con,ia'iin" § . It is thus possible t.o solve algebraically for?’:f{
- :O in terms oi‘ the RlO’ 0"" - lfo To solve Eq. (&53 le’j,_»RﬂQ;ﬁ o
l'-take i‘ts scah' product with el s B/B -j‘.vf'to ge‘t e




SR 2-»",' " .-:o' - L. A
= Go * (e « Gl ey +inGoxey o
B . o ’
R 1)- ST

where the fields and el are evaluated at (R 5 t) as usual,

In order to find. 'ﬁ 10 equatlon %,5) is wr:.tten to next order a.a L

u BT - inBR xﬁ 'c? », | o R @’?)

~:where [ 1. will contain R b2 n—l) and R no® - Thus. there exists a

Se ARl e LTINS YA

recursion scheme for R2 and higher, provn.ded RO- and Bl are known 80

'_’.—-—\—s - ¢t el

"_that the recursion Gcheme can be :.nltlaﬁed. ﬁ Equations (é;?) and (53)

deter'mlne Ro and Rl T’he zero order equdt.ion %3 is -

. Dotting with el(Ro) ‘gives RlO Av =0, so that R is a vector

10 Sy
5 perpendicular to, t.he magne,tic fleld. Therefore let RlO equa.l (a +.1b)2, P (c 1‘ id)A 9

P

 vhere (RO) a.nd °3(RO) are perpendicular to ea.ch other and to el( )
5 ‘as prcviously, and a and b .are real, Subst:.tution in'bo Eq. (}@) gives '

e m_-ab ‘and a = d, As a result ﬂlo '5.3 of the fom o

Equation 7/ ) cont.ains a.ll the mformation present in qu (?’D) ‘ _
& If Eq (7!) is now substit.uted int,o “the square brackets in Eq (502),

the result is




RN » oot
N J

(VDRO?uzB Blo ij.o +&(6) S ; (?57

LY

.‘;'because. —R‘;.'() RIO Os¢ However, (v - ﬁ%) ia t.he perpendlcular or @rrationv

Tvelocity in the frame oi‘ rei‘erence moving at the guiding center velocity,

2,2 e A

and this is gw.. Therefore eBR.lo.o -qd*%‘ .é,.f..._. _ (:ccu = -lg’ s

:'and Eq. gﬁ;) becomes
CR = E(RO, t) *E’T % B(Ro, t) h

O 20

-

process used to get Eq. (1/) in Sect ﬁ

In the next Section, equation (éﬁ will be used to nexb higher

f"c,ase where E and+ v a " are of &(l)
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- v _: The Adiebatic Invariants of the Motion.

o Since the solution of the equation of mot;i.on ‘has been obtained

€ln
_'a.s an asymptotic series :m the previms sectlon, it is reasonable that

-

any eppro:d_mate constants _(-adi»abat_lc invari_ant‘s) of the particle motion ¥
;"':v‘should be obtainableas asymptotic series in €, In analytical dynamics
:i}exact constants of the notlon are usually obta:med by the ‘canpnical
'i"ormunationo if the Hamiltonian is independent of a given coordma.te,
the oonjuga.te momentum is an :mvariant. By analogy, we expsct that en '
*'}'expansn.on of the Hamiltonian- in an asymptotic serles in € should reveal
‘l;.the adlabatlc invaria.nts, ‘provided that at each step of the expansion,
'Evariables can be found which makeu. the Hamiltonian :mdependent of one of
,;:the coordlnates. "(The last term H in the expansion of H as " |
H +€ Hl + . enH nay c'ont'ain’ the coordinate)_. " Tne systematic -
procec_lu;*e for i’i_nding the ‘proper variables ha'a-. been given for the .
nonlv-krelativistjto' case by Gardner.(/'ﬁ | |
It is similarly true that to find exact invarisis the-Hamilton’ian
must be Aexpreeeed mterns of the proper variables.'- As an 'exa.mple; if
the Hamiltoman for a charged particle in a magnetic field having o
= azmutha.l symmetry s written in rectangular coordmatee, :l.t is not a.t
all evident that the cenonlca.l momentum Pe us mr2 0+ £ r-Ae is an
';"exact inva.riant of the motion.,‘ It only becomes apparent when H' is
- written in cylindrical coordlnates.

There is an even more generel theory of asymptotic eolutions SRS
and a.dlabatic :mvarianta of ooupled i‘irst ordcr difi‘erentia.l equations .
ofwa. certain type.» Th::.s is dua to Kruskalo (/ﬂ The equatlon of motion._;

of a cherged particle ie a apecial case. Th:i.s more gener&l theory wi.ll

be d.iscuseed in some detail later in this Sect:x.one‘u"‘



Mthough the adiabatlc invarlants are asymptotn.c -series of thev'v

”‘form. constant. - AO +éAl + g A2 + oe., it is customary to speak of -

“the. lowest order mvariant AO as "the" adiabatic invariant. For the

1\_charged particle there are. as many as three such series » one for the

:'Vmagnetic moment _one for the 1ong1tudina1 invariant and one- for the
::»v"i'lux“ inv&rlant. These three series will be designated by M +é& M° + ;.;,
J * éJl + cooy @-f é§' T oqeey respectively. Proofs of the invarianco
: of the lowest. orders M, J, and é will be given below. | | :
The nu.mber of adiabatlc invariants is less than or equal to thc
‘.'.'number of degrees of.freedom of the system, The charged parti cle, .which-
has three degrees of frecciom, mey. or may not have M, J and f |
dcpcnding on the fiol_d geome_tr_}_f.‘ The number of adiabatlc invariants is
f,_i‘_dc’cénﬁined by_.t_he nunber of period;cl,tles, - To ylllust‘rate, suppose‘that
B ' is nowhe}e lafge- enough to reflect the iﬁa.rticle° The parti cle motion
,“is nearly periodic because of the gyration about the. line of for,cc, but
there is no semblance of periodic:Lty in- the motion along the line oi‘ |
‘l:force. There would be only one 'adlabaf,lc mvarivant series, the one. for “
;’ft)'me,magnetic momont, evéh though tﬁere ére three 'degrees of freedom, If -~
now the ﬁeld. is such that a particle is alx»:ays trapped and oscillating
o between two mirrora, therc w:.ll be a second or lonﬂltudinal invariant J o
Fmally, ii‘ the drii‘t from line to line as the partlcle osclllates between
:; mirrors with constant M and J carries the particle ‘repeatedly around
» a closcd surface, there 13 a thlrd periodiclty assoclated with’ the motion
and. thex‘e mll eﬁst a;afaiabatic inva.riant { ‘I‘he motion of chaz'ged
particles w*hich oompriac the Van Allen radiation possesaes all t.hree

mrm&mm&  and invax-iants.,@@ The periodicities arcs the -_ifz

- maﬁiom about the geomagnouic i‘iold linospflthe nortb-»south osoillaﬁ,ion, :

; ."_j'and the preccocion about. tho e&rtho




A, The Ma‘gnetic Moment,

. The invariance of the'magneti'c' fno_rnent will now be proven via

/Eq. (43) dnd Maxwell's oquations. It will be shown that BRy, - B
__'.'which is proportional to the magnetic moment, , is mdependent of time
to lowest order in €, By way of clariftilcatiox‘q it should be emphasized
that the magnetic moment is not alwé.ys -zglz s wher;e;‘vv L is the

g perpcndicular veloc:.t.y in the laboratory frame of reference.. If there 3

- n(¥ - 'P? )
“is an electric field E J_ , then the magnetic moment, inm- 2B
lwhere_ (vf-.ﬁ ) equals (v - uE) " In short, the "perpendicular

veloecity" must be that observed in the .frane of reference moving at

uE. : This,can ‘be verified from Eq. (‘75). .1t does not mat_ter whetherj_‘_ L

the component of EE v’E perpendicular to 3{?‘) or.to -ﬁ(}?o) is

.used, ‘ohe di fference being of 9’(6) and therei‘ore appearing :’m the

EM" term of tle- magnetic moment series..

Equation“(e{B) is of the fo_rm . L
PO S
Pi*@lxﬁl’“"Bz' : '

. - v

If 'this ds i‘lrst dotted and then crossed with el in an atte’nnt to S

= solve for Rl in a fashion similar to the solut.ion .for R Eq ég),



. n .

._-;3'§hiS is'e«:eqndi‘bion' on ?.L.’ vhich to&~1) is a condition on ?QL )

S e ,f R (??)

Equations (?Q) and (7?) conStitute a differential eq_ua’cion for "?l(.).‘::li S

:,If the 'berms mth 310 a.re separated on the left hand side, the differentia.l

:eq,uation is ‘ A ' B o S
(Rlo) i ( J. xd = % (-I'Z- “ibpx &), - o L (Fe

- . s o
(lo-v )B-BRlOA and R, is the
zero oider. motlon v é‘ uE One might conclude from Eq. (84 that
5 -ﬁ’ h-L:

(Rlo) must equa.l 3 - Suchv is not the case,_ however; eany complexv- vector - -

" wh '.'L" _iR ‘E" R
- where [ 10 V =4

L wqua.nti‘t;y of the form ? - i’i«i x & cen be'.writteu as (g + :ih)(é2 +:ié‘3);'iil o
- :where W= ge2 + hej’ and g and L are complex._‘b By collecting all terme
.1_ \ - L . v ) S5
; 'f;__on one side of Eq. (g’@), one finds that (Rlo) -B—J:\ also is of this

;"foz‘m a.nd is not necessa.rily zero, Equation (&o) must be used as it sta.nds

to prove that d‘b (B -ﬁlo lO ) equals Zero. -

‘v' Loy R . ...0 X ) P ‘,'L .

I = % =y S ¥ "B * T

’ = . T.oe A — . e

& (B%o 10 oF B(R "Rio *Fio R *FEFo ?1.0_ Jeo
.o

"V',Equatlon (gv) contains only (’zo) 'but this is e.ll that is required in

(é” { ) because of’ the fac’c ‘that Rlo Camd R ha.ve 10 parallel

"10

("7!) v ’gives, when differentiated with respect to time




e ke e

%o. = (a + 1b)(e + ie3) + (a + ib)(e + 163) f’ ’:-,:’I';;

'_‘Substitution of this int.o Eq (go) gives (via either t.he a Qr;{,:‘%

"jcomponent )

et e e e (e hy e Btk
va ib ) A‘l(a:"'.lb)(ez 63) + 2B ,'_:’ -

j._'where (e + ih)(e2 + ie3) now standa for L iL x el.‘ From equam.nng n
"“(32) and (5?3) 1t follows that R e I

o [ i (a, + ib)(e2 o a )+ g 1h. (@2 + 1e3) + (a + ib)(e + 133);»

;j‘.;ri%é?

T

o <=:3 H,lo+ —5———2}3(& +‘1b) | Rlo+(a+ib)( +ie3)<

0.%'10*=E A ° é + m H]_O g + i(& _% bz)(é\

r:"l‘he sum of Eq (35) with its conplex conjuyat.e is.

a.+b

” ' 4:- . 2&@(%0 ng ) = ‘ Rlo &e ( __g__f_n_._h) ‘ .

REEEIN order to prove that the rn.ght hand side of Eq. (S’/) va.nishes, 1t

atib g 2ihy equals - a‘% '.'_ Now 9+ i‘k _1s ;'

' :"“',"v;.remains onlv to .,how that &e ( -
};:defined by - L iL x el = (g +ih )(62 +. 163)¢ : This can be solved for o

.l.i"'g * :a.h ks dot'oing with e2 _or Y e
| g +m =L (e - i ) ,};;."(5;)
'l'ne "plicz.t e.»:pression for L n given ixr:medmtely follow:mg qu (g@

’. must now be used- L conta.ins 5103 which is to be repla.ced by':-%‘“(a.""_tib)(ez o+ 133)*‘75" ’

s



a w_.:._.._:.
. L.,L (e - ie '
G e [i (e?_ + 12) vf iRoo x (é‘2+ie3)e 9% - B(egﬁ.e%]ﬁ

= -el'_ Vx'ﬁ + i (.,.).

: m'ﬁ*f(;o 'aal[ (e °L7)el -3 (e ~ov)eg + T V
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Thus. it "is ’ préven that

'+ ¥B - 2B = -B,

00

9B
ot

) =

+
« VB + O(€).

g+ ih
a + ib
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+ .
Roo

Re (

) =0+ (6) . or that
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The Longltudinal Adlabatic Invariant

The next adiabatlc invariant to be studied is the longitudinal

invarlant
A gﬁp”‘ds;i S s B “?é?;;'.ff

where Apll is the'guiding center momentum parallel to the line of force,

and the integral is taken over a complete oscillation from one mirror

R

point t6 the other and back again As atated prev1ously, the. longltudinal
motion must be periodic for J ‘to exist. The procedure thus far has

been to start with the equatlon of motlon ( &) of a dmrged particle and

to average over the gyration. The resultlng gulding center equations (l?);?*)h

and (&o) are new equations of motlon. The next step is to average over ,:

motion governlng the average drift from line to llne, and then to ahow fv
that thls average drift conserves J. ‘- ,; .  ‘ R

_ As Lhe guiding center moves along a lino of forcelln accord w;th.ln
ana, it drlfts at rlght angles to the line at a rate glven by

(&7) See Fag, 7.

‘

-
7 &
e Mipror Pora”

.

'xslowly at rigbt angles to ito‘




,If the clrift at right angles is slow compared to the lo'xgltudmal mot:.on
(i. c., if E and 5— are of 0‘(5 )), one can calculatc the average v
drift ra.te at right angles to the l:.ne during a longitudinal oscé.llation 5
as if the guidlng center did not dev:.ate from the line of forcop the :
error belng oi‘ order ‘ e 2 since the drift rate R is ele). If ?
is @’(1), R cont.ams the@(l) term uE and the guiding center moves:'-";;
a long ways from a’ g:wen line of force in one ‘oscillation. It is then noé‘:‘
jj.:longe.r posmble to ignore the deviation from the llne of ‘force; the
guidmg center does_ not remain even approxivnately on the line and it will
'“;be i'ound tha£<§rds is not conserved. - ' : . ‘ * //
- A proof has been given in reference (ae) that the average drift
from line to line’ conserves J the proof is for relatlv:Lstic particles,

Rather than repeat:mg ’rthat proof in the present- review, a somewhat different.

one mll be glven which is more algebraic and less geometrlc. Also it

;fwill be. done for non-relatlnstlc energles, but the modificat:.ons of this ‘

To formu.lato the problem expllclt;\y, the ozl ?9 s curv:.lmear

: coordma.tée systmm introduced previously w:.ll be used.- Let

i MB + e(g +’¥l), where '\."m %. g‘gﬁ By Eq. (3.‘2_)9.\

K is a consta.nt of the longitudinal motlon. . Then J is given by(&t)

LR ERL




==. ~- mef ("W"p ‘I'Mﬂ)
{JMEch(1p+¢) Mﬁ]} 2 aﬁ . .

-e§. v 8[3 (‘w+¢+ ---—-).

ds

_:L ' UEA
2K f{gmﬁ{ -e (“I"‘“f’) M%i{l/e ' fv

7 where IE is the perlod of the longitudlnal oscmllation.

Yag N ,, et
LB 3,?_ f{Qm[K - ely +¢) - MB]}J/Q ““ﬁ v QH. | )'-',"

, =.'.. _ P } isl Y (‘x,a+47+ -—--)

of (o8, s, t) a.nd not of the guiding center posita.on T and of t..--

.ﬁ is itself a function R, B, s, ‘£). It must be remembered that . ,
e Yepsy) . 2w, a‘ﬁm,a, at) w & t)
G : TF e U7

A S Co _ '

; a‘z‘”(a} p’ Sk) tl ((Z) ,l_s) t) vy(R, t)y etCo for ﬁ &nd. S o




ot v - 48 ..

%‘% M B va<R t) . e’(e ) )

Th«z- expressmon for R (wrth uE and. 5% ~ & ) must now be substituted

:into equations (503) and (g’alf-) The procedure mll 'be carried. out in de'tail only,
-j'_l‘doz SRS SR

It is the same for ; dﬁ/dt (except for. & 51gn)

%ﬁ ﬁ\:g—a—‘x:f;‘fl"x{-QE +'M3v3 +’-‘i9- v“_? asj Va+0(62) (Iw)

4

'NOWC! o‘[%z(cx; B) 5: t): q ’ B ﬁ[ﬁ(a: By s, t):q a-nd 8 = [ﬁ(a.v 5: 5: t):

.'-"By implicit differentiation of o4 with respect to oz, 6, 8, anpd: t, and of

_;3 a.nd of s mth respect to the same four variables, one obtains the

follow:mg equations s

—h

H
‘4
2
=
S*,

(aJ :' 3: t)

a? 5} : s) \t)

S L

oy By s
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g Inqu (los) - ﬁo{. can therefore be _replaced_ by °F x 'ﬁ',
e By woan e .
s:nce x @ “end | Meea
92 xg- aﬁ’x (Va.x Vp)_a(va.-ff )\7@ ae—- (vg az)w‘
‘ —DF k o¢ B ‘ &F ' .

giby aquation v("l@é)’.v"-‘Alsb in Eq, ( 10.5'9

E's..'-'-ééé.:'-.-vv¢. ;L (4vp) =V éw—vw+—‘»(—éV¢~a*V€) V{

2

ig;,:?ﬁ—) (671"#4"745 557 +3°"9@+M473+m ;

?E *‘;"’; % 9‘;“"*9";"7@_—,) +(§-V&)2@- (iF.ve) 22

c2%. v(#’w»‘-m "'..’;*“:‘.f v 28 28 +&(e*).""
-5— B ) n 3@ .23 :

By . (706), and beéause"f.f‘"“ﬁh%kv:% ., equation (.109)[

...v,e-e, QECd- .G.s,%') X (’W-W/ia) el (?f-re?-;-MB), md-,,/‘ 2 7, )¢ (o,'pw)_ko(w:?
. :; Ll %5 | 5 J élg)’- e
"“’he”e V"'W""‘B KL to be considered a function of (d:@ = e
_}’.‘.'?tshe las‘a term of Eq, (luo‘ ):

) eqv.allvs- ;’e a%@ %8.(67



L

.?: (f’l az’) ""“;/‘ 24
: Dp

‘-'47".§i‘nce 8 = a_‘ﬁ’/as.»- The last term of Eq. (/0 ) then is

[ 2 - _4-=}_..2 (vig+ ‘ﬂ;B)’ ‘.v‘m«;ﬂ-/ (v, 8.8 Ad ey

';Z; = @;:_(@4-:}5#-(;_43) '+ %f‘%(%a.ae) +&(e}) e | (_W? :

An analogous procedure is needed for dK/dun Eq. (97) ‘The quantity ."_.“

'K was defined a,s the particle kinetic energy plus e(}H— ¢). From 'Eq. @), -

' it is true that .L. dh’ = 0. + ece”) . when E, and > ere ©(e)as here- HOWeVer:f.f:.f:*:":

Lo

for present purposes 1’0 is necessary to know ‘c.he a(e*)term of a/f( o Do

e

correct 'through order a(&zj is ‘ '

0( &) ( 1!5‘:);_

.......



77 10 B, snd %e are 0 (6), both ¥ and §# arve themselves.
R &v».(é ) and their partial time derivatives é're o (€2),
'("}:"-.v:‘i{'g.From Eq. %) the rate of change of kinetic energy is the -
sup of the drift velomity in the direction of E plus the

:':j’_"rl induction effect ‘33 ’ Plus terms of 0(6‘*) at least when E
and fg are. .0~ (1). It 1s also true that ir 'f?..g.. and 5% are

o AKinetic energy) . R . E + M Q}@(FI‘-&) + 6¢e3)
R . e dt ‘ - ot
} ~

.. This can be verified by starting with Eq. (&/) for ¥ and

:A’J»calcl*lating __Q_Lnﬂi.c_@&m) = o¥ - E(F, t). Upon expanding
'_'E(I', t) about E(‘ﬁ' 5 and time averaging over &g Wration
1‘(over. &, that is), aquation (Hé ) resultso_ The Maxwell
"i‘lequation vV x. ﬁ = - 9B/3t must also be used. , R
) ) A@ditioz{_of (1/5") “and (16), with ﬁ i‘rom qu-(lﬁg’),'
yields. e “ o R

,——Q&

K . (,V"f'é"* M.B) ,’_ K L—E 4= V(?f'@)] + 0(&3)

- :3; Crvor ) -"‘,’;?*-“i‘( fou = 320) ¢ o0,

where ¥, %, B¥ ok, @ ( are all to be considered ﬁm:tions

R end t.. The vector, %‘?W* %2‘ vg &Dpears freq.uently

o .L.f::'and will e deno‘ted by s ' The drif‘t R is now replaeed B

Ly A E»@E +- Ma VB -:— ﬂmc ’V“" 8, -::a' e |

RSN 3 i | ~2—;
- _ia...f. =

-s-VC'&f+¢)+




o7 P ak a+)
a@ a’t

-

ﬁ?'f.j.‘where VoL has boen replaced by 3?(& )65 s, t) x B from nq.. (/c?),

- and similarly for ve . Now ’ﬁ. = R, s s, t) . . D _

= R[w(?, ¢), ﬁ(r, t)5.8(r, ), t_'] By implicit, differentia‘d.on

“.'..wi’ch respze et to time, | i
= PN

, °‘%5%'£ PFE e Fx e

W _-_.From 3) and (:a.a), and the fact that a"ﬁ /as = &

, z.t"&'

1'.

follows that
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;,The last term in Eq. (la;z) is (m/e)v 2 9/ as(el ogﬁ )» since
2 R o B0 O® B 987

quals, - R 5 which 1s @, 9¢ " and vanishes

l_as 5 R ! ata; o 7 N

(é}-éf)‘ + o(e?)

;‘{Replaéing - %’.‘( Y4B - é@;")-py -2 v, + &(e*)' |Eq.(32).

t?/ : = V(V{-qﬁ-/--{;@)' %’,f %wﬁ{;_(i"’a‘e/ ” gﬁ) + &(e“‘) (124)
v émd _

a’/\’ .
- .L 52["}’(@,-&) ¥ @(ﬁ,*)-#-MB(E;r)]-/- VQ'M +M3) a?e. %%0, (U“ "%5

_; As indicated,,_‘!;)g ;5, and B are mnctions}of ﬁ and t while

| -ﬁ ﬁ( oy @, s, t) SIf now '}f’ [5, and B are regaréed a.s mnctiom ‘
;"f::,cf "fgL @ s 39 ,t &.a in Eq, (/0/), lthen by Eﬂev (1@3,) . S




R 4

Finally we are prenared to evaluate % Comparison g

of ".‘:i" in Eq. (13 ) witn %‘7 from Eq. (979) reveals a
5:similarity betw»eeql (é;.‘; and the integrand of 27 - -. In fact

L _ %@
c, ,D;’f % = "',af %, (","+¢+/‘43) - mf g}'ﬁ)

t.féé' ~ equals_ dt, the time for-the guiding-‘ce'nter to =y
tpa._vefé'e _ds, S0 that the last integral in (/2Y) _.:'Ls. the net "
; .~‘char';g.e in v I 8’1 ° %}3 over a-perlod of th,ellongitudi_nal ' |
. oseillation. This change 1s zero, As a special case if onQ'
takes the period from bhe mirror reflection to the next

.;jreflecti,on»__at the same end of -_thé lirie’ of fdfce',' vanishes

| ) ; -ene MT
- both times cand therefore, the integral vanishes, Equation (Iez}__v :

A

;..'::‘can be vmitten as
T(ol> 20—("‘!:‘9; /f/"')

. 9@
where <°L> is the average rate of change of ol over a ‘
‘_‘;._’lonpitudinal oscilh ‘tion, ‘che rate of change of o being caused"-;_
by the time- dependent ﬁ.elds and the guiding, cenber drift.
_ﬁgﬂmna period of the longitudinal osaillation is T Similarly



;quﬁﬁinﬁS (2&8):- 30 may bé'régarded as é‘ﬁﬁifdﬂset.of
"_'equations of motion they govern . the average motion. from one
iv"line of force to anotheriw |
Equation (9M) for 4T

&-

when the guiding center is 8k
;,.-}some point . ( oL, ¢ 9 "8) can, "by virtuscof thes;e',equatiop.é'

‘:oif m_otion, '_‘be written as |

J .

L

”whera v“ ' ié the parallql L‘velo'city the" guidin_g ,cen’c‘er'has'u”’

a‘b st, . There is no reason i.n general that' dT should _.:

“vanish, However,

s ow'“ ds ds
; «§'u" f{,u“’u ir(s) ./f(.s

. Ilv :
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The d°11b1.° integral vanishes because of the »aiz,itisymmetrY, of

-‘.the'\i_ntegran_d;ih 's and ‘81, Equation (I33)v» meahs that

althouph the instantaneous rate of change of J° is not zero, ;',

the change averaged over & complete oscillation is zero,(?‘a)

The above proof oi‘ the inVariance of . J- has been -

f'-';f‘_-f;.?'»carried out non-relativisticallye ) The relativistic modifications

vl

K‘v:.-[pa ? ?’qu cu‘] + e("‘é’%- g)

LA RE M BT v(ww-s» (WW
ax o 3/,, 3t

7?4,,&1‘ - &_93 4——2(’%‘44’)

@' : )’-z ot

?:':énd the relatﬁivis’cic guiding.center ‘equations (¥9) - sn.
}'-Wi’ch these, a. prooi‘ similar *co theipreceding one can be carried..‘f
-':lout or the proof i reference (a.o) can be used. In either |
?V_case exactly the same equations of motion (/28) - (/3{) result.,

| A convenient space in which o illustrate the gulding o
. center_motion.;is a Cartesian (ot ,8, 8) space. as shown in
Flg ©a ). 'In'{:'this.‘ space 8 line of force appearsﬁ 8. straight :
iline '.parallelfto 8. .At' any 1nstant..'of timé ‘the guiding
'-A-'-;l.icenter is drifting i the ¢ N piané with velocity cOm'ponvents -

'4_ and é '. as given in (//3) a.nd (//%l) ‘and illustra‘ced in

(81;‘ ), : s the guiding (seni:ez° maves along ss tb.e direction. .




. Meror .Péo&? s | . . " . o A}*@mtam.. dmﬁ . ,; \ v"
B I SR B hid offwﬂ’w.; eestor |

R
A Time of force and the drifs velopity in a Cartesien @, B, s, SPG';vC_e.." B

o - Figi 8

" and magnitude of the drift vector in Fig. (3b) change,

" since : and..‘[é are functions of. s. The guiding, center.

'_-‘therefore does .not. a)lways drift. towards the same adjacen’c

o line of force. during its rapid motion ‘along 8, In a special: |

B ca'se it could however always drift towards the same adjacezjit

< 1lime .o Consider for examale a sta‘cic field, so that . K =0,

';Ava the dréft is towards the same adjacent 1ine at all s, then |

'.'ol/ﬂ _must be constant and the cons‘cant consequently is <d.>/<£§>
A7 ,

. Under these circumstances = is instan‘ganeously zero, by .

Eqe (/3d), Such would, be the case in an gzimuthally symmetric |

e mirror machims where th.e d;rift is always in the azimuthal "

: "'.;dix-action@




| The equations ()2g) and (/29) for (J>' and <é> mayappear
f#%i;}tb bg canonical, with .J as the Hamiltonian.' But'they afe 595
j&fifhot, for the reason that T 1is also a function of (o‘,ﬁ, K t)

Ir 3= N, , K, t), is-solved as K = K( @, T ,t)p S
| then by 1mplicit differentiation %r,-(ax/ap )/( BK/éN" )s

S etces a.nd e

Uy e - (T

A
_’mo A
®la

)

0‘:> = é{f -
el at
L dT

4

i::f'These are canonicaL 1n forn, with the resul:,tu tha,t a Liouville

theorem exists in (do ) P a- ) spaceo See Tefereﬁce (OO)

£ .
R

The an’cisymmetxvy of the in’cegrand 1n Eq. (/33) Has an
| ,interes_’cing physical meaning. By equauion ()3;%,) the oontribution
of ds'.- to the rate of change of J when the guiding cen‘ber
v is atv s . can ba (but. does not have to be, as . will become \
aoparent below). considered to be the integrand | 38' {o..s s%..;‘}i;
_'.The contribution of ds' t‘o the . change in J‘ whilie the guiding 5
center.traverses ds is dt"’ds times this ra.te, or '

'Q.ﬁ.'.‘.i.i'{.e@g s"...} . See Fig 9.: A‘c e. later time, uhen the SO /67

]
2 Yy




. of ds. to the chanve in J while the guiding center traverses
ds' 1g 48! £1.§.,

S Meeeor poist  dst L e s

) : h(vlor Po,';'.?-”-”{.
F e

v Jedig center

Cancellation of the effects of ds and ds' on J.

, Fig. o

guiding center has actually arrived at ds° "the contribttion

: 25! & eee8', S.u.f, which is’ Just the riegetive o;-'i‘
* the cor}tr_n':'uti'on of ds' to the change in J when the guldirg
center traverses ds. This cancellation 1s an interpretation |
{‘.{":oi‘ the':antisyz_ametry‘cf the integrar_ld in Eq. (/33) and holds .

for all‘.'vpairs‘ cf arc elements. ds and dst. Such a cancellation
'{f'vis somewha’c remarkabley especially if.' one recalls that the |
b guidino center does not even drift towards the same adjacen‘t
l‘f.,f'line of Torce et ,S and s', The remarkability ‘disgps ars .
to some extent if one realizes that Eq. (13 Q.) can also '

r.:O)

(ﬁ’) f‘”""[aw(/”) @u.e ..‘ 9@ (/‘43) p(:)]

) v_ be written as (for simplicity let E =

ﬁ"w

where the primee on Ba oL and @ meaxx evaluated at  sf. It e

.‘c@n be wri‘bten this way Dbecause the difference between @ (s,),;",i~-:%.' '

‘and (MB') is s “’{'Vné: 37?) which in’segrates to zero L i




;:when the s'-integration is performed..‘Invtrﬁthylanything can beTEd&ed to | :
' & (') aml é(s ) in (132) which integrates to zero over 8's. The integrand.::
in (1_97) is no longer an’cisyme’cric in s end s ,. end the nice physica.l
interpretation is no longer ;present° The interpretation of 'bhe entisymmetry

is 'therefore not unique. It is nevertheless tru.e ’cha.‘c

._-/

¢, e Third or Flux Adlsbatic Inverient @

- As a particle oscillates between mi_rror points it drifts. aqross lines o
‘of .force on which J is constant. These lines form a surfa.ce in spa.ce. It )
may ha.ppen that these surfaces are closed. Such 1s the case in la'bora.tory type .
l' »mirror machines a.nd probably in the gemna.gnetic field. A "longi"c.ud.inal invariant;‘ﬂ;‘w

'7t-"’surface" ie mus-tra.tea. in Fig. lOfor the earth's f:!.eld.

N 9ebjrap'{e.p

: oz Longrtudiial tivamest Sorfoce
, Earth
“')} ‘.A 'l-..‘.

s geojrppic

A longitudinal invariant sur:t’ace in the geamagnetic
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In the Ca.rtesian o, B, s space of Fig. 8a. longitudinal inve.ria.nt

t;i.-f..surfaces a:re curv'ed in one direction only, the elemen‘cs of the surfaces being

‘ C straight lines para.‘l.lel to 8, I the invariant surfaces are closed,‘ they .
::,.-;,_,are repree.en‘bed 'by cylinders in . a, B, s ' space as shown :Ln Fig. lla. Tb.e '
.\-_:"elements of a cylinder are not a.ll of equal length because the dista.nce beftween 4
;ireflection points is not a constan’c of ‘ohe guiding center mo‘oiono The i.nterseetien
.jtof a cyl:!.nder with 'bhe a, g plane appears 8s & closed. curve. in Fig. 11b,s , o |
. - The intersections of the cylinders with the a, B plane form a three O
" paremeter v,fa.mily of curves. The longitudinel invarient J 1is a function
| J((x,,B,K,M,t), es can be seen from the defining integral in (96). ‘The M
- dependence has been suppressed heretofore, but will now be exhibited expliciﬂya
: ‘l‘he equation J .= J'(oz,r:&,K,M,t) cen be’ solved. as o = a(B,J,M K t), whidn a.‘«;

' eny t:‘une defines a famﬂ;y of clves: with J, M, and K a8 the pa.rameters.

This evd 15, no+ of
Pavallel €o the :
ol - F P!aou

N : Thes ev"v//,s ln‘_ the
/ 4,6 Plon . .

A .
. MNotes to 6{raﬂ$m.w
F.‘ Dont ?r»f % e{n,..,,,v

A 1ongitudinal invaria.n‘c surface in oz, B, 8 space
o Fig, 11

(2)
Suppose that at a given instant the timemdependence of Jr.he fields were
_ turned off; K as well as J and M : : would be constent and the gulding =

: :_center would precess about the corresponding (7, M, K) surfacee The third
" edisbatic invariant @ is the flux of B through this surface. That &

45 & constant 1s a trivial statement if the fields are static, for the guiding
L 'center repeatedly precesses around the same surface and the surfa,ce does not

:-' change with time. An analogous trivial statement would'bé that the magnetic = '\ .
" moment 1a c'onstant in a uniform static. magnetic field., If, on the contrary, the B ';?;71
“flelds are time dependent, the time dependence,fbeing slow compared to tb.e "_‘f’ﬂ S .
__';preeeseion tme once around 'the euri’ace, ‘thev S
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. third invariant apOIies and yields non-trivial informationw :

Since K is no longer constant, the guiding cen‘cer gradually
moves. from one J M, K surface to another as 1t rapidly
"_';".'f:precesses, and 1is at all times onfsurface | with the same

Js M, and é ‘Thus althouph one oonstant of the motion

K has been 1ost9 another one, §, replaces 1t. | |

L - The proof of the 1nvariance of . é- is fortunately much .
_simoler than that for. M or J, The flux through the inVariant |

surface 1s.
2 (M)ff,f) = §EAE = favp-dE = Gole, a0 AE

where the contour is fany closed curve lying on the surface
(in real space) and geing“. once around it. ‘How“ever ggoadé i |
is, the area inside the closed curve in Fti.go//;é - on which

the gwiding center is locateda

-

a/f(}“’) "QJ(KH : |
2= T 2@/(,{)*.
w7 +7;“

: [ The J and M dependence of é will not be carried explicitly

since they. are constants; The average <K>, has ‘been used .
""in place of K because We are. not interested in fluctuations e

-of § over a longitudinal oscillatioglo' Now R

Y SR oK.



ey

l an—
Qe .
b=t , !

o i |
T afr/a@c'* f@? |
the last equality being via Eq.. (i3é) But §Z——> equals prdt,
which 43 the time TP. for the fruiding center to pr ecess once 1
e around the surfaceo Therefore ;gﬂ < Tp’. and thie the ar;alog;.jf;’
.';"of Eq. (l3/ )e The I st term in (139). is R o

B ot :-,'1 e - J otpon
"'Replacing, vff by (p‘) again and ,_/fby <K) from Eq. (/36), we

2 .- .'<£Z_€'f_?_ -fjéor’)aa-s_—f er’ (0f>>

where &KY 1is ‘the average of (K) over.a precession period. .
Equation (457 . is the analog of: Eq,.. (/3@)0 | The instantaneous

' ‘rate of change of § is therefore

s ).




, As with Z:— » We again find that d@- #* 0 but ‘that (‘/I>
N “the average rate of change’ over a precession oeriod, does]gf

vanish} again by the antisymmetry of ‘che dantegrand 1n

(42

aﬁt —‘ )(/r[<7 —-</v’77

- §.5m4 . : oo
f~-_whe1’*e da—is the element of arc length and vﬂ@ ié ,the:_.l'.,
velocity at ' about the closed curve in Fig //

O .

The ‘new and final set oi‘ equations of mo'cion is

<<K>> =2 &M, M, K,t)

T,
._l;: e QQ_\I)C P

—

. T ‘57(/
The averagino processes used to establish the. three

adiabatic invariants and sets of equatione of motion are

[P

sunnnarized in the i‘ollowing diagram. - 3
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-f,65 - o L ' 1tfj .fgii

’;”ff' {EQuation of motion} - Average over [ Guiding center equation of

of a particle (1) the gyration 7 motion (/7) and (200,_and.the

. “‘f'” P e “adiabatic_invarignt*‘m | co T
: | > Average over
? - ‘the longitudinal

.
oscillation gQ; i

Equations of motion ) Average over the = |Average gulding
) ° ; s 4

:rUf&)}aﬁd'(/47); and tﬁ; \brepessional mptidn _center gquaﬁidns

 thg'a_d_iabétic."invarignt 3. | o | of motion (/36),

and the adiababic] Lavari:

R O

Dlwzrlarﬂ“£7’

The averaging Pprocess used to. obtain the three adiabatic invariants and
S : eqpatlons of motion.

Flg . :'112

/

_ ' A few fdcts about the family of longitudinal. invariant
ﬁvSurfaces snoula be made clear now., In the first place, at
f'ény instant of time thoy are not simply ﬁestad but intersect

in a very complex fashion; this 1s to be expected because

,there are three parameters, not.aqne. Fbr'examole, two particles .

" with the same K which are oscillating along the same line

~“of force, .but which have different ‘mirror points, have diffenent'_Mﬁfiiﬁ

f’xi;and consequently by Eq.,(?é ) different J. . There is no

" .reason for these two particles to traverse the .same’ line of

fjfzforce anywhere else. Fig 13 1llustrates how their two f)lz

1nvariant surface:; migm_ appear_in'the_‘ol- {9 planeo (Of course "j'j |




AT L Teommen ti of foves

Longitudinal inva.ris.nt surfaces are not sim‘ply nested a.nd nmay intersect..:; _
‘ Fig. /3. -

—r

‘ '”i they‘__y intersect elsewhere, there is nothing to prohlbit

. it in general ) ~An infinite ‘number of surfaces therefore
1ntersect along any line of force° if particles are injected
on one line of force with a distribution of mirror points,;
dthey spread 1nto a layer,of,finite thickness elsewhere. :

‘Secondly, in the aLg' plene a snrfece denoted by fixed

?fi; values of J, M, K will move in time as indicated schematically

din Fig. /% A curVes I and II. It is clear that the ‘surface '

"2‘5Q.must“move,,beqanse & equals‘aL(f9,'J, M, K, t) and therefor

, o the value of oL'ifor a ‘given e ‘}eries with t at fixed J, M, Ko B

" The fact that a constant . J, M, K. surface moves, witn time A

!féf{i" does not mean that the lines of force move in ods oy 8 Spaceg‘fi

S T e Daver e Wi e et

. In fact, they can be considered fixed, even though they move ‘
.f- in real.space. The velocity of magnetic line of. force 1s-

not a physically observable quantity, and therefore mist be

'ﬁtdefined " The nsualldefinition 1s the "flux preserving one:.

‘let an. arbitrary ‘closed loop be drawn in space and let the -

‘ﬁ°l, velocity u of each are element of the loop. be suchnthatsthec..ﬂ-f:““‘ s

"1‘,of the line of force at each point is defined as i It 1525;?
5 "'v"easy %o show that ¥ must,satisfy 23 (ﬁ +2 x'ﬁ)- 0. The'

(34);,, L

. ﬁldX10£ “Bas threugh the loop 1is constant in timee ,The‘VelocltX.i;~?d‘ﬂ'f
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: l.;'velocity -»-——3& 1is- such a8 veloci’cy, where gé‘m‘ 3: g§
TR | e
= 5*-‘,_-_as defined previously. g C T e

T e S
"By Ba. (409), 'E equals - V(?+¢)+.., so

to (=}

L, wx® . -
Ef ——1_ xBz - V(¥+g)
. £B . :
. and’ indeedAthe curl vanishes, It has thus been established
'.";’chat ————1 = can be'taicen as ﬁhe velocity of a line of for‘ce.",a

It will now be" proven thaﬁ{if an observer moves at this velocity9

"!f" 43(‘

'”‘-_the total rate of change of o'~ (and(i) he observes is zero.
In other words the. ( ¢,f ) ‘1abel on a line of force is

~ ..;'.not changed by the motion of the line and all Iines are fixed
in o‘,th, s space consequently. The ra’ce of change ofot.under

: f:',th_e .tilme..dependfenee;end the velocity of the,line of force i.s

e ARG Dl = Ok . 28 04.._ :
e T e ;'+Q* ? :‘ v,e) xj o

Vﬁ»’.e,°?o‘

;.




- 68 -

becaﬁs_e B :61 «B = 31 e | P& x Ve ). It 1is therefore ;

clear_;thet although lines of force do not move in (eL,@ ’ s)

- ‘,';j-{'lsp'ace, the locus of 1ines which form an 1nvar'iant suri‘ace with

" constant J M, K does., In F‘ig.lh curves I and II are

the projections on the £, plane of two suri‘aces having the =

0 and tl ..

‘Same J M,_and K at different times t
| A third point is:., the actual surface in A58 8 space

' on 'whieh-the guiding cent'er.precesses at time ~tl is neither.
curve ~'I or II, _buf.s'ome third curve represented schemeticallyi;‘zr'
by III. This :!.é necéSsarily so because the particle’s Kv has

changed. and 18 no 1onger K,+ _ Curve IITI has the same enclosed

“";f-area as curve I because the flux 1nvariant é— is this area..

It is true that if the ‘guiding center were on curve 1' at time

'tl, it would have the 'same é_ as at tO but its J - would _
have to be different., o - - ' '

. L o S“’vfﬁw 0N ke gua‘ﬂllu} center P’f“ﬂ': d?l '
. .“ S It he .
C ' / ) '781/4 /f . %/GQM Gras o2 ccvrye Z, S

"&'_“z_-' Se'ﬁe. with Ty, My, My G tim t.,»f_:;“;,, :

T Sgr—fogg'.cgﬂh ‘7;‘/%‘”‘,'; & Eine Lo -
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’ D. Adiab_a‘s"ic Invariants to Higher Order

It is "appa.r‘ent from the foregoing extensive ana.lysis that to proceed to,
'_ v higher orders in the three adiabatic invariant series by use of these
) direct’ methods would be la‘borious. Indeed, even 'bo guess wha.t eM'

S i €eJ', and eé are would ta.x one's imap'ina.tion Prooﬂs of the ty'pe presentedf!

for M, J, and f are va.luable in producing a phySica.l picture of what is -
:A‘.ha;ppening, but must be ‘abandoned in favor of a systematic, canonical method
: like that Qf'Ga.rdner(,g.) ‘or Kruskad(ﬂ) to go t'o th'e next' higher 'order.' | 4 '
Probably nothing i.s loss in the way of physical understanding either, since v-'-.".f"
k effects which are second order in the gyration radius are difficul‘c to e
visualize enywey. '

In Gardner s procedure, to ob’cain ea.ch new term in one of the
adiabatic invariant series a ca.nonical transformation must be made from the
_'variables used- in the previous order. A prescription is available for obtaining
the' generating function of each successive ,‘ transformation. At any order,- all -
the preceding ca.nonical transformations must be inverted to express the -

" adisbatic invariant.series thus far in terms of the original verisbles _
'l‘-:_v.(velocity and position. of the particle). In 'practive this may be very laborious)
| :';:. but at least a deduc’cive nethed is avai_‘Lable a.nd no guessmg of the higher “

. order terms is required. To the author' s knowledge, . eM' is the only higher

" term in any of the three series that has 'been worked out.; Tt i's'-"'in-;referen&e (¢).

dV in e. slightly different (a.nd more usei‘ul, i‘b vill turn out) .a.orm than ‘

one might expect The series correct through @(c) is given as (for the

< case where ﬁ )

i
P
:v':
T

ot

i
e

i\
-
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wheré 7/1 is the instantaneous particle velocity perpendlcular to e (?),

.mot € (%}).. Also note that in the first term B is evaluated st P and ..

-onot RO. In the. 0’(6) term,. it does not matter whether ‘the field and ?1 -

are at '? or ? , nor does :Lt matter whether v_L is perpendicular to
@l(?) or: (R ), since the difference is 0’(62) | The form (/$3) of the
series is usefu; for comparison with a numerical integration of the eq_uationz_sg’:;"’»: -17’;
of motion because'A the result of such a computation would most likely 'be . the G
%,t‘“particle velecity and position as functions of time. ‘The field_s at the ’ )
particle ;position u;ould thefefore a..lready4 be present in the eode, wﬁeree.é }

?‘_?I; ._the fields at .ﬁ' would requlre -an aux1118.ry computation. .

® The firs’c term of Eq. (/6“3) can be converted to velocities perpendicular

to (R ) and to fn.elds at the guldlng center .3 as fol_’l.ows°

0

V‘L(?)= v.-'é() (?) ov— -'-e (r)v“ (r) .
| - [(RO)+ Ve l(f{"’o)][e(R)+'3’ 8, (R)] =8

T .L (R ) TV G o.Vé‘-l',--e VP v)e + @‘(e‘? y _(/5'7)' ‘*
v m) ‘Qsz(R)v. Rt I 2 N i

4.+ " vhere the' T oor 'I?o - following the'l or -N subseript signifies the direction
oL o w hich +he velocity component is perpendlcular or pa.rauel The vector '5’

€. x
e -fé<_'§R?’-°-'e

, l

;-_ R
Vi~

te.c )= +a'(€2) In addition -(——)-— must ‘oe transformed.
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- "With the substitutions (/8%5) end (/54) and scme vector algebra, Eq. (/53)

A It may be observed that if v is zerp, at all times, then: v’ (R )/B(R )

]
wﬁz— is consta.nt to. one higher order in e€..

T he pavtele veloerty may be Climingte of
Frov (43D amd tha Z‘ ‘of the Seson (6/)
Useod steaol o
There is a. third form in which the series may e wril en.A

h)

Differen‘ciation

L0
Eq (73) ? was obta._ined correc_t. through zero ,order in €.  DNow, 2however,

Ly
B

“ of the asymptotic. series G1) for 7. gives V. and ‘therefore ¥,.. . In

';' L is needed correct .~throngh -0’(e), because the first term.
g ) - 0

_.'( will then yield more ‘0'-‘(6) terms., It should not be overlooked in

) differentiating the series.for T i.hat 2“"20‘ Ei? terms x@@m

'f_contribute Of(e) tems to '17 as a result of differentiating.the . exponential.

"When ¥V is substituted into (/5 2), the result ;is (aoez—th.e—

0|LC - ,?avﬁ{

Tuse

= w(wwu) ckm ek )( + M) + oCe)
- where R is ’che seconéL coefficient in ﬁl Rlo iL +iee .. This is certain..y

B the least useful form for compa.rison with numer:.ca.l computation., Because

v contains ' eine it may seem surprising that there are no exponentials of

l" The reason is tha.t the adiaba‘cic invariant series ;

this ty_pe left m “(59).

‘.' a') .L)’]uﬁ"’""u..



' is en integra.l over 6 and therefore © cannot appea.r. This ‘Wlll become

."f‘: appa.rent in the discusion . in  Retion E of adlabatlc 1nvariants of systems of

.:'.choupled differentie.l equatlons. , . 5
: ‘ mnv
QB

constant tosa.ll orders . The meam.ng of this statement is that if a particle

. 18

 The statement is often made that the magnetlc moment

o goes from one reglox_ in space and time where E and B are constant to i
: another such reglon via. tlme and space dependent flelds, that the cha.nge g
C in v n /B between the initlal and flnal states vanishes faster than any

N power of e, even though the change at mtermediate t:unes may not. ’ Thns

" conclusion follows from the fact that 0’(6) and higher terms in the magnetic
7+ moment series vanish in uniform fields. "I'hat the & (€)  term vanishes when e
B is constant“ can be seen in. v53) or'(/.5'7) Higher'terms always contain .7 i

',':v,efleld gradzents and vanish in uniform fields. If the magnetic moment ser ies

g were convergent instead of asymptotic, the change in v .L./B would ‘be rigorously

% zero, but because of the asymptotlc property, a.ll we know is that the cha,nge R

L goes to zero faster than any power of €. It is frequently suggested that

_the change in v_f/B' is proportional to exp(-constant/ e),-which'does k R
" indeed vanish faster ‘than any power.of e, but the change certainly could ve

’ some other ﬁmctlon of € that has no power serles e}tpansion in e.

. "E.. The Adiabatic Invariants of Singly Perlodic Systems

Sh B _A more general theory of asymptotic solutions and adiabatic invariants

' has 'been given by Kruska.lgq) for cou.pled differentiel equations of a certain

type. : Let




rranlie £ (xl, X Xy e)

- wn P D G S TP W D G S G - OGP s
P .

- el fyy (xlxN, €)
~be a set of coupled first order differential equatlons in which the independ.ent
v&riable 8- does not appear expl:.c:.tJ.y on the rlghthand side; € is a. 7' T

pa.rametera The set of equations ma.y bet..written.vectorically, as
& C . \

-

=-iv;ﬁ(x‘, € ),

18

where ;E is the Vect'or” (xl, X --v-xN). Distinguish between the 1ndependent
variable s ‘used here and distance a.long the line of force, we will use the

notation of réference (/9) insofar as possible. ILet the system (/ 60) have

"-the property that solutlons of % = £(X, 0) are simple closed curves in . .

. x space, as illustrated. in Fig A> for two dimensions. A1l the camponents

of' x are periodic wi’c.h the same fundamental frequency LIt is also a;s_s.iuned.‘f'f

tha‘t ? possesses ‘

LIS ‘
. N '}63-‘ .
s The unperturbed' _solﬁtior"is.a.’"clos‘ed‘-cﬁrve in ‘:% space; | o

.8 power series expansion in e. Under these conditions there exists 8

v«.

‘ "cra,ns.’r_‘orma.t‘ion x;

x (z, e, e), 'where x is periodic in G, such that the




i

transformed equations (#p ) assume the form

B ; ez (T '

Las T B (z, €)

3 | T i

: ds -j'(l)(Z, €) 'v' o . B - ,

i The vector Z has only' N-1 cemponen'ts. It 1s not immedlately obvious that
, ' there even exlsts such a transformatlon, whlch makes h and W independent
‘. of 6. The Pirst part of ref_ere_nce ‘(/q) 'is devoted Vto proving this and to -

developing the step by s*.t;ep ‘recursion method xfhich gives the transformation ‘
; (Z, e, —e) and the '-f\mci:ions, h end o .as series in . According_ to,:
Kruskal, it is possible to prove that if the :solution. z(s, e), e(s, e) of
*‘-,;'(lél) is substitut'ed into X.= x (z, e,. €), the result is an asymptotic (:Ln e)
» approxnmation to the exact solution of (/,5'?)

The equation of motion of a charged particle may be written in .

the form (/5'7) If ¥ were the six-component vector (v, r), the equat(ion‘ of

L

' motion would not be of the req_un.red form because the independent variable t o

E would appea.r or the right ha.nd smdes when the flelds are time. depend.ent.‘ ‘But".':."

F ii’ time is treated. as a seventh dependen't variable via. the substitution =

t 'f"'v‘t = es (where € = m/e » seven equations o? motion of 'the req,uirecl forn result._i‘;'::;__‘.1:,,’% ’
: L E i @asx 3@ e

A ds 0 S AT BT R B R




n
o T

B - . e
- Because dr/ds and. dt/ds venish, T isAconstant = ;O’ and -t 1is a
. N purs . - .

.%‘é_ =‘E(r, t)+-:-:r- x B(r, t) Because~ﬁ.and

=.‘j-;‘?f--B are constants when their arguments are constant, the zero order mo’cion

_constant t_O’ 50

E ':".l'is that of & %article in a uniform field. Tn v epace, i‘c is a circle with
o (ry » 1) Bz, 35) @ /
B 0 0’ 0 . .
. center a_t, 5 ). pronded B
4 oo R - . : ST

as usual, and’ therefore the 'motion in.the complete seven-d.imensional épa.ce B

is. assumed of 61e)

‘is periodic when ¢ = 0. Consequently the theory applies and would give the .
& ;:.:asymptotic series for T in Eq. {6 /) and its derivatlve for v. ‘ )

| Thus far the theory has produced. no adiabatlg inve.riants, only
- asymptotic ‘,solutions. If, however, the. equations (/5‘9) are of canonica.l )
-.-,iform, there ex1sts one or more adiabatic invariants in ad.d.ition to asymptotic-
‘?‘”'solutionsg,_ Let jh_he vector X, be . (p, q) a.nd .8 be "c,. 'l‘he ca.nonicai_

_equations are

» and these are of i;he required form, ‘ :
._ W If the Hamiltonia.n is time-d.ependent, time and energy can be
‘_ used as ﬁcon,juga’ce va.riables and the number of degre_es_ of freedosm increa.sed. .

:_by.'vone.. , Given the neceSSary conditions .Dn the perlodicity of the zero order -

(Zy 9 e)

f\solu’cions, there exist the ’cra.nsfo‘mations p (z, e,



i

w (E’,e)

The solutions ; =7z '(t,‘ €) ‘and e =0 (t, e) of (/44") can be suhstit\.xt"ed.‘-_.

o slve P -PL (’C: €).- 9(1": e), ] as a series e and' 11kewise for

 : E These a.re not exact solutions of the canonical equa.tions, only asymptotic .

- solutions. S S

The adia.batic invaria.nt is

I(z, e> J . (z, o e) sﬂ (z’ '9 e) a0 -f Peals i
- ' : z = constant .

where to be speci.fic the a.ngle varlable e is assumed to have the period

5::?",0 to 1. - ‘I‘he invariant T, will in fs.ct be: obtained as & series in e,

vjlsince p and. q are themselves series in e.‘ The proof of the adia.'batic

:x.nvariance of - I cons:.sts of showing tha.t % :Ls zero, or ths.t

(1, + ell+...‘€ I)—O+ 0‘(“*1)

. dI(t, e) ; (& 9 a1 @, 'e)ﬁ‘.‘-' S
TR .f' i -dt oz, . e

Cio o1 az o dp bq %

f ® T ( az : +1 ’x S ooz, )’

o 3 E A A
. where. sums are to be taken over repeated indices. 'I‘he factor 531 is not. o

Ty

8 funetion of 6 and therefore has been put under the integre.l.~ The second "

term in the integra.nd nay be integrated 'by parts tcr give ’af ';:' e




Gy w2 Xy
dt sz 39 - Bz.j ?“ ’
:where the extra term f dQ 86 (Pkaz ) venished because D and q

. are 'peri‘odic in_v j1'9‘. Let us now show that the integrand in (/(8) is simply

;’3H(p(z, 9, G): (Z: e, €) e) = 5%1; 3% ng{, ':a..--'lé = d.tk ) ]g - atk-ﬁ-ra}é
558 e ] R SR S

= ( qu 'dz’j + raqk" 51_9_ .apk -' o . a
"azj at 96 dt / o8

By - o opy az.' opy - ae aqk |
AR - ( azj o T b ) R

s e

the integral vanlshes due to the periodic1ty of D and q in 0. It should be

. emphasmzed. that the adla'batic invariant is the integral Of D" dq around

-

lr‘a closed. curve: on which "2° is constan‘c in p, q phase space,-. ; and not a.'bout

e

the closed curve representing the zZero order (i.e. € O) periodic motion. »' AN

The difference between the two curves is’ shown schematically in Flg 15 for

Ca sys‘cem with one degree of freed.om.’ To lowes’c order in € it does turn

i out however ‘that the z = consta,nﬁ curve is the same a8 'bhe unperturbed

' .curve." I’c is in ca:l.culating higher order terms in the series for I tha.t

‘the difference appears‘.v:;v‘_i':_"“{



L The coneta.nt' Z curvesare Imown to be closed due to the periodicity of

x =% (z, 8, e) in ©.
- fundamental frequency in ~t:he unperturbed state, the adisbatic inva.riant (/ég)

i a.lone. e Of course for a system With one degree of freedom there is no.

distinction. The integral for I cen be written

"'where the double integral is ever ‘the area of fhe Z = constant curve," and’ .

.this is one of the 'Poincare( invaria.nts.‘ It is not surprising that I

TR given system ShOUJ-d be. independent of the canonical varisbles used in
| (/44) and (/65) ), ‘and J.ndeed-the' Poincare ‘:-integr'a.ls .a;c'e invariant mder“

o canonical 'bra.nsformations, whereas each term of Jl de. 3 a-df% - is not.

number of a,diahatic im;ariants, “but is the number of terms i_n the adiaba.tic
L invariant integra.l. A system with say two degrees of freedozm might mve

Jus't tne one adiabatic inva.rian’c. o

. Z= Constene! O 15 para..dep yzmy_
ro,"f'@' “‘ “t["l Carve, ‘

/:-1’- €~o S s PG-’W’ /wv je:/ﬁm
Oh thes carre AR

The unperturbed path in pb.ase space differs from 'che cons‘bant E] ‘eurve. '
‘ . Fig. 16

~In the presen‘b situation, where the coordinates all have the same

.:::',; ~has turned out to be the sum of action var:iables rather than any orie of ’chem T

pI=ffd§‘da, | ) . . .

. should be a Poincare’ invariant; the va.lue of the adiabatic :.nvaria.nt for ‘a R

-3

0

It is now clea.r that the number ‘of degrees of freedom is not. necessarily the o

. EES s



| On the other hand, there may be ade_ tional ad;.abatlc a.nvo.rlants. It.'is
- poésible to prove that the Poi.;son bracke‘t [@, I] equals unity. The proof is a
- 1little leng‘chy to be mcluded here, but it 1s outl:med 1n reference (19) 1n |

< 'sulficient details ‘I‘he fact that [9, I] =1 means that 6 -and I can be used as new

,,,,,

(P "'PN 1, 1;Q "’QN J. @) Let H' ('Q) 3 I, e) be the transformed Hs.miltonlan. | A‘s‘
i ,.nd{ cated the new Hzmiltonisn is not a **ant;on of G because I = ‘ -BH / De |
e : .

and I ris zero. ”hus H m.ll have one less degree of freedom 'chan H, and I N o

wwll be merely 8 purameter‘ If now the new canon;cal equations

»

] Q,i-—- ;’P;: (Plu * .PN l, o . -Q,\T l, )
T T SR - () -_

have SOl\.l‘tl(.)nS 4which afe pemodn..c in B, § space when‘ € or some other- gmallrwess '
‘ parameter is zero, the ent;.re proceos from egn. (lGL) on can be repeated and
" 'a seco d adiabatic invaman‘c ﬁP . a3 obtained. For the case gf {the’ charged &
v:' B Pﬁr'tiflle :j:hi‘sz:’woﬁl@ be "'J:,he‘.':ldﬁgit'udin'e;l‘ ;Iiﬁva"ria’,nﬁ"-’fgSp-ﬁ'a's‘sﬁ: SIF it -so~*ha.p'pens’
that ”-'fthel-'nc—:'im“ﬂdﬁoﬁi‘c&lﬁequlé?t’ioris";‘éagéiﬂi"‘hax':fe ﬁéribd'ic“édluﬂons, there will be a
| tblrd adiaba_tié im_i)ariaﬁt,‘v the flux invariant ¢  in the case ol;’ the charged
: par‘i:icléi . Sincethe number ‘of degrees of freedqm is reduced by one for each ; : o
o adiaba‘qié. invarié.ﬁ‘;, 1t .:i.s now clear.,why for singly pez;iOdic systems the o
' 'hwnber 6f'aaiabatié invarbivan*ts is at ‘mo<"c. equal to the number of degrees of . . : .y
-':,freeao*a, and. will be less .Lf a’c any s‘te;p the nev canomcal equauons correspondlng -
" to (172) fall o have periodic solu‘c,:z.ons in 'the unper’curbed state.  In connectlonk
,':'Wlth the charged par’clcle, this would be. found the case if the motlon along

_ the line of force were not per:_odlu
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By use of the four d.imens:Lonal relativistic H.em:.ltonia.n

'J?;',H(";) = - 12 (2" -2 9 )(p - -2- o) the method of ‘this sec‘tion

' 0 2me LK
P . would Turnish an alternate (to Ref // ) way to study the adia'batic motion 2

T of relativistic particles. To the author's knowledge this has not been done.

at
! rigorous (not a,diabatic) invarla.nt of the mOuion provided the series for p

The preceding proof' that dl is zZero would establish I ‘as a -

and q were rigorous solutions of the equations of motion instea.d of -
non-convergent asympootic solutions. It is the asymptotic property of the
. series f'or p and q ’chat makes I ‘an adiabatic inva.ria.nt. The theorem
g establishing a'rigorous inva.riant would be Given (l) two functions
: p(z, ) ~and. q(z, ), - which are periodic in 6 (2) that "6 = © (t)
| a and 'z =-j z (t) ‘are such functions of ‘bime that B(z (t), ) (t)) and

v f{f,- q_(z (t), ° (t)) are solutions of equations of motion

0 - - ; ) ’ - ’
3 : —J%L—Q'L q_:L 6—— d_erived. from a Haz:sil‘c.onia.n. Then

s (z (1—,) 9) Bq (z (t)J e)- d@ ‘is independent of +t. SuchA
i .‘,,ﬁ_ period Lo L '

a theorem is not of muchuse unless one knows how to find functions p,
z, 5] w:.’ch the: required properties.- The-theory discussed. in the present ,' o

‘7 - section supplies the f‘unc‘cions p(z, e), q(z, 6) and. z e.nd 9 a8 asymptotic:";_




_VL' APPLICATIONS oF ADIABATIC THEORY

'A The Current Density in a Plasma )
(;zé

. In electricxty and magnetism texts it is usually proved that the
Zeqnivalent current densmty due to magnetizatlon of a material is given by
éV:c?n, where ?Q is the magnetic moment per unit. volume. One expects that

unaer adiabatic conditlons the extension to a colllslonless plasma would

bz.to add to .dV x‘%n'the current of the guiding center motion. This is.

e

ﬁ’indeed correct, but is not 50 easy o prove rigorously for a general B
field geometryo The author is aware of no publlshed proof. and therefore will oo

ioutllne one here, with many of the details omitted.. The complete proof ist;'ﬁQ

'f' » ;

waefnish;tojprove'that the current density-at'-;e'is:ffp_“

?;J (r, t) = Ne (R ) + cV x QQL

ny
.@c.

nnmber of guiding centers per unlt volume at ¥ and t.
v average guldng center veloclty of partlcles with guiding centers at r.s
total magnetic moment per unmt yolume of particles with guiding centers b

“ - at r. | \ . |
‘ifThere will bean eqnatlon of this type for each charged component, ions and
_welectronS'for example, There ex1sts a reasonably simple demonstration of

é

‘?the perpendicular component, 4- Ne( §' ) + c(V'x ?@L) (; The proof

J.L

'«Estarts with the second moment(a7) of the collisionless Boltzmann (Vlesov)

;:y eqnation. The.second moment;is



%.o‘here;"( v) is,vthe”&ver.aﬁé Pei.'ticle'velocit.y, n is the particle dehsi‘t‘};'ﬁaﬁd:’:;
? = nm ((-V,"' (“\; ))(:\; - (-\;) ) ) The current density perpendicular to ﬁ«
is '

crossfmg it with B, but j ca.nno‘c. The analysis has been given in o

de...a.il in reference (5' )e

©7 to work from the asymptotic. series (/1) “and the collxsmonless Boltznann

Q-\is obtained this way and not merely its para.llel component. Let f(r, v, t)

be ‘bhe particle d.istribution function sa‘clsfying the collisionless Bol‘,:zma.nn '

:: The procedure is first "to differentiate the series ({/ ) , for r with respect . . .

to time and obtain v correct through terms of 0‘(€) Next the "gﬁiding o

‘center miebleg'(ag) ﬁo and V are introduced, ‘where the components of : .
V ‘along the direc‘cions of e ’é and 2, are V = 5. V = p W cos 6,.

nmg-é_%l— = -V % + ne %2- x B+ ne E,

'\\ “S»V,.
v A

-

_JA = ne( v ) Consequently ‘j_l. can be obtained from (/74) by

U

In order to derive the para.llel component of (/73 ) , it is - necessay

equation itself rather tha.n its second moment Equat:.on (/73) complete .

equation. 3— + ¥ \7’ f + = (i.t + Lx B) L I= 0. The current’ density is
3 (r, t) = ne (;) = efvf (x, v, t) v, - o Urs)

3 u‘

and V3 ="' - pw sin 6. V .L is the g;yration velocity in the. i‘rame of reference

moving at ‘the guiding center velocity RO - The: particle velocity v frcm tb.e

. ! asymp’cotic series can Jchen be expressed. in terms of Ro and V




.where all vectors and fields are evaluated at ft)ol.' It will be noticed that o .
“the §20 term, which was of order & in ';, gives an order € contribution’

2ifwdt

i:to v d.ue to differentiation of e with respect to time. Terms of

S/n@ i

ﬁ@'(e) are needed. in- ¥ :Lf fvfd3v is to be correct tbrough &(e), and ﬂ..; i ,,“‘,“My ?j
~°V‘x’hz is of order e - N s R
'I'he next s‘aep is to transform from the particle distribution function g

-,.to ‘che guiding center distribution function F defined by:

an s 27, v, v) Pr dv= KE, T, t) R

5 "
2 OdVv.u

3v is the nmber -of glliding Centers in d-sRO Of Lo

f,particles with pa.rallel velocity in dV a.nd gyration veloci‘cy in dV d.V3

'Thus - F(R v, 'b) d Ryd

'Division by d.3 r gives

f(r, v, t) d5v— F(Ro, V ) 40,( ) d?v;’{_.’ (1753)' ' 5_

B where is the Jacobian of RO with respect to r at consta.nt V._ Because
X8 - ~

i g 0’((—:2), the' Jacobia.n is
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. Zero order terms ‘in the expressmon for v, such as @ (ﬁ ) Vv V,, must de expanded

»
S

about, r ‘because we wish '3(¥) in terms of guiding center velocities at .. .~ :

r and. in terms of the magnetlc moment of pa.rticles with gu:.ding centers

at T, not RO' For the same reason. F(V R ) must be expanded about
; F(V; 7). In sddition F(V r) can be expanded as F (V, r) + €F (V, r) + ese
: :J',After these expansiOns have been made, equations (/74 ) (/7g)’ and (/7?) .

':'_: are substituted into f v 230, Even after terms of Of(e ) 'a.re dropped,
}‘j'-theié still rema};ﬁ meny terms in the infegrand.v‘ A large fraction of the.se o

" integrate to zero however by virtue of the following facts: (1)_ F, end Fy

are functions of .V2' and V5 only through the combination V22 + V32; this "

'is not obvious and must be demonstrated by use of the "Boltzmann" equation ' .. '’

.-which F satisﬁes, (2) . Rll is a function of YV, '22'+v2 Iz’o,t .

A.;F (5) R is a f\mction of V + V32, ﬁ t. The last two statements a.gain K
"f.;;l are not obvious but can be verified by examn.ning the equa’cions gll and. R o
- satis S : v _ S e B
i{20 £y. . o S

“ The expressmn for f vid vV now simplifies to

v2 Ly2 oo

,_f??':_(_}’, ;;,_‘t).dBV'_ fd5VR (), F(r, ¥, 'b) +fd3v 8 xV [2 2 FG:”, V,""'t_)]'h

20w

[ s s e 6

S8 @92y +.,%3€2 qou V)%l] FE T o), ",‘(/Qo)j

.
§

L wh.ere R (r) is the: velocity of guiding centers at r, not Ro 'I.'he 'uziit S

_vectors and. w are. at r too.. 'I’he long vector expression in the last

.

:.‘ integra.l of (/go) turns out ’co be V x?e 1 F; this is by no means o'bvicus. -._So,

|'lv
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.end therefore .

o

- 5 o

fv £ a3 deVR F(r, A t) f eV X ?;z + gr(ee) | (/83)

LTE = f ";?ds"'f NedRg) + x 7,

rand the theorem is proved.
. " . T . v \ :
fT‘hnC I\manmﬂﬁ'ﬁc Ee L3 =

"B._LOSs-Free Geomefries'

The ordinary laboratory mirror machine w1th a magnetic field like
'l;that of Fig. (2.) has a."loss cone v If at any pOint the velocity vector makes 5VVF
ltoo small an angle wmth the field line,_the particle will escape throwh the Zlv;;LL
ffvmirror (by Eq. ;l?) In the absence of diffusion in. velocity space due to .
;‘collisions with neutral or other chargedﬁparticles, there would be no way :
-L‘adiebatically for a particle to getL into, this loss cone il it did not start R

out in- it. But in practice such collisions do occur. The question therefore l;fﬁl

'7jlerises" Are there any static field configurations from which a particle cannot

S
o 1




L o ° : . ’ 9) =
<‘*vﬁg escape s0 long as it behaves adiabatically?’ (Non-adlabatlc behavior is anotherh;

;tE'P03sioility that must be considered). Although the adiabatic 1nvariants do nOtF?:tﬁﬁigji
f:c ~seem to tellhow to find such a conflguratlon, they do prov1de a way to test a -
v."l:prcposai{ne . The criterion is that all the lonvitudlnal invariant surfaces
;dgdi-passing through an arbitrary point in'the'contalnlng_volume must at no . other '.;

' place intercept a Physical cbstacle,, such as a vacuum chamber. wall or a current?i

X '71carrying wire.- Since the surfaces are not simply nested and different velocity?,
“fvector directions et the same p01nt in space correspond to- dlfferent surfaces,.'?"
‘ : considerable’ effort may be needed to calculate where.the_surfacesrlie.. One . -

'lossefree configuration is that of a circular current loop (Fig. 17 ). For tbsﬁ 'f.

;- matter the field of Fig. ;L is loss free if the external return flux is included”i;
f}:in the vacnum system. The guiding center of a particle remains. on .a line'of |

“ﬁ~ifv'force and repeatedly trensverses it.  The problenm is to supply the current to'fj

du_the coil and to support it mechanically without 1ntroducing wires and other ‘}glff :iff?i

f}y';scobstacles into the path of the llnes of force.
f\i' oL I ) ; )

£,




) e Ce
Another geometry which has been exten51vely studiedC3 ) for loss=cone: -

'-i',"'_:free px:operties is the "‘bumpy torus " It consists of several discr_ete. 'Circular'.v
windings arranged a.round a toron.dal vacuum chamber (Fig /8) much’ _as" if several
mirror machines were a.rranged end to end and then bent :mto a circle. It does
i.ndeed have regions where a particle will not be lost rega.rd_less of the direction )
' fof. its velocity. YectOI,'x and the coils can be supported in such a -way.that.the
supports do'not‘ interfere,with “the contaimment, region.. _However, losses,stili 4;
0ccur due to.a‘rather'no_vel__ type_diffusion,,which is a consequence of there
".‘vvbeing many invariant surfaces tnrough any one poin“b., If the velocity vector
of a particle 1s changed by sca*tering at a point, the particle changes
iinvariant surfaces and may cha.nge to one that lies nearer .an obstacle at some
‘;.u'other poin’c in the system._ When the pa.rticle reaches _this second poin'?:.,v i‘b may )
v _'.again scatter onto & third invarient. surface Whlch lies still further out, etc'
;Thus because of the presence of many invariant surfaces at any one point, the

'.'particle may stil_l work its. way out of the system, but more slowly than 'by

i_scattering in an: ordinary mirror machine. Lauer, é.’é;,;;;%estimate’ that Aat .

Bumpy torus




.. least a factor of 9 increase in contaimment time over the ordinary mirror

ma.chine is possible with the bumpy torus. Of course a loss-free geoinetry

- 88 -

does not eliminate losses by ordinary diffusion across the l:Lnes of force.

g If the loss due to the new -tgam mechanism in the bumpy torus is less tha.n ths.t

o of; ;pa:rticlea alrea.dy trapjpéd. . One loss mechanism 1s scattering into a loss

" the cha.nge of e/m inject ton methods ‘which have been proposed.(jl)’ (32). for 7};" :

:" building up a thermonuclear plasma. In these methods particles such as H

of collisions with neutral. backg'ound. gas or with prev:tous];,r injected pa.r’cicl@e, o L

R scale for such systems to build up have been ca.lcu;laued. to be as long as

o rregion of velocity space, BO 'bhat & loss~free geometry would. incresase the

" £inal density.

are knowptheoretically: to be uns’ca.ble(3 5 ) e.nd 'bhe insta'bility mey have been
obsexved expe:r:Lmenta.:L:l;;r(35 %) in an ordinary min'or machine, IZ a field had
T pe loss region in velocity space, the distribu’cion function could. 'be nea.rly

N isotrolaic. f:.

the toyus ] ﬁ:?"i'f'ﬁ
due +to ordinary diffusion across the lines, 4% is for practica.l purposes Sl

loss-free. The bydremagaetic sta‘bility of the bumpy torus is another q_ues‘ciono '-

Loss~free gecmetries are of particular interest in connection with

2

- or neutral E are injected into ‘& magnetic field at energles of many ki],owfol{;s '. R

" @r even en Mev. ‘Scme of these particles undei'go a change in e/m by means

- and thereby became trapped. i 'bhe geometry of the fleld is proper. The time L

“yi " seversl minutes. The .final steady state density s limlted by the loss rate R

Another advan’cage that & loss~free geometry may possess is that of

greater plasuma sta‘bllity. Sufficiently a.nisotropic valocity distributions
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“gf“c.b The Gecmaqnetic Case

.;g;that of.a leep—ef—were but the system is not loss-cone free because of the
ua;presence of the earth. Neither is the field exactly aZimuthally Symmetric about
Eﬁany axis. Nevertheless, long as the three adiabatic 1nvariants are conserved,‘u
fa‘trapped charged particle cannot escape. One interesting theorem in connection.
?with the trapped (Van Allen) radiation surrounding the earth is a result of the
,1canonical form of equations (1360 Contours of constant B on ean invariant.'

;;:surface are also contours of constant particle density provided there is a

ﬂ steady state and no electric field.

:ﬂis why the density of the inner or. proton radiation belt falls off so rapidly

S T o
g Lf

Q'than T Mev falls from a maximum at about 10,000 km. from the center'of the ,i N

;earth to practically zero,at 12,000 kmyin the equatorial plane. Ir the theory
{{is'to bextenable that the protons are the product of B-decay, of cosmic ray
ﬁl?neutrons, it,is necessary to explain the large decrease in density beyond '
‘;;l0,000 km. vlhe-decreasevin'the source strength is nothing like this rapid.
‘;iiﬂ'possible explanation is in terms of a large loss rate due to non-adiabatic

Tfp effects. I, for example, the magnetic moment decreased, during many longitudinal

ﬁl_ Such a process might be described as scattering into the loss cone by the magnetic

t-‘ also possible that rapid spatial variation of the field due. to AlfVen waves is B @_”jl

:responsible, as suggested by Welch and Whitaker.(37)

" The behavior to be expected of adiabatic particles in the earth'

field has been studied in some detail.cz‘) The geomagnetic field approximates
Cleyrewt /np

{20)

' One as yet unsolved problem in connection With the Van Allen radiation .

;with radius. It is observed(‘?"sj that the density of‘protons with energy greater

"

 one

‘I

oscillations, the particle would eventually be absorbed by the earth's atmosphere.;u
2‘ E

field, rather than by other particles. Possibly the gyration radius of a proton
of say lOO Mev energy is so large at 12,000 km that non-adiabatic effects are ff

important even in -1 static dipole field, as suggested by Singer.c:éd It is o
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YI UNRESOLVED PROBI.EMS

A.v Non-adiabatic Effects in Mirror Mach:lnes-’\Iumerical

A ;princi;pa.l unresolved question is the extent to which pa.rticles obey
a.diabatic predictions. The question is _probably not capable of a genera.l answer,
and each situation must be examined independently. It is possible to follow ‘
particle tra,jectories by numerical methods and to oompare the results vith the I
adiabatic predictions. This ha.s been done( 9) for the laboratory type mirror '
machine, or more precisely for many mirror machines end to end in a straight ,
.':f"‘:'line (fi-elds taken as periodic functio'ns of 2y Fig 19') The somewhat surprising
observation was made that .as the particle osc1l.lated between mirrors the magnetic A
v:;'lmoment could va.ry by large amounts but that the va.riations vere highly self _ :
j.'v':ca.ncelling frcm one osc:.lla.tion to the next. To be more specﬁic, the pa.rticle

j;was sta.rted off at the pla.ne midway between mirrors as shown in F:Lg. /7 The

Lo

. . ‘ Do ,, _ . e

A periodic mirror geometry for which numerical calculations have 'been
compe.red to the ediabatic predictions. S -




- -

b fiangle between V¥ and B (¥) is &, while A is the angle between 3:; 'and.;f'

: ‘Aw4' th? plane of the page. Each time the particle returned to the midplane, new |
.%;fg . 5 ‘end A wvere computed. A’cumnlative arift of & would imply & gradual
j"""Ai.chax:mge in the magnetic merment; in an azﬁnuthally symmetric field, conservation‘

| ';.of the canonical angular momentum Pg prohibits a radial drift, and therefore'fv

‘E.B(RO) * cannot change. Thus a change in VJ. /B(R ) must come from a change ’

v;( = v sin 5 and therefore from a change in. 8 31nce v is constant. S

o Gualrtatrvels ' ,
.. Phase plots of the type shown, in Fig. (80) were obtained. The numbered points

“'in

ff represent successive traversals of the median plane;  zero being the initial

lﬁ} point. There are two types of particle~hehav10r ev1dent. The first might be

?“by_points, X. The & of a stable particle may undergo severe variations, and e
fithe larger the gyration radius, the larger the variation. However, the variatiOn‘:
‘ﬁf'is highly'self cancelling;fthe phase points always appear to fall on a well- |
pgvdefined curve. On a large'scale rlot the points ‘appear to fall on a smooth'curvel
Z{to within less than 10 -3 degrees in 9, and that much scatter can be attributed

¢

! o mmerical errors. Thus it appears that the stable points are very stable
By contrast the unstable particles show no such memory and form no

" line of demarcation between the stable and unstable regions also is quite sharzg

if although Just how sudden the transition is has not been carefully studied. It
;“‘unsuable region, which begins at the loss cone and extends upward in & ’
0 to o, Near A= x/é there are stable: curves of type B even below the

:{jline of demarcation. The fixed points at the center of type B patterns B

uj‘are rigorously fixed by virtue of the symmetry about the median plane. Becausef'.

,j_termed steble (curves A or B) and the Second type is unstable as exemplified tfgft v

fzi indeed as a result of & "memory” from one median plane traversal to the next. i: AR

'f"regular pattern. They usually escape within ten or so mirror reflections. The :f:fhf{

Vf would be '1nteresting to investigate the transition region more minutely. ‘The }*i:}.-”*

" to the line of demarcation does not appear to cover the entire range of A from L



Stable to vhstodle g
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the unstable particlee escape in a few.reflections,‘the‘demarcation between

‘tne stable and unsteble regions is the loss cone for practical purposes. It

has been found that the unstable region vanishes when the ratio of gyration :

The behavlor of particles w1th1n the loss cone as they go from one mirror

section to the next in thls periodic machine has not been studied. It would be '
- worthwhile studying,'since these partlcles are analogous to those in the

'bumpy torus that are not trapped in one section but go clear around the torus.

:~;3:According to the theory particles are lost which exhlblt a resonance between
ﬁ'u;;; the fundamental longitudinal oscillation frequency (or one of its harmonics) and.
?f the gyration frequency. The theory has been given only 1n the approximation
liul;:of straight lines of force. This is equivalent to assuming v-3 f 0. Thev‘

“'inportance in this theory of'bine curVature would be worth investigating..-lt”

fiv should be pointed out that the fixed points at the center of type B patterns

lost because of -the symmetry. These are however very specici cases and constitute Ief-v

a class of measure zero.
The type A stable curves are predlcted qualltatlvely by the first
two terms of the magnetic mcment series (Eq. 153). From the fact that the-

canonical angular momentim .pe iS-a constant of the motion,'it is possible to

writeu Eq.léj@ in the form f(oﬂv) constant. The field used in the numerical;ﬂ"7'

calculathusof Fig 20) 1is derived (in cylindrical coordinates) from the vector o

'potential

,_'radius to the distance bet%een mirrors is less than something like - 0.03 . %: Qi&jl:ﬂfeﬁ-?

ol
Tt

‘A theory of the behavior observed in Fig.20; has been given by Chirikov CB?) ﬁvf

" in Fig.20 possess this resonance and are precisely the ones which cannot be RSN



)

| where L is the distance between mirrors, p is ‘
and. B is the ﬁ.eld. halfway from the mirror to the med.ian jplane. With thnis ;

 field vf?;r

/ and. i Py ‘i's'_ ‘Ghe solution_ of

o .7 Higher terms in the mag:. ctic moment ser‘ies might give more details of the sta‘ole

i'orbits;

| az...muthal symmetry would. be of interest. b‘.f_“?""ﬂ_‘ T

‘ B'. Non Adia‘batic Ei’fects-E@erimental S . ,‘:‘:, ‘ i B 0 _."-‘

machine has been measured by Iauer, Gibson, and. Jordan (4 ) Exponential decay

=§;r— [g- + acos{,I (p)

yl ‘  ? ' ’t ;‘- SR

0.

T
o

{ 1’(6 ':\) = sin 6 (sin 5 + & cos 25 s1n N) = ¢'°nstant:‘v‘:\“:;v‘-v L i“:

. hnot Il(-po)
as=

‘)-l-zt?c'p N I I
'eB.éLe-' 0:f 2 A

But the unstable behavior could not
" be predicted from the series.. . N ‘
An investigation of particle orbits in other geometries, such as the

'bumpy torus or a mirror machine without a med.ian plane of symnetry, or without

The containment time of relativistic positrOns in a laboratory mirror

of the positron density is observed, with time constants as long as many seconds. .ﬂ Lo

The o‘oserved 1oss rate is quantitatively attributable to scattering from the




®

&
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K

background neutral gas, and therefore is not a non-uaiaoatic effect, even though B

a particle has made of uhe order of lO mirror reflections 4in the decay.

time. The accuracy of the self-cancelling effeCu in the stable orbits A and»

B of Fig. 20 therefore is quite phenonemal It would be impossible to test e :

- for such long containment by numerical methods because of the.. ccmputer time :.f
reqpired and the numerical-errors that would accumulate. | |

If in the experiment uhe gyration radius is increased s0 that the ratiob_fw{zl

, of gyration radiue to L is ¥ O 03 evidence of the unstable region and B

enhenced.loss cone appears;

Similar containment experiments with the bumny torus or with a field o
resembling the earth s would be worthwhile. B e
C. Higher Order Terms . -

The first order texrms ‘eJ‘ and _e@ﬁ in the adiabatic series for - J "

x'f{ end ¢ have not been calculated. The first correction to the longitudinal p :

o invariant wouwld be ‘perticularly valusble in studying the motion of the

high energy protons in the earth's field.




B

| VII. SUMMARY.

. . - L) oy v 5 T

“a circle whose center (the guiding center) has velocity compqmnts along and at
;f rght angles to the magnetic field. ‘The equations governing the guiding center
':’”f§1.motion have been obtained deductively for . the general time-dependent field. f'

”5;queveral unfamiliar drifts appeared because the time dependence and the ﬁjdi
' ‘tijperpendicular electric field were assumed for the sake. of generality to be bf
j‘;.:zero order in the radius of gyration rather than first order. ' These less'ffl;
.glfamiliar drifts have been 11ustrated via pracuical cxamples f wbereotheY'f‘rl

'ifsoccur.",tfl'
%:.of relativistic energy have been viven.
"T;defined and the invariance proven for the gene 6. nax - of time deperient fields..

'}iQSeveral applications have beenimade of the guiding center equations of motion

;;&;and the adiabatic invariants.»ff ;' '735\"“

.

The equations of motion of & charged particle in an electromagneticx‘;'
.1ield have been used to dbtain the so—called "guiding center motion. In a-

slowly varying field the particle mOuion is approximately a rapid rotation about

.a‘< :

The modifications of the guidirg center equations need..t for particles

The three adiabatic invariants of the pirticle otion have ;en'f

Finally; deviations from the adiabatic predictions have;been discuss
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